
Quantum Logspace Computations are Verifiable

Uma Girish∗ Ran Raz† Wei Zhan‡

Abstract

In this note, we observe that quantum logspace computations are verifiable by
classical logspace algorithms, with unconditional security. More precisely, every
language in BQL has an (information-theoretically secure) streaming proof with a
quantum logspace prover and a classical logspace verifier. The prover provides a
polynomial-length proof that is streamed to the verifier. The verifier has a read-once
one-way access to that proof and is able to verify that the computation was performed
correctly. That is, if the input is in the language and the prover is honest, the verifier
accepts with high probability, and, if the input is not in the language, the verifier
rejects with high probability even if the prover is adversarial. Moreover, the verifier
uses only O(log n) random bits.

1 Introduction

The problem of how to classically verify that a quantum computation was performed
correctly, first suggested by Gottesman in 2004, has been studied in numerous recent
works (see for example [BFK09, RUV13, FK17, ABEM17, Mah22, CBJV19, CCY20,
ACGH20, BKL+22]). Mahadev’s breakthrough work presented the first protocol for
classical verification of quantum computations [Mah22]. Her protocol is only secure against
computationally bounded adversarial provers, under cryptographic assumptions. In this note
we observe that for quantum logspace computations, there is a simple verification protocol,
with a classical logspace verifier, such that the protocol is secure against adversarial provers
with unlimited computational power. Moreover, the protocol is non-interactive. Our proof is
similar to our recent proof that shows that randomized logspace computations are verifiable
using only O(log n) random bits [GRZ23].

∗Princeton University. E-mail: ugirish@cs.princeton.edu. Research supported by a Simons Investigator
Award, by the National Science Foundation grants No. CCF-1714779, CCF-2007462 and by the IBM Phd
Fellowship.

†Princeton University. E-mail: ranr@cs.princeton.edu. Research supported by a Simons Investigator
Award and by the National Science Foundation grants No. CCF-1714779, CCF-2007462.

‡Princeton University. E-mail: weizhan@cs.princeton.edu. Research supported by a Simons Investigator
Award and by the National Science Foundation grants No. CCF-1714779, CCF-2007462.

1

1.1 Streaming Proofs

A streaming proof consists of a pair of (classical or quantum) randomized algorithms, a
prover and a verifier, which share a common stream tape. In our work, the prover is a
quantum logspace machine and the verifier is a classical randomized logspace machine. The
prover doesn’t have a separate output tape, instead, it has write-once access to the proof
tape onto which it writes a classical bit string Π. The verifier has read-once access to the
proof tape from which it can read Π. Both the verifier and the prover have read-many access
to the input x ∈ {0, 1}∗. We allow the prover and verifier to output a special symbol ⊥.
Upon outputting this symbol, the algorithm stops all further processing and we say that the
algorithm aborts.

Definition 1.1 (Logspace Streaming Proofs). Let F = {fn : {0, 1}n → {0, 1}}n∈N be a
family of functions. Let P : N → N be a monotone computable function. We say that F has
a logspace streaming proof of length P if there is a (possibly quantum) logspace prover P and
a classical randomized logspace verifier V, that uses a random string R, such that on input
x ∈ supp(fn),

1. The honest prover P, with at least 3
4
probability, outputs a (randomized) proof Π ∈

{0, 1}P (n) such that
Pr
R
[V(x,Π) = fn(x)] ≥ 3

4

(where the probability is over the uniform distribution over R.)

2. For an arbitrary Π ∈ {0, 1}P (n) (even adversarially chosen after seeing the input x),

Pr
R
[V(x,Π) ∈ {fn(x),⊥}] ≥ 3

4

(where the probability is over the uniform distribution over R.)

Let k : N → N be a monotone computable function. If the verifier V never reads more than
k(n) random bits from R, we say that the verifier uses at most k(n) random bits.

We sometimes omit the length of the proof and it is understood that P is at most the
runtime of the prover, which is polynomial in n.

1.2 Our Main Result

Our main result is as follows.

Proposition 1.2. A language is in BQL if and only if it has a streaming proof between
a quantum logspace prover and a classical logspace verifier where the verifier uses O(log n)
random bits.

2

2 Preliminaries

Let n ∈ N. We use [n] to denote {1, 2, . . . , n}. Let v ∈ Rn. For i ∈ [n] we use vi to denote

the i-th coordinate of v. Let 1 ≤ k < ∞. Let ∥v∥k :=
(∑

i∈[n] |vi|
k
)1/k

denote the ℓk-norm

of v. This induces an operator norm on matrices M ∈ Rn×n by ∥M∥k := maxv∈Rn\{0⃗}
∥M(v)∥k
∥v∥k

.

This norm is sub-multiplicative, i.e., ∥M · N∥k ≤ ∥M∥k · ∥N∥k for all M,N ∈ Rn×n. Let
∥v∥∞ = maxi∈[n] |vi| denote the ℓ∞-norm of v and let ∥M∥max = maxi,j∈[n] |Mi,j| (this is not
an induced operator norm). We have the following inequalities for all M ∈ Rn×n, v ∈ Rn

and 1 ≤ k, k′ < ∞.
∥M∥max ≤ ∥M∥k ≤ n · ∥M∥max

k ≥ k′ =⇒ ∥v∥k ≤ ∥v∥k′

We use M [i, j] to refer to the (i, j)th entry of the matrix M .

2.1 Our Model of Computation

In this work, a deterministic Turing machine consists of a read-only input tape, a work
tape and a write-once output tape. A randomized Turing Machine has an additional read-
once randomness tape consisting of random bits. Let S, T,R : N → N be any monotone
computable functions. We typically use S to denote the space complexity and T to denote
the time complexity of a Turing Machine. When we say that an event occurs with high
probability, we typically mean that it occurs with probability at least 2/3. An algorithm
is said to have bounded error if the probability of error is at most 1/3. By standard error-
reduction techniques, we could choose this number to be any constant in (0, 1/2).

A deterministic (resp. bounded-error randomized) (S, T) algorithm refers to a
deterministic (resp. randomized) Turing Machine such that for all x ∈ {0, 1}∗, |x| = n,
the machine with x on its input tape, uses at most S(n) bits of space on its work tape
and runs in at most T (n) time. We say that an algorithm computes a family of functions
{fn : {0, 1}n → {0, 1}∗}n∈N if for all n ∈ N, x ∈ {0, 1}n, the output of the algorithm on input
x is fn(x) (with high probability if the algorithm is bounded-error randomized). These
functions may be partial, i.e., defined on a strict subset of {0, 1}n. The Turing machine is
said to use R bits of randomness if on inputs of size n ∈ N, the machine never reads more
than R(n) bits on the randomness tape.

Logspace Computation: A logspace algorithm refers to an (O(log(n)), poly(n))
algorithm. The (promise) class L refers to all families of single-bit-output functions
computable by deterministic logspace algorithms. The (promise) class BPL refers to all
families of single-bit-output functions computable by randomized logspace algorithms with
high probability. All these classes are inherently promise classes, so for the rest of the
paper, we omit this prefix. We use the notation family of functions, languages and problems
interchangeably. It is possible to define quantum analogues of the aforementioned complexity
classes. In particular, we will be interested in BQL, the set of all families of single-bit-output
functions computable by quantum logspace algorithms. The readers are referred to [FR21]

3

for a formal definition of BQL, while here we characterize the class using a complete problem
stated below.

2.2 Unitary Matrix Powering

We consider the following promise problem.

Definition 2.1 (Unitary Matrix Powering). The inputs are an n×n unitary matrix M and
a parameter T ≤ poly(n) and an n× n projection matrix Π onto a subset of standard basis
states. The promise on the input is that ∥ΠMT (e1)∥22 ≥ 4/5 or ∥ΠMT (e1)∥22 ≤ 1/5. The
goal is to output 1 in the former case and 0 in the latter case.

Proposition 2.2. The Unitary Matrix Powering Problem is logspace-complete for BQL.

The proof of this is deferred to the appendix.

3 Classical Logspace Verifiers for Quantum Logspace

Computations

In this section, we prove Proposition 1.2 which states that a family of functions is in BQL
if and only if it has a logspace streaming proof between a quantum prover and a classical
verifier that reads O(log n) random bits. First, it is clear that any streaming proof between
a quantum logspace prover and a classical logspace verifier can be implemented by a BQL
algorithm, which simulates the honest prover and the verifier, with success probability at
least (3/4)2 > 1/2 which can be amplified. It suffices to argue that the Unitary Matrix
Powering Problem can be solved by a streaming proof between a quantum logspace prover
and a classical logspace verifier, where the verifier uses O(log n) random bits. Towards this,
we define a notion of a δ-good sequence of vectors for a matrix M .

Definition 3.1. Let M be any n × n matrix and T ≤ poly(n) be a natural number. Let
vi = M i(e1) for all i ≤ T . Let δ ∈ [0, 1]. A sequence of vectors v′0, v

′
1, . . . , v

′
T ∈ Rn is said to

be δ-good for M if for all i ∈ [T], we have ∥v′i − vi∥2 ≤ δ and v0 = e1.

We make use of the following claims.

Claim 3.1. There is a quantum logspace prover which given an n×n unitary matrix M and
parameters T ≤ poly(n), δ ≥ 1

poly(n)
as input, outputs a δ-good sequence of vectors for M

with probability at least 3
4
.

Claim 3.2. Let 1
poly(n)

< δ ≤ 1
104T 2 . There is a randomized logspace verifier which given

any n × n unitary matrix M and parameters T ≤ poly(n), δ as input and read-once access
to a stream of vectors v′0, . . . , v

′
T ∈ Rn (where each vector is specified up to Θ(log(n)) bits of

precision), does the following.

• If the sequence is δ-good for M , then the probability that the algorithm aborts is at most
1/4.

4

• If ∥v′T − vT∥2 ≥
1
5
, then the algorithm aborts with probability at least 3/4.

Furthermore, this algorithm only uses O(log(n)) bits of randomness.

Let us see how to complete the proof using Claim 3.1 and Claim 3.2. Given an n × n
unitary matrix M as input and a parameter T ≤ poly(n), set δ = min

{
1

104T 2 ,
1
10

}
. Run the

prover’s algorithm from Claim 3.1 using this value of δ to produce a stream v′0, . . . , v
′
T . Run

the verifier’s algorithm from Claim 3.2 on this stream to verify. If it doesn’t abort, we have
the verifier return 1 if ∥Π(v′T)∥

2
2 ≥ 0.6, return 0 if ∥Π(v′T)∥

2
2 ≤ 0.4 and return ⊥ otherwise.

With the access to read Π from the input, this computation can be easily done in classical
logspace when v′T is given as a stream.

Completeness: Claim 3.1 implies that an honest prover outputs a δ-good sequence
with probability at least 3

4
. Claim 3.2 implies that an honest proof is aborted with

probability at most 1
4
. Since ∥v′T − vT∥2 ≤ δ ≤ 1/10 by assumption and Π is a projection,

∥Π(v′T)− Π(vT)∥2 ≤ 1/10. Hence, if ∥Π(vT)∥22 ≥ 4/5, then ∥Π(v′T)∥
2
2 ≥ (

√
4/5− 0.1)2 ≥ 0.6

and if ∥Π(vT)∥22 ≤ 1/5 then ∥Π(v′T)∥
2
2 ≤ (

√
1/5 + 0.1)2 ≤ 0.4. Thus, the verifier will return

the correct answer whenever the sub-routine doesn’t abort.

Soundness: Consider the behavior of this verifier on an arbitrary proof. If the verifier
makes a mistake and returns the incorrect answer, it must be the case that either ∥Π(vT)∥22 ≥
4/5 and ∥Π(v′T)∥

2
2 ≤ 0.4 or ∥Π(vT)∥22 ≤ 1/5 and ∥Π(v′T)∥

2
2 ≥ 0.6. In either case, we must

have ∥v′T − vT∥2 ≥ min
(√

4/5−
√
0.4,

√
0.6−

√
1/5

)
≥ 1

5
. Claim 3.2 implies that such a

proof is aborted with probability at least 3
4
. This completes the proof of Proposition 1.2.

We now proceed to prove Claim 3.1.

Proof of Claim 3.1. The prover starts by outputting v0 = e1. To output the intermediate
vi, we make use of the following result from [GRZ21]. It appears as Corollary 15 and we
paraphrase it as follows.

Lemma 3.2. Given an n× n matrix M with ∥M∥2 ≤ 1, a positive integer i ≤ poly(n), two
unit vectors v, w ∈ Rn and an error parameter δ > 0, there is a quantum algorithm with time
poly(n/δ) and space O(log(n/δ)) such that with probability 1− 2−poly(n/δ), it outputs w†M iv
with additive error δ.

Note that vi(j) = e†jM
ie1. Thus, by repeating the subroutine from Lemma 3.2 poly

(
nT
δ

)
times with parameters w = ej, v = e1, i and δ/n, a quantum logspace prover can with
probability at least 3

4
, estimate each vi(j) to δ/n additive accuracy for all i ∈ [T] and

j ∈ [n]. In this case, we have, ∥v′i − vi∥2 ≤ ∥v′i − vi∥∞ · n ≤ δ. This completes the proof of
Claim 3.1.

We now complete the proof of Claim 3.2

Proof of Claim 3.2. The verifier’s algorithm is formally described in Algorithm 1. The
informal description is as follows. The verifier will try to check that M̃(v′i−1) is approximately
equal to v′i for all i ∈ [T]. However, to do this in a streaming fashion, the verifier will instead
test that a random linear combination of these approximate equations holds. To reduce the

5

Algorithm 1 Algorithm for Verifier in Claim 3.2

Input : An n × n unitary matrix M , parameters T ≤ poly(n), 1
104T 2 ≥ δ ≥ 1

poly(n)
and

read-once access to a stream of vectors v′0, . . . , v
′
T ∈ Rn.

Output: If the sequence is δ-good for M , then return ⊥ with probability at most 1
4
. If

∥v′T − vT∥2 ≥
1
5
, return ⊥ with probability at least 3

4
.

begin
Round down each entry of the input matrix M to δ

6n2T
additive error to produce a matrix

M̃ so that
∥∥∥M − M̃

∥∥∥
2
≤ δ

6T
.

Return ⊥ if v′0 ̸= e1.
for t = 1 to 11 do

Sample αi,j ∈ {−1, 1} for i ∈ [T], j ∈ [n] from a collection of 4-wise independent
{−1, 1}-random variables with mean 0.
Compute ∆ :=

∑
i∈[T],j∈[n] αi,j · wi,j where for i ∈ [T], j ∈ [n], we have wi,j :=

(M̃(v′i−1))(j)− v′i(j).
Return ⊥ if |∆| > 30Tδ.

end

end

randomness from T to O(log n), instead of using a truly random combination of the equations
the verifier uses a pseudorandom combination drawn using a 4-wise independent collection
of {−1, 1}-random variables. This is similar to the ℓ2-frequency estimation algorithm
in [AMS99].

Time & Space Complexity of this Algorithm: One can sample from a collection of 4-
wise independent {−1, 1}-random variables of size O(nT) in logspace using only O(log(nT))

bits of randomness [AMS99]. Note that the quantity ∆ ≜
∑
i∈[T]
j∈[n]

αi,j ·
(
(M̃(v′i−1))(j)− v′i(j)

)
can

be expressed
∑

i∈{0,...,T}
j∈[n]

βi,jv
′
i(j) where βi,j are coefficients that depend only on the entries of

M̃ and α, and can be computed in logspace. Thus, a logspace algorithm can read the stream
of v′i(j) for i = 0, . . . , T and j ∈ [n] once from left to right and compute ∆ ≜

∑
i,j βi,jv

′
i(j)

in a streaming fashion. As the entries of the matrices and the vectors are O(log(n)) bits
long, the arithmetic can be done in logspace. The time complexity of this process is hence
poly(n) and the space complexity is O(log(n)).

We now move on to the completeness and soundness. First, we make some observations.
Let w ∈ RnT be defined at i ∈ [T], j ∈ [n] by wi,j ≜ (M̃(v′i−1))(j)− v′i(j). Let ṽ0, . . . , ṽT be

defined by ṽi = M̃ i(e1) for all i ∈ [T] ∪ {0}. Since
∥∥∥M̃ −M

∥∥∥
2
≤ 1

6δT
and ∥M∥2 ≤ 1,

for all i ∈ [T],
∥∥∥M̃ i −M i

∥∥∥
2
≤

(
1 +

δ

6T

)i

− 1 ≤ δ

2
. (1)

6

(In particular,
∥∥∥M̃ i

∥∥∥
2
≤ 1 + δ/2.) Thus,

for all i ∈ [T], ∥ṽi − vi∥2 ≜
∥∥∥M̃ i(e1)−M i(e1)

∥∥∥
2
≤

∥∥∥M̃ i −M i
∥∥∥
2
≤ δ

2
. (2)

Completeness of the Algorithm: Suppose v′0, . . . , v
′
T is a δ-good sequence, then

∥v′i − vi∥2 ≤ δ for all i ∈ [T] and v′0 = e1. Since M is a contraction map with respect
to ∥ · ∥2, this along with Equation (1) implies that for all i ∈ [T],∥∥∥M̃(v′i−1)− v′i

∥∥∥
2
≤

∥∥∥M̃(v′i−1)−M(v′i−1)
∥∥∥
2
+
∥∥M(v′i−1)−M(vi−1)

∥∥
2

+ ∥M(vi−1)− vi∥2 + ∥vi − v′i∥2
≤

∥∥∥M̃ −M
∥∥∥
2
· ∥v′i−1∥2 + ∥vi−1 − v′i−1∥2 + ∥vi − v′i∥2

≤ δ
6T

· (1 + δ) + δ + δ ≤ 3δ.

Thus, ∥w∥2 ≤ 3Tδ. Consider the quantity ⟨α,w⟩ =
∑

i,j αi,jwi,j that the algorithm estimates.

Note that E [⟨α,w⟩] = 0 and that E [⟨α,w⟩2] =
∑

i,j w
2
i,j. Chebyshev’s Inequality implies that

with probability at least 0.99, we have |⟨α,w⟩| ≤ 30Tδ. This implies that with probability
at least (0.99)11 ≥ 0.8, every iteration of the inner loop in Algorithm 1 does not reject.

Soundness of the Algorithm: Suppose a dishonest prover produces a stream v′0, . . . , v
′
T

such that ∥v′T − vT∥2 ≥
1
5
. The verifier always returns ⊥ if v′0 ̸= e1, so we may assume that

v′0 = e1. Let ε =
1

20T
. We argue that for some i ∈ [T], we must have ∥wi∥2 ≥ ε. Assume by

contradiction that
∥∥∥M̃(v′i−1)− v′i

∥∥∥
2
≤ ε for all i ∈ [T]. Hence, by Triangle Inequality and

Equation (1), (and since ṽ0 = e1) we have

∥ṽT − v′T∥2 =
∥∥∥M̃T (v′0)− v′T

∥∥∥
2
≤

∑
i

∥∥∥M̃T−(i−1)(v′i−1)− M̃T−i(v′i)
∥∥∥
2

≤
∑
i

∥∥∥M̃T−i
∥∥∥
2
·
∥∥∥M̃(v′i−1)− v′i

∥∥∥
2

≤
∑
i

(
1 + δ

2

)
· ε

≤ 2Tε.

Equation (2) implies that ∥ṽT − vT∥2 ≤ δ
2
. This implies that ∥v′T − vT∥2 ≤ δ

2
+ 2Tε. We

assumed that ∥vT − v′T∥2 ≥
1
5
. Hence, it follows that

1
5
≤ δ

2
+ 2Tε.

Since we chose ε = 1
20T

and δ ≤ 1/10, this is a contradiction. Thus, we must have ∥w∥2 ≥ ε.
Note that E [⟨α,w⟩] = 0 and E [⟨α,w⟩2] = ∥w∥22. Furthermore,

E
[
⟨α,w⟩4

]
= E

[∑
i,j,k,l

wiwjwkwlαiαjαkαl

]
≤ 6

∑
i,j

w2
iw

2
j ≤ 6∥w∥42

7

Here, we used the fact that the random variables are 4-wise independent. The Paley-
Zygmund Inequality implies that

Pr

[
⟨α,w⟩2 ≥ 1

10
· ∥w∥22

]
≥

(
1− 1

10

)2

· (E [⟨α,w⟩2])2

E [⟨α,w⟩4]
≥ 1

8
.

This, along with the fact that ∥w∥2 ≥ ε implies that Pr
[
|⟨α,w⟩| ≥ ε

10

]
≥ 1

8
. By repeating

this experiment 11 times, we can ensure that with probability at least 1− (1− 1/8)11 ≥ 3/4,
we find at least one instance so that |⟨α,w⟩| ≥ ε

10
. Since δ ≤ 1

104T 2 and ε = 1
20T

, we have

ε
10

> 30Tδ

Thus, with probability at least 3/4, we have |⟨α,w⟩| > 30Tδ. This implies that the algorithm
returns ⊥ with probability at least 3/4.

References

[ABEM17] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive
proofs for quantum computations, 2017. 1

[ACGH20] Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-
interactive classical verification of quantum computation. In Rafael Pass
and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International
Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings,
Part III, volume 12552 of Lecture Notes in Computer Science, pages 153–180.
Springer, 2020. 1

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. J. Comput. Syst. Sci., 58(1):137–147,
1999. 6

[BFK09] Anne Broadbent, Joseph F. Fitzsimons, and Elham Kashefi. Universal blind
quantum computation. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA,
pages 517–526. IEEE Computer Society, 2009. 1

[BKL+22] James Bartusek, Yael Tauman Kalai, Alex Lombardi, Fermi Ma, Giulio
Malavolta, Vinod Vaikuntanathan, Thomas Vidick, and Lisa Yang. Succinct
classical verification of quantum computation. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,
August 15-18, 2022, Proceedings, Part II, volume 13508 of Lecture Notes in
Computer Science, pages 195–211. Springer, 2022. 1

[CBJV19] Andrea Coladangelo, Alex Bredariol Grilo, Stacey Jeffery, and Thomas Vidick.
Verifier-on-a-leash: New schemes for verifiable delegated quantum computation,

8

with quasilinear resources. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture Notes in
Computer Science, pages 247–277. Springer, 2019. 1

[CCY20] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical verification
of quantum computations with efficient verifier. In Rafael Pass and Krzysztof
Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC
2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, volume
12552 of Lecture Notes in Computer Science, pages 181–206. Springer, 2020. 1

[FK17] Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind
quantum computation. Phys. Rev. A, 96:012303, Jul 2017. 1

[FR21] Bill Fefferman and Zachary Remscrim. Eliminating intermediate measurements
in space-bounded quantum computation. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 1343–1356. ACM, 2021. 3, 10

[GRZ21] Uma Girish, Ran Raz, and Wei Zhan. Quantum logspace algorithm for powering
matrices with bounded norm. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 73:1–73:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. 5

[GRZ23] Uma Girish, Ran Raz, and Wei Zhan. Is untrusted randomness helpful? In
Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts,
USA, volume 251 of LIPIcs, pages 56:1–56:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023. 1

[Mah22] Urmila Mahadev. Classical verification of quantum computations. SIAM J.
Comput., 51(4):1172–1229, 2022. 1

[RUV13] Ben W. Reichardt, Falk Unger, and Umesh V. Vazirani. A classical leash for
a quantum system: command of quantum systems via rigidity of CHSH games.
In Robert D. Kleinberg, editor, Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 321–322. ACM, 2013.
1

9

4 Appendix

4.1 A BQL-complete Problem

We prove Proposition 2.2 which states that the Unitary Matrix Powering Problem is complete
for BQL. As before, it suffices to reduce all BQL problems to this problem.

Consider any F = {fn : {0, 1}n → {0, 1}}n∈N in BQL. As per the definition1 in [FR21],
this means that there exists a logspace-uniform family of quantum circuits {Qn(x)}n∈N,
consisting of only unitary operators where Qn(x) acts on m = O(log n) qubits with the
following property. If the initial state is |0m⟩ and the first qubit of the final state is measured,
then fn(x) = 1 if the outcome is 0 with probability at least 4/5 and fn(x) = 0 if the outcome is
0 with probability at most 1/5. Let Tn(x) be the number of operators of the quantum circuit
Qn(x) and m be the number of qubits. Define a unitary matrix Un(x) in (Tn(x) + 1) × 2m

dimensions as follows. We first partition the rows and columns of Un(x) into Tn(x) + 1
parts based on the value of the first log(⌈Tn(x) + 1⌉) coordinates. For all i ∈ [Tn(x)], define
the (i + 1, i)-th block of Un(x) to be the i-th operator in the circuit Qn(x). Define the
(1, Tn(x) + 1)-th block of Un(x) to be the identity matrix. All other blocks of Un(x) are
defined to be zero. Since Tn(x) ≤ poly(n) and m ≤ O(log n), this is a unitary operator in
poly(n) dimensions. Let Πn(x) be a projection matrix in (Tn(x) + 1)× 2m dimensions that
projects onto the basis states {|i, j⟩ | i = Tn(x) + 1, j ∈ [2m], j1 = 0}.

Firstly, each entry of the unitary matrix Un(x) and the projection matrix Πn(x) can
be computed by a deterministic logspace algorithm. Observe that the vector U i

n(x)(e1)
is supported only on coordinates in {i + 1} × [2m], furthermore, when restricted to these
coordinates, this vector precisely captures the state of the qubits in Qn(x) after applying
the first i operators. It follows that the probability that the circuit Qn(x) outputs 1 is
precisely ∥ΠUTn(x)(e1)∥2. Thus, given any x ∈ supp(fn), we can produce in deterministic
logspace, a unitary matrix Un(x) and a projection matrix Πn(x) in poly(n) dimensions and
a parameter T ≤ poly(n) such that fn(x) = 1 if ∥ΠUTn(x)(e1)∥2 ≥ 4/5 and fn(x) = 0 if
∥ΠUTn(x)(e1)∥2 ≤ 1/5. This shows that the Unitary Matrix Powering Problem is complete
for BQL.

1Strictly speaking, this definition is for a unitary variant of BQL, however, in [FR21] it is shown that all
problems in BQL are solvable by this unitary variant.

10

	Introduction
	Streaming Proofs
	Our Main Result

	Preliminaries
	Our Model of Computation
	Unitary Matrix Powering

	Classical Logspace Verifiers for Quantum Logspace Computations
	Appendix
	A BQL-complete Problem

