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My research centered around computational complexity, with a focus on space-bounded
models of both classical and quantum computation. �ese models put constraints on the size of
the accessible memories during the computation, usually in addition to the time constraints. �is
additional dimension of complexity measure opens up new possibilities for studying the power
of such models, which could lead to results that are deemed improbable or out of reach for their
time-bounded counterparts.

Besides theoretical interest, spaced-bounded models are traditionally studied with real-life
applications such as streaming and delegating computation, where randomness is o�en the key
ingredient. Nowadays, in the era of NISQ that near-term quantum devices are heavily limited
on the number of controllable qubits, understanding the power of space-bounded quantum com-
putation also shows practical importance. As a result, my research is mainly motivated by the
following fundamental and largely open question: What is the power of randomness and
quantum mechanics in space-bounded computation?

�e �rst major part of my research [4, 7, 9, 11] tries to answer the question by studying the
corresponding space-bounded complexity classes. I gave new characterizations to these classes,
which provide alternative viewpoints besides their natural de�nitions. �ese allow us to prove
useful properties that are otherwise not evident, helping towards the �nal goal of proving the
classes separate or collapse.

�e second major part of my research [1, 3, 8, 12] tries to answer the question by proving lower
bounds and separations, especially the ones that could demonstrate quantum advantage. All the
super-polynomial quantum advantage thus far has been proved either conditionally (assuming a
certain problem is hard for P), or relative to an oracle (assuming a large black-box object). �e
best result to date is by Zhandry and Yamakawa [29], which is still relative to a random oracle.
Fundamentally, this is because of the lack of strong unconditional classical lower bounds, and I
believe adding space constraints makes a di�erence.

In the rest of this statement, I will explain these two complementary parts of my research in
more details.

Characterizing Logspace Complexity Classes
Since the work of Savitch [14], it becomes clear that complexity classes de�ned with logarithmic
space, whether nondeterministic (NL), random (RL and BPL) or quantum (BQL), all contains L (de-
terministic logspace) and are all contained in L2 = DSPACE(log2n) (deterministic space O(log2 n)),
as they all reduce to the problem of computing matrix determinant. But where do they lie exactly
in the space hierarchy? My work tries to further our understanding in this question. For random-
ized computation, it is currently known that BPL ⊆ DSPACE(log1.5−o(1)n) [24] and widely believed
that actually BPL = L. For quantum computation, the study of the class BQL began much more
recently and was only de�ned consistently through my work and others.
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Unitary�antum Computation

Previously, quantum computation models are o�en de�ned with only unitary operators in mind,
instead of considering all physically possible quantum channels. For time-bounded classes, this
is not a problem because of Stinespring dilation (that every quantum channel is just the e�ect
of a unitary operator in a larger system). However with space constraints, this becomes an is-
sue. For instance, it was not even known how to simulate BPL within unitary logspace because
randomness is irreversible by nature. Another example is intermediate measurements, which is
usually deferred to the end of the computation by adding ancilla qubits, resulting in a unitary
computation with much higher space usage.

In my work with Uma Girish and Ran Raz [4], we resolved this discrepancy by showing that
unital quantum channels, including the bit-�ip channel and measurement channels, can be space-
e�ciently simulated with unitary computation. As a result, the class BQUL of unitary quantum
logspace computation contains BPL, and can naturally perform error reduction. Independently
with a di�erent approach, Fe�erman and Remscrim [23] proved that the result extends to all
quantum channels, and thus BQUL = BQL. Combining with our techniques, we can show that
they are equal in a strong sense: �e output distribution of any BQL computation, not limited
to decision problems, can be simulated unitarily with polynomial accuracy. Subsequently, our
simulations are proved to be optimal by Zhandry [30].

Verifying Computation and Derandomization

In another project with Uma and Ran [7, 11], we considered the problem of verifying quantum
computation: How could a quantum computer prove to classical devices e�ciently that the com-
putation is correct? For polynomial-time quantum computation, this task is highly involved and
currently known protocols require multiple non-communicating provers or assumptions on hard
problems. We found out that for logspace quantum computation, there exists a very simple pro-
tocol with no interaction needed, and many other desired properties:

- �e proof is the averaged computation history, represented as a stream to the veri�er;

- �e logspace veri�er can check the proof using only logarithmic many random coins.

�is protocol is interesting even for verifying classical randomized computation, as it allows
characterizing BPL with trusted randomness. Imagine the random bits provided to a probabilistic
logspace machine are arbitrarily corrupted. But as long as there is access to O(log n) trustworthy
perfect random bits, by verifying its own computation history the machine could still perform
the computation correctly, or realize that the rest random bits are rigged and abort immediately.

In particular, this means that we can safely use any source of pseudorandomness, whether
theoretically proved or not, to derandomize BPL computation without worrying about the an-
swer being wrong. With Ted Pyne and Ran Raz [9] we worked on this premise and obtained
numerous applications for derandomization. One of the most interesting ones is that, we ex-
plicitly wrote out a deterministic program that universally and optimally derandomizes BPL: If
BPL ⊆ DSPACE(logcn), then the program solves every problem in BPL within space O(logcn). So
if you believe in BPL = L, our program already accomplishes that!
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Unconditional�antum Advantage and Time-Space Lower Bounds
�ere has been extensive research in the models that concern query complexity and communi-
cation complexity, where polynomial separations can be shown between quantum and classical
computation, or even stronger separations for partial functions. My work in [3] proved that such
separations persist even if the classical computation just want to be a li�le bit be�er (inverse
quasi-polynomial, to be exact) than random guessing. A line of works that I was involved in [2, 5,
6] studied parallel repetition of multi-player nonlocal games, which also can be used to boost the
separation of success probabilities between players sharing quantum entanglements and classical
players.

But ultimately, separations like these do not represent convincing quantum advantage in real
life: �e classical lower bounds are information-theoretical and could not exceed the size of the
problem. �erefore, without having an exponential-sized object as a mysterious oracle to “li�” the
lower bounds, these problems are still “easy” for classical computation. On the other hand, un-
conditional classical lower bounds of high magnitudes for problems in BQP are extremely hard to
prove. For instance, the best lower bounds against boolean circuits and random-access machines
for explicit decision problems, a�er decades of study, are still linear. �e goal of my work in this
direction is to tackle the dilemma by adding space constraints to the picture.

�e Almost-Linear Barrier

�ere are in general two ways of proving time-space lower bounds for explicit decision problems.
One is the approach initiated by Fortnow [18], based on diagonalization and time-hierarchy the-
orems. It is capable of proving time lower bounds of form Ω(n1+c) for sub-polynomial space, but
is not designed to work on BQP problems. �e other one, which is more versatile, is to directly
analyze the branching program, a non-uniform model that captures space-bounded computation.
Sadly, the best lower bound proved via this approach isΩ(n log2(n/S)) for space S, which is almost
linear, by Babai, Nisan and Szedgedy more than 30 years ago [17].

In my work with Ran Raz [1], we a�empted to break this almost-linear barrier by introducing
a new computation model called random-query. In this model the algorithm could access a uni-
formly random index of the input in each time step, instead of querying a speci�c index. When
there are certain dependencies between the indices received in di�erent steps, any time-space
lower bound in this model could be translated to the same lower bound against branching pro-
grams, thus could potentially break the barrier. To initiate the study, we proved that when the
indices are all independent, it must take Ω(n2/max{S, log n}) time to compute functions such as
majority and XOR with zero-error. �e follow-up work by Dinur [26] extended our lower bound
into the bounded-error scenario.

My work with Huacheng Yu [12] looked at the problem from a di�erent angle. Multi-output
functions, where the output size is polynomial in the input size, is not subject to the above-
mentioned barrier. In fact, time-space lower bounds that are polynomially be�er than linear have
been successfully proved for various multi-output functions by applying a framework called the
Borodin-Cook method [15]. �ese lower bounds, proved for randomized computation, are o�en
not known to be tight against deterministic algorithms. We made a surprising connection in
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[12]: For a number of natural multi-output functions such as collision �nding, a polynomially
be�er lower bound that beats the Borodin-Cook method would break the almost-linear barrier
for decision problems. Additionally, we designed an arti�cial problem where we indeed beat the
Borodin-Cook method, giving an evidence that the barrier may not be that impenetrable.

Learning and Exponential Lower Bounds

Even if we break the almost-linear barrier as planned, we are still expected to prove only poly-
nomial lower bounds. �e quantum advantage that we are craving requires super-polynomial
lower bounds for classical problems, which seems strictly out of reach.

But the result by Raz [21] leaves us hope. It shows that unconditional exponential time lower
bound with space restriction is possible for learning problems, where the hypotheses and samples
are of polynomial length. So my goal becomes clear: to �nd a learning problem such that,

- A quantum computer that receives classical samples can solve it in polynomial time and
some space S;

- Any classical learning algorithm with space O(S) must take exponentially many samples.

We also need S to be reasonably large so that the classical lower bound is relevant in practice,
as otherwise problems like the coin problem [22] would su�ce. Speci�cally, we want S to be
super-logarithmic: In my paper [4] mentioned before, we showed that when S is logarithmic, the
existence of such a learning problem is actually equivalent to BQL ≠ BPL, so it is not even easier
than focusing on decision problems.

What about learning a parity function on an unknown subset of variables, the original prob-
lem studied in [21] where the classical lower bound holds for S = o(n2)? It turns out that quantum
computing is not too magical for this problem. In my work with Qipeng Liu and Ran Raz [8],
we proved that a quantum computer, with a small linear quantum memory, still requires either
quadratic-sized classical memory or exponentially many samples to learn parity. It leaves the
possibility that a quantum memory of size, say S = O(n log n), could do all the magic and allow
be�er algorithms than Gaussian elimination, but we conjecture that it is not the case. As such,
the search for a learning problem that demonstrates quantum advantage continues.

Future Directions
I le� several loose ends in previous sections, which I will be continuously thinking about: de-
randomizing BPL, breaking the almost-linear barrier of decision problems, and demonstrating
quantum advantage via learning problems. Besides these, here are some of the related directions
I am actively working on, or would like to think more about in the future:

Random�antum Circuits and Pseudorandomness

Currently the most popular paradigm of showing conditional quantum advantage is random cir-
cuit sampling, because of the theoretical evidences that simulating the output distribution of a
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random quantum circuit is hard classically. In fact, it is o�en conjectured that random quan-
tum circuits of super-logarithmic depth are pseudorandom unitaries (de�ned in [20]), that their
complexity is high enough to be indistinguishable from a Haar random unitary over the entire
system.

My recent work with Bill Fe�erman and Soumik Goush [10] started as an exploration of the
conditions that a random quantum circuit distribution is pseudorandom. A pseudorandom circuit
cannot be e�ciently learned, and we conjectured that the reverse is also true. While trying to
connect the dots, I accidentally found the �rst proper learning algorithm for logarithmic-depth
random quantum circuits. Although we did not prove our original conjecture, the result serves as
an strong evidence towards it. I would like to work more on conjecture, as very few constructions
of pseudorandom unitaries have been proposed, and our general understanding of the object is
still lacking.

�antum Data Structures

Data structure complexity is another way of viewing space-bounded computation. It models data
structures as �xed-sized bit strings with random access, and ask how many bits (or groups of bits
as words) need to be read in individual updates or queries. Classical data structure complexity
has been systematically studied, and I also contributed through my work with Huacheng Yu
[13], where we proved data structure lower bounds using communication complexity of sampling
problems.

In comparison, the emerging research of data structures on quantum computers is quite ad
hoc. Interestingly, recent works on Fermion data structures [25, 28] suggest that we can actually
extract classical data structure problems from the quantum se�ings. I plan to work on such
problems in the near future, and more generally use the ideas and techniques from classical data
structure complexity to prove meaningful results on quantum data structures.

Space-Bounded�antum Interactive Proofs

Our work in [7, 11] can be viewed as a streaming Merlin-Arthur proof system. When we consider
the more general interactive proof systems with logspace veri�er, their computational powers
were initially explored by Condon and Ladner [16], and only fully understood a�er the work of
Goldwasser, Kalai and Rothblum [19].

What if we consider interactive proofs with quantum provers and logspace quantum veri�ers?
�is model was recently considered in [27], and it was shown that whether veri�er is unitary or
not makes a di�erence, but their exact powers are not pinned down. With the help of my works
on BQL, I plan to work towards a full characterization of space-bounded quantum interactive
proofs. For example, the techniques in [4] can be used to convert the veri�er in the GKR protocol
into a unitary one. Yet, more works need to be done to make the protocol sound against quantum
proofs.
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