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Part I

Commentaries

In all commentaries, reference numbers preceded by “GA” refer to the
in the list of Gautschi’s publications; see Section 4, Vol. 1. Numbers in boldface 

 numbers

type indicate that the respective papers are included in these selected works.



21

Linear recurrence relations

Lisa Lorentzen

Walter Gautschi is a giant in the field of linear recurrence relations. His concern
is with stability in computing solutions {yn}∞n=0 of such equations. Suppose the
recurrence relation is of the form

yn+1 + anyn + bnyn−1 = 0 for n = 1, 2, 3, . . . . (21.1)

It seems so deceivingly natural to start with values or expressions for y0 and y1, and
then compute y2, y3, . . . successively from (21.1). However, this does not always
work. Yet, in every new generation of mathematicians or users of mathematics,
along come some incorrigible optimists with a naive trust in this method. We are
happy, of course, for every new optimist in the field; mathematicians do not get
far without optimism, stamina, creativity, and enthusiasm. But the new ones can
definitely benefit from some sensible guidance. And what they should do, is to
start with Walter Gautschi’s SIAM Review paper [GA29] on three-term recurrence
relations from 1967. This is what most people do, and this is what I did when
I started my study of continued fractions. Continued fractions and recurrence
relations indeed share a substantial intersection which, however, calls for some
degree of alertness.

So what can go wrong if one computes a solution as described above? Several
things, says the Master. But the worst scenario occurs if one tries to compute a
solution {fn}∞n=0 of (21.1) which happens to be minimal. A sequence {fn} is a
minimal solution if (21.1) has a second solution {yn} for which fn/yn → 0. This
second solution is then called a dominant solution. The solution space of (21.1) is
obviously a two-dimensional vector space, so a small error in the initial data, for
example a rounding error, changes {fn} to some dominant solution {αfn + βyn},
β �= 0, with totally different asymptotic behavior. The discrepancy between fn
and αfn + βyn may be catastrophic after only a few computational steps, as so
convincingly demonstrated by Gautschi.

Not every such recurrence relation has a minimal solution, and one may think
that the subspace of minimal solutions is so small – if it exists at all – that the chance

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 1,
© Springer Science+Business Media New York 2014
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4 Lisa Lorentzen

of encountering one is also minimal. But that is not at all the case. On the contrary,
as so often in mathematics, special cases are often the most interesting ones. A
number of important sequences of special functions are indeed minimal solutions of
linear recurrence relations. And here we are at the heart of the problem: how can
we compute minimal solutions stably and efficiently?

For recurrence relations of the form (21.1) the answer can be found in continued
fraction theory: the continued fraction

−b1
−a1−

b2
−a2−

b3
−a3− · · · = b1

a1−
b2

a2−
b3

a3− · · · (21.2)

has approximants
b1

a1−
b2

a2− · · · bn
an

=
An

Bn
,

where {An−1}∞n=0 and {Bn−1}∞n=0 are solutions of (21.1) with initial conditions

A−1 = 1, A0 = 0; B−1 = 0, B0 = 1.

Gautschi observes the following connection between the continued fraction (21.2)
and minimal solutions of (21.1), and attributes it to Pincherle, who proved it in
an obscure 1894 paper written in Italian: there exists a minimal solution {fn} of
(21.1) satisfying f0 �= 0 if and only if the continued fraction (21.2) converges to a
finite limit. In that case, moreover,

rn :=
fn

fn−1
=

−bn
an−

bn+1

an+1− · · · , n = 1, 2, 3, . . . , (21.3)

provided fn �= 0 for all n.
This immediately suggests a stable way to compute minimal solutions, namely

to compute the continued fractions rn, rn−1, . . . , r1 in (21.3) and then fn from

fn = rnrn−1 · · · r1f0,
assuming f0 is known. For more details, see also Section 11.1, Vol. 2.

But things are not always as easy as they may look on paper. It took a Walter
Gautschi to sort out the problems and work this simple idea into useful, reliable
algorithms. As always, it is the stability analysis, controlling the error, that takes
ingenuity. Via some very nice twists and tricks — see, e.g., Gautschi’s treatment in
[GA29, Sec. 7] and [GA35] of the three-term recurrence relation satisfied by Jacobi
polynomials of purely imaginary parameters and argument — his algorithms work
like a dream; these are not just algorithms on paper.

But what if f0 is unknown? Also this problem was handled by Gautschi: he
replaced the condition “f0 known” by “

∑∞
n=0 λnyn known”, with known coefficients

λn – a situation one often meets in the theory of special functions. Also this was
incorporated into his algorithms. Of course, Walter Gautschi has also treated linear
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recurrence relations of other forms (for example, see [GA150]) with the same care,
and he has applied them to compute important sequences of special functions,
orthogonal polynomials and interesting integrals. What is so very nice about his
algorithms is that they come with such a very careful and convincing stability
analysis. He has forever changed the way one looks at recurrence relations and
continued fractions.

People do not only read his books and papers – they really use his results.
His contributions to the Handbook of Mathematical Functions by Abramowitz and
Stegun are frequently consulted, both his Chapter 7 on the error functions and
Fresnel integrals and Chapter 5 which he wrote with W.F. Cahill on the exponential
integral and related functions. Not to mention his algorithms for the complex error
function, the incomplete gamma functions, the Fresnel integrals etc. in the NAG-
library and other places (cf. Section 6.1, Vol. 1). To me , the very fact that so many
people talk with ease about minimal solutions and stability analysis as if they had
known about it all their lives, is particularly gratifying. And this happens not
only in conferences on recurrence relations, but on special functions, orthogonal
polynomials, continued fractions, and applied mathematics, to mention just a few.

You know your ideas have made a deep impression when fellow mathematicians
begin to name concepts after you. And in the literature one finds references to
the “Gautschi algorithm” number so and so, the “Gautschi method” for stability
analysis, and even (more amusingly) the “Gautschi-type method” as if there were
some people out there of “Gautschi-type”. I think one would have a hard time
finding anyone like Walter Gautschi. After the very sad death of his twin brother,
Walter is unique. His clear mind and his creativity penetrate all his work, and
also his oral as well as written presentations. So I end this short exposition with a
serious advice: dig in and enjoy.



22

Ordinary differential equations

John Butcher

These days everyone talks about “impact” as something that can be measured in
terms of citations within a year or two, but the impact of many important con-
tributions to science can be looked at in other, more perceptive, ways. I believe
this is especially true of [GA14]. This paper is forward-looking to the extent that
its importance has become recognised more and more as time has passed. In my
opinion the impact of this contribution has been tremendous. Over the years it has
become known as a pioneering paper in the fitted type of approach to the solution
of initial value problems. It has been referenced directly soon after its publication
but even more so in recent years. It is related to exponential integration, to ex-
ponential fitting, and to modern approaches to the solution of highly-oscillatory
problems. The ideas and results in the original paper have been rediscovered inde-
pendently by later authors, but the depth and scholarship in Gautschi’s exposition
are unmatched. Here are the key definitions near the start of the paper.

A linear functional L in Cs[a, b] is said to be of algebraic order p if

Ltr = 0 (r = 0, 1, . . . , p);

it is said to have trigonometric order p, relative to period T , if

L1 = L cos
(
r 2π

T t
)
= L sin

(
r 2π

T t
)
= 0 (r = 1, 2, . . . , p).

On this foundation, the paper goes on to analytical questions concerned with the
existence of trigonometric methods, the actual construction of methods, especially of
Adams and Störmer types, numerical investigations, and the sensitivity of numerical
results to the value of T in relation to the exact period.

The chapter [GA15] from Survey of numerical analysis, McGraw-Hill, New York
(1962), written in collaboration with H. A. Antosiewicz, surveys the state of knowl-
edge, at the time, of numerical methods for ordinary differential equations. This
work set the standard for theoretical expositions on this subject, appearing as it
did, a short time prior to the monograph of P. Henrici. Although the work of

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 2,
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8 John Butcher

Curtiss and Hirschfelder had appeared several years earlier, it was not yet known
and appreciated in the mathematical community. However, a cautionary example
problem,

dy

dx
=

(
0 1

10a2 9a

)

y, y(0) =

(
1
−a

)

,

is presented which, for a > 0, leads to approximations to the solution exp(−ax)y(0)
being eventually, but inevitably, overshadowed by terms which grow like exp(10ax).
After stiffness had become a recognised phenomenon, it would have become more
illuminating to consider a < 0; in this case the difficulty would not have been that
the required solution is buried amongst dominant alternative solutions, but that
the required solution has now become dominant even though its dominance is lost
in computations with classical explicit methods.

Looking now at [GA54], we are reminded of a crucial time in the history of
Runge–Kutta methods. This review paper acknowledged recent work, by Fehlberg
and others, in constructing embedded methods for the purpose of step-size control.
It appeared at a time when Henrici’s monograph was becoming recognised as a
model for exposition in numerical analysis and took the rigorous mathematical style
a step further. But global error bounds based on very reasonable assumptions, such
as the Lipschitz condition, do not necessarily give tight error bounds. This beautiful
paper viewed retrospectively, encapsulates all these ideas.

Paper [GA56] contains short and elegant proofs of the asymptotic behaviour of
the coefficients in Adams and other integration formulae.

For a linear k-step method (ρ, σ), where ρ is given, with zeros satisfying 1 = ζ1 ≥
|ζ2| ≥ |ζ3| ≥ · · · ≥ |ζk|, there is a unique choice of σ to give order p = k+1. The aim
of the paper [GA73] is to determine the method for which |ζi| ≤ γ, i = 2, 3, . . . , k,
0 ≤ γ < 1, that has minimal global error constant. It is shown that in the optimal
solution, ζi = −γ, i = 2, 3, . . . , k. Ramifications of the result are studied in detail.

Somewhere between the appearance of the first and last paper surveyed here, I
met Walter Gautschi in person. I was once his guest at Purdue and met him from
time to time at conferences. I have come to know him as a kind and courteous
person as well as a scholarly, knowledgeable, and original mathematician.



23

Computer algorithms and software packages

Gradimir V. Milovanović

During the preparation of the Handbook of Mathematical Functions, under the
direction of Milton Abramowitz at the Bureau of Standards (now the “National
Institute of Standards and Technology”), Walter Gautschi, then a young research
mathematician, joined this project in 1956. This was the starting point of a period
of intense work with special functions. During the 1960s, in addition to theoretical
work in several domains of special functions (see Section 6, Vol. 1), Walter developed
a number of computer algorithms evaluating special functions: the gamma func-
tion and incomplete beta function ratios [GA22], Bessel functions of the first kind
[GA23], Legendre functions [GA24], derivatives of ex/x, cos(x)/x, and sin(x)/x
[GA27], [GA38], regular Coulomb wave functions [GA28], [GA33], the complex error
function [GA36], repeated integrals of the coerror function [GA60], and incomplete
gamma functions [GA69].

In 1968 Gautschi began to write computer algorithms for Gaussian quadrature
formulas, the first being the one in [GA32]. This opened the door for extensive
work on orthogonal polynomials and their applications (see Sections 11, 12, 14, 15

ORTHPOL, appeared in 1994 as Algorithm 726 in [GA141]. It contains routines,
written in Fortran, that produce the coefficients in the three-term recurrence
relation for arbitrary orthogonal polynomials as well as nodes and weights of Gauss-
type quadrature rules. A more specialized package, GQRAT [GA159], produced Gauss
quadrature rules which are exact for a combination of polynomials and rational
functions. They are useful for integrating functions that have poles outside the
interval of integration.

The package ORTHPOL, as well as the subsequent package OPQ of Matlab rou-
tines, both made available on the internet (http://www.cs.purdue.edu/archives/
2002/wxg/codes), led to a significant boost in the computational use and applica-
tion of orthogonal polynomials. The companion package SOPQ, also available on the
internet, contains symbolic versions of some of the more important routines in OPQ.
They can be used for high-precision work in orthogonal polynomials and Gaussian

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 3,
© Springer Science+Business Media New York 2014
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inVol. 2), but also for developing related software. The first major software package,
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quadrature. A similar package in Mathematica is OrthogonalPolynomials [1]
(see also [2]).

A very comprehensive account of computational methods and software in Mat-
lab is provided in [GA179]. It illustrates the use of the OPQ routines in an elegant,
interesting, and methodical way.

References

[1] Aleksandar S. Cvetković and Gradimir V. Milovanović. The Mathematica package
“OrthogonalPolynomials”. Facta Univ. Ser. Math. Inform., 19:17–36, 2004.

[2] Gradimir V. Milovanović and Aleksandar S. Cvetković. Special classes of orthogo-
nal polynomials and corresponding quadratures of Gaussian type. Math. Balkanica,
26(1–2):169–184, 2012.
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History and biography

Gerhard Wanner

24.1. Euler

The ICIAM Congress 2007, held in Zürich, happened to be in the year of Euler’s
300th anniversary. It was then clear to the organizers, that one of the invited
talks should be dedicated to Euler and Euler’s work. Fortunately, Walter Gautschi
accepted this invitation and presented a fascinating talk on Euler’s life, his person-
ality, an overview of his work and some selected topics in more detail. This took
place in the largest lecture hall (the “Turnhalle”), filled up to the last seat. I still
remember the total silence in the audience, when Gautschi ran a video of an Euler
gear transmission, turning, as he said, “without any noise”. An expanded version of
this talk [GA187] was prepared for the proceedings of the congress and, by mutual
agreement between the publishers, also appeared in SIAM Review 2008, followed
by a Chinese translation. Two particular items from this talk, Euler’s treatment of
slowly converging series and Euler’s discovery of the convergence to a wrong limit
of interpolatory polynomials for the logarithm, a phenomenon which 100 years later
became known as q-theory, led to two separate publications, [GA183] and [GA186].

24.2. The Bieberbach conjecture

An extraordinary story is told in [GA101], where Gautschi, who had worked all
his life on numerical analysis, quadrature, and orthogonal polynomials, suddenly
had the occasion to complete, in a couple of days, Louis de Branges’s proof of
a long-standing conjecture in pure mathematics. This conjecture, an inequality
for the Taylor coefficients of a 1-1 holomorphic mapping from a circle to a simply
connected domain, was formulated by Bieberbach in 1916 during his early work on
the Riemann mapping theorem. During many decades, this conjecture had resisted
the efforts of the foremost experts in complex analysis. Louis de Branges finally
managed to reduce this conjecture to inequalities for integrals of Jacobi polynomials
and thought that Walter Gautschi, with his algorithms and computers, could help to

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 4,
© Springer Science+Business Media New York 2014
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12 Gerhard Wanner

verify them. Gautschi not only did a lot of computer computations, but eventually
found out that the inequalities had been proved a decade earlier by R. Askey and
G. Gasper. I remember that P. Henrici, who lectured on this proof in January of
1985 in Stockholm on the occasion of Dahlquist’s 60th anniversary, concluded his
talk with the observation that a mathematician cannot know everything, but that
“it is always important to know where to ask”.

24.3. Survey articles

Walter Gautschi, with his broad knowledge of numerical analysis and his many
personal contacts with leading experts, was (and is) in excellent position to write
extraordinarily clear survey articles. Even when he wrote on a particular scientist,
his narrative always turned into a beautiful and clear exposition of the underlying
mathematics. We therefore collect them together: the article [GA74] on Gauss-
Christoffel quadrature, the article [GA143] on Philip Rabinowitz and numerical
integration, the papers [GA144] on 2d-iterations and numerical quadrature and
[GA189] on asymptotics and estimation of zeros of special functions summarizing
work of Luigi Gatteschi, and finally [GA170], the interplay between classical analysis
and numerical linear algebra as a special tribute to Gene H. Golub. The same
subject is dealt with in Gautschi’s commentary [GA184], written for the edition of
the selected works of Gene H. Golub.

Finally, in [GA201], Gautschi tells the story of how he came into scientific
contact with G. V. Milovanović (we all have experienced, as referees, receiving a
paper which immediately could be simplified and improved; authors then often react
angrily, but in other situations such as the one described here, this was the starting
point of a long friendship and collaboration). Gautschi’s paper then continues with
a description of Milovanović’s work on Gaussian integration with unusual weight
functions, and moment-preserving spline approximation.

24.4. Biography

The biography, which Gautschi wrote, was for his esteemed teacher Alexander
M.Ostrowski [GA196], one of the great mathematicians of the 20th century. This
paper is an extended version of an earlier paper [GA171] (not reproduced in these
volumes) written in Italian. This account of Ostrowski’s life and work, carefully
written by one of his last students, is highly interesting and needs no further
comment.
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Miscellanea

Martin J. Gander

Here, five “miscellaneous” papers of Walter Gautschi are commented on, [GA96,
GA124, GA125, GA175, GA197], preceded by some personal reminiscences.

I encountered Walter Gautschi’s work several years before I encountered him in
person. I was a PhD student at Stanford and taking a course given by Gene Golub
on orthogonal polynomials and quadrature. Several faculty members were also
taking this course, among them Andrew Stuart, who became my PhD supervisor,
and Alan Karp. During the lectures, Alan Karp posed an interesting problem of
computing Gauss quadrature nodes and weights for difficult weight functions arising
in radiative transfer. I immediately put to work what I had learned in class, and
failed, since all the methods we had seen were becoming rapidly unstable, and it
was not possible to compute the recurrence coefficients of the required orthogonal
polynomials to sufficiently high accuracy. So I started to search the literature and
came across a paper of Walter Gautschi, [GA141], which describes precisely the
problems I was working on, and also proposes an ingenious discretization procedure,
which allowed me to replace the unstable approaches I tried before by orthogonal
transformations, which are naturally numerically stable. This procedure allowed
us to compute very effectively high-order Gauss quadrature rules for all important
weight functions in this application, and led to the short paper [3].

I met Walter Gautschi for the first time on Sunday, April 26, 1998, when he
came for a seminar to the École Polytechnique in Paris, where I was doing my
postdoc. We hit it off immediately, and when our twins were born in Montreal,
this added a further common bond, since Walter Gautschi also had a twin brother,
Werner Gautschi, a very talented mathematician as well, who unfortunately passed
away too early in life. When I moved to Geneva for a full professorship, I invited
Walter Gautschi to give a talk at our mathematics colloquium, and, happily, he
agreed to come. He gave a very well-received talk about “The spiral of Theodorus,
numerical analysis, and special functions”. To my delight, I found this talk again in

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5 5,
© Springer Science+Business Media New York 2014
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14 Martin J. Gander

one of the papers I was assigned to study more closely in this tremendous enterprise
of commenting on the selected works of Walter Gautschi. I will do this, however,
in chronological order, so the Theodorus paper will come last.

25.1. The FG algorithm

This paper, [GA96], which is joint work with Bernard Flury from the University
of Bern, appeared when I was still in high school! It is very atypical for the work
of Walter Gautschi I am familiar with, dealing with a topic from numerical linear
algebra. For a given set of symmetric positive definite matrices A1, A2, . . . , Ak, the
authors present an iterative algorithm to compute an orthogonal transformation
B such that the matrices BTA1B,BTA2B, . . . , BTAkB are as close to diagonal as
possible. In order to measure this “closeness”, they introduce (and motivate) the
function

Φ(A1, A2, . . . , Ak;n1, . . . , nk) :=

k∏

i=1

[det(diagAi)]
ni/[det(Ai)]

ni ,

where the ni are given numbers. The best choice of B is one for which

Φ(BTA1B,BTA2B, . . . , BTAkT ;n1, . . . , nk) −→ min .

In order to compute an approximate minimizer, the authors introduce the
FG(Flury–Gautschi) algorithm, which consists of an outer iteration F and an
inner iteration G. The algorithm is described in pseudocode, and the authors prove
convergence of the algorithm. In the case k = 1, their algorithm reduces to the
Jacobi method. In addition to the convergence of the two procedures, the authors
also analyze under which conditions the solution is unique, and they give several
hints for improving the algorithm.

Unfortunately, there was no implementation of the algorithm given in the pa-
per1. Because of my interest in the algorithm, and since several details of the
implementations were only addressed by comments, I decided to implement the
algorithm myself in Matlab (see http:/www.unige.ch/~gander/FG.php)2. The al-
gorithm was tested on the same example as given in the paper. It took quite a while t o
obtain the same results, because the implementation of the stopping criterion, based,

eigenvectors are only unique up to a sign and also come numerically in an arbitrary
order. The current implementation now faithfully reproduces the authors’ Fortran
results. Their implementation on a CDC 170/855, in 1986, took 0.07 seconds of
CPU time for this example to be executed. In Matlab on my Thinkpad T60, in

1With the help of Walter, we later found the Fortran implementation in [2].
2Many thanks to Hui Zhang, who also implemented the algorithm independently, so we could

compare.

as it was, on a comparison of eigenvectors becoming close, is tricky since normalized
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2012, the same example takes 0.03 seconds of CPU time. One wonders where all
the computing power has gone these days3.

Another test, which illustrates why the identity matrix as an initial guess of B
can fail in the F-algorithm, is to simultaneously diagonalize a stiffness and a mass
matrix (where this is actually possible)4. Specifically, the matrices

A1 =

⎡

⎢
⎢
⎣

-2 1 0 0
1 -2 1 0
0 1 -2 1
0 0 1 -2

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4

⎤

⎥
⎥
⎦

give rise to an infinite loop when the initial guess of B in the F-algorithm is the
identity matrix, and one needs to use an alternative random initial guess.

I could imagine that such an algorithm would find many users if it were gen-
erally available in Matlab, since the simultaneous diagonalization of matrices is an
important task.

25.2. Slowly convergent series

The relevant paper on this topic, [GA124], as well as the paper [GA125] in the
next subsection, are more in the core area —numerical quadrature — of Walter
Gautschi’s research interests. The problem is to sum the series

S0 =

∞∑

k=1

kν−1r(k), S1 =

∞∑

k=1

(−1)k−1kν−1r(k),

where r(k) is a rational function. By using a preliminary partial fraction decom-
position, Walter shows that it suffices to consider r of the form

r(s) =
1

(s+ a)m
, �a ≥ 0, m ≥ 1.

Such series can be transformed into integrals by writing the fraction as a Laplace
transform and then changing the order of summation and integration. The result
is a weighted integral of an entire function; it then remains to determine Gauss
quadrature rules for the respective weight function. With the hand of the master,
Walter determines the three-term recurrence coefficients for the required orthogonal
polynomials, which, as I experienced myself, are not always easy to compute to high
precision. From these, one can easily obtain the required Gauss quadrature rules.
He then illustrates the resulting fast summation procedure in the case of five infinite
series, of which the first was communicated to Walter by Professor P. J. Davis who
came upon it in his study of spirals, a topic we will again encounter in the fifth
paper.

3Compilation would make this certainly much faster.
4Many thanks to Ivan Graham for suggesting this useful example during a conference in

Urümqi in August 2012.
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25.3. Slowly convergent series occurring in plate contact problems

This paper is a continuation of the previous paper, and it appeared in the same
journal, right after the previous one. The subject is again the fast summation of
infinite series, this time of the form

∞∑

k=0

(2k + 1)−pz2k+1,

where z is complex with |z| ≤ 1 and p = 2, 3, and also of the more difficult forms

∞∑

k=0

(2k + 1)−p cosh((2k + 1)x)

cosh((2k + 1)b)
,

∞∑

k=0

(2k + 1)−p sinh((2k + 1)x)

sinh((2k + 1)b)
,

where 0 ≤ x ≤ b. Such series occur in the mathematical treatment of unilateral
plate contact problems. After treating some special cases, Walter again uses the
device of introducing a Laplace transform, but now only for part of the general
term of the series. Interchanging summation and integration, as in the earlier
paper, leads to a weighted integral with a weight function similar to the one in
the previous paper. There are, however, cases for the parameters where Gauss
quadrature is no longer effective, and Walter shows how a further transformation
leads to an integral which can be effectively evaluated using a backward recursion
scheme. Faithful to his working style, he gives the needed recurrence coefficients
to high accuracy, and then shows two fully worked out examples to illustrate the
technique.

25.4. The Hardy–Littlewood function

In the short 6-page note [GA175], Walter Gautschi gives a summary of his confer-
ence presentation at the birthday conference for Olav Nj̊astad. The topic was the
summation of the series

H(x) =

∞∑

k=1

sin(x/k)/k, (25.1)

which is important in the study of the polygamma functions. Walter first shows
how the summation can be performed using orthogonal polynomials and polynomial/
rational Gauss quadrature (cf. Section 15.4, Vol. 2), again applying the Laplace trans-
form device. In a first approach, he obtains a formulation in terms of modified Bessel
functions of order zero, the power series expansion of which, however, is only suit-
able for relatively small positive values of x, because otherwise severe cancellation
errors make the approach numerically useless. As an alternative, Walter rewrites
the expression obtained by using an integral representation of the Bessel function, in
which case the trapezoidal rule can be used effectively and without cancellation. He



25.5 The spiral of Theodorus 17

−5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

Fig. 25.1. The spiral of Theodorus

then also uses rational Gauss–Laguerre quadrature directly in the original formu-
lation, and with this approach the range of x-values can be substantially enlarged
before cancellation problems set in. Walter finally shows a completely different
approach, based on direct summation of the first n ≈ x terms combined with an
acceleration procedure, which is very effective for large values of x.

As it turned out, this short paper became the major inspiration for a recent pub-
lication by Kuznetsov [5] on asymptotic approximations to the Hardy–Littlewood
function. Kuznetsov’s goal was to find a value of x for which H(x) in (25.1) satisfies
H(x) < −π/2, in order to provide an explicit counterexample to a conjecture of
Clark and Ismail. (The value of x found was extremely large, of the order 1021!)
Kuznetsov in his paper says “This turns out to be a surprisingly hard problem”,
and then goes on to use and extend the techniques introduced by Walter in order
to solve it.

25.5. The spiral of Theodorus

On May 22, 2003, Walter Gautschi visited us in the Section of Mathematics at the
University of Geneva, and gave a colloquium lecture precisely on the topic of the
paper [GA197]. It was a fascinating lecture, I remember it very well. Like the paper,
it started with an intriguing spiral, the spiral of Theodorus, shown in Figure 25.1.
As one can see, the spiral is constructed starting at the point (1, 0) by always moving
in the direction orthogonal to the current position vector, and going precisely a
distance of length 1. This gives for the second point (1, 1), with a distance

√
2 from

the origin (just use Pythagoras), for the third point a location with distance
√
2 + 1

from the origin (use Pythagoras again), for the fourth point a distance
√
3 + 1, the
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general point numbered n having a distance
√
n from the origin. The distribution

of the angles in the spiral of Theodorus has interesting number-theoretic properties
(see [4], where the spiral is given the name “Quadratwurzelschnecke”5).

Using complex variables, one can also describe this spiral for α = 1, 2, . . . by the
recurrence relation

T (α+ 1) =

(

1 +
i√
α

)

T (α), T (1) = 1, (25.2)

which gives T (2) = 1 + i, T (3) = (1 + i√
2
)(1 + i) = 1 − 1√

2
+ i(1 + 1√

2
), etc. The

spiral of Theodorus is thus obtained by applying a Forward Euler Method (with
step 1) to the differential equation

T ′(α) =
i√
α
T (α), (25.3)

which has as a solution the circle, the dynamics of which, however, slows down
more and more as one moves along the circle.

The problem treated by Walter Gautschi, however, is a different one. Professor
Davis [1, p. 33ff] had been wondering if it is possible to interpolate the spiral of
Theodorus by a smooth, if possible analytic, curve. This problem is similar to a
problem Euler faced when he tried to interpolate the factorial function, which led
to his discovery of the gamma function. Davis, inspired by Euler’s work, found the
following interpolant:

T (α) =
∞∏

k=1

1 + i/
√
k

1 + i/
√
k + α− 1

, α ≥ 0.

This product also satisfies the recurrence relation (25.2), and can be evaluated for
any value α ≥ 0. It therefore produces a continuous (in fact, analytic) version of
the Theodorus spiral.

Unfortunately, the product is very slowly convergent, and thus not suitable for
numerical evaluation. This is where Walter Gautschi comes in: using logarith-
mic differentiation, he derives a polar representation for the continuous spiral of
Theodorus, in which there now appears a slowly convergent series. For a particular
point on the spiral (where it crosses the positive real axis for the first time), the
series is given by

∞∑

k=1

1

k3/2 + k1/2
,

the so-called Theodorus constant, and it is with this series that Davis had aroused
Walter’s interest in this problem. Using again Laplace transforms (cf.

5square-root snail

Section 25.2),
Walter shows how the summation of the series can be transformed into a problem
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integration, which can be solved very effectively by Gaussian quadrature — “an
absolute gem of numerical analysis” according to Davis [1, p. 42].

With regard to identifying T (α) in terms of known special functions, however,
Davis writes [1, pp. 41/42]: “Computation is one thing, and the identification of
T (α) is another matter, and it still eluded me. The Spirit of Euler infused me
constantly, but contributed nothing toward the solution. The mistake I made was
that I had been consulting the wrong Swiss mathematician. I should have consulted
the Swiss-born-and-trained American mathematician, Walter Gautschi, who . . . in
the course of this work . . . also identified T (α).”

The analytic Theodorus spiral can also be continued backward into a second
sheet of the Riemann surface, as was proposed by J. Waldvogel [6], and Walter
concludes with a figure of what he calls the twin-spiral of Theodorus, a very well-
chosen name, given the context, and one which I will later also explain to my
children.

One could ask what the differential equation might be that describes this twin
spiral. It is certainly not equation (25.3), since this one only gives a circle. Some-
thing to think about!

25.6. Epilogue

My most recent meeting with Walter Gautschi was at the conference in honor of
Claude Brezinski’s 70th birthday in Sardinia, in the fall of 2011. As always, we had
very nice discussions, Walter and I, and Walter gave a lovely presentation about a
real problem from applications [GA204], solved in a very elegant way, how could it
be different, using Gauss quadrature. I hope we will meet many more times in the
future.

of
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Computation of Successive Derivatives of f(z)/z* 

By Walter Gautschi t 
1. Introduction. It is sometimes necessary to calculate derivatives of the form 

(1.1) d,.(z) = a' (!(z)) 
dz" z 

(n = 0 1 2 · · ·) ' ' ' ' 
where f is a function whose derivatives can be formed readily. Analytic differentia
tion in ( 1.1), while elementary, is obviously tedious, and the resulting expressions 
are of doubtful practical value. In the following we present a simple and effective 
recursive algorithm to generate these derivatives. As an example, we consider the 
cases where f(z) = e", f(z) = cos z, and j(z) = sin z. 

Our main observation may be paraphrased in the following surprising way. The 
calculation of a large number of derivatives (1.1) at a fixed point z is a stable process 
if the function g([') = J(r)/r has a pole at r = 0, and an unstable process if g(t) is 
regular at r = 0. 

2. The Recurrence. Relation. Let z F 0 be arbitrary complex, and let f(s) be 
analytic in the circle I r - z I ~ r, r > I z I, which includes the origin s = 0. Our 
point of departure is the identity 

f(z) - j(O) = J• f (tz) dt. 
z 0 

Differentiating n times gives 

(2.1) d,.(z) - ( -1)" !!::_ j(O) = t'/"+0 (tz) dt. 
1 11 

. zn+l 0 

Denoting the integral on the right by I,. , integration by parts yields 

[,. + ~ ln-l = /"'(z), 
z z 

hence, together with (2.1), the recurrence relation 

n /"'(z) (2.2) d,.(z) +- d..-t(z) = -- (n = 1, 2, 3, .. · ). z z 

We note that (2.2) represents a linear inhomogeneous first-order difference 
equation for d,. • Computational aspects of such difference equations were discussed 
at length in [1]. It was noted there, that a naive application of (2.2) in the forward 
direction is accompanied by an undesirable build-up of rounding errors whenever 
the quantity 

Pn = 
d,. 

Received September 10, 1965. 
• Work performed under the auspices of the U.S. Atomic Energy Commission. 
t Present address: Purdue University. 
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210 WALTER GAUTSCHI 

becomes large in absolute value for some tJ,. Here, h.. denotes the solution (nor
malized by Ito = 1) of the homogeneous difference equation that corresponds to 
(2.2), i.e. 

Numerical instability is particularly prominent if lim ...... I p .. I = Q), or, equiva
lently, if 

(2.3) lim d.. = 0. 
·-h.. 

By (2.1) we have 

(2.4) z ~ = f(O) + ( -l)" z_ tl"+U(tz) dt. 
A n+l 11 

h.. n! o 

The second term on the right, disregarding the sign, we recognize as being the nth 
remainder (in integral form) of the Taylor expansion of f(O) about z. Because of the 
analyticity assumption made at the beginning of this section. this remainder tends 
to zero, as n -+ oo, and so 

(2.5) lim d.. = j(O) . 
...... h.. z 

In particular, if j(O) = 0, then (2.3) holds, and we have numerical instability. On 
the other hand, ifj(O) rf 0, then 

. f(z) 
~~ p,. = f(O), 

and I p,. I is bounded for all n, provided d,. (z) does not vanish for some n. Hence, 
no serious numerical difficulties should attend the use of (2.2), unless lf(z)//(0) I 
is very large, or I p,. I reaches a large peak prior to converging to the limiting value 
lf(z)/f(O) 1 .. 

An alternate proof of (2.5) can be given using Cauchy's formula for the nth 
derivative of an analytic function, 

d..(z) = n! J. f(t) dt 
2'1ri 1'c <r - z)"+lf. 

If f(O) = 0, we may take for C a circle ~bout z containing the origin and contained 
in the circle of analyticity of f. If f(O) ¢ 0, we must add to C a small contour Co 
encircling the origin in the negative direction. Taking for Co a small circle, and 
letting its radius tend to zero, we arrive at 

d,.(z) = ( -1)" ~ f(O) + ~ 1 f(t) dr . 
zn+l 2n Jc <r - z)n+1r 

Hence, 

(2.6) z ~ = f(O) + ( -1}" 1 (-z-)"+1 f(t) d5. 
h.. 2n ic r- z r 
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Since f(l")/s is bounded on C, and 

lr ~ zl ~ q < 1' 

it is clear that the integral in (2.6) tends to zero, as n --+ oo, and so we again ob
tain (2.5). 

We may summarize as follows: Let f be analytic in a circle about z which ·includes 
the migin in its interim. Then the generation of a large number of derivatives (1.1), 
using forward recursion by (2.2), is in general numerically stable if f(O) 'F 0, but 
highly unstable if f(O) = 0. 

We observe, however, that forward recursion by (2.2), even in the casef(O) = 0, 
may still be adequate, if only a relatively small number of derivatives are required. 
In fact, the recursion should be adequate as long as n ~ I z j. 

3. Recursive Algorithm in the Case f(O) = 0. We take advantage of a remark 
made on p. ~ of [1). Since l p, I ~ oo, we may apply the recursion . (2.2) in the 
backward direction, starting with n = v sufficiently large, and using zero initial 
value, 

(n = .. v - 1 · · · 1 ) ,.. ' ' ' ' 
Then, for n ~ 0 in any bounded set, we will have 

a.,. I•! ~ dn as I' --+ 00 • 

Moreover, the relative error of d.. l•l is given by 

(3.2) 

It remains to estimate a reasonable starting value 11 for n, given, say, that the 
results for n = 0, 1, 2, · · · , N are to be accurate to S significant digits. According 
to (3.2), we must require that I p,./ p.j ~ E for all 0· ~ n ~ N, where 

E = !10-8 , 

that is, 

(3.3) n! I z 1.-..l d, I ~ E vI d,. (n = 0, 1,2, ···,N). 

In addition to the analyticity assumption introduced earlier, we now assume that l"> is unifmmly bounded, and bounded away from zero on the segment from 0 to z as 
n ~ oo. Then it is clear from (2.1), where now f(O) = 0, that I d./d.. I < 1 for v 
sufficiently large. Hence, it appears reasonable to replace I d./ d,. I in (3.3) by 1, 
and to require 

(3.4) (n = 0, 1,2, ···,N). 

Denote the expression on the left by p,.. Clearly, {p,.} is a sequence of positive 
numbers which initially decrease, until n is near I z I, and from then on increase 
rapidly to oo. (The case I z I < 1, in which Pn increases from the beginning, is of 
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Po 

n 

FIGURE 1. Behavior of Pn = n! I z !r-oof"! 

little consequence for the following.) Denote by ~ the integer n > 0 for which 
p,. is near to po "for the second time" (see Figure 1), hence I z 1"/n! near 1. Then, 
(3.4) is implied by po ~ E, if N ~ ~, and by PN ~ E if N > fl1!. We may replace 
(3.4) therefore by 

(N ~ ~), (N > ~). 

Using Stirling's formula, these conditions are adequately approximated by 

(N ~ ~). (~)~ (_!!__)N ~ E 
11 e I z I (N > ~). 

We note, incidentally, that again by Stirling's formula, 

~ ~ [e I z 1], e = 2.71828 · · ·. 

The first inequality, upon taking logarithms, can be written in the form 

(3.5) -~~ In( II )2::-s 
e!zl erzl -elzl' 

where 

s = S ln 10 + In 2. 

Similarly, the second inequality amounts to 

which can be written in the form 

(3.6) -- 1 In -- + -In- 2:: -. ( II ) ( N ) II II 8 
N e!zl N N-N 

Since certainly 11 > N, and moreover N ~ e I z l (N now being larger than no, and 
fl1l ~ e I z I), the first term on the left is ~0. Hence, (3.6) will be satisfied if we 
require 

(3.7) 
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Both conditions (3.5), (3.7) now have the form tInt ~ c. Denoting by t(y) the 
inverse function of y = t In t ( t ~ 1), we obtain our final estimate of 11 in the form 

(3.8) 11 ~ e I z j t C lsz 1) (N ~ lZQ), (N > lZQ). 

We note that in (3.8) the function t(y) need only be available to low accuracy. 
Formulas giving 1% accuracy, or better, may be found in [2}. 

The algorithm just described may still be unsatisfactory, numerically, if I z I 
is relatively large. The recursion (3.1) then is likely to suffer from loss of accuracy, 
due to cancellation of digits, particularly for n near 1. For such n, indeed, z/n in 
(3.1) will have large absolute value, yet d~..!.1 has normally the same order of mag
nitude as d,. l•l. The difficulty may be resolved by applying (2.2) in forward direction 
as long as n ~ I z I, and 1m"ng the backward recurrence algorithm described above for 
the remaining n with I z I < n ~ N. 

4. Examples. Consider first f(z) = e•, and let 

=,r(~). 
dz" z 

Then (2.2) gives in1mediately 

(4.1) n e' d,.(z) +- d .. -t(z) = -
z z (n = 1, 2, 3, • · • ). 

Our theory of Sections 2 and 3 clearly applies. Sincef(O) = 1, it follows that (4.1) 
is numerically stable in the forward d,irection. We note, incidentally, that 

(4.2) ( ) ( · )" n' • ( d,. z = -1 -· ee,. -z) 
z"+I ' 

where 

(4.3) 

is the nth partial sum of the exponential series. 
Likewise, if f(z) = cos z, and 

we obtain 

(4.4) 

c,.(z) =- --d: (cos z) 
dz" z , 

n 
c,.(z) +- C..-t(z) = -r.,(z) z (n = 1 2 3 · · ·) ' ' ' ' 

where fr., (z )l :-x = { -sin z, -cos z, sin z, cos z, · · · j. Like the previous recursion, 
(4.4) is numerically stable. On the other hand, if f(z) = sin z, and 

( ) _ d" (sin z) s,.z -- --dzn Z ' 
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then 

(4.5) 
n 

s,.(z) + - 8,.-l(z) = u,.(z) 
z 

(n = 1 2 3 · · ·) 
' 1 ' 1 

(u,.(z)J:-1 {cosz, -sinz, -cosz, sinz, ···I, is numerically unstable, and the 
algorithm of Section 3 should be applied, including the device mentioned at the 
end of Section 3. 

In terms of ( 4.3), we may also write 

( -l)"n' · · 
c,.(z) = 2z,+t · [e"e,.( -iz) + e-.•e,.(iz)], 

( ) ( -l)"n! ( •• ( . ) -•• (. )] s,. z = 2iz"+t e e,. -tz - e e,. u 1 

as follows readily from (4.2) and Euler's formula. 
The functions s,.(x) have found wide applications in diffraction theory, and are 

extensively tabulated (see (4]). The generation of d.., c,., and s,., may also be useful 
for the analytic continuation of the exponential-, cosine-, and sine-integrals, re
spectively. ALGOL procedures generating d,(x), c,.(x), and s,.(x) for real x may 
be found in [3}. 
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COMPUTATIONAL ASPECTS OF THREE·TERM RECURRENCE 
RELATIONS* 

WALTER GAUTSCHit 

Introduction. Recurrence relations are one of the basic mathematical tools of 
computation. There is hardly a computational task which does not rely on 
recursive techniques, at one time or another. The widespread use of recurrence 
relations can be ascribed to their intrinsic constructive quality, and the great 
ease with which they are amenable to mechanization. On the other hand, like 
most recursive processes, recurrence relations are susceptible to error growth. 
Each cycle of a recursive process not only generates its own rounding errors, but 
also inherits the rounding errors committed in all th~ previous cycles. If con
ditions are unfavorable, the resulting propagation of error may well be dis
astrous. It is this aspect of recurrence relations-the possibility and the preven
tion of numerical instability-that will be of concern to us. 

The problem of numerical instability has been studied extensively for differ
ence equations arising in the numerical solution of ordinary and partial dif
ferential equations. In the seemingly much simpler context of a single linear 
difference equation, the problem has received only sporadic attention, even 
though such difference equations, particularly of the second order, occur promi
nently in many branches of pure and applied mathematics. We mention, e.g., 
the recurrence relations satisfied by large classes of special functions of mathe
matical physics and statistics, the three-term recurrence relations that lie at the 
heart of continued fraction theory and the theory of orthogonal polynomials, 
and the miscellaneous recurrence relations one encounters when constructing 
series expansions, asymptotic or otherwise, to solutions of linear differential 
equations. We believe, therefore, that a systematic review of some of the compu
tational problems attending recurrence relations might be of value. In the follow
ing we attempt to present such a survey, restricting attention to the special case 
of three-term recurrence relations. 

The kind of instability we are concerned with, may be described as follows. 
Consider a three-term recurrence relation of the form 

(0.1) n = 1, 2, 3, · · · , 

where an , bn are given sequences of real or complex numbers, and bn :;C 0. The 
general solution of ( 0.1) can be spanned by any pair fn , On of linearly independent 
solutions. We are interested in the special case where there exists such a pair 
having the property 

(0.2) 

*Received by the editors February 17, 1966, and in revised form July 18, 1966. 
t Computer Sciences Department, Purdue University, Lafayette, Indiana, and Argonne 

National Laboratory, Argonne, Illinois. This work was performed in part under the auspices 
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THREE-TERM RECURRENCE RELATIONS 25 

Serious problems then arise if one attempts to compute the solution fn or any 
constant multiple of fn . 

To see this, we first note that (0.2) implies 

(0.3) lim fn = 0 
n-+oo Yn 

for any solution Yn not proportional to fn • Such a solution, indeed, is represent
able in the form Yn = afn + bgn , with b ~ 0, and therefore 

lim fn = lim fn/gn = 0. 
n-+oo Yn n .... oo b + a(frJ gn) 

If we now generate fn by (0.1), using only approximate·initial values Ya = fa, 
Yt = ft (due to rounding, for example), but recurring with infinite precision, we 
obtain a solution Yn which, in general, is linearly independent off,. . Therefore, 
by ( 0.3), we will have 

i.e., the relative error of Yn, the intend~d approximation toj,., becomes arbitrarily 
large. Therefore, this straightforward method of computing fn is utterly in
effective. 

Observe that the set of all solutions fn of (0.1) having the property indicated 
in (0.3) forms a one-dimensional subspace of the space of all solutions. (There 
can be no two linearly independent solutions In , In' enjoying this property, since, 
otherwise, In/In' and In' /In would both have the limit zero, as n ---+- oo, which is 
absurd.) We call the solutions of this subspace minimal at infinity, or briefly 
minimal.1 A nonminimal solution will be referred to as dominant. Each dominant 
solution is asymptotically proportional to gn • Note that, in contrast to dominant 
solutions, a minimal solution is uniquely determined by one initial value. 

To illustrate the difficulty of calculating minimal solutions, consider the prob
lem of generating Bessel functions of the first kind, J n( x), for fixed x, and n 
= 0, 1, 2, · · · .2 As is well-known, these functions (of n) obey the three-term re
currence relation 

(0.4) 
2n 

Yn+l - - Yn + Yn-1 = 0, 
X 

From tables of Besselfunctions we find, e.g., that for x = 1, J o( 1) = . 7651976866, 
J 1(1) = .4400505857, accurate to ten figures. Generating the next 99 values of 
J 11 ( 1) on a digital computer by straightforward recursion, we obtain the results 

1 The notion of a minimal solution appears to have first been introduced by Pincherle in 
connection with his generalization of continued fractions [44]. Pincherle called it "dis
tinguished" solution (soluzione distinta). In the theory of linear differential equations the 
term "principal" solution is also in use [24]. The minimal solution can often be identified 
with a solution "of type II" in a terminology of Schiifke [51]. 

2 This example is well known, and has received considerable attention in the literature. 
See the references in §5. 
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TABUE 1 

n "1n(1)" n "1 n(l)" 

0 7.651976866 (--1) 9 -- 4. 645246881 (-- 4) 
1 4 . 400505857 ( --1 ) 10 --8.332374506 (--3) 
2 1.149034848 ( --1) 11 --1. 661829654 ( --1 ) 
3 1.956335358 (--2) 12 --3.647692865 (0) 
4 2.476636684 (--3) 13 --8.737844579 (1) 
5 2.497398891 (--4) ... . .. 
6 2.076220699 (--5) 20 --2.818590869 (12) 
7 --5.934052751 ( --7) ... . .. 
8 -- 2. 906988084 (-- 5) 100 - 2. 586550446 (17 5) 

shown in Table 1.3 (The numbers in parentheses denote powers of 10 by which 
the preceding numbers have to be multiplied.) Obviously, there is little resem
blance with the true values of J n( 1), which are known to decrease steadily with 
increasing n, and to approach zero very rapidly as n ----+ oo • In fact, since J 7( 1) 
came out to be negative, all digits shown, for n ;;;;; 7, including the sign and the 
exponent, must be illusory. 

The disastrous build-up of errors, in this example, is due to the fact that with 
fn = J n( x), also gn = Y n( x), the Bessel function of the second kind, is a solution 
of (0.4) and, moreover, 

fn (x/2) 2n 

gn'""' - 2(n!)2 as n ----+ oo. 

Therefore, Jn(x) is indeed highly minimal at infinity. 
Methods of calculating minimal solutions of three-term recurrence relations, 

including applications, constitute the main theme of this paper. In §1 we begin 
with a brief survey of continued fractions, emphasizing computational methods. 
The relevance of continued fractions is contained in a result due to Pincherle 
which expresses ratios of a minimal solution in terms of continued fractions. In 
§2 we recall some classical results from the asymptotic theory of linear dif
ference equations which will find repeated use in the later parts of the paper. 
§3 brings a first algorithm for calculating a minimal solution, based on the result 
of Pincherle. The problem considered is to calculate a minimal solution fn known 
to satisfy 

00 

(0.5) :Ex,J,. = 8, 8 ~ 0. 
m=O 

The special case Xo = 1, X,. = 0, m > 0, amounts to prescribing fo. Considera
tion of an infinite series ( 0.5) has the distinct advantage that the resulting 
algorithm does not require the computation of fn for any value of n. Our first 
algorithm is mathematically (though not computationally) equivalent to the 

a Computation was performed on the CDC 3600 computer, which in floating point arith
metic allows precision of about 12 decimal digits. 
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backward recurrence algorithm of J. C. P. Miller. While this algorithm is widely 
regarded as just a "trick of the trade," our presentation will show that it derives 
naturally from rather elegant results of classical analysis. In §4 two alternate 
algorithms are described which are more flexible, but more elaborate, than the first 
algorithm. The remaining paragraphs discuss a number of applications, mostly 
to the computation of higher transcendental functions such as Bessel functions 
( §5), associated Legendre functions ( §6), regular Coulomb wave functions 
( §7), and other miscellaneous functions ( §§8-10). §11 contains an application 
to a Sturm-Liouville boundary value problem on an infinite interval. 

The extent to which our algorithms are affected by rounding errors will not be 
discussed in detail. Our experience seems to indicate, however, that none of the 
algorithms is sensitive to rounding, unless the series (0.5) is subject to cancella
tion of terms. The rigorous analysis of error propagation is an interesting, though 
difficult, outstanding problem in this area. A significant contribution in this 
direction is due to Olver, who recently analyzed the error accumulation in 
Miller's algorithm [38]. 

In principle, there are other stable procedures that could be used to calculate 
minimal solutions of (0.1). For example, we could set up the boundary value 
problem of finding the solution Yn of ( 0.1) which satisfies 

Yo = fo , Y N = f N 

for some sufficiently large N.4 Clearly, this amounts to solving the linear system 
of equations 

a1 1 Yt -btfo 

b2 a2 1 0 Y2 0 

(0.6) ba a a 1 Ya 0 
= 

0 aN-2 1 

l bN-1 aN-l YN-1 -!N 

whose matrix is tridiagonal. Any of the standard methods, such as triangular 
decomposition methods, may be used to solve (0.6). Unfortunately, the pro
cedure requires two values, fo and f N , of the desired solution to be known in 
advance. Either one may be difficult, or time-consuming, to obtain. 

The problem of computing minimal solutions is clearly not peculiar to three
term recurrence relations. It may equally arise in connection with other func
tional equations, such as linear homogeneous difference and differential equa
tions of arbitrary order, and systems of such equations. Whenever the spaceS 
of all solutions is the direct sum S = 81 EE> 82 of two subspaces 81 and 82 , and 
every solution St E St dominates, in some appropriate sense, over every solu
tion s2 E 82 , we may consider 82 as the set of minimal solutions with respect to 

• The author is indebted to Dr. M. E. Rose for pointing this out. 
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the decompositionS = St @ 82. (There may be several such decompositions.) 
The problem of computing minimal solutions in this sense has not been thor
oughly studied, though the work of Clenshaw [7] and Schafke [51] suggests that 
effective computational methods may exist also in this more general context. 

1. Three-term recursion and continued fractions. It is well-known that the 
concepts of three-term recursion and continued fraction are closely related. To 
every continued fraction we may in fact associate a three-term recurrence 
relation, namely the fundamental recurrence formula for the numerators and 
denominators. Vice versa, every three-term recurrence relation may be inter
preted as the fundamental recurrence formula for some continued fraction. The 
first point of view is useful for computing continued fractions, the second for 
computing the minimal solution. We begin by considering several methods of 
calculating a continued fraction. 

Suppose we are given the continued fraction 

a1 a2 aa 
b1+ b2+ ba+ ... (1.1) 

where the partial numerators a,. and partial denominators b,. are real or complex 
numbers. Denote its nth numerator and nth denominator by A,. and B,., re
spectively, so that 

a1 ~ a,. A,. 
bt+ ~+ ... b,. = B,.. (1.2) 

The value of the continued fraction ( 1.1), if it exists, is defined as the limit 
lim,...90 A,./ Bn. The quantities A,. , B,. satisfy the fundamental recurrence formulas 
(see, e.g., [59, p. 15]) 

(1.3) 

where 

(1.4) A-t= 1, 

An = b,.A,._t + a,.A,. -2 , 

Bn = bnBn-1 + a,.Bn-2, 

Ao = 0; B_t = 0, 

n = 1, 2, 3, 

Bo = 1. 

This shows that an = An-1 and (3,. = Bn-l constitute a pair of linearly independ
ent solutions of the three-term recurrence relation 

(1.5) Yn+l - b,.yn - anYn-t = 0, n = 1, 2, 3, · · ·. 

A first method of computation flows directly from these fundamental recur
rence relations. Thus, one generates the A's and B's recursively, by means of 
(1.3) and (1.4), and concurrently the ratios A,.jB,., until the latter converge 
within the required tolerance. As An and B,. are likely to grow rapidly with n, 
some care must be exercised if this method is used on a digital computer. Initial 
scaling, and possibly repeated subsequent scaling, may be necessary to avoid 
overflow. 

A second method, which avoids the necessity of scaling, consists in evaluating 
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the finite continued fraction in ( 1.2) "from tail to head." Thus, formally, we 
set 

(1.6) .fk (n) = ~ ak+l an 
J' bk+ bk+t+ ... bn' 1 ~ k ~ n, 

and generate these quantities recursively by 

(1.7) J,.<n> ak 
" - b + j(n)' k k+l 

k = n, n - 1, · · · , 1, 

using as initial value 

(1.8) f (n) 0 
n+l = • 

Then,/1 <n> = A,.j B,. . To obtain the value of the continued fraction, the backward 
recursion (1.7) will have to be carried out repeatedly, with increasing values 
of n, until successive values of / 1 <n> agree within the accuracy desired. While 
certainly an inconvenience, the repetitive nature of this process nevertheless 
provides some self-checking features not possessed by the previous method. 

A third method of computation, finally, exploits the connection between con
tinued fractions and infinite series, expressed by the relation 

A n 

---'! = L PlP2 · · · Pk, B,. k=t 

where 
1 

1 + Pk+t = , k = 2, 3, · · ·, n - 1, 
1 + (ak+t/bkbk+t)(1 + Pk) 

1 
Pl = a1/b1, 1 + P2 = 1 + (~/btb2). 

(This result may be obtained from Theorem 2.1 and formula (2.6) in [59], 
by an appropriate equivalence transformation. See also [56]; the formula defining 
Pk in this reference contains a typographical error.) Clearly, these relations can 
be modelled into a recursive algorithm to generate successive approximants of 
a continued fraction. Let, indeed, 

(1.9) 

Ut = 1, Uk = 1 + Pk, 

Vk = PlP2 · · ' Pk , 
k 

Wk = L Vi, 
i-l 

1 
Uk+1 = , 

1 + ak+t u" 
bkbk+l 

Vk+l = Vk(Uk+l - 1), 

k if;; 2, 

k if;; 1, 

k if;; 1, 

k = 1, 2, 3, ... ' 
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the initial values being 

( 1.10) 

WALTER GAUTSCHI 

Ut = 1, 
a1 

Vt=Wt=b1• 

None of the disadvantages noted in the previous two methods are present 
here. 

We have seen that the continued fraction ( 1.1) leads naturally to the three
term recursion (1.5). Suppose now, conversely, that we are given a three-term 
recurrence relation 

( 1.11) Yn+t + anYn + bnYn-t = 0, bn :;t6 0, n = 1, 2, 3, 

Define an , f3n to be the special solutions of ( 1.11) with initial values 

(1.12) ao = 1, at= 0; f3o = 0, f3t = 1. 

Then, evidently, An = an+l and /J,. = f3n+l are the numerators and denominators, 
respectively, of the continued fraction 

( 1.13) 

which is equivalent to the continued fraction 

(1.14) bt b2 ba - ----·- ... 

We may formally arrive at this continued fraction also in the following way. 
Let us introduce the ratios 

Dividing ( 1.11) by Yn then gives 

from which 

Yn+l 
Tn = -, 

Yn 
n = 0, 1, 2, · · ·. 

Applying this formula repeatedly, with n successively increasing, we get 

(1.15) Yn -b,. bn+l bn+2 
Tn-1 = - = -- --- --- · • · • 

Yn-1 a,.- an+t- an+2-

In particular, when n = 1, 

Yt -bt b2 ba -=-----···. 
Yo a1- ~-as-

This derivation indicates that the continued fraction ( 1.14), and similarly 
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the continued fractions in ( 1.15), are related to ratios of consecutive values 
for some solution y ... The argument, however, neither insures us of the con
vergence of these continued fractions, nor does it tell us for what particular solu
tion the ratios are to be formed. These matters are clarified by the following 
theorem. 

THEOREM 1.1 (Pincherle [45]). The continued fraction ( 1.14) converges if and 
only if the recurrence relation ( 1.11) possesses a minimal solution f .. , with fo '¢ 0. 
In case of convergence, moreover, one has 

(1.16) fn -bn bn+l bn+2 ---- = -- ------ ... 
f n-1 an- an+l- an+2-

n = 1, 2, 3, · · ·, 

provided fn '¢ 0 for n = 0, 1, 2, · · · . 
Proof. (a) Assume the continued fraction in (1.14) converges. Then so does 

the equivalent continued fraction ( 1.13). Therefore 

1. an 
Jm- = c, 

n-+OO f3n 

where an, fJn are the solutions of (1.11) defined by the initial values (1.12), and 
c is some constant. Let 

(1.17) 

Take any other solution of ( 1.11), say Yn = aan + bfJn . Then ac + b ¢ 0, and 

1. fn I' an - cfJn I' (an/fJn) - C O 
liD - = lm = lm = . 

,. ... oo Yn n ... oo aan + bfJ.. n-+oo a(a .. /fJn) + b 

This shows that the solutionfn defined in (1.17) is a minimal solution of (1.11). 
Moreover, fo = ao '¢ 0. 

(b) Assume now that ( 1.11) possesses a minimal solution, fn say, for which 
fo '¢ 0. Then 

n ~ 0. 

We note that fJn is not a constant multiple of fn, since fo '¢ 0. Therefore, fn 
being minimal, 

lim ~n = fo lim an + h = 0, 
n-+oo tJn n-+OO f3n 

and so 

lim an= -~. 
n .... oo fJn fo 

This establishes convergence of the continued fraction ( 1.13), and thus of that 
in (1.14), and also proves (1.16) for n = 1. 

To prove (1.16) for general n > 1, we need only observe that z,.. = fn+m-1, 
considered as a function of m, is a minimal solution of 

m = 1, 2, 3, 
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Since by assumption, zo = fn-1 ~ 0, the portion of Theorem 1.1 already proved 
yields 

Z1 

z;; = fn-1 = an- an+1- an+2-
as asserted. This completes the proof of Theoreml.l. 

Consider again the three-term recurrence relation 

(1.18) Yn+l + anYn + bnYn-1 = 0, 

but assume, for simplicity, that the coefficients an, bn are defined, and (1.18) 
holds, for all integers n = 0, ±1, ±2, · · · . Let v be an arbitrary integer, and 
let Tin <•> denote the solution of ( 1.18) having starting values 

( 1.19) (•) 1 
1/v = 1 

(v) 0 
1/v+1 = 

at n = v and n = v + 1, respectively. Then the following duality theorem holds. 
THEOREM 1.2. The function "'n <•> satisfies, for fixed v and variable n, the three

term recurrence relation 

( 1.20) ( •) + (v) + b ( P) 0 'r/n+l an'r/n n'r/n-1 = ' n = 0, ±1, ±2, · · · , 

and for fixed n and variable v, the three-term recurrence relation 

( 1.21) (v) + a. (v-1) + 1 (v-2) - 0 
"'n b- "'n b- 'l]n - , 

v ·-1 
v = 0, ±1, ±2, .... 

Proof. The first part of the theorem follows from the definition of Tin <•>. To 
prove the second part, we first observe that (1.21) holds true for v = n - 1, 
n, n + 1. For example, when v = n, using (1.19) and (1.20), we have 

(n) + an (n-1) + 1 (n-2) - 1 + 1 ( (n-2) b (n-2)) 'Yin -b 'Yin -b 'Yin - b- -an-1 'r/n-1 - n-1 'r/n-2 
n n-1 n-1 

= 1 + 0- 1 = 0. 

The verification for v = n ± 1 is analogous. Assume now ( 1.21) to be true for all 
integers n, v satisfying I n - v I ~ k, where k if:; 1 is some integer. We show 
that ( 1.21) then also holds for I n - v I = k + 1. We consider the two cases 
n - v = k + 1, n - v = - (k + 1) separately. In the first case, we use ( 1.20) 
in theform 

(v) (v) b (•) 'r/n = -an-l'Y/n-1 - n-1'r/n-2 , 

and observe that ( 1.21) can be applied to both terms on the right, since 
I n - 1 - v I = k, and I n - 2 - v I = k - 1 < k. We obtain 

(•) ( a. <•-1) 1 (v-2)) b ( a. (v-1) 1 (v-2)) 1Jn = -an-1 -b- 1Jn-1 - b- r}n-1 - n-1 -b- r}n-2 - -b 'Y/n-2 
• •-1 • •-1 

a. ( (v-1) b (v-1)) 1 ( (v-2) b (v-2)) - --b -an-11ln-1 - n-171n-2 --b -an-17ln-l - n-l'Y/n-2 
• •-1 

a, (v-1) 1 (v-2) 
- -- Tin - - Tin 

b, bv-l 
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having again used ( 1.20). The second case is verified similarly, using ( 1.20) 
in the form 

(p) 1 ( (•) + (p) ) 
11n = -b- an+l11n+l 11n+2 • 

n+1 

Since we already established ( 1.21) for I n - v I ~ 1, it now follows by induction 
that the result holds for I n - v I = k, k = 0, 1, 2, 3, · · · , that is, for all integers 
n, v. Theorem 1.2 is proved. 

We note that relation ( 1.21), for v > n, can also be obtained from the 
known fact ( cf. [43, vol. I, p. 3]) that 17~.2_1 and '1/n <•> are the numerators and 
denominators, respectively, of the continued fraction 

I I I 

b' 1 + ~ an+l .•• a,-1 
n- b 1 + b' + b' ' n n+l •-1 

where 

b' am 
m-1 = -bm' 

I 

am = -bm' 
1 

Alternatively, Theorem 1.2 may be obtained, as a special case, from the known 
result that "multipliers" of a linear difference equation satisfy the adjoint 
difference equation ( cf. [35, §12.6]). 

2. Some results from the asymptotic theory of linear second order difference 
equations. In applications of Theorem 1.1, it is in general easier to recognize a 
given solution of a three-term recurrence relation to be minimal than to establish 
convergence of the corresponding continued fraction. One is aided in this by 
classical results from the asymptotic theory of difference equations, notably by a 
theorem of Poincare, and by refinements and extensions thereof due to Perron 
and Kreuser. For convenience of the reader, we are recalling here these theorems 
for the special case of a second-order difference equation 

(2.1) Yn+1 + a,.y,. + bnYn-t = 0, n = 1, 2, 3, 

We assume, throughout, that 

(2.2) n = 1, 2, 3, · · ·. 

We begin with the case where the coefficients a,. and b,. in (2.1) have finite 
limits 

(2.3) b,.~ b, n~ oo, 

not excluding that b = 0. One then calls ( 2.1) a Poincare difference equation, 
and calls 

(2.4) c:I>(t) = t2 + at+ b 

the characteristic polynomial of (2.1). As may be expected, the solutions of 
(2.1) behave similarly, for large n, to the solutions of the difference equation 
( 2.1) with constant coefficients a,. = a, b,. = b. This is borne out by the following 
two theorems. 
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THEOREM 2.1 (Poincare [46]). If the characteristic polynomial (2.4) of (2.1) 
has zeros t1 , ~ of distinct moduli, 

(2.5) 

then for every nontrivial solution y, of (2.1) we have 

(2.6) 1• Yn+1 t Im- = r 1 r = 1, orr = 2. 
n-+00 Yn 

THEOREM 2.2 (Perron [41]). Under the assumption of Theorem 2.1 there exist 
two linearly independent solutions Yn,l and Yn,2 of ( 2.1) such that 

(2.7) 1• Yn+l,r t Im-- = r 1 
n-+00 Yn,r 

r = 1, 2. 

Theorem 2.2 implies that 

fn = Yn,2 

is a minimal solution of ( 2.1). To see this, choose n and n such that 

which under the assumption ( 2.5) is certainly possible. By ( 2. 7) we then have, 
for n sufficiently large, 

Hence 

and 

This shows that 

I Yn+1,11 ~ 1"1 1 

Yn,l I Yn+l,21 < = 1"2, 
, Yn,2 

I I > n-nol 1 Yn,l = 1"1 Yno ,1 ' I I < n-nol 1 Yn,2 = 1"2 Yno ,2 ' 

I Yn,21 ~ (~)n-no I Yno.21 1 

Yn,l 1"1 Yno,l 

l. Yn,2 0 1m--= , 
n_,.oo Yn,l 

from which the assertion follows. 

n ~no. 

We also note that in ( 2.6) one has r = 2 for the minimal solution, and r = 1 for 
any other solution. 

We shall require a generalization of Theorem 2.2 relating to a difference equa
tion ( 2.1) whose coefficients satisfy 

(2.8) a an""an, ab ¢ 0; a, {3 real; n-+ oo. 

The asymptotic structure of the solutions now depends on the N ewton-Puiseux 
diagram formed with the points Po(O, 0), P1(1, a), P2(2, {3). This is the broken 
line P 0P 1P 2 , if P1 is above the straight line joining Po with P2 ; otherwise it 
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0 2 

FIG. 1. Newton-Puiseux diagram for difference equation (2.1), (2.8) 

is the line segment P0P2 • We denote by a the slope of P0P1 , and by r the slope of 
P1P2 (Fig. 1), so that <T = a, r = {3 -a. 

THEOREM 2.3 (Perron [42], Kreuser [29]). (a) If the point P1 is above the line 
segment PoP2 (i.e., a > r), the difference equation ( 2.1) has two linearly independent 
solutions, Yn,l and Yn,2 , for which 

(2.9) Yn+l,l o--""'-an, 
Yn,l 

Yn+1,2 b T 

--""' -- n' 
Yn,2 a 

n ~ oo. 

(b) If the pmnts Po, P1, P2 are collinear (i.e., <T = r = a), let t1 , t2 be the roots 
of t2 + at + b = 0, and I t1 I ~ I~ 1. Then (2.1) has two linearly independent 
solutions, Yn,l and Yn,2 , such that 

(2.10) Yn+1,2 ·t a --""' 2n, 
Yn,2 

n ~ oo, 

provided I t1 I > I t2l· If I t1 I = I ~I (in particular, if t1, ~are complex conjugates) 
then 

(2.11) lim sup [(I Y~)~Jl/n = I t1l 
n-+00 n. 

for all nontrivial solutions of (2.1). 
(c) If the point P 1 lies below the line segment P 0P 2 then 

(2.12) [ I I ]l'n 
lim sup < ~)nfJ,2 = vTbl 

n-co n. 

for all nontrivial solutions of ( 2.1). 
An argument similar to the one following Theorem 2.2 will show that in both 

case (a) and the first part of case (b) the solution fn = Yn,2 is a minimal solution 
of (2.1). Furthermore, in the first part of case (b), 

(2.13) 1• . Yn+l _ t un-.. -- r, 
n-co n Yn 

r = 1, orr = 2, 

where r = 2 for the minimal solution, and r = 1 for any other solution. 
The second part of (b), and part (c) of Theorem 2.3 are somewhat inconclusive 

for our purposes, as they do not permit distinguishing two solutions with distinct 
asymptotic properties. In this connection, the example given later in §9 is of 
interest. 

Proofs of Poincare's theorem may be found, e.g., in [21], [35], [37]. An elegant 
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proof of Perron's theorem is given in [14], and reproduced in [34]. Far-reaching 
generalizations, and simplified proofs, of all these theorems, including Kreuser's 
theorem, were recently obtained in [51]. 

3. A :first algorithm for computing the minimal solution. We assume now that 
the recurrence relation 

(3.1) Yn+l + OtoYn + bnYto-1 = 0, n = 1, 2, 3, · · ·, 

has a nonvanishing5 minimal solution, f.,. . We wish to calculate f.,. for 
n = 0, 1, 2, · · · , N. In order to specify f.,. uniquely, we can impose one condition, 
for example prescribe the value of fo • For later applications, we consider the more 
general normalization 

00 

(3.2) L 'A.,Jm = 8, 8 ¢ 0, 
m=O 

where s and 'Ao , 'At , • • • are given quantities, and the series is known to converge. 
We do not exclude that 'Am = 0 for all m > 0, in which case ( 3.2) amounts to 
prescribing fo . 

In a sense, (3.2) represents the most general linear condition that may be im
posed. A class of nonlinear conditions will also be considered briefly. 

To introduce the algorithm, let 

(3.3) 

Suppose first that r.,. , s,. are known for some value n = v ~ N. The desired 
solution f" , n = 0( 1 )N, can then be obtained as follows. 

From Theorem 1.1 we know that 

(3.4) -b,. b,.+l bto+2 
r"-1 = ----- --- · · · a,.- a,.+l- a'*,-

n = 1, 2, 3, · · ·. 

Hence, we can generate the ratios r" for 0 ~ n < v as in ( 1.6 )-( 1.8) by 

(3.5) n = v, v - 1, · · · , 1. 

Similarly, we have 

1 00 1 ( 00 
) 8n-1 = 1- L ')..mfm = 1- ')..nfn + L ')..mfm 

n-1 m=n n-1 m=to+l 

so that 

(3.6) n = v, v - 1, · · · , l. 

Hence, also the quantities 8n for 0 ~ n < v, and thus in particular 8o, can be ob-
6 The assumption of f,. to be nonvanishing is no serious restriction from the practical 

point of view. This is further discussed at the end of this paragraph. 
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tained recursively. Using (3.2) we now have 

1 00 1 
So = T L Amfm = T (s - Aofo), 

JO m=l JO 

and so 

s 
fo =A + · o So 

This gives us the initial value of the desired solution. The remaining values ean 
now be obtained immediately from 

n = 1, 2, · · · , N. 

The actual algorithm follows this procedure very closely, except that for the 
infinite continued fraction, and the infinite series, representing rn-1 and sn, re
spectively, we now substitute truncated continued fractions, and truncated series. 
More precisely, we define 

(3.7) 

and 

(3.8) s,<•> = 0, 

(v) -bn bn+l 
Tn-1 = -- --

an- an+l-

• 

b, 
a. 

(v) '""" '\ (•) (v) (v) 
Sn = L.,.. 1\mTn Tn+l ''' Tm-1 1 

m=n+l 

1 ~ n ~ v, 

0 ~ n < v. 

One then verifies readily that the formulas (3.5), (3.6) continue to hold if rn is 
replaced by r n <•>, and Sn by Sn <•> throughout. Hence the following set of recursions 
arises naturally, 

(v) 0 
r. = ' 

n = v, v - 1, · · · , 1, 

(3.9) (v) (v) ('\ + (•)) 
Sn-1 = Tn-1 1\n Sn 1 

.r (v) S 

JO =Ao+so<•>' 
f (v) - r<·> t<•> 

n - n-1 n-1, n = 1, 2, · · ·, N. 

While our initial procedure gave us the exact values fn of the minimal solution, 
the quantities fn <•> now derived are at best approximations to fn. It remains to 
successively improvefn <•> by repeating (3.9) for a sequence of increasing values of 
v. The complete algorithm for computing the minimal solution may thus be de
fined as follows: 

Step 1: Select an integer v ~ N, and let cf>n <•> = 0, n = 0, 1, · · · , N. 
Step 2: Calculate in<•>, n = 0, 1, · · · , N, according to the formulas in (3.9). 
Step 3: If the N + 1 values of fn <•> obtained in Step 2 do not agree with the 

current values of cf>n <•> to within the desired accuracy, then redefine cf>n <•> by 
cf>n<•> = fn <•>, n = 0, 1, · · · , N, increase v by some fixed integer, say 5, and repeat 
Step 2; otherwise acceptfn <•> as the final approximations to fn, n = 0, 1, · · · , N. 

We note that in the special case 'Ao = 1, A1 = A2 = · · · = 0, allsn<•> vanish, so 
that the recursion for s~~l in (3.9) may be omitted. Moreover, s =fa, and there-
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fore fo <•> = fo • In this case, the value of fa must be known before the algorithm 
( 3.9) can be applied. The use of an infinite series ( 3.2), instead, has the remarkable 
advantage of not requiring any value of fn to be known in :H.lvance. 

Our derivation of ( 3.9) also demonstrates that! .. (•> = j .. if instead of zero initial 
values in the first two recursions we select initial values r.<•> = r., s_<•> = s •. 
While these quantities in general are not known beforehand, they may sometimes 
be approximated closely when 11 is large. This suggests to modify ( 3.9) by defining 

(3.10) (•) 
r. = p,' (•) 

s. = u. ' 

where p. and u, are suitable approximations tor. and s., respectively. The better 
these approximations are, the faster we expect our algorithm to converge. We 
return to this point later. 

We may give (3.9) a somewhat different interpretation as follows. Consider 
the solution fJn <•> of the difference equation ( 3.1), defined by "initial" values 

(3.11) (v) 1 
'1• = ' 

(v) 0 
flv+l = 

at n = 11 and n = 11 + 1, respectively. The values of fin <•> for 0 ~ n ~ 11 may be ob
tained by applying ( 3.1) in the backward direction, starting at n = v. Then we 
assert that 

(3.12) f (v) 8 (v) 
n = v 11n , 0 ~ n ~ N. 

'""' '\ (v) L-1 J\m 11m 
'"·-=0 

To verify this, we observe, first of all, that the quantities r~21 defined in (3.7) 
are consecutive ratios of the solution 7Jn <•>, 

(v) 

(3.13) (v) 11n 
rn-1 = (-;;"), 

11n-1 
1~n~v+l. 

This is trivial for n = v + 1, and for n ~ 11 follows from the fact that the ratio 
71~> /11'::21 satisfies the same nonlinear recursion (3.5) satisfied by r'::21 • Inserting 
(3.13) into (3.8), we find 

(v) 1 ~ '\ (v) 
Sn = ---c;) 4.-.J J\m 11m , 

11n m=n+l 

and using this for n = 0, we obtain 

= 
8 (v) 

• 11o 
'\ (v) + '""' '\ (v) J\0 110 L.i J\m 11m 

m=l 

This proves our assertion ( 3.12) for n = 0. To prove it for n > 0, we need only 
observe that in view of (3.13), the quantities ! .. <•> in (3.12) satisfy fn<•>;J'::21 

= r'::21 , as required by ( 3.9). 
The algorithm of generating the 71.,<•> and using (3.12) is often referred to as 

Miller's backward recurrence algorithm. It was first proposed as a computational 
Rflheme by J. C. P. Miller in connection with the tabulation of Bessel functions 
(see [5, p. :xVii]). An error analysis has recently been given by Olver [38]. 
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While algorithm ( 3.9) and Miller's algorithm are mathematically equivalent, 
they have different computational characteristics. In many cases, e.g., the quanti
ties 'Tin <v> grow rapidly as v increases, and may cause "overflow" on a digital com
puter. In contrast to this, the quantity r n <•> in ( 3.9) converges to a finite limit as 
v -7 oo , and so does s,. <•> if the algorithm converges at all. 

We now use (3.12) to discuss convergence as v -7 oo of the algorithm (3.9). 
Let g,. denote any solution of the difference equation (3.1) other thanfn, so that 

(3.14) lim l!!: = 0. 
n-+OO gn 

Clearly, 

for some constants a<•>, b<•>. By (3.11), we must have 

(v)f + b(v) 0 a v+1 g.+l = ' 
a<•>f. + b(v) g. = l. 

The first of these relations gives b<•> = - (f.+I/g.H)a<•>, so that 

(v) _ (v) (f _ fv+1 ) 'Tin -a n - gn • 
gv+l 

Substituting in (3.12), and simplifying, we obtain 

(3.15) fn(v) 
fn (1 _ fv+l On) 

Ov+l fn 

In view of (3.14) and the convergence of the infinite series in (3.2), it is clear 
that limp.,.oo fn <•> = fn if and only if 

(3.16) I• fv+l ..f. "\ _ 0 
rm- £...J /\mOm- • 

v-+OO Ov+l m=O 

We have proved the following theorem. 
THEOREM 3.1. Suppose the recurrence relation ( 3.1) has a nonvanishing minimal 

solution, fn , for which ( 3.2) holds. Let gn be any other solution of ( 3.1). Then the 
algorithm ( 3.9) converges in the sense 

limfn (v) = fn 
..... oo 

if and only if ( 3.16) is satisfied. 
Condition (3.16) holds, e.g., if the X's are uniformly bounded, and 

Ov+l t 
--7 1, 
g. 
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If all but a finite number of the X's are zero, then (3.16) is a consequence of 
(3.14). Theorem 3.1, in this case, has been noted previously in [16]. 

It is useful to observe that convergence of the algorithm ( 3.9), in the sense of 
Theorem 3.1, implies that 

(3.17) (•) r., ---* r,., v ---* co' 

where r,. , s,. are the quantities defined in ( 3.3). The first of these relations follows 
directly from ( 3.4) and ( 3. 7). The second follows by induction on n. Indeed, if 
n = 0, we have from the third line in (3.9), 

<•> S - 'Aofo <•> S - 'Aofo 
So = f < l ---* ~ = so , 

0 • JO 
v ---* co. 

Assuming now s~21---* s,._1 , we get from the second line in (3.9), and from (3.6), 
that 

(v) 
(v) Sn-1 Sn-1 

Sn = - - 'An ---* - - An = Sn (.) ' 
Tn-1 rn-1 

v ---* co. 

In case of convergence of the algorithm (3.9), we may obtain from (3.15) the 
following approximate expression for the relative error, valid for 11 sufficiently 
large, 

(3.18) f,.(•) - f,. ..!.. ! ~ "\ j + fv+l ~ "\ _ fv+1 g., 
·---=- - .t...J Am m .t...J 1\m gm - - • 

f,. 8 m=v+l Sgv+l m=O gv+1 fn 

It is interesting to examine what effect the modification (3.10) of algorithm 
(3.9) will have upon the relative error (3.18). We assume that 

cr.= s.(1 + 71.), 

where r., s. are defined by (3.3), and Ev, 71• are small numbers. Then a simple 
computation will show that in place of ( 3.15) we now have 

1 + E fv+l g., (1 - p Jf::_)-1 
f (v) _ f v g.+l fn • gv+l 

n - n 1 + '2.:: f 'Amfm + Evfv+l (1 - Pv Jf::_)-l t 'Amgm 
s m=v+l sg.+l gv+l m-o 

Since I p.g.j g.+t I is usually substantially smaller than 1 (at least for large 11) we 
see that the modification ( 3.10) reduces the relative error of fn <•> effectively by a 
factor of I Ev \,or \?J.\, whichever is larger. Hence, our statement made earlier that 
the convergence of f., <•> to f., is faster the better p. approximates r. , and cr. approx
imates s., is clearly vindicated. 

It is tempting to try a substitution of the type 

(3.19) Cn ~ 0, 

to exert influence upon the convergence criteria ( 3.14) and (3.16). We note, how
ever, that these criteria are invariant with respect to any linear substitution of the 
form (3.19). 
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We now briefly consider the case in which condition ( 3.2) is replaced by a non
linear condition of the form 

(3.2p) 8 ~ 0, 

where pis some real number. It must be noted that this condition specifies the 
minimal solution only to within a constant factor c satisfying cP = L 

Algorithm ( 3.9) extends readily to the case of general p, if we define r~21 as be
fore, and let 

• 
s,<•> = 0, 8,.<•> = L Xm[rn<•>r::-21 ••• r!."21]P, 0 ~ n < v. 

m-n+l 

We obtain 

r (v) - 0 . - ' 
n = v, v - 1, · · ·, 1, 

(3.9p) (v) 0 
s. = ' (v) [ (v) )P(' + (v)) Sn-1 = fn-1 1\n Sn 7 

(v) [ 8 ] 1/p 
fo = 1 + so<•> ' 

f (v) - (,) J(") 
n - Tn-1 n-1, n = 1, 2, · · ·, N. 

The nonuniqueness off,. is reflected in the multivalued definition of fo <•> • 
.A/3 in the proof of Theorem 3.1, one shows that ( 3.9p) converges as v ~ «> if 

i = 1, 2, ... 'p, 

where 

We conclude this paragraph with some practical remarks concerning the 
algorithm (3.9). 

The effectiveness of the algorithm is clearly enhanced if good estimates of the 
initial value of v are available. Such estimates can sometimes be obtained from 
(3.18), and from known asymptotic properties of the solutionsf,. and g,.. (See 
§§5, 7 for examples.) 

It is worth noting that the storage requirements on a digital computer do not 
depend on v. It suffices to store permanently only those N quantities rn <•> which 
are needed to build up the final results fn <•>. All the other rn <•>, as well as the s,. <•>, 
can be generated in temporary storage cells. 

The assumption 

fn-1 ~ 0, n = 1, 2, 3, · · ·, 

in Theorem 3.1 is ordinarily fulfilled in practice, if for no other reason than round
ing errors. Nevertheless, one might think, in view of lim .... co r~21 = f,.ffn-t, that 
the case of fn-1 nearly equal to zero for some n ~ 1 might cause numerical diffi-
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culties. By the following, admittedly superficial, considerations we wish to show 
that the presence, or proximity, of such zeros need be of no great concern. 

Suppose, indeed, that fn-l is very small in modulus, compared to j ... For 
definiteness, let n > 1. Then, by (3.3), I r,._l I is very large, and so is I r~r::l I, when 
vis sufficiently large . .From the first line in (3.9) it follows that! a .. + r,.<•,l must 
be very small compared to I b .. I. Since neither a .. nor r,.<•> will normally be small, 
this means that many digits will cancel when the sum a .. + r .. <•> is formed, and so 
r~~~ is not only very large, but also very inaccurate in terms of significant digits. 
Consequently, r<:22 will be very small, and also inaccurate. However, r~2a 
= -b,._d ( an-2 + r<,:22 ) (if n > 2) will again be accurate, since an-2 in the denomi
nator picks up lost accuracy, r<:22 being normally much smaller than an-2 . Later 
on, in the formation of the final results, !~~1 = r<:2d<,:22 will come out very small 
and inaccurate, as one must expect. The really questionable point is the computa-
. f f (v) (v) j(v) • (v) • l d J(v) • 11 d b th • twn o .. = r .. -t n-1, smce rn-t IS arge an n-1 IS sma , an o are mac-

curate. We note, however, that 

b f (v) b j(v) 
f -(v) _ (v) (v) j(v) _ (v) - n-1 n-2 - n-l n-2 

.• - rn-l 1'n-2 n-2 - Tn-l (v)- = ( I (v))' 
an-l + Tn-1 1 + an-1 Tn-l 

which shows that the largeness of r~~1 savesfn<•> from becoming inaccurate, even 
though r<:21 is. A similar reasoning applies to s~r::t , s<,:22 . 

More serious is a possible loss of accuracy in the calculation of fo <•>, as this 
would affect all subsequent fn <•>. It could indeed occur that I 'Xo + so <•> I is small 
in comparison with I >..0 I, so that many digits cancel when 'Xo + so <•> is formed. The 
resulting value of fo <•> would then be quite inaccurate. The same difficulty might 
arise if'X0 = 0. Suppose, indeed, that >..P (p > O) is the first nonvanishing co
efficient in the series ( 3.2), 

'Xp ~ 0, Am = 0, 0 ~ m < p, 

and that I>..P + sp <•> I happens to be very small compared to I >..P 1. Then s~2t is 
necessarily inaccurate, and this inaccuracy will be transmitted to all subsequent 

( v) d fi 11 t .f (v) • • f th 1 t' ( v) ( v) (v) 1 Sn-1, an na y 0 JO , Ill VIeW 0 ere a lOllS Sn-1 = rn-1Sn , n = p - , 
2 1 d .( (v) / (v) p - , · · · , , an JO = s so . 

Now for large v, and p ~ 0, we have 

(v) • 1 .;... j 1 ( j ) S Ap + sp = Ap + ~- L.. Am m = Ap + f- s - Ap p - fp , 
p m=p+1 p 

so that IC>..P + Sp<•>)/>..P I is small if ls/('Xpfp)i is small. Hence, dangerous cancel
lation occurs when s is small in absolute value compared to the first nonvanishing 
term 'Xvfv in (3.2), i.e., when cancellation occurs in the series (3.2) itself . .For this 
reason, some care must be exercised in the selection of the identity ( 3.2). 

4. Second and third algorithm for computing the minimal solution. The effec
tiveness of our first algorithm (3.9) is somewhat limited if no reasonable estimate 
of the starting value v of n is known a priori. The recursions in ( 3.9) must then 
be repeated with increasing values of v, until sufficient agreement is obtained 
between successive results fn <•J, for all n = 0, 1, · · · , N. This disadvantage can 
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be removed, at the expense of a more complex algorithm, by making use of the 
duality theorem 1.2, or, alternatively, by evaluating a sequence of continued 
fractions (3.4). The corresponding algorithms will now be developed. The first 
of these, though not in the form given here, is due to Shintani [52]. 

As was noted in the previous paragraph, we can obtain rn, Bn recursively, for 
0 ~ n < N, and hence also fn for 0 ~ n ~ N, once rN, sNare known. In the fol
lowing we derive a method for calculating rN, BN recursively. If fo is known, the 
Bn will not be required, and the algorithm then reduces to one suggested by G. 
Blanch ([4, p. 40.5 ff]) in connection with Bessel functions. 

As for rN , we may simply evaluate the continued fraction 

(4.1) 

by either the first, o.r third method described in §1. In the first case we have 

(4.2) 

where 

Ao = 0; B-1 = 0, Bo = 1; 

(4.3) Ak = aN+~k-l - bN+kAk-2, 

Bk = aN+,;Bk-1 - bN+,;Bk-2 , 

In the second case we have 

( 4.4) 

where thew's are generated as follows: 

(4.5) 

U1 = 1, Vt=Wt= 

1 
Uk+l = 1 - (bN+k+llaN+kaN+k+t)Uk 1 

Vk+t = Vk(Uk+l - 1), 

For the computation of BN , we make use of the fact that 

(4.6) 8N = lim 8N(v), 

lc = 1, 2, 3, .... 

lc = 1, 2, 3, .... 

where sN<•> is defined by (3.8). The quantities s/"), v ~ N, may be obtained re
cursively as follows. From the definition ( 3.8) of Bn <•), and from ( 3.13), we note 
that 

(4.7) 
p 

'¥JN (•) 8N (v) = L Xm'¥Jm (v) • 
m=N+l 
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Hence, using ( 1.21), we can write 

(v) (v) ..f.. '\ [ a, (v-1) 1 (v-2)] 
'1/N 8N = LJ 1\m -- '1/m - - '1/m 

m=N+l b, bv-l 

1 ( (v-2) (v-2) + '\ Cv-2) + '\ I• " 1 ) 

- b- '1/N 8N 1\v-1'1/v-1 1\ '11 
v-1 

Since 
(o-1) (v-2) O 

'1/v = '1/v-1 = , 
(v-2) (v-2) b (v-2) 

71· = - av-1'1/v-1 - v-1'1/v-2 = 
we get 

(4.8) (v} (v) 
'1/N 8N 

a, <•-ll (v-1} 1 (v-2) (v-2) + '\ 
--b '1/N 8N - b- 'YJN 8N 1\v 1 

, v-l 

or, alternatively, 

(v) (v-1) [a• (v-1) + 1 (v-2) (v-2)] + A, 
8N - -pN -b 8N b-PN 8N -w' 

v v-1 '1/N 

where we have set PN <•> = 'Y/N <•> / '1/N <•H>. Taking into account the recursive relations 
for PN <•>, 7JN <•>, which follow from ( 1.21), we arrive at the following algorithm for 
generating BN <•> : 

(4.9) 

(N-1) 0 
PN = ' 

(N) 
fiN = 1, 

8 N (N) (N-1) 0 
= 8N = 1 

<•-1) 
PN = 

1 

-a,+ 1 <•-2> 
- -pN 
b. b.-l 

1/N (N-1) = 0, 

v = N + 1, N + 2, · · · . 
(v) 

'1/N 
a. (v-l) 1 (v-2) 

= --fiN - -7]N 
b. bv-1 

8N<•> = <•-1) ·[a, (v-1) + PN (v-
2
) (.-2)] + A, 

- PN -b 8N -b-- 8N -w 
v v-1 '1/N 

This, together with ( 4.2) [or ( 4.4)] and the remarks at the beginning of this 
paragraph constitutes our second algorithm for computing the minimal solution 
of(3.1). 

As noted previously, the quantities '1/N <•>may grow rapidly, as v increases, and 
may cause overflow on a computer. However, if '1/N <•> is large, just short of over
flowing, it is normally permissible to replace the term X,/7JN <v> in the last relation 
of (4.9) by zero, and to continue the recursion for sNM in the truncated form. 

To develop the third algorithm, let 

( 4.12) 
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where as before rn-1 = fn/fn-1. Denoting the product of the first n of the r's by 
p .. , we obtain 

( 4.13) 
Po = 1, Pn = rn-tPn-1 , 

qo = Ao , q.. = qn-1 + AnPn 7 

n = 1, 2, 3, · · · . 

Each rn-1 in ( 4.13) will be computed from the continued fraction 

- bn bn+1 bn+2 rn-1 = -- --- --- ... 
a .. - an+1- an+2-

by applying either ( 4.2), ( 4.3), or ( 4.4), ( 4.5), with N replaced by n - 1. From 
( 4.12), and the identity (3.2), it follows that 

1. 8 
q = lffi q .. =-. 

n-+00 fo 

Hence we continue generating the q .. in ( 4.13) until they meet some specifie 
criterion of convergence. Thereafter, we may obtain as many of the final answers 
as desired by means of 

( 4.14) fo = s/q, fn = Pnfo, n = 1, 2, 3, · · · . 

If the q .. converge too rapidly, it may occur, of course, that some of the later 
Pn required in ( 4.14) are not yet available, and must be generated by continuing 
the first recursion in ( 4.13). It should also be noted that the q-recursion in ( 4.13) 
can be omitted if fo is known in advance. 

An obvious disadvantage of the third algorithm is the fact that a rather large 
number of continued fractions have to be evaluated, in contrast to just one con
tinued fraction in the first two algorithms. Even though some of thesecontinued 
fractions (especially the later ones) may converge quite rapidly, the expenditure 
of computation in the third algorithm is in general higher than in the first and 
second algorithm. 

In spite of these shortcomings, there might be situations in which the third 
algorithm is more convenient than the others. Suppose, e.g., that we are to evalu
ate an infinite series 

Not knowing the number of terms required, for given accuracy, one normally ac
cumulates terms until, say, for the first time 

Since this is equivalent to 

I <XnPn I ~ E 11:1 
CXmPm I 1 

m=O 

we could make use of this condition to terminate ( 4.13) at the proper time. 
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W c also observe that the third algorithm converges under the sole condition 
that fn be minimal; no additional condition, such as ( 3.16), is required. 

5. Bessel functions of the first kind. Bessel functions J a(z) of the first kind, 
and Bessel functions Ya(z) of the second kind, obey the same recurrence relation 

(5.1) 2a 
Ya+l - - Ya + Ya-1 = 0. z 

It was the computation of modified Bessel functions In(x) that. led J. C. P. Miller 
to invent his backward recurrence algorithm [5, p. xvii].6 Various authors, since 
then, observed that this algorithm can be used effectively to generate other 
Bessel functions as well, including Bessel functions of the second kind ( [15], [54], 
[47], [22], [261, [39 §9.12, Exps. 1 and 7], [2) [32], [33)). To our knowledge the use 
of ratios of Bessel functions, and thus of a procedure resembling closely our 
algorithm (3.9), was first suggested by C. W. Jones [27], and is further des
cribed in [9], l40], [10]. The ideas involved are extended here in a natural way 
to Bessel functions of a complex argument. Some new technical details are also 
included, such as the estimation of the initial value of v in our first algorithm. 

Consider 

(5.2) n = 0, 1, 2, · · · , 

where 0 ~ a < 1, and z = x + iy is a complex number not on the negative real 
axis. Since Ja+n(z) = J a+n(z), we may assume y ~ 0. As follows directly from 
( 5.1), both functions in ( 5.2) satisfy the three-term recurrence relation 

(5.3) 2(a + n) 
Yn+l - Yn + Yn-1 = 0, z n = 1, 2, 3, · · ·. 

However, their asymptotic behavior for large n is quite different. We have, in 
fact, 

Therefore, fn is the minimal solution of (5.3), and the dominance of every other 
solution over fn is extremely pronounced: fnl On tends to zero about as rapidly as 
I z j2n /(2n) !, when n ~ <XJ. 

It may be noted that this behavior also follows from the general asymptotic 
results of §2. In fact, the Newton-Puiseux diagram (see Fig. 2) for equation 
( 5.3) has two sides with slopes + 1 and -1, respectively. Hence, by Theorem 
2.3(a), there are two solutions, Yn,1 and Yn,2 , of (5.3) with different asymptotic 
behavior, viz., 

Yn+t,t 2n 
-- ro..J --, 

Yn,l Z 

Yn+1,2 Z 
-- ro..J-

Yn,2 2n' 
n ~ oo. 

6 As pointed out by Logan [30], the idea of reversing recurrence schemes to control the 
nropagation of errors can be traced back to Lord Rayleigh, who already recommended that 
spherical Bessel functions be calculated in the direction of decreasing order [48, p. 38ffJ. 
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PI 

~ffii-11 
Po~Pz 

0 I 2 

Fw. 2. Newton-Puiseux diagram for (5.3) 
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Since limn-.oo Ja+n(z) = 0 for any fixed z, we may readily identify Yn,2 = Ja+n(z) 
and Yn,l = Ya+n(z). 

In view of the marked predominance of Ya+n over Ja+n, it is virtually impos
sible to generate Ja+n directly by means of (5.3). Algorithm (3.9), however, 
appears to be very effective. In fact, various infinite series of the form (3.2) are 
available for bypassing the calculation of initial values. Moreover, rather close 
estimates can be derived for the initial value v of the recursion index n, thus 
eliminating the need for many repetitions of the backward recurrence process, as 
well as the risk of doing too much unnecessary computing. 

We first discuss the selection of a suitable infinite series ( 3.2). We may choose 
from a family of candidates furnished by Sonine's formula [13, p. 64], which 
may be written in the form 

~ ·m a + m C a( )J ( ) = (z/2tei~~ 
LJ ~ m ')' a+m z r·(1 + ) . 
m=O a a 

(5.5) 

The parameter 'Y will presently be specified to suit our purpose; Cma( 'Y) are the 
Gegenbauer polynomials, i.e., the coefficients in the expansion 

00 

( 1 - 2')'t + l)-a = L Cma( ')' )tm. 

It is readily seen that 

(5.6) 
r(2a + m) 

m!r(2a) 

while, of course, Co a( 'Y) = 1. 

m=O 

= (- 1)m r(a + m) 
m!r(a) ' m > 0, 

In accordance with our remark at the end of §3 we should try to select 'Y in 
such a way that 

s (z/2)aei'Y• 

fo r(1 + a)Ja(z) 

cannot become very small in absolute value. Now, if I z I is small, then 
Ja(z) "'(z/2t/r(1 +a), so that ls/fo I"' 1. For large I z I, we have Ja(z) 
~""'-' ( 7rZ/2)-112 cos (z - a1rj2 - 7r/2), and again, I s/fo I cannot be small if z is real. 
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However, if z = x + iy, andy> 0 is large, then I cos (z- a1r/2- "'r/2)\ ""'eY /2, 
and so 

I ~ l r-v 2y'; (~)a+l/2 -(H-y)y 

fo r(1 + a) 2 e • 

To prevent this from becoming exponentially small, we must require 'Y ~ -1. 
For convenience, we choose 'Y = -1. In view of the first two relations in ( 5.6), 
identity (5.5) then becomes 

~ ( ·)m a + m r(2a + m) J ( ) _ (z/2) 4 e-iz 
£...i - ~ ---- a+m Z - --':-:----:-
m-0 a m!r(2a) r(1 + a)' 

or finally, noting that ar(2a) = r(1 + 2a)/2, 

~ • m (a + m)r(2a + m) (z/2)ae-iz 
(5·7) Ja(z) + 2 !:=1 (- ~) mlr(l + 2a) Ja+m(Z) = r(1 + a) • 

The coefficients 

(5.8) X = 2( _ ')"' (a+ m)r(2a + m) 
m ~ m!r(1 + 2a) ' 

are best obtained recursively as follows, 

lt = 1, 

m+2a 
lm+l = m+ 1lm, 

Xm = 2(- i)m(a + m)lm. 

In the special case a = 0, we simply have Am = 2( -i)m. 

m = 1, 2, 3, · · ·, 

m = 1, 2, 3, · · ·, 

If z = x is real and positive we could choose the real or imaginary part of ( 5. 7) 
as our normalization identity. We find it more convenient, however, to use (5.5) 
with 'Y = 0. By virtue of the last relations in ( 5.6), this identity can be written 
in the form 

~ (a+ 2m)r(a + m) _ (x/2t 
<5·9) Jo,(x) + :=1 m!r(1 + a) Ja+2m(x) ...., r(1 + a)· 

The coefficients 

(5.10) r(a + m) 
>.2m = (a+ 2m) m!r(1 + a)' 

are obtained recursively by means of 

lt = 1, 

m+a 
lm+l = m + llm, 

m = 1,2,3, · · ·, 

m = 1, 2, 3, · · ·, 
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Again, if a = 0, the expression for A2m simplifies to A 2m = 2. In this case, one 
could also use the second algorithm in its simplified form (without the s-recur
sions), if one computes Jo(x) from an appropriate rational approximation. This 
would probably result in a more efficient algorithm to generate Bessel functions 
of integer order, than the use of (5.9). 

We also note that in the special case of modified Bessel functions 

Ia+n(x) = e-i<a+nhri2Ja+n(ix), 

the recurrence relation ( 5.3) assumes the form 

X> 0, 

2(a + n) 
Yn+l + Yn - Yn-1 = 0, 

X 
n = 1, 2, 3, · · · , 

and relation ( 5.7) the form 

Ia(x) + 2 £ (a+ m)r(2a + m) la+m(x) = (x/2)ae"' • 
m=l m!r(1 + 2a) r(1 + a) 

It is now an easy matter to verify that algorithm (3.9), whether the Am be de
fined by (5.8), or by (5.10), converges as v ~ oo, provided Ja+n(z) ~ 0 for 
n = 0, 1, 2, · · · . By Theorem 3.1 we need only show that 

h fv+l ~ "\ 
v = - L.; "mgm 

gv+l m=O 

has the limit zero. Now in the case of (5.8), since 0 ~a < 1, r(1 + 2a) > .88, 
we clearly have 

2 a+mr(2a+m) 
I Am I = r(1 + 2a) m r(m) 

2 m + 1 r(m + 2) . 2 

< r(l + 2a) ---:;;;;- r(m) < 2·3(m + 1) · 

Therefore, if vis already so large that I g, I ~ I gm I for 0 ~ m < v, we shall have 

I h. I ~ 2.3(v + l)a,fv+tg., = O(v2fv+x), 
gv+l 

hence lim ..... oo h. = 0, by virtue of (5.4). A similar argument applies to (5.10). 
We proceed now to estimate the initial value of v to be used in algorithm ( 3.9), 

given the number of significant digits desired. Such an estimate may be found 
from the estimate ( 3.18) for the relative errors. For definiteness, we assume z 
complex, and assume identity ( 5. 7) in the role of ( 3.2). 

If vis large, the infinite series 

in (3.18) may roughly be approximated by its first term, Av+t fv+t , and similarly 
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may be approximated by the last term X.g •. Then 

(5.11) 

[n(v)_- fn ::::! Av+dv+l (1 + ~ ~) _ Jv+1 gn 
fn 8 Av+l gv+l gv+l fn 

Our aim is to find an upper bound for the moduli of these expressions, valid 
for n = 0, 1, 2, · · · , N. Since I gn/fn I ultimately grows rapidly with n, it is 
plausible to expect that a bound which holds for n = N will also be a valid bound 
when n < N, particularly if N is large. We therefore consider the simplified prob
lem of bounding the modulus of the last member in ( 5.11), when n = N. As a 
further simplification we assume N, and thus v, so large that the asymptotic ex
pressions in ( 5.4) are reasonably accurate. In particular, then, 2N > e I z 1. Under 
these assumptions a short calculation gives 

lfn(v)f~ fnl ;$ e-v(e~:l)" + (e~zjy<•-N> N2Nv-2•, Y = Imz, 

where a few unimportant coefficients have been omitted. For fn <•> to be an ap
proximation of fn to d significant digits, we are led to require, simultaneously, 

(5.12) -y (~)" < ! • 10-d (~)2(v-N) N2N,-2v < ! • 10-d 
e 2v = 4 ' 2 " = 4 · 

In the case of real arguments z = x > 0, and using relation ( 5.9) in place of 
(5.7), our reasoning must be slightly modified, but the conclusion is the same as 
in (5.12), withy = 0. 

Now the first inequality in ( 5.12), after taking logarithms and multiplying by 
-2/( e I z 1), gives 

(5.13) ~In~ 2 2(D -y), 
e!z! e!zl- e!z! 

where 

D = d ln 10 + ln 4. 

Similarly, the second inequality gives 

2v > ( 2N) 1 v lnerzl = N In erzl + 2n, 

which may be rewritten in the form 

Since v > N, and 2N > e I z I, this is certainly satisfied if we require 

(5.14) 
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x=t.lnt 

FIG. 3. Graph of x = tInt 

Both conditions ( 5.13) and ( 5.14) have now the form t In t ~ c. Since this is 
equivalent to t ~ t( c) with t( x) the inverse function of x = t In t in the region 
t ~ 1/e (see Fig. 3), our conditions may be given the final form 

(5.15) ~~~el;lt[2(~l~ly)], if O~y<D+I~I, 

(5.16) v ~ Nt (~). 
Low-accuracy approximations to the function t(x) are not hard to obtain. In 

the interval 1/ e ~ t ~ 1 we may first approximate the graph of t In t by a 
quadratic parabola passing through the points (1/e, -1/e), (1, 0), and having 
zero slope at the first of these points: 

t In t == - ! + e (t - !)2 

e (c - 1)2 e 

Taking then the inverse function of the right-hand member to approximate t( x), 
we obtain 

1 e 1 ( 1)112 
t(x) :::-; + ye X + e ::: .36788 + 1.0422(X + .36788) 112, - 1/e ~X~ 0. 

The accuracy of this approximation is about 4 %, or better. 
In the region 0 ~ x ~ 10, we truncated the expansion oft( x) in Chebyshev poly

nomials, having determined the first few expansion coefficients by numerical inte
gration. We so obtained 

t(x) == 1.0125 + .8577x - .129013x2 + .0208645x3 

- .00176148x4 + .00005794lx6, 

with a maximum percentage error of about 1 %. 
For larger values of x, we first observe that 

t(x) ,....._, x/ln x, X~ oo. 

In fact, [t(x) In x]/x = (In x)/ln t(x), and using the rule of Bernoulli-
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L'Hospital, we find 

1 

lim ln X = lim --:---X--:--- = lim X + t(x) = 1. 
z-+oo ln t(x) z-+oo 1 1 z-+oo X 

t(x) · 1 + ln t(x) 

Unfortunately, the asymptotic expression so obtained does not give sufficient 
accuracy, unless x is very large. Applying, however, one step of Newton's 
method to the equation tIn t = x, with x/ln x as initial approximation, we get 

t(x) ='= :X 1 - ~ ln X • 
1 + lnx 

This approximation now appears to be in error by less than 1 % for x ~ 2. As 
x --+ oo, the relative error clearly tends to zero. 

An alternate method of selecting v in the case z = x > 0, a = 0, was derived 
by W. Kahan [28], using Olver's error analysis [38]. Let e be the largest rela
tive error tolerated in the final results, Jo(z), Jt(x), · · • , J N(x). Let K be the 
integer 

K = max (N, [x]), 

and, with 13 > 0 arbitrary (though small, in practice), define 

Yx = O, Yx+1 = 13, 

2n 
Yn+l = - Yn - Yn-1, 

X 
n = K + 1, K + 2, · · · . 

Then v may be taken to be the smallest n for which Yn+l ~ 13/e. 
We have seen that Bessel functions Ja+n(z) of positive orders can be computed 

entirely from their recurrence relation. This remains true, to a certain extent, for 
Bessel functions 

( 5.17) Yn = Ja-ra(z), n = 1, 2, 3, · · · ; 0 < a < 1, 

of negative orders. They satisfy the recurrence relation 

(5.18) 2(n -a) 
Yn+l + Yn + Yn-1 = 0, z n = 2, 3, 4, · · ·, 

which has the same Newton-Puiseux diagram as (5.3). The solution (5.17), how
ever, is now a dominant solution, the minimal solution being fn = ( -1tJn-a(z). 
It appears therefore safe to generate Ja_,..(z) by means of (5.18) in the ordinary 
fashion. Moreover, the recursion may be started with n = 0, and the initial 
values Y-1 = Ja+l(z), Yo = Ja(z) obtained by the methods previously discussed. 

The assumption a > 0 is of course essential. If a = 0, the two solutions Yn and 
fn above are the same (minimal) solution of (5.18), and forward recursion by 
( 5.18) is doomed to fail. The same must be expected if a is close to zero, and 
indeed if a is close to one. 
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We present now a few numerical results concerning the first algorithm for com
puting Ja+n(z). The performance of this algorithm was found to be quite insensi
tive to changes of a in the interval 0 ~ a < 1, so that the results given for a = 0 
may be considered as representative. 

Our main concern was to determine the quality of the estimate of v given 
above in (5.15), (5.16). We compared this estimate with the smallest value of v 

empirically observed to yield Jn(z), n = 0(1)N, to six significant digits.7 For 
real z = x, the results are shown in Fig. 4, while for complex z = rei<!> they are 
depicted in Fig. 5. Both figures show that agreement between estimated and 
actual v is rather satisfactory on the whole, even though for larger values of, 
l z I it is worsening. Remarkable is also the relative smallness of v/N over an 
extended region of the complex plane. 

ALGOL procedures based on the methods of this paragraph may be found in 
[18]. 

6. Legendre functions. A further class of special functions amenable to the 
methods of §§3 and 4 are the associated Legendre functions of the first and second 
kind, P,/"(z) and Qa m(z). We assume that m is a nonnegative8 integer, z a com
plex number outside the interval ( 0, 1), with Re z > 0, and a arbitrary real or 

7 More precisely, algorithm (3.9) was run with v = N + 2, N + 4, N + 6, · · · until for 
the first time theN+ 1 valuesfn<•>, n = 0, 1, · · · , N, agreed to six significant digits with 
the respective values of In (.--2). 

8 If ads an integer ~m, or nonintegral, then P.,-m(z) = [r(a:- m + 1)/r(a: + m + 1)]P.,"'(z), 
and the restriction to nonnegative integers m is not essential. Similarly, Q .. -m(z) 
= [r(a: - m + 1)/f(a: + m + l)]Q .. m(z). 
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complex, but a~ -1, -2, -3, · · · . The Legendre functions of the first kind 
are then representable by a definite integral, 

me ) r(a + m + 1) 1 .. [ ( 2 )1/2 ]a p a z = 71" r (a + 1) 0 z + z - 1 cos t cos mt dt. 

A similar representation holds for Legendre functions of the second kind, 

Q m(z) = ( -1)m r(a + 1) 1"" cosh mt dt 
a r(a - m + 1) 0 [z + (z2 - 1)1' 2 cosh t]a+1 ' 

provided Re (a - m) > -1. In both these formulas the meaning of the expres
sions (z - 1) 112 , (z + 1) 112 is as usual obtained by continuity in the complex 
plane, cut along the interval ( - oo , 1), assuming them real for z > 1. A similar 
remark applies to the other fractional powers. 

It is well known that Pam and Qa m satisfy identical three-term recurrence rela
tions, both with respect to order m and degree a. (See, e.g., [12, p. 160].) The fact 
that backward recursion techniques are applicable to obtain Legendre functions 
of integral order and argument greater than unity was already mentioned in [10]. 
The use of Miller's algorithm ( cf. §3) for calculating toroidal functions of the 
second kind is described in [50]. No mention is made, in this reference, of the use
fulness of infinite series for normalization purposes, which makes this algorithm 
even more attractive. 

We begin with considering the recurrence with respect to order m. Both 
P am(z) and Qam(z), as functions of m, are solutions of 
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(I) 

0 2 

FIG. 6. Newton-Puiseux diagram for (6.1) 

2mz 
(6.1) Ym+t + (z2 _ l)112 Ym + (m + a) (m - a - OYm-1 = 0, 

m = 1, 2, 3, · · ·. 

We first assume that a is not an integer. The case of integral a will be dealt with 
later. 

The Newton-Puiseux diagram (see Fig. 6) for the difference equation (6.1) is 
a straight line segment with slope 1, and thus case (b) of Theorem 2.3 applies. 
The characteristic equation is 

2 2z 
t + (z2 - 1)112 t + 1 = 0, 

which has the roots 

- (z + 1)1/2 tt----
z- 1 ' 

Since Re z > 0, it is readily seen that 

I t1 I > 1 > I~ I· 
By Theorem 2.3, and the remarks following it, the difference equation ( 6.1) thus 
possesses a minimal solution, Ym,2 , for which 

for any other solution the corresponding limit is t1 • Let 

Pa"'(z) 
fm = r(a + m + 1) 

(6.2) 

so that 

fm+l Pa"'+\z) - "-' --::::.---~ 
f.,. mPa"'(z) ' 

m~ oo. 

The second member of this relation, as was just observed, has a finite limit as 
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m ----7 oo, which is either t1 or 'k. Were it t1, then I fm I would tend to oo, since 
I t1 I > 1. This, however, is impossible, sincefm by ( 6.2) are essentially the Fourier 
coefficients of a smooth function, and thus lim,_oo fm = 0. Therefore, the limit is 
'k, and Pam(z) is indeed the minimal solution of (6.1), while Qam(z) belongs 
among the dominant solutions. 

It follows that Pam(z), m = 0, 1, 2, · · , can be obtained by the algorithms of 
§§3 and 4. As will be seen shortly, an infinite series can be used for normalization, 
so that no values of Pam(z) need to be known in advance. The functions Qam(z), 
m = 0, 1, 2, · · · , on the other hand, can safely be generated by forward use of 
(6.1); this requires two initial values form = 0 and m = 1 to be available. In 
the important special case a = -i + n, where n is an integer, these initial values 
may also be obtained by the aforementioned algorithms, applied to the recur
rence with respect to degree (cf. below). 

It is more convenient, computationally, to deal withfm defined in (6.2), rather 
than Pam, since then we not only avoid excessively large numbers, but also obtain 
a very simple identity for normalization. It is well known, indeed, that (see [12, 
p. 166])9 

(6.3) Pa(z) + 2 t r(a + 1) Pam(z) = [z + (z2 - 1) 112]", 
m=l r(a + m + 1) 

valid for Re z > 0 and arbitrary a. Hence, 

oo [ + ( 2 1)1/2]a 
(6.4) fo+ 2Lfm = Z Z- , 

m=l r(a + 1) 

which may serve in the capacity of condition (3.2), with 

[z + (z2 - 1)1'2r 
8 = r(a + 1) ' 

Ao = 1, Am = 2, m > 0. 

The convergence of the first algorithm then follows from the remark made after 
Theorem 3.1. 

To insure numerical stability, the ratio 

8 [z + (z2 - 1)1/2r 
~ = Pa(z) 

(6.5) 

should not be allowed to become excessively small (cf. §3). While it is difficult to 
check the magnitude of this function for the full range of z and a, we shall at 
least look into the behavior of this function near the singular points z = -1, 
z = +1, z = 00. 

As z tends to + 1, or -1, in the plane cut from - oo to 1, we have P a(z) ----7 1, 
and so I 8/fo I ---" 1. 

To study the behavior at infinity, we make use of the following facts (see 
[49, §54]): If a ? -i + n, where n is an integer, we have, as z ----7 oo, 

Pa(z) 1'-..J Aa(2z)-(a-t-l) + Ba(2z)", 

8 As is customary, we write P,.(z) for Pa0(z). 
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r( -a-!) 
A,.= ' v1rr( -a) 

B,. = r(a + !) 
v1rr(a + 1) 

Otherwise, when a = -! + n, then 

-v2 -112 1 -z nz, if n = 0, 

P -(1/2)+n ( Z) "-' 

Hence, in the former case, 

1r 

~ r(l n I) (2 ) lnl-1/2 

v?rr(Jnl+!) z ' 

s (2z )"' 1 

if n ~ 0. 

- "" - -:--:---:---:-:--:-:---=-
fo A,.(2z)-<a+l) + B,.(2z)a Aa(2z)-<2a+1> + Ba' 

57 

which becomes small in modulus only ifRe (2a + 1) < 0, i.e., Rea< -!.In the 
case a = -! + n, we have 

if n = 0, 

_ r r(n + !) . 
v 1r r(n) ' if n > 0, 

s 
-"" fo 

;- r(Jn I+!) (2z)-2'n' if n < o. 
""1r r(lnl) ' 

Here, the third case ( n < 0) is critical, and also the first, but to a much lesser 
degree. 

For all practical purposes, then, (6.5) will be small in modulus only if 
Rea < -!. This can easily be avoided by employing the relation 

(6.6) P,.m(z) = P~a-t(z), 
when necessary. If Rea < -!,then indeed Re (-a - 1) > -!. 

Restricting a to have real part -! one obtains Mehler's conical functions 
P~(l,2)+i.-(z), where Tis real. Since P~(l/2Hir(z) = P~(l/2)-i.-(z), by (6.6), these 
functions are real when z is real. It suffices, moreover, to consider nonnegative 
values ofT. We shall assume z = x > 1, which is a case of practical interest. 

Since r(a + m + 1) is now complex, the scaled functions (6.2) used previ
ously are not as convenient anymore. To maintain the computational ad
vantages noted before, we consider 

(6.7) fm = ~~ P~(l/2J+i.-(x). 
As follows from ( 6.1) and our previous discussion, fm so defined is a minimal 
solution of 

2mx 
(6.8) Ym+t + (m + l)(x2 -

(m - !)2 + T2 

1)112 Ym + m(m + l) Ym-1 = 0, 

m = 1, 2, 3, · · ·. 
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To arrive at a normalizing identity for fm, involving real quantities only, we 
write down (6.3) (withz = x) once fora= -! + ir, and once fora= -!- ir, 
and then form the arithmetic mean of the two identities. Noting (6.7), we then 
obtain 

where 

00 

fo + 2: A.mfm = [x + (x2 - 1)112r 112 cos ( r ln [x + (x2 - 1)112]), 
m=l 

m!r(! + ir) 
urr. = r(! + ir + m) • 

The A.'s are best obtained from a three-term recurrence relation. We clearly have 

( m + 1 )um ( m + 1) ( m + ! - ir) 
Um+l = m + ! + ir = (m + !)2 + T2 Um. 

For notational simplicity, let 

(6.9) 

Then 

1 
am= m + 2' 

~mUm-t-1 = (am - ir )um , 

~mUm-t-t = (am + ir )um . 

Adding, and subtracting, we get 

(6.10) 
~mhm-t-1 = amAm - TJ.I.m , 

~mJ.I.m+l = am}Jm + TAm , 

where !Jm = i( Um - Um). Eliminating the JJ'S, we find 
2 2 

A _ am-1 + a,. X + am-1 + T X _ O 
m+l R m R R m-· I - ~ 

/Jm t-Jm--1 /Jm 

or, with the values (6.9) inserted, 

2m(m + 1) m(m + 1) 
(6.11) Xm+l - (m + !)2 + r Xm + (m + !)2 + T2 Xm-1 = 0, m = ~. ;{, .... 

The initial values are 

(6.12) 3- 4r2 

X2 = (J + r2)(l + r2). 

We observe that the recursion ( 6.11) belongs to case (b) of Theorem 2.3, the 
characteristic equation being ( t - 1 )2 = 0. Because of the double root t1 = t2 = 1, 
Theorem 2.3 does not permit us to decide whether the recursion in ( 6.11), ( 6.12) 
is numerically stable. We observe, however, that another solution of ( 6.11) is p.,. , 

as follows by eliminating the )\'sin ( 6.10). Therefore, Re Um and Im u,. are a pair 
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of linearly independent solutions of (6.11). Using Stirling's formula, and disre
garding constant factors, we find 

~I.. e-ir!nm 
..,. r-.J m , m~ oo, 

so that both solutions oscillate, for large m, with linearly increasing amplitudes. 
Therefore, numerical instability cannot arise. 

A further interesting special case is obtained by assuming a a nonnegative 
integer, a = p. Then, in fact, 

( 2 1 )m/2 dp+m 
p m(z) = Z - -- (z2 _ 1)P. 

P 2Pp! dzP+m 

This shows that 

Ppm(z)=O if m>p. 

We note that Theorem 1.1 withfm = Ppm(z) is no longer applicable, since the 
assumptionfm ;;e 0 (all m) does not hold. Neither apply the asymptotic results 
of §2, the assumption (2.2) now being violated. 

Nevertheless, fm still satisfies the recurrence relation ( 6.1) (with a = p') for all 

values of m, thus in particular form = p, p - 1, · · · , 1, whereby fp+t = 0. The 
algorithm described at the beginning of §3 becomes applicable, and it follows that 
the r-recursion in our algorithm (3.9), if started with v = p, furnishes the exact 
ratios rm-1 = fmlfm-1, apart from rounding errors. The same is true for the 
s-recursion, which yields exact values of 

p 

Sm-1 = L Arfr/fm-t ' 
,.=m 

the infinite series in ( 6.3) reducing to a finite sum, when a = p. In short, ( 3.9) 
with v = p now represents the complete algorithm for computing fm = Ppm(z), 
m = 0, 1, 2, · · · , p, and no iteration on vis required. 

We now proceed to the recurrence relation with respect to degree. Let a, m, 
and z be fixed, and consider P;;'+n(z), Q;;'+n(z) as functions of n. They both obey 
the rel'ation 

( 6.13) 
(n +a - m + l)Yn+t - (2n + 2a + 1)zyn 

+ (n + a + m)Yn-1 = 0, n = 0, 1, 2, · · · . 

This is a Poincare difference equation whose characteristic equation is 

t2 - 2zt + 1 = 0. 

The roots are 

t1 = z + (i - 1)112, 

and it is readily verified that for Re z > 0, 

I t1 I > 1 > I t2 I· 
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From Theorem 2.3( b), and the remarks following this theorem, we conclude that 
(6.13) has a minimal solutionfn for which Iim,._.oefn+tffn = tz, while the limit is 
t1 for every other solution. Now it is known (see, e.g., [12, p. 162]) that 

Qm ( ) ( 1 )m , j; m-1/2( 2 1 )-l/41~a+n+l/2 a+nZ""- 1/2n Z- "2 ' n-+oo, 

for z outside the cut from - oo to 1, thus in particular for those z which we are 
considering here. It follows immediately, therefore, that the minimal solution is 
j .. = Q;:+ .. (z), and that g,. = P'::'+n(z) is now a dominant solution. 

The computation of P:'+n(z) for n = 0, 1, 2, · · · can proceed using (6.13) in 
the normal fashion. The required initial values Pam(z), P:'H(z) may be obtained 
by the methods discussed above. These functions are thus again computable 
entirely from their recurrence relations. On the other hand, Q:'+n( z), as the 
minimal solution of (6.13), is amenable to the algorithms of §§3 and 4. 

Unfortunately, no simple infinite series involving the fn = Q:'+n(z) for arbi
trary a exists, which would be convergent in the region considered here. N ormali
zation of f .. , therefore, has to be accomplished by computing the initial value 
Qam(z). In the special case of toroidal functions Q~(1/2Hn(z), however, we have the 
following relation [12, p. 166]: 

Q~l/2(z) + 2 ~ Q~(l/2)+n(z) = ( -l)m ~ r ( m + ~) (z - o-l/2(: + ~)m12, 
which lends itself well for normalization, unless z is complex and near the singular 
point -1. · 

We wish now to give some additional numerical information concerning the 
algorithms described in this paragraph. 

v/N 

5 
a= -.5 

4 a=2.5 

3 
a=5.5 

2 a= 10.5 

a= 20.5 

5 10 15 20 25 30 X 

FIG. 7. Empirical v/N for Legendre functions P .. "(x), n = O(l)N, where N = 50 
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v/N 

T =20 

<=0 

oL-______ L_ ______ L_ ______ L_ ____ ~L-----~----• 

0 5 10 15 20 25 X 

FIG. 8. Empirical v/N for conical functions P~(l/2l+iT(x), n = O(l)N, where N = 50 

Of foremost interest is again the determination of v/N in our first algorithm. 
A derivation of an estimate by analytical means appears to be out of question. 
We tried, therefore, to determine the behavior of v/N empirically, as a function 
of the various parameters involved. To simplify the task, we assumed a fixed 
accuracy requirement of six significant digits. Moreover, we decided to consider a 
fixed value of N. Since v/N was found to decrease with N, we deemed it desirable 
to select a relatively large value of N as representative, namely, N = 50. If we 
would not do so, we would considerably overestimate v/N, and pay heavily for 
this in cases where N is actually large. To compensate for a possible underestima
tion in cases where N is small, we suggest that a relatively large increment of v, 

say 10, or even 20, be used in the iteration process of the first algorithm. Having 
thus disposed of two parameters, we are still left with two in each case. 

In the case of Legendre functionsfn = Pan(x)/r(a. + n + 1), where x > 1, 
a. ~ -!,the value of v/N found empirically for N = 50 is depicted in Fig. 7 as a 
function of x and a.. A reasonably good approximation to these curves was ob
tained in the form 

v ..!.. 37.26 + .1283(a. + 38.26)x 
N - 37.26 + .1283(a + 1)x 

For the conical functions P~(l/2Hir(x)/n!, where x > 1, r ~ 0, the empirical 
value of v/N as a function of x and r is shown in Fig. 8. The curves were fitted by 
a function which is linear in both x and r, viz., 

; == 1 + (.140 + .0246r )(x - 1). 

As the graphs in Fig. 8 show, the conical functions are by far the hardest to com
pute. As v / N becomes large, considerable accumulation of rounding errors must be 
expected. 
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v!N 
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1.0 
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FIG. 9. Empirical v/N for toroidal functions Q~(ll2)+n(x), n = O(l)N, where N = 50 

Finally, in the case of toroidal functions Q~<tt2>+n( x), where x > 1, m !i;; 0, the 
behavior of v/N as a function of x and m is shown in Fig. 9, and is roughly approx
imated by 

ALGOL procedures based on the methods of this paragraph are available in 
[19]. 

7. Coulomb wave functions. Coulomb wave functions are of importance in the 
study of nuclear interactions. They arise when Schrodinger's equation for a 
charged particle in the Coulomb field of a fixed charge is separated in polar 
coordinates. The radial component then satisfies the differential equation 

(7.1) d2y + [ 1 _ 211 _ L(L + 1)] y = O, 
dp2 p p2 

where '11 is a real parameter, L a nonnegative integer, and p > 0. Physically, '11 

depends on the relative charges. If both are of equal sign, then '11 > 0, otherwise, 
'11 < 0. The variable p is a radial distance, suitably scaled, while L is the orbital 
angular-momentum quantum number of the particle. 

The origin p = 0 is a regular singular point of (7.1), with indicia! equation 

A(A - 1) = L(L + 1). 

Since the roots of this equation are At = L + 1, A2 = -L, the differential equa
tion (7.1) has a solution corresponding to At which is regular at p = 0, admitting 
an expansion of the form 

00 

Yt(P) = PL+1 L Cnpn. 
n=O 
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In quantum mechanics it is customary to normalize this solution to have 
sinusoidal behavior as p ~ oo, with amplitude equal to 1. So normalized, the 
solution is called the regular Coulomb wave junctimL, and denoted by FL('TJ, p). 
The solution corresponding to X2 , on the other hand, will contain a logarithmic 
term, since A1 differs from Az by a positive integer. If normalized similarly as F L , 

it is called the irregular Coulomb wave function, and denoted by GL( 7], p). 
The line 

'TJ > 0, 

which separates regions of different asymptotic behavior of the solutions of (7.1) 
as p ~ oo and 'TJ ~ oo , is called the transition line. 

In terms of Whittaker's function M«,p.(z) (see [12] for notation), we have 

c1.2) F[,c 'Y], p) = (2ir<Hl)cLc 'Y] )Mi.,,L+l/2(2ip), 

where 

(7.3) 

We note for later use, 

Co('TJ) = (-_37r1] __ )1/2 
(7.4) e2rr~ - 1 ' 

L = 1, 2, 3, · · ·. 

As functions of L, both the regular and irregular Coulomb wave function 
satisfy the three-term recurrence relation 

(7.5) 
L[(L + 1) 2 + 'TJ2] 112YL+l - (2L + 1) [ 'TJ + L(L p+ 1) J YL 

( )[ 2 2]1/2 + L + 1 L + 'YJ Y Irl = 0, L = 1, 2, 3, · · ·. 

This difference equation has the same N cwton-Puiseux diagram as the recurrence 
relation for the Bessel functions (see l~'ig. 2). Hence, there are two solutions of 
( 7.5) with markedly distinct asymptotic properties as L ~ oo • These, in fact, 
are precisely the regular and irregular Coulomb wave functions, since for fixed 'TJ 
and p, it is known that 

(7.6) L~ oo, 

and furthermore, 

(7.7) CL(fl) r-..J e~ e-rr~/2 (2t)L+l' L~ oo. 

In particular, FL is the minimal solution of (7.5). Therefore, FL may be obtained 
by the algorithm in ( 3.9), provided a suitable infinite series can be found for 
normalization. The proper selection of this series is a rather crucial matter, and 
will be discussed next. 
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For computational convenience we first let 

2LL! 
(7.8) !L = (2L)!CL(rJ) FL('IJ, p). 

Among other things (relatively slow rate of growth of the coefficients XL in 
(7.11) below), this effectively removes square roots in (7.5). In fact, using (7.4), 
one finds that f L is the minimal solution of 

(7.9) L[(L + 1) 2 + 112
] _ [ + L(L + 1)] + L(L + 1) = O 

(L + 1)(2L + 3) YL+l 1J p YL 2L - 1 YL-l • 

The following expansion is known (see, e.g., [6, p. 131, formula ( 1613)]), 

(7.10) z<t+p.)l2eazl2 = ~ r(p. + n) p <<rll/2+«,<rtll2-«l( )M ( ) 
~ r(p. + 2n) n a «,p/2-ht z ' 

where Pn(a,fJ)(z) is the Jacobi polynomial of degree n. (For notation, see [55].) 
Letting p. = 1, " = i11, z = 2ip, a = - iw, and writing L for n, this becomes in 
view of (7.2), (7.8), 

(7.11) 
co 

pe"'P = L XL/L, 
L=O 

"\ _ ·Lp (i11,-i~)( · ) r..r, - ~ r, -tw . 

If w = i, then one easily shows that (7.11) reduces to a result attributed in [53] 
to P. Henrici. As one of several alternatives, it was suggested in this reference 
to apply Miller's backward recurrence algorithm to (7.9), using Henrici's series 
for normalization. Unfortunately, the process suffers from severe loss of accuracy 
when 11 and pare positive and large. We show that by selecting w judiciously, the 
loss of accuracy can be kept under control. 

We recall ( cf. the end of §3) that loss of accuracy due to cancellation occurs if 

(7.12) 

is very small in absolute value. Let 

p 
T = 21]' 

so that the point ( 'TJ, p) is above or below the transition line, depending on 
whether r > 1 or 0 < r < 1, respectively, and 11 < 0 if - oo < r < 0. In each 
of these three cases, fo will behave differently as I 71 I --+ oo and T is held fixed. 
In fact, using general asymptotic results for Whittaker functions due to Buch
holz (see [6, p. 101 ff, formulae (7), (11), (16a)]), one obtains from (7.2), after 

• 10 some computatiOn, 

fo ~ ~1l"'IJ (T T 1y14c,.." cos { 2rJ[V r(r - 1) - In ( y'; + -v;:-:=1)] - i}, 
T > 1, 1J--+ 00 1 

10 In the cited formula (7) of [6], the factor exp (=Ftd(~e - (1 + #')/2)) should read 
exp (=F1ri(~e- (1 + JJ.)/2)). 
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fo ""' 2~ ( 1 r 7y14 exp {17[11"- 2 arccos y'; + 2Vr(r=-·7)]l, 

0 < T < 1, 11 -'> CO 1 

1 ( I I )1'4 { 
fo ""'V211" 1171 171-r + 1 sin 2 1171 [vir 1(171 + 1) 

+In ( v'Gl + Vl71 + 1)] - i}, -co < r < 0,11 ~-co. 
To prevent the quantity in (7.12) from becoming exponentially small, as 1J -} co, 

we are led to choose 

'II" 

27' T ~ 1, 

(7.13) 1 
2-r [11"- 2 arccos Vr + 2Vr(1- r)], 0 < 'T < 1, 

0, 'T < 0. 

Since for reasons which become clear later, small values of ware to be preferred, 
equality in (7.13) is suggested. The parameter w so defined then depends 
continuously on 7 in the interval ( 0, co ) , and decreases monotonically from 
w to 0. Clearly, as long as 11 is small, say < 1, the choice w = 0 is entirely satis
factory. 

Other series expansions obtained by letting p, = 2Lo + 1, a = 0 in (7.10) have 
also been suggested for normalization [57], whereby the integer L0 is adjusted 
empirically to control the loss of accuracy. 

The normalization identity now completely determined by (7.11) and (7.13) 
(with equality sign), we proceed with a discussion of the resulting algorithm 
(3.9). 

We first observe that the coefficients Ar, in (7.11) satisfy 

(7.14) L = 1, 2, 3, · · ·, 

(7.15) Ao = 1, 

as follows readily from the well-known recurrence relation for Jacobi poly
nomials. In particular, they are all real. Using (7.14), (7.15) to generate the 
t..L, algorithm (3.9) becomes 

r/v> = 0, ri-21 = (2L 1_ 1) {7J/(L(L + 1)) + 1/p 

- [ 1 + (L ~ 1)] rL<•>/(2L + 3)} -1
, 

L = v, v - 1, · · · , 1, 
(v) 0 {v) (v) ( (v) + '\ ) s. = , BL-1 = 1"L-1 8L 1\[, , 

(7.16) 
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f (v) - r(•) f(p) 
L - L-1 L-1, L = 1, 2, • • • , Lmax • 

The final results FLare readily obtained from (7.8), with the help of (7.4). 
It is worthwhile to examine more closely the three-term recurrence relation 

(7.14). We note that it is a difference equation of the Poincare type, with charac
teristic equation 

t2 - 2wt - 1 = 0. 

Since the roots are 

t1 = w + V w2 + 1, 

it follows from Theorem 2.2 that (7.14) for w :;e 0 has a minimal solution XL' 
for which 

(7.17) L-too, 

while all other solutions behave according to 

(7.18) x~:l 1"-..J w + Vw2 + 1, L--* «>. 

To convince ourselves that the solution XL defined by (7.15) is not a minimal 
solution, we make use of the asymptotic formula11 

Pn(a,fJ)(z) ,...,_, (z - 1)-a/Z(z + 1)-fJ/2[(z + 1)1/2 + (z - 1)1/2]a+.6 

x (211"n)-1'2(i - 1)-l/4[z + (i - 1)1'2r+lt2, 

where z is outside the segment r -1, 1]. It follows, by a simple computation, that 

where 

(7.20) 
1 

tf> = arctan - , 
w 

so that indeed (7.18) holds, rather than (7.17). 

w :;e 0, L-too, 

It may appear, therefore, that the use of (7.14) in forward direction is nu
merically "safe." Unfortunately, and surprisingly, it was observed by computa
tion [applying algorithm (3.9) to (7.14)] that Xr, defined by (7.14), (7.15) ap
pr·oaches a minimal solution, in the sense 

' Xx--* At, 

{XL'} being normalized by Xo' = 1, as either 'Y/, or p, or both, become large. 

11 See [55, p. 194], where the result is stated for real a, {3. The derivation by the method 
of steepest descent, however, is valid for arbitrary complex values of a, {3. 
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FIG. 10. Degree of minimality of {XL}. The regions I, II, III indicate coverage of the 
tables [36], [31], [58], respectively, for FL(rJ, p). 

(Recall that w is equal to the right-hand expressions in (7.13), and is thus a 
function of p and n.) To describe this phenomenon more precisely, let 

o = -log I X1 - xt' I, 
which may be considered a measure of the "degree of minimality" of the solution 
XL. (We expect, roughly speaking, that the generation of X1, by (7.14), (7.15) 
involves a loss of about o decimal digits due to cancellation.) Fig. 10 shows the 
behavior of o as a function of 'f/ and p. In particular, it can be seen that no serious 
cancellation problems arise in the regions (marked, I II, III) which are com
monly of interest in applications. However, in special applications which involve 
large values of 11 and p, the loss of accuracy may indeed be quite substantial. 

An obvious way to counteract this phenomenon is to generate the XL in double 
precision arithmetic. However, this may not be very efficient, considering that 
L, in the region in question, may assume values as large as 100, or more. We sug
gest the following alternative. 

Let 

(7.21) 

a quantity that can be calculated to any degree of accuracy (in double precision, 
if necessary) without too much effort, using algorithm (3.9) for X/. Let further
more x/ be the solution of (7.14) defined by 

(7.22) x/' = 1. 

Then, using elementary facts from the theory of linear difference equations, one 
finds that 
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(7.23) ' € ( " ' ') AL = /1./, + 1 + )1./2 AL + At )I.L • 

Having determined e accurately, we may now use (7.23) to calculate Ar-. This 
requires the eomputation of the minimal solution ii.L' by algorithm ( 3.9), and the 
computation of il.~-" by (7.14), (7.22), but all of this can safely be done in single 
precision. Thus, double precision arithmetic will only be required in the compu
tation of e from (7.21). 

For later use, we note the analogue of ( 7.19) for w = 0. In this case we use 
( cf. [.15, p. 194] and footnote11 ) 

Pn(a,p)(O) "-' J1t'n 2<a+P+Ot2 cos([n + (a+~+ 1)/2] ~- (a+~)~), 

n --? oo, 

and find that 

(7.24) )I.L = l'PL(i1f,-i1f)(0) ""'y'~1f'L [( -l)Le,.1112 + e-"1112], L --)> oo. 

The starting value v in ( 7.16) may be estimated similarly as for Bessel func
tions. Using ( 5.11), we may approximate the relative error off~- <•) by 

(7.25) 1 -wp"\ J fv+l g. L - e Av+l v+l - - - 1 
P gv+l h 

where gL = 2r'L!GL( 'YJ, p)j( (2L) !Cr-( 'YJ) ). We wish to bound this for L = Lmax, 
assuming Lmax and v > Lmax large. By (7.6), (7.7), we have for large L, 

f], ""' e-.-~ ( ep )2L+l 

gL 2e 2£ 

Hence, the second term in (7.25), for large v and L, may be estimated by 

(7.26) fv+I fJ;: "-' p2~.J (ep)2(v--L) Lnv-2•. 

gv+l} I, 4v 2 

To estimate the first term in (7.2.5) we observe from (7.19), (7.24), (7.G), 
and (7.8), that for L large, and w ;;;:; 0, 

I A f· I< pA('YJ)(l + w2
)-114[B(w)Y' 2 (epB(w))L 

L L I'V v 47f' L 2L ' 

where 

A ( ) = {2-cosh ( 7r'rJ/2), 
'YJ e 11"', w > 0, 

w = 0, 

B(w) = w + V w2 + 1, 

cp being defined in (7.20) The total relative error (7.25) will thus be ~!·10-d, 
if we require that 
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e-wpA(1})(1 + w2)-li4[B(w)YI2(2e{vB~wi))"+I ~ ~ . 10-d, 

(e;y(•-L)L2LII-2v ~ ~ ·10-d, L = Lmax· 

From here on, the analysis proceeds as for Bessel functions. Assuming (with
out loss of generality) that Lmax > ep/2, the result is that v must satisfy both of 
the following conditions: 

epB(w) ( 2 [ (A( ) _ ;-( 2)-114)]) 
11 ;;,;; 2 t epB(w) D - wp + In 1J v B(w) 1 + w , 

II ;;,;; Lmax t ( 2~aJ 1 

(7.27) 

where we recall that D = d In 10 + In 4, and t(x) is the inverse function of 
x = tInt. 

An ALGOL procedure for the computation of FL(1J, p), using the methods 
described in this paragraph, may be found in [20]. 

8. Incomplete beta and gamma function. The incomplete beta function is 
defined by the integral 

(8.1) B,(p, q) = []) tp-1(1 - t)q-l dt, p > 0, q > 0, 0 ~ X ~ 1. 

The complete beta function is obtained when x = 1, and can be expressed in 
terms of gamma functions, 

(8.2) Bl(p, q) = fol tp-1(1 - t)q--1 dt = r(p)r(q). 
Jo r(p + q) 

For large p or large q Laplace's method (see [11, p. 37]) yields the asymptotic 
formulae, 

(8.3) 

(8.4) 

p 

B,(p, q) r-v (1- x)q-1:._, 
p 

p ~ oo, q fixed, 

q ~ oo , p fixed. 

In probability distribution theory the following ratio of beta functions is 
important, 

(8.5) 

Recurrence relations hold in both variables p and q (see [3]) :12 

plx(P + 1, q) - [(p + q- l)x + p]lx(p, q) 
(8.6) + (p + q - 1 )xl,(p - 1, q) = 0, 

12 Formula (14) in [3] contains a misprint: the last term on the left should have the factor 
q, not p. 
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ql.,(p, q + 1) - [(p + q - 1) (1 - x) + q]l.,(p, q) 
(8.7) 

+ (p + q - 1)(1 - x)l.,(p, q - 1) = 0. 

It also follows from ( 8.5) that 

(8.8) J.,(q, p) = 1 - ft-x(p, q). 

The calculation of l.,(p, q) presents no difficulty when both p and q are small 
or moderately large. Expansion of (1 - t)q-l into the binomial series then leads 
to a rapidly convergent series for Bx(p, q), especially since by (8.8) we can always 
arrange to have x in the interval 0 ~ x ~ !. Moreover, the gamma functions in 
( 8.2) are rapidly calculated by reducing the arguments to some standard interval 
for which rational approximations are available [60]. When p or q is large, 
however, it may be more efficient to make use of the recursions (8.6) or (8.7). 

Consider then, first, 

fn = lx(p + n, q), 

By (8.6) this is a solution of 

n = 0, 1, 2, · · · ; 0 < p ~ 1, q > 0. 

( n+p+q-1) n+p+q-1 
(8.9) Yn+l - 1 + n + p X Yn + n + p XYn-1 = 0, 

again a Poincare difference equation. The characteristic equation t2 - (1 + x)t 
+ x = 0 has the roots 

tt = 1, 

By inspection (8.9) has the solution Yn = 1, which clearly corresponds to the 
root tt. On the other hand, from (8.3) and (8.5), we find 

n ~ oo, 

so that fn corresponds to the root t2. Therefore, fn is the minimal solution of 
(8.9). 

While our methods of §§3 and 4 again apply, it must be noted that in contrast 
to the previous examples the dominant solution is now bounded. Forward re
cursion by means of (8.9) should therefore cause no difficulties if thefn are to be 
obtained to a fixed number of decimals after the decimal point. If a given number 
of significant digits is required, however, it is more appropriate to employ the 
algorithms in §§3 and 4. The initial value fo = l.,(p, q) needed in these algo
rithms may be obtained by first reducing q modulo 1 to qo , where 0 < qo ~ 1, 
then calculating l.,(p, qt), l.,(p, qo + 1) by series expansion, and finally applying 
the second recursion (8.7) to connect with l.,(p, q). 

Consider next 

n = 0, 1, 2, · · · ; p > 0, 0 < q ~ 1. 

From (8.7) we now get the difference equation 
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(8.10) 
1/n+l - [ 1 + n + ~ t : -1 ( 1 - X) J Yn 

+ n + p + q - 1 (1 - X )Yn-1 = 0, 
n+q 

which may also be obtained from (8.9) by interchanging p with q and, simul
taneously, x with 1 - x. Therefore (8.10) has the solutions (Jn and /1-x(q + n, p ), 
of which the latter is again the minimal solution. We see that (Jn is among the 
dominant solutions, and no problem of numerical instability arises. 

For a detailed description of these algorithms we refer to [17]. 
The incomplete gamma function is defined by 

(8.11) P( ) 1 1"' -! a-1 d 
a, x = r (a) 0 e t t, a> 0, x > 0. 

It satisfies the well-known recurrence relation 
a-1 -x 

P(a, x) = P(a - 1, x) - xr(:) , 

which, by elimination of the inhomogeneous term, can be brought into the form 

aP(a + 1, x) - (x + a)P(a, x) + xP(a- 1, x) = 0. 

Letting In = P( a + n, x), we therefore find that fn is a solution of 

(8.12) (a + n)Yn+l - (x + a+ n)yn + XYn-1 = 0, n = 1, 2, 3, · · · . 

This again is a Poincare difference equation, whose characteristic equation 
t2 - t = 0 has the roots t1 = 1, t2 = 0. The solution of (8.12) corresponding to 
t1 is clearly Yn == 1. The solution corresponding to t2 is In , since 

ln+l X - "-'-
In n' 

as follows from the well-known asymptotic formula 

P(a, x) ""'xae-"'jr(a + 1), 

n ~ oo, 

a~ oo. 

(See, e.g., [13, p. 140].) Consequently, In is a minimal solution of (8.12). 
To obtain an infinite series in fn , we multiply fm by 

(8.13) >..m = r(a + m) 
m!r(a) ' 

and sum over m. We get 

i: >..m fm = - 1- i: _ _!_ lx e-tt+m-l dt 
m=O f(a) m=O ml 0 
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1 x a 

= --1 t-1 dt = _x_ 
r(a) o · ar(a) ' 

and therefore, 
oo a 

(8.14) ~o Amfm = r(a X+ 1). 

The coefficients Am can easily be obtained from the recursion 

(8.15) Ao = 1, 
a+ m -1 

Am = Am-1, m 
m = 1, 2, 3, · · · . 

Our algorithms may now be applied to (8.12), (8.14) to compute P(a + n, x) 
for n = 0, 1, 2, · · · , N. 

9. Repeated integrals of the error function. In problems of heat conduction 
the complementary error function 

erfc z = . ~-1"' e-12 dt 
v 11" z 

and its repeated integrals frequently occur. Following Hartree [25] we denote 

i0 erfc z = erfc z, 

in erfc z = 1"' in-1 erfc t dt, 
z 

n = 1, 2, 3, 

It is also convenient to define 

·-1 f 2 -z2 
1 er c z = y; e . 

Expressed as a single integral, we have 

•n f 2 1"' ( l - Z) n -t2 d 
1 er c z = . 1_ 1 e t. 

v 11" z n. 

Writing 

inH erfc z = 2_ (-1-1"' (t - zf te-t2 dt - _z_1"' (t - z)n e-t' dt)' 
V1r n + 1 z nt n + 1 z nt 

and evaluating the first integral by parts, one finds 

·n+l f + Z ·n f 
1 er c z n + 1 1 er c z 2(n ~ 1) in-1 erfc z = 0, n = 0, 1, 2, .... 

Consider now 

f z2•n f 
n = e 1 er c z, n = -1, 0, 1, 2, · · · , 

which clearly is a solution of 
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(9.1) 
z 1 

Yn+t + n + 1 Yn - 2(n + 1) Yn-t = 0, n = 0, 1, 2, · · · . 

To this difference equation case (c) of Theorem 2.3 could be applied with the 
result that all solutions behave "similarly" as n--+ oo, viz., 

lim sup (I Yn I Vnl)11n = _ ~. 
n- v2 

This conclusion is somewhat deceiving, as in fact fn is the minimal solution of 
(9.1). 

To see this, we make use of the result that for any fixed z, as n --+ oo, 
-Cl!2)z2 

(9.2) in erfc z "" e( ) exp ( -y'21iz). 
2nr ~ + 1 

2 

[See [13, p. 123] and also recall that the repeated integrals of the error function 
are related to parabolic cylinder functions D.(z) by 

in erfc z = (e-"2/2n-1'lT) 112D-n-t(zV2).] 

By inspection, moreover, one sees that 

On = ( -l)ne"\" erfc ( -z) 

also satisfies the recurrence relation (9.1). Applying (9.2) to both fn and On, 
we find 

(9.3) ( -1) n fn "" e-2-Vz;z ' 

On 
n--+ oo. 

This shows thatfn is indeed the minimal solution of (9.1) whenever Re z > 0. 
Otherwise, when Re z < 0, On is the minimal solution. 

Our algorithms of §§3 and 4 for computing fn are particularly simple, in this 
case, since the initial value is known to be 

f-t = 2/vf;:. 
From ( 9.3) it is evident that convergence of the first algorithm is better the 
further away z is from the imaginary axis. 

The application of Miller's backward recurrence algorithm in this connection 
was first suggested by M. Abramowitz (1], and is further analyzed in [16]. 

We note, incidentally, that Theorem 1.1 gives us the identity 

1 1 1 
fn _ 2(n + 1) 2(n + 2) 2(n + 3) 

fn-1 - Z Z Z 

n+1+n+2+n+3+ 
which by an equivalence transformation can be brought into the form 

i" erfc z 1/2 (n + 1)/2 (n + 2)/2 .,.--.,.----,---- = - ---:---'-- ----'--
jn-l erfc z z+ z+ z+ Re z > 0 . 
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For n = 0, this reduces to the well-known result 

2e"2j00 e -t2 dt = _!_ 1/2 _!_ 3/2 .... 
, z+ z+ z+ z+ 

10. An example arising in the numerical computation of Fourier coefficients. 
Let j(t) be a function defined and continuous on the closed interval [0, 211"1, 
and let 

(10.1) 12.-

ap = 
0 

f(t) cos pt dt, 12.-

bp = 
0 

j(t) sin pt dt, p = 0, 1, 2, ... ' 

denote its Fourier coefficients. The computation of Fourier coefficients of high 
order (p large) is notoriously difficult because of two reasons. Firstly, if one at
tempts to apply standard integration techniques, such as the trapezoidal rule, 
one is forced into a rather fine subdivision of the interval [0, 211"] in order to cover 
adequately the many oscillations of the trigonometric factors in ( 10.1). Secondly, 
even if one adopts a sufficiently fine subdivision, substantial cancellation of 
digits will occur in the summation associated with the integration formula. In
deed, by Riemann's lemma, both ap and bp tend to zero when p ---7 ao , whereas 
the individual terms of the integration formula need not be small at all. In 
matter of fact, cancellation will be more prominent the smoother the function 
f is! 

In order to circumvent these difficulties, it has been suggested to use Gauss 
type integration methods, treating the troublesome trigonometric factors as 
weight functions [61], [62]. As the general theory of Gaussian quadrature re
quires nonnegative weight functions, one first writes 

12.- 12,- 12.-
( 10.2) ap = 

0 
f(t) cos pt dt = 

0 
f(t) dt -

0 
j(t) (1 - cos pt) dt, 

and similarly for bp • Then Gaussian integration is applied to the second integral, 
while the first integral is evaluated by some standard technique. Both integrals 
may have to be evaluated to high accuracy, since for large p, they are nearly 
equal. Thus, our cancellation problem is not entirely eliminated, but appears to 
be under better control. 

Gaussian quadrature formulae of possibly various orders have to be obtained 
for each value of p. While this is a formidable task in itself, it appears feasible 
on current high-speed computers. One would presumably start from the moments 

(10.3) 
1211" 12 ... 

c,. = 
0 

t"(l - cos pt) dt, s,. = 
0 

C(1 - sin pt) dt, 

n = 0, 1, 2, · · · , 

and use these to construct either the associated orthogonal polynomials, or the 
continued fractions associated with the formal power series 

00 
~ -n-1 
LJ s,.z • 
n=O 
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The abscissae and weights of the desired quadrature formula then follow readily. 
Because of the inherent sensitivity of these quantities with respect to perturba
tions of the moments, it is rather important that the moments ( 10.3) be ob
tained as accurately as possible. Our concern here will be with a stable genera
tion of these moments. 

We assume p a positive integer. Integrating by parts, we have13 

Cn+l = 121r t+1(1 - cos pt) dt = [t+1 (t- si~pt) J:"" 

- 121r (n + 1)t" (t- sinppt) dt 

= (211')"+2 - (n + 1) 121r t"+l dt + n + 1 Jz,. t" sin pt dt 
0 p 0 

= (271')"+2- n + 1 (27r)n+2- n + 1 [h t(l- sinpt) dt 
n + 2 p o 

+ n + 1 [21r t" dt 
p 0 

hence, 

(10.4) n + 1 ( )n+t (1 271' ) 
Cn+l = - -p- 8n + 271' p + n + 2 ' n = 0, 1, 2, · · ·. 

Similarly, one obtains 

(10.5) 
n + 1 (271')"+2 

8n+1 = -p- Cn + n + 2 , n = 0, 1, 2, · · ·. 

Replacing n by n - 1 in ( 10.5), and inserting the result in ( 10.4), one gets 

n(n + 1) (271' )n+2 

(10.6) Cn+l = - p2 Cn-1 + n + 2 , n = 1, 2, 3, · · ·. 

Eliminating similarly the c's from ( 10.4) and ( 10.5), one gets 

n ( n + 1) n (n + 1 271' 471' 2 
) 

( 10.7 ) Sn+l = - p2 Sn-1 + (27r) ---:p2 + p + n + 2 , 

n = 1, 2, 3, 

Writing down (10.6) once with n increased by unity, and once with n decreased 

ta In principle, c.. and Bn could be evaluated in closed form. However recursive generation 
of these quantities is more effective. Alternatively, we could integrate the additive term 

[
2.. 12 .. 

tn in closed form, and compute 
0 

tn cos pt dt and 
0 

tn sin pt dt recursively. No substan-

tial simplification would result, however. 
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by unity, and eliminating the inhomogeneous terms, one finally obtains 

+ [ (n + 1) (n + 2) 411"2(n + 1)] 
Cn+2 p2 - n + 3 Cn 

(10.8) 
_ 4 2 (n - l)n(n + 1) = 0 

11" p2(n + 3) Cn-2 . 

Similarly, 

(10.9) 8n+2 + [(n + 1 ~~n + 2) - un] Sn - Un (n ; 2 l)n Sn-2 = 0, 

where 

The recurrence relations (10.8), (10.9) are valid for n!i?;2. 
It is clear that ( 10.8), ( 10.9) permit, in principle, all moments of even order 

to be obtained from those of order 0 and 2, 

(10.10) 

C2 = 411" (211"2 - !) 
3 p2 ' 

and all moments of odd order from those of order 1 and 3, 

Ct = 211"2, Cs = 411"2 (11"2 - : 2), 

81 = 211" (11" + ~), s3 = 411" ( 11"3 + 2; 2 
- : 3). 

(10.11) 

As it happens, however, the moments are minimal solutions of ( 10.8) and 
( 10.9), respectively. Therefore, straightforward recursion, as indicated, is highly 
unstable. We expect the algorithms of §§3 and 4 to be rather more effective, 
especially since the first relations in (10.10), (10.11) can be used for normali
zation. 

To establish the minimal character of the moments, let us first write 

where h is either zero or one. Then Cn and Sn are both solutions of three-term 
recurrence relations of the standard form 

( 10.12) Yn+l + O,Yn + bnYn-1 = 0, n = 1, 2, 3, · · · , 

the Newton-Puiseux diagram in both cases having the form shown in Fig. 11. 
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0 I 2 

FIG. 11. Newton-Puiseux diagram for (10.8), (10.9) 

Moreover, 

4 2 1611"2 2 
an '"" 2 n ' bn '"" - -2 n ' n -7 00 • p p 

It follows from part (a) of Theorem 2.3 that (10.12) has a pair of fundamental 
solutions, Yn,l and Yn,2 , for which 

(10.13) Yn+l,l 4 2 Yn+1,2 4 2 
-- '"" - 2 n ' -- '"" 11" ' 
Yn,l P Yn,2 

n -7 oo. 

Both solutions thus tend with n to infinity, but the first one much more rapidly 
than the second. 

On the other hand, applying Laplace's method [11, p. 37] to the integrals in 
( 10.3), one finds readily that for n -7 oo , 

Sn "-' '!!_ ( 211") Zn+h 
n ' 

h = 1, 2. 

The C's and S's, therefore, exhibit the same asymptotic behavior as Yn,2 in 
( 10.13). Consequently, they are both minimal solutions of the respective equa
tion ( 10.12). 

11. A Sturm-Liouville boundary value problem. Consider the Sturm-Liou
ville boundary value problem with one boundary condition at infinity, 

(11.1) (p(t)y')' + q(t)y = 0, y(O) = 1, y( 00) = 0. 

We assume that p and q are real-valued continuous functions in [0, oo ), with 
p( t) > 0, q( t) ~ 0, and in addition that 

(11.2) 100 dt 
p(t) = 00' - f"" q(t) (Jt p~:)) dt = oo. 

Then the boundary value problem (11.1) has an unique solution which is mini
mal in the continuous sense [24, p. 357 ff]. When solving the problem numeri
cally, by a method of finite differences, we expect the approximate solution to be 
minimal in the discrete sense. We wish to illustrate this in the case of a simple 
finite difference scheme. 
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Consider mesh points tn = nh, n = 0, 1, 2, · · · , where h > 0 is small, but 
fixed, and let Yn designate approximations attn to the solution y(t) of (11.1), 

Yn "'= y(tn), n = 0, 1, 2, · · · . 

Such approximations may be obtained by first rewriting ( 11.1) as a system of 
two first-order differential equations, letting z = p(t)y', 

z' + q(t)y = 0, 

I 1 
y--z=O 

p(l) ' 

and then replacing derivatives by central difference quotients. We get 

Zn+1/2 - Zn-1/2 + _ O 
h qn Yn - , 

Yn+1!2 - Yn-1/2 1 -- z = 0, 
h Pn n 

where Pn = p(tn), qn = q(t .. ). Eliminating the z's, we obtain the following dis
crete analogue of ( 11.1) , 

Pn+l/2 + Pn-1/2 - h2qn + Pn-1/2 0 Yn+l - Yn -- Yn-1 = , 
Pn+l/2 Pn+l/2 

(11.3) n = 1, 2, 3, · · · , 

( 11.4) Yo= 1, lim Yn = 0. 
n-->co 

It appears to be an open question whether under the assumptions ( 11.2), 
or some discrete analogue thereof, the difference equation ( 11.3) possesses a 
minimal solution satisfying ( 11.4), if h is suitably restricted. The answer, how
ever, is in the affirmative, if we make the stronger assumptions 

( 11.5) lim p(t) = p > 0, lim q( t) = q < 0. 
t-+CO t->CO 

Then, indeed, ( 11.3) is a Poincare difference equation having the characteristic 
equation 

t2 
- ( 2 - h2 ~) t + 1 = 0. 

Since p > 0, q < 0, the roots t1, t2 of this equation are real and distinct for all 
h > 0. In fact, 

so that t1 > 1, 0 < t2 < 1. The solution of ( 11.3) corresponding to t2 therefore 
is a minimal solution, for arbitrary h, and can be normalized to satisfy the first 
condition in ( 11.4). The second condition (at infinity) is insured, since by 
Theorem 2.2, 
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Yn+1 t 
- f'./ 2 
Yn ' 

n ~ oo, 

for any minimal solution of (11.3). 
Clearly, algorithm (3.9) applies in its simplified form (without the s-recur

sion), since Yo is given to be 1. 
By way of an example, consider 

(11.6) " 1 + t y = 2-tty, y(O) = 1, y( 00) = 0. 

(This may be interpreted as a hen.t conduction problem for an infinite rod; cf. 
[8, p. 150]). Here, 

p(t) = 1, 1 + t 
q(t) = - 2 + t' 

and ( 11.5) is satisfied with p = 1, q = -1. The discrete analogue of ( 11.6) 
takes the form 

( z1 + nh) 
Yn+l - 2 + h 2 + nh Yn + Yn-1 = 0, 

Yo= 1, lim Yn = 0. 
n~oo 

Applying algorithm ( 3.9), we obtain approximations Yn <v> to Yn from 

fv(v) = 0, (v) 1 
fn-1 = n = v, v - 1, ... '1, 

2 + h2 1 + nh - (v)' 

2 + nh rn ( 11.7) 

Yn (v) (v) (v) 
= fn-1 Yn-1, n = 1, 2, · · ·, N. 

Here, N is determined by the length of the interval in which the solution y( t) 
is sought. 

Table 2 displays selected numerical results for integrating (11.6) by (11.7) on 
the interval [0, 5]. The first column shows the number N of subintervals, the 
second column the corresponding value of h ( = 5/N), the third column the 

·--

N 

5 
10 
50 

250 

TABLE 2 
Approximate solution y,.<•> of the boundary value problem (11.6) by means of 

(11.7), for n = kN /5, k = 0(1)5 
-----

I t 
h v 

0 1 2 3 4 5 
---

1 13 1.0 .446887 .191699 .080285 .033098 .013494 
.5 25 1.0 .443648 .187645 .077222 .031219 .012465 
.1 116 1.0 .442753 .186395 .076251 .030620 .012137 
.02 511 1.0 .442729 .186352 .076217 .030598 .012124 
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smallest integer v for which six significant digits are achieved. The remaining 
columns contain the approximations Yn (v) corresponding to t = 1 ( 1) 5. 
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1. In a recent article [3] we dealt with various recurrence algorithms for computing 

minimal solutions of linear second-order difference equations-solutions, that is, which 

grow more slowly than any other linearly independent solution. Such solutions (if 

they exist) are uniquely determined up to a multiplicative constant. The value of this 

constant may be determined by specifying one initial value, or, more generally, by 

specifying the value of an infinite series in this solution. In the latter case, it is possible 

to obtain the respective solution without reference to any initial data. 

Among several examples we considered in particular the regular Coulomb wave 

functions FL(11,Q) (see [I] for notations). If we let 

2LL! 2Le 
fL= (2L)!CL(11)FL(1J,Q), Cd11)= 

then/~ is a minimal solution of 

"
1112 !T(L + 1 + i11)! 
(2L+ 1)! 

L[(L+ 1)
2 

+q
2

] -[ L(L+ 1)]. + L(L+ 1)) =O 
(L+ l)(2L+ 3) YL+l 11 + (J YL 2L-l )L-1 

(1.1) 

(L = 1, 2, 3, ... ), (1.2) 

and we have the following infinite series relation [3], 
00 

I: lLfL=al"e, lL=iLP~'1·-i")(-iw). (1.3) 
L-,Q 

Here, P!a./J)(x) denotes the Jacobi polynomial of degree n. The parameters 1J,Q,W are 

assumed to be real. with g>O, w~O. Provided w is chosen appropriately, the algo

rithms mentioned above lead to effective schemes of computingfL over an extended 

range of the parameters q, Q, and for as many values of Las are desired [3, § 7], [4]. 

An advantage ofthis approach is the absence of any need to compute F0 (Yf, a), which 

is known to be tedious, calling for a variety of methods in different regions of the 

parameters [2]. 
As one proceeds to large values of q, however, the generation of the coefficients 

AL becomes subject to serious loss of accuracy due to cancellation errors. The reason 

--------- ---
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for this can be traced to a peculiar phenomenon associated with the recurrence 
relation for the Jacobi polynomials of purely imaginary parameters and variable. The 
phenomenon, already observed in [3], but left unexplained there, is briefly described 

in section 2. In section 3 we further elucidate this phenomenon and, at the same time, 
provide a simple scheme to eliminate the cancellation problem which it causes. The 

algorithm that so results proves to be effective for an almost unlimited region of the 
parameters 'f/, e, and L. The only factor restricting its use on a digital computer 

appears to be the possible occurrence of 'overflow' when l'f/1 is very large. These 
matters will be discussed in section 4. 

2. From the well-known recurrence relation for Jacobi polynomials, one finds 

that lL satisfies 

2L + 1 L2 + 'f/2 

lL+t= L+l wlL+L(L+l)AL-l (L=l,2,3, ... ), (2.1) 

A0 = 1 , A 1 = w - 'f/ • (2.2) 

(In particular, all AL are reaL) It is readily seen, that (2.1) possesses a minimal solution, 

whenever w*O, which we denote by }.~, assuming A~= 1. The desired solution AL 
is known to be nonminimal [3]. It would appear, therefore, that (2.1) and (2.2) lend 

themselves conveniently for the accurate generation of Av This is indeed the case as 

long as 'f/ is not too large. As 'f/-400, it was observed, however, that AL 'approaches' 
the minimal solution l~ in the sense that A1 - 1~ -40. Therefore, the initial values of lL, 
as 'f/ becomes large, will ultimately be indistinguishable (in finite arithmetic) from 

those of A~, even though for large L the two solutions behave quite differently. In 
fact, AL-400 as L--~oo, while A~-40 as L-400. It is clear, therefore, that the solution 

lL cannot be determined accurately from initial values, when fJ is large, unless one 

resorts to multiple-precision arithmetic. 
If it were possible to compute 

(2.3) 

accurately, then the following device can be used [3]. 
Let A~ be the solution of (2.1) defined by 

, II , 1 

"'o =- 11..1' x; = t. (2.4) 

Then 

(2.5) 

which shows that for sma11 e the solution AL initially follows closely }.~ until the 

dominance of l~ outweighs the smallness of e. All terms in (2.5) can be computed 
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accurately: A.~ by the algorithms mentioned at the beginning of section 1, e by as~ 
sumption, and).~ by straightforward application of (2.1) and (2.4). It may be noted, 
in this respect, that relative errors b0 , b1 in the initial values),~, x; give rise to compa~ 
rable relative errors in A.l, when L is large, namely errors approximately equal to 
b0A.?f(l +A-~2 ) and btf(l +A'1

2
), respectively. This indicates that the solution A.l is 

computationally well defined. 

3. We proceed now to derive an explicit expression fore defined in (2.3). We may 
assume 1]>0, in which case w>O [cf. (4.2) below]. 

First of all we note that a minimal solution of (2.1) is given by 

where Q~:x, /1) (x) denotes the Jacobi function of the second kind. This follows from 
the asymptotic formuta<z) 

(x-tt(x+l)PQ~a,p)(x)-n 112 [x-(x2 -1)112T+ 1 f/>(x) (n~oo), (3.1) 

in which x is a real or complex number outside the segment [ 1, 1 ], 11 and f3 are real 
or complex with Re11> -1, Re/3> 1, and f/>(x)¥:0 is regular outside of [ -1, 1] and 
independent of n. It is understood in (3.1) that one takes that branch of x- (x2 -1) 112 

for which jx- (x2 -1 )112! < l. Letting x =- iw, !X= irJ, fJ =- i'!, one readily obtains 

).~~ tP-~in,...., w- (wz + 1)1/2 (L~co). 

On the other hand, it is known [3, p. 66] that 

),L+ tf).L"" W + (ro2 + 1)1/2 

showing that A.~1" is indeed minimal. It follows, therefore, that 

In order to evaluate ).~ 1", we make use of [5, p. 75] 

Q~a,p)(x) = 2a+P T (!X+ 1) r(p +1) (x- 1)-a-1 (x + 1)-p 
F(1X+fi+2) 

xF(!X+l,l;Ct.+/}+2; 
2 

)· 1-x 

where F(a, b; c; x) denotes the hypergeometric function. Assuming rx+/J=O (as is the 

2) See [5, p. 223], where the result is obtained for real a>- 1, P> 1. The derivation by the 
method of steepest descent, however, is valid also when a and Pare complex, with Rea>~ 1, 
ReP> I. 
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case in our context), we have 

v=O 
00 

= \ (- 1r (-a- 1) (-- 2 )v, 
/...; v+l v 1-x 

v=O 

which, on applying 

00 z 

L (-ct- 1) z" 1 I (- 1)" ------ = (1 - t)-a-l dt 
v v + 1 z 

[(1 - z rll - 1J, 
ctz 

v=O 0 

becomes 

F(a + 1, 1; 2; -~-) = ~- -· ·--~ [(1- _}--)-a- 1]. 
1-x 2ct 1-x 

Therefore, 

1- x [( 2 )-a ] Q~· -a)(x) = r(a + 1) r(- ct + 1) (x -1)-a:-t (x +It 
2

ct 1- i -~~ - 1 

r(a+l)r(-et+l) a: -a 
=- ---~--

2
ct [1- (x + 1) (x- 1) ] , 

provided that 

- n < arg (x 1) + arg ( 1 - 1-~ ~) ~ n. 

Letting x= -iw (which satisfies this condition), and ct=iiJ, we obtain 

. < •• ) r(l+irJ)T(l-in) . . 
'mm ·Qltl,-11! ( · )- '

1 [1 (1 · )'11( 1 · )-'II] A.0 =t 0 zro -- - -lw - -tw . 
211 

By an elementary computation one finds that 

where 
1 

cp = arc tan . 
(t) 

Since, furthermore, T (1 + iiJ)T (l- iiJ)=niJ/sinh(niJ), we finally obtain 

(3.2) 
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To determine J't11
, we use [5, p. 80] 

Q\a,fl>(x) = 1 [(o: + P + 2) X+ o:- J)] Q~·fJI(x) 

and find 

- 2a+ P- 1 ( o: + P + 2) r ( o: + l) r (P + t) ( x - 1)- oc ( x + 1)-P , 

r (rx + p + 2) 

Combining (3.2) and (3.3), we get 

')min 1 
I At ,..,, 

).1= =(1)-11-
, 'min 2 'I if> l · 

1t0 e -

Therefore, in view of (2.2), (2.3), the desired expression fore is 

; I 217 
l-1 = 2 11 <1> I, 

e -

1 
¢=arctan . 

(1) 

175 

(3.3) 

(3.4) 

(3.5) 

This result both explains the phenomenon described in section 2, and provides a 
simple formula to computes, and thus ).L by means of (2.5). 

4. The values of the exponentials in (1.1 ), (1.3), and (3.5), for large 1'7!, may 
become so large (or so small) as to exceed the range of permissible floating point 
numbers on a particular computer. If this range is given by po-R, lOR], such 'over~ 

flow' will occur in any of the following three cases, 

(4.1) 

By definition of w [3, p. 65], we have 

I 
TC1J ( r ~ 1), 

W{] = 17[rc- 2arccosJr + 2v r(t- r)J 

0 (r<O), 

(0 < r < 1), (4.2) 

where 1: =g/2'7. Since O~rc 2 arc cos j r+ 2.,/r( 1- r)~ rc for O~r~ 1, it follows that 

0 W(J~rciiJI. Moreover, 21111¢ 21111arc tan (lfw)~rcliJI· Therefore, none ofthe cases 
in (4.1) will arise ifj11l is restricted to satisfy 

n:lt~l R • R In to _ 
e ~ 10 , t.e. 1111 ~ - (.7329 ... )R. (4.3) 

n 

On the CDC 3600, e.g., one has R=308, so that on this computer the restriction (4.3) 

amounts to !11! ~225.7 .... 
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Another place where overflow may occL .. is in the generation of the quantities 

..t~ by (2.1), (2.4), when q>O. As L-HYJ, one finds 

1 ,t'2 
, If + 1 ( 2 tt"' 1) , 
A£"' e - A£, 

2f/ 

and in view of the known asymptotic behavior of A.L (cf. [3, p. 66]), and (3.4), 

1 + (w - 17)2 1 - -
,t~::::::: ~ -~ _ (2nLrl/2(1 + wz) 1/4elltP[w + y w2 + l)L+l/2, 

2f/ 

having assumed exp(2fl4> )~ 1. Roughly, then, A~':'::!.exp(174>) [w +J w2 + l]L, and to 
avoid overflow we should have 

ell <I> [ w + 

Letting v denote the largest value of L for which A.Z is required (an estimate for v may 
be found in [3, p. 69]) the last inequality is satisfied if 

17arctan(~) + v ln(ro + jw2 +-1) ~ R In 10. (4.4) 

We note that v depends not only on the parameters 17, Q, and L, but also on the desired 
accuracy for F£(17, !!)· If six significant digits are required, for example, it was found 

that (4.4) holds true for 0 ~11~ 100,0.1 ~Q ~200, O~L~ 100, if R 308 as before. 

The region in which our r~currence algorithm is applicable (using standard 
floating point artithmetic) is thus delineated by the two inequalities (4.3) and (4.4). 
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I. Introduction 

In [2] one of us published algorithms for computing suc
cessive derivatives of e" lx, (cos x )lx, and (sin x )lx. It was 
brought to our attention [ 5] that the first two of these 
algorithms are subject to substantial loss of accuracy if 
x (or I xI in the case of the second algorithm) is large and 
n, the order of derivative, is larger than I xi. 'In the fol
lowing we examine the reasons responsible for this dif
ficulty and suggest ways in which it may be overcome. 
Revised algorithms implementing the results of this article 
appear as Remark on Algorithm 282 in the Algorithms 
section of this issue (see footnote). 

Although hardly more than an isolated example,' the 
question discussed here well illustrates the pitfalls in
herent in the indiscriminate usc of recurrence relations. It 
may also serve to remind us of the computational limita
tions of analytic formula manipulation systems. 

Consider, for example, the derivatives 

d" (ex) 
d,.(x) = dx" x ' n = 0, 1, 2, (1.1) 

Work supported by the National Aeronautics and Space Ad
ministration (NASA) under Grant NGR 15-005-D:l9. This paper 
gives the theoretical background of Remark on Algorithm 282 
"Derivatives of ezjx, cos (x)/x, and sin (x)/x" by the same authors, 
which appears on pages 53-54. 
*Department of Computer Sciences. 
t College of Arts and Sciences. 
1 We note, however, that the functiund,. in (1.1) is of some relevance 
in molecular structure calculations by virtue of A,.(1,a) = 
-d.(-a), A,.(-1, a) = (-1)•d,.(a), where A,.(u, a) = f;," r••t•dt 
are auxiliary "molecular integrals" (cf. [4, 6]). 
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Analytic differentiation yields 

)" n! x ( ) d,.(x) = (-1 x;;+
1
ee. -x, ( 1.2) 

where 
" k 

e.(z) ~8· ( 1.3) 

Formula manipulation systems most likely would deal 
with (Ll) by effectively evaluating the expression in (1.2 ). 
~ote, however, that for x positive and large, and n » x, 
the dominant term in the oum for e,. (- x) has the order 
of magnitude e" I y' (2 ... x ), while the sum itself is close to 
e -,. For such values of x and n, the evaluation of (1.2) 
thus involves considerable cancellation of leading digits, 
the resulting loss of accuracy amounting to about log10 e

2
" 

= (. 868 ... )x decimal digits. 
Alternatively, one might try to compute the desired 

derivatives recursively, as in [2], using 

n e" 
d.(x) = -- d._,(x) +-, 

X X 
( 1.4) 

n = 1, 2, 3, 
e" 

do(x) = 
X 

While, technically speaking, this recursion is stable, it 
will be seen that the cance!lation problem reappears with 
the same devastating force. 

2. Error Propagation in Linear First•order 
Difference Equations 

The recurrence relation (1.4) is an example of a first
order linear difference equation 

Yn = UnYn-1 + bn , n = 1, 2, 3, ... , a. ~ 0. (2.1) 

We consider solutions on the set m: of nonnegative integers 
n. Given a particular solution {f,.} of (2.1) to be computed, 
we wish to examine the influence of a single error at 
m E m: upon the value off,. at any other n E m:. Since the 
solution If,.} may vary considerably in magnitude, it is 
appropriate to consider relative errors and restrict atten
tion to the subset m:0 C m: on which fn ~ 0. Assuming for 
simplicity that fo ~ 0, the question can easily be answered 
as follows (cf. [1]). 

Let {],.) denote the "perturbed" solution of (2.1) cor
responding to the starting value fm = fm (1 + <), m E m:o. 
Then for any n E m:c we have 

where2 

fn = fn(l + J!!': <), 

fohn 
Pn = J:"' 

Pm 
(2.2) 

(2.3) 

2 The factor fu in the definition of Pn is included only for the pur
pose of normalization, making po = 1. 
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A relative error e introduced at m thus induces a relative 
error (Pn! Pm )e at n. In particular, the error is magnified if 
I Pn I > I Pm I and damped if I Pn I < I Pm 1. The quantities 
Pn will be referred to as "amplification factors." 

The behavior of the function {I Pn ll clearly determines 
the error propagation pattern associated with the particular 
solution {f,.l of (2.1). If there is any choice of direction 
in which the recursion (2.1) can be employed, then the 
direction in which I Pn I decreases (or has a tendency to 
decrease) is generally the one to be preferred. Following 
this direction, errors introduced at each step of the recur
sion (due to rounding, for example) have a tendency to be 
consistently damped out. Proceeding in direction of in
creasing' I Pn I is tolerable only if the maximum error am
plification remains within acceptable limits. 

·3. Successive deriv.-tives of e" /x 

· · From (1.2) and (2:3) we find that the amplification 
factors Pn associated with the solution (1.1) ofthe difference 
equation (1.4) are given by 

1 
Pn(x) = -( -) · en -X 

(3.1) 

If x < 0, then I Pn I decreases monotonically from 1 to 
e:- 1"1. In this case the recursion (1.4) is properly applied 
in the forw~rd d.irection for all n > 0. If x > 0, the be
havior of I Pn I is as shown in Figure 1. Disregarding rela
tively small values of x (for which I Pn I .remains within 
acceptable limits for all n ;:::: 0), it is seen that I Pn I initially 
decreases'until it reaches a minimum value near no = [x], 
and from then on increases, reaching the limit I p"' I = e" 
rather abruptly. The recursion (1.4) is now properly 
applied in the forward direction on the interval 0 < n s; no, 
and in the backward direction on no < n < oo , unless an 
error amplification of I'Pj.Pno I is tolerable, in which case 
forward recursion may be used. on the whole interval 
0 < n < oo. 

We note that len(-n)l ""e"/2V(27rn) asn--> oo, 
from which it follows that the maximum error amplifica
tion is approximately e2

" /2. V (2'll"X ), when x is large. 
The graphs in Figu~e 1 may be interpreted as follows. 

Writing dn (x) iii. the fqrm 

dn(x) = (-1)" !!.:__ + text dt I 1' xn+I 0 
(3.2) 

[by using the remainder term of the exponential series in 
(1..2)] and assuming x > 0 large, one observes that the 
integral on the right of (3.2) initially dominates, until n 
is large enough to make the first term of comparable 
magnitude. From this point on, the first term quickly 
becomes the dominant term. As long as the integral dom
inates, dn (x) varies relatively slowly with n, so that by 
(2.3) I Pn I is approximately proportional to I hn I = n! x -n. 

Once the first term takes over, I Pn I becomes constant, 
equal to ex. Therefore, tne c'urves in Figure 1, up to a 
scale factor, are essentially those for n! x -n, levelled off at 
the value of n for which the integral in (3.2) becomes 
negligible. 

8 Cmnmunieations of the ACM 

FIG. 1. Amplification factors I Pn(x) I of (3.1), for 0 :::;; n :::;; 80, 
X = 2, 5, 10, 15, 20 

It remains to consider the question of computing an 
appropriate starting value in cases where backward re
currence is called for. From the remarks just made, it is 
clear that dn (x) can be approximated by 

(3.3) 

to any degree of accuracy, if n is taken sufficiently large. 
To analyze this more carefully, observe that the integral 
in (3.2) is bounded by e"/(n + 1), and that n! > (n/et 
for every integer n ;:::: 1. Therefore, 

l

dn - qnl Xn+l ( 1 n xt Xn+l x ( eX )"+! x 
~ = n! Jot e dt < (n + 1) 1e < n + 1 e, 

from which it follows that I (d,.- qn)/qn I s; {j (O < {j < 1 ), 
and consequently I (dn- qn)/d .. l s; o/(1- o), as soon 
as n is large enough to satisfy 

~ x<a. 
( )

n+l 

n + 1 e - (3.4) 

In particular, qn approximates dn to 8 significant digits if 
(3.4) holds with a = t w-·. Taking logarithms, t4is -con
dition amounts to 

n + 1 In n + 1 > x + 8 ln 10 + ln 2 · 
ex ex- ex ' 

which in turn is equivalent to 

n+1 ;::o:ext(x+8l::O+'ln2), (3.5) 

where t (y) denotes the inverse function of y = t In t. 
(Low-accuracy approximations to t (y) are obtained in 
another context in [3, p. 51].) Thus, if n° is the s~allest 
integer n satisfying (3.5), then q,. (x) in (3.3) may be used 
to approximate d,. (x) (to s significant digits) for n ;:::: n°, 
while backward recursion in (1.4) may be used to obtain 
d,.(x) for no :5 n < n°. 

Volume 13 I Number 1 I January, 1970 

100



FIG. 2. Amplification factors I Pn(x) I of (4.3), for 0 ~ n ~ 55, 
X = 2, 5, 10, 15, 20 

4. Successive Derivatives of (cos x)/x and (sin x)/x 

The derivatives 

satisfy the difference equation 

c,.(x) =- !1, Cn-l(x) + ! Re(i"e..,), 
X X 

n = 1,2,3, ... , 

and the associated amplification factors Pn are now 

( 4.1) 

(4.2) 

COS X 
Pn (X) = R [ i;r; ( • ) ] • ( 4.3 ) e e en -7X 

Clearly, p,. ( -x) = p,. (x ). The behavior of I p,. I is shown 
in Figure 2. The graphs are basically the same as those in 
Figure 1, except that they are leveled off at an earlier 
stage (due to the limiting value now being p,. = cos x) 
and are not nearly as smooth. 

The recurrence (4.2) is again properly applied in the 

Lowe-cont'd from page 6 

is in preparation, and more research is required in that 
area. An important topic for future investigation is a com
parison of performance improvement and cost of segmenta
tion for Boolean and probabilistic methods. Such an in
vestigation could well include empirical testing. 
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forward direction for 0 < n ~ no (no = [/ x /1 ), and should 
be used in this backward direction for no. < n < d.: un1ess '. 
the maximum error amplification ll/ P•o I (now approxi
mately half as large as in the case of d,. (x) ) is within 
tolerable limits. Due to the fluctuations in I p,. I, occasion!fl 
losses of significant digits must be expected, even if tlte 
recursion is used in the proper .direction. Loss of significance 
is apt to occur for those values of n for ·which 1 en (x) l 

· is exceptionally small. 
The identity 

c,.(x) = ( :!l~n! + { t" Re [i"+1eizt] dt ( 4.4) 

permits us to interpret the graphs of Figure 2 in a similar 
manner as we did previously for the graphs of Figure 1. 
It also follows from (4.4) that q,. (x) in (3.3) can be used 
to approximate c .. (x) to s significant digits for all n satisfy
ing 

n + 1 ~ e I xI t (sin !fxt In 2). 
Replacing "Re" by "lm" in (4.2) and (4.3 ), and "cos x" 

by "sin x" in (4.3 ), one obtains the cliffer~nce equation 
and associated amplification factors for the derivatiyes 
s,.(x) = (d"/dx")(sin xjx). The graphs of !Pnl in this 
case resemble those of Figure 2, except that no leveling-off 
occurs, since Im[e'•e,.(-ix)]-+ 0 as n--+ oo. 
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IS THE RECURRENCE RELATION FOR 
ORTHOGONAL POLYNOMIALS ALWAYS STABLE?* 

WALTER GAUTSCHI 

Dept. of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398, USA 

Abstract. 
Attention is drawn to a phenomenon of"pseudostability" in connection with the three-term recurrence 

relation for discrete orthogonal polynomials. The computational implications of this phenomenon are 
illustrated in the case of discrete Legendre and Krawtchouk polynomials. The phenomenon also helps to 
explain a form of instability in Stieltjes's procedure for generating recursion coefficients of discrete 
orthogonal polynomials. 

AMS(MOS) Subject classification: 33-04, 35C50, 39A11, 65020. 

1. It is our experience, and the experience of many others, that the basic three
term recurrence relation for orthogonal polynomials is generally an excellent means 
of computing these polynomials, both within the interval of orthogonality and 
outside of it. The same recurrence relation, on the other hand, is known to become 
unstable if one attempts to use it for computing other solutions, for example, the 
minimal solution when the argument is outside the interval of orthogonality (cf. [ 4]), 
or the Hilbert transform of Jacobi polynomials when one of the Jacobi parameters is 
large and the argument close to 1 (cf. [8, §4]). Here we wish to point out instances of 
"pseudostability" in connection with the computation of discrete orthogonal poly
nomials. 

Our discussion sheds new light on a hitherto unexplained phenomenon of insta
bility that afflicts the Stieltjes procedure for generating the recursion coefficients of 
discrete orthogonal polynomials (cf. [6, §8]). 

2. The (monic) orthogonal polynomials { nn(x; d.A.)} corresponding to a positive 
measure d.A. on the real line are known to satisfy a three-term recurrence relation 

(2.1) k = 0, 1,2, ... , 

where cxk = cxA:(dA.)e R, Pk pk(d.A.) > 0 are coefficients uniquely determined by the 
measure d) .. We are interested in the stability ofthis recurrence relation with respect 
to initial values y0 , y 1. That is, letting {y:} denote the solution of(2.1) corresponding 

* Work supported in part by the National Science Foundation under grant DMS-9023403. 
Received September 1992. 
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278 WALTER GAUTSCHI 

to slightly perturbed initial values y~ = y0 (1 + e0 ), YT = Yt(l + e1), we like to 
know how much y: differs from Yn for values of n larger than 1. This is an elementary 
exercise in the theory of linear difference equations. The answers is 

(2.2) * -=(y:....o;..;;.Y.:.:.n_z 1"----'Y'-o::..;.Y...;;;1--'Z n:.:.:..)_so;....___(.::_y..;;;:;tY'-'n'-Z-'-o--=-Y:.:.:..o }:....' t"-Z-"'n)s_;;...l Yn- Yn = 
YoZ1- YtZo 

where {z11 } is an arbitrary solution of (2.1) linearly independent of {y11 }. The factors 
multiplying e0 and e1 on the right of (2.2), or more precisely, their moduli, determine 
the extent of error amplification in the absolute error y: - Yn· Normally, if Yn '# 0, 
we prefer to consider relative errors (y: - Yn)IYn· Appropriate amplification factors 
are then given by 

liYoZt - YoYt(Zn/Yn)l + IYtZo - YoYt(Zn/Yn)l 
COn(x) = IYoZt - YtZol 

2!YoYtZn!flYoZt - YtZol if Yn = 0. 
(2.3) 

if Yn '# 0, 

We say that the recurrence relation (2.1)is unstable for the solution {Yn} if C011 -+ oo 
as n-+ oo. In view of (2.3), if Yn '# 0 for n sufficiently large, this is equivalent to 
lim11 _,."' lzn!Ynl = oo, i.e., to {Yn} being a minimal solution of(2.1). There are various 
''backward recurrence" algorithms (see, e.g., [3], [10]) that can be used to compute 
minimal solutions. A more perfidious predicament (since there are no easy counter
measures) is pseudostability; by this we mean that co11 is uniformly bounded as n -+ oo, 
but the bound is extremely large. We refer to pseudostability also in the case (of 
particular interest here) where n can assume only a finite number of values, and some 
of the C011 are extremely large. (Isolated large values of C011 may be due to "near zeros'', 
Yn ~ 0, and may well be harmless in practice.) 

In the case of orthogonal polynomials Yn = n11(x; dl), we have y _1 0, y0 = 1, 
and we may choose for z11 the solution of (2.1) satisfying z_ 1 = 1, z0 = 0. The 
amplification factor co,. in (2. 3) then simplifies to 

(2.4) !1
1 _fl_~~ + ~fl_~~. if Yn '# 0, 

Zt Yn Zt Yn 
COn(X) = I Y1 I . Yn = nn(x; dA.). 

2 -Z11 tf Yn = 0, 
Zt 

The quantities C011 in (2.3) and (2.4) characterize stability with respect to initial 
values y0 , y1• A more complete picture of stability is provided by the following 
stability measure relative to arbitrary starting values Ym~ Ym+ 1: 

if Yn #0, 
(2.5) 
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This number indicates to what extent errors committed at k = m and k = m + 1 are 
amplified at k = n. We may have n ;?! m or n < m; clearly, wm .... m = Wm-m+ 1 = 1 if 
YmYm+ 1 ¥: 0, and COn = Wo-+n• 

3. We now apply the tools of § 2 to discrete orthogonal polynomials. Here, 
dl = dlN is a discrete Dirac measure 

N 

(3.1) dlN(x) = L wv<>(x - x,) dx, 
" 1 

where 

(3.2) Xt < X2 < X3 < ··· < XN, Wv > 0, V = 1,2, .. . ,N. 

In this case there are exactly N orthogonal polynomials, 
nk(·,dlN), k = O,l, ... ,N- l,andthesamenumberofassociatedrecursioncoeffi
cients ak(d..lN) and fik(dlN), k = 0, l, . .. ,N- l. We present two examples, believed 
to be representative for a wide c1ass of discrete orthogonal polynomials, exhibiting 
phenomena of pseudostability. A third example illustrates a case of almost perfect 
stability. All our computations were done on the Cyber 205, which has machine 
precisions of7.11 X 10-lS and 5.05 X 10-29 in single, resp. double precision. 

EXAMPLE 3.1. Equally spaced and equally weighted measure dAN: x" = 

-1 + 2(v- 1)/(N- 1), Wv = 2/N, V = 1,2, .. . ,N. 

Here, the recursion coefficients are explicitly known: 

(3.3) 
ak = 0, k = 0, 1, ... , N - 1; 

For fixed k, and N-+ oo, they converge to the respective recursion coefficients for 
monic Legendre polynomials. 

It turns out that in this example the recurrence relation (2.1) applied with x = x" is 
generally pseudostable, particularly so if v << N /2 and N is large. (There is of course 
symmetry with respect to the midpoint of [xt> xN].) We illustrate this in Figure 3.1, 
which depicts the amplification factor wn(x) of (2.4) on a logarithmic scale for 
1 $ n $ N - 1, N = 40, x = X 11 , v = 1, 5, 10, 20. There is clearly a trend of 
rapidly increasing wn(x) as n approaches N- 1 when x is near the ends of the 
interval [x~oxN]. Near the center of the interval, the recurrence is quite stable. 

The graphs of Figure 3.1 are also indicative of stability with regard to starting 
values other than y0 , Yt> as is shown in Table 3.1. (Integers in parentheses denote 
decimal exponents.) Here, the quantity 

(3.4) max 
O.s;m<n.s;N-1 
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10 20 30 40 n 

Fig. 3.1. Amplificationfactorsfor Example 3.1. 

is tabulated for selected values of v along with the integers m = m" and n = n" for 
which the maximum in (3.4) is attained, and the maximum relative single-precision 
error observed in the recurrence. 

Table 3.1. Pseudostability of discrete Legendre polynomials. 

v Q(x,.) m, n, max err 

1 3.771(21) 4 39 1.0310(8) 
5 4.148(11) 22 39 3.4959(-2) 

10 6.912(4) 32 39 3.2338( -8) 
20 3.715(0) 25 38 1.1081(-12) 

(N -1) EXAMPLE 3.2. Krawtchouk polynomials: X 11 v- 1, C011 = v _ 
1 

p"- 1qN-v, 

v = 1, 2, ... , N, with p > 0, q > 0, and p + q = L 
Here, too, the recursion coefficients are known explicitly (see, e.g., [1, Eq. (3.5) on 

p. 161 and Eq. (3.2) on p. 176]), 

rxk = qk + p(N - 1 - k), k = 0, 1, ... , N - 1; 
Po= 1, Pk = k(N- k)pq, k = 1,2, ... ,N- 1. 

(3.5) 

Figure 3.2 shows severe cases ofpseudostability when p = 0.1, q = 0.9, N = 40, 
and the recurrence formula (2.1) is applied for x = Xt. x 5 , x10 and x20• Unlike the 
previous example, Figure 3.2 does not indicate the full extent of pseudostability, 
especially not in the case x = x20 • Indeed, the more general stability measure com~n 
in (2.5) reveals considerable additional error amplification. This can be seen from 
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10 20 30 40 n 

Fig. 3.2. Amplification factors for Example 3.2. 

Table 3.2, which displays the analogous information as Table 3.1. If p increases, the 
severity of pseudostability diminishes, the lowest level being attained for 
p = q = 1/2. In this case the quantities in the second and fifth column of Table 3.2 
become 7.266(10), 5.797(5), 4.743(2), 5.173(0) and 4.702( -4}, 1.217( -8), 
1.382( -11), 1.401( -12), respectively. 

Table 3.2. Pseudostability of Krawtchouk polynomials with 
p = 0.1, q = 0.9 . 

v .Q(x,) m, nv max err 

l 8.931(25) 4 39 4.859(11) 
5 2.053(26) 13 39 4.339(12) 

10 5.041(20) 20 39 2 741(7) 
20 6.115(8) 30 39 4.995(-5) 

The occurrence of pseudostability in Example 3.1 and 3.2 may be due, at least in 
part, to the equispacing of the abscissae xv. Choosing as abscissae the Chebyshev 
points on [ 1, 1] indeed may lead to perfectly stable recurrences. This is shown in 
the next example. 

EXAMPLE 3.3. The Fejer measure. 
This is the Dirac measure (3.1) underlying the Fejer quadrature rule, i.e., 

(2v- 1) 
Xv = cos 

2
N are the Chebyshev points, and Wv the Cotes numbers for the 

corresponding (interpolatory) quadrature rule. The latter are known to be all 
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positive. This example is of some interest in connection with Stieltjes's procedure (cf. 
§4). 

We computed the recursion coefficients P" (all !Xk = 0) in double precision by an 
orthogonal reduction method using Lanczos's algorithm (cf., e.g., [9], [6, §7]). 
Applying the recurrence relation (2.1) for each x = xv, v 1,2, ... ,N/2, we then 
determined (again in double precision) the maximum of all amplification factors in 
(2.5), 

{3.6) max 
l:S;v:S;N/2 Os;m<n:S;N 1 

The results are summarized in Table 3.3, where vN is the integer v for which the 
maximum in (3.6) is attained. In the last column we also show the maximum 
single-precision error observed. Compared with the previous two examples, the 
recurrence relation is now remarkably stable. 

Table 3.3. Stability of the recurrence relation 
for F ejer' s measure. 

N QN VN max err 

20 1.098(2) 2 9.234( -12) 
40 1.465(3) 2 2.148( -10) 
80 2.958(4) 3 5.554( -9) 

160 8.094(4) 21 3.636( -8) 

4. Discrete orthogonal polynomials are an important tool in least squares curve 
fitting. In this context, a common procedure to generate the required recursion 
coefficients consists in combining the recurrence relation (2.1) with the well-known 
formulae 

k = 0, 1, ... , N - 1; 

(4.1) 

Since n0 = 1, one begins by using (4.1) with k = 0 to compute tX0 , Po· Then (2.1) is 
usedwithk = Oandx = x..,, v = 1,2, ... ,N,togenerateallquantitiesn1(xv)needed 
tocomputetXhP1 from(4.1). Returningto(2.1)withk = 1 thenyields(for x = xv)the 
quantities n2(xv), which in turn allow us to compute a:2 , P2, etc. In this way, all 
coefficients !Xk, Pt. k = 0, 1, ... , N - 1, can be progressively computed, by alternating 
between (4.1) and (2.1). We have attributed this algorithm to Stieltjes, and called it 
Stieltjes's procedure in (5]. The same procedure has been developed in the 1950's by 
various authors; see, e.g., Forsythe [2]. 

Since Stieltjes's procedure relies substantially on the recurrence relation for 
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discrete orthogonal polynomials, it will necessarily begin to deteriorate, once the 
recurrence relation starts developing the ill effects of pseudostability. This can be 
nicely illustrated with the discrete polynomials of Examples 3.1 and 3.2. Using 
N = 40, 80, 160 and 320, we applied Stieltjes's algorithm in single-precision arithme
tic and compared the computed coefficients with the known ones in (3.3) and (3. 5). 
The respective relative errors (absolute errors, if cxk = 0) are shown in Table 4.1 for 
Example 3.1. (This is a shortened version of Table 4.1 in [7, §4].) The error growth is 
not as dramatic as Figure 3.1 would suggest. The reason is that for x = x, near the 
endpoints of [x1; xN] (where error growth is most severe), the values of the poly
nomials nk at x = X 11 appearing in (4.1 ), when k is large, are much smaller than further 
inside the interval, so that their errors do not contribute as much to the sums in (4.1) 
as the errors of the more significant terms. Still, there is substantial deterioration of 
Stieltjes's algorithm after some point (depending on N). 1 The analogous results for 
Krawtchouk polynomials are shown in Table 4.2 (where err cxk are relative errors). 

Table 4.1. Accuracy ofStieltjes's procedure for Example 3.1. 

N k err~ err fJk N k err~ err fl~< 

40 :5:35 s 1.91( -13) :5: 7.78( 13) 160 s 76 :5:2.98{-13) :5: 7.61( -13) 
37 6.93( -11} 3.55( -10) 94 1.25( -4) 1.17(-3) 
39 1.93( -7) 9.58( -7) 112 2.35( -3) 1.16(0) 

80 :5;53 s2.04(-13) :5: 6.92( -13) 320 :5:106 s8.65( -13) s7.39( -13) 
61 3.84( -7) 9.35( -7) 128 2.46(-6) 4.67( -6) 
69 1.87( -1) 6.14(0) 150 1.15(-3) 2.18( -2) 

Table 4.2. Accuracy of Stieltjes's procedure for Example 3.2. 

N k err a." err P" N k err iXK err flk 

40 s26 s5.71( -13) :5;5.83(-13) 160 s 54 sS.00(-13) sL29(-12) 
31 3.27( -6) 3.38( -6) 63 4.96(-7) 5.81( -7) 
36 9.63(-2) 5.07(0) 72 2.06( -1) 1.16(0} 

80 s37 s2.75(-13) :5:7.11(-13) 320 :s;; 84 9.25(-13) s2.52(-12) 
43 1.23( -7) 1.35( -7) 95 4.17(-7) 5.26(-7) 
49 2.41(-1) 3.61( -1) 106 2.00(-1) 6.42(-1) 

For the Fejer measure, we compared single-precision results furnished by the 
Stieltjes procedure with double-precision results produced by the Lanczos algo
rithm. The maximum (absolute) error in the a's and the maximum (relative) error in 
the P's are shown in Table 4.3. The results confirm the remarkable stability of 
Stieltjes's algorithm in this case. 

1 This bas already been observed in [5, Example 4.1], but was incorrectly attributed to the ill
conditioning ofan underlying map, the map Hn ofEq. (3.4) in [5]. (The discussion ofthe condition of H, in 
[5,§3.1] is incomplete inasmuch it does not take into account the dependence of the polynomials rck on 
the abscissae r, and weights A. •• ) 
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N 

40 
80 

160 
320 
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Table 4.3. Accuracy of Stieltjes's 
procedure for Example 3.3. 

max err a max err p 

1.35( -13) 5.19( -13) 
2.34( -13) 1.80( -12) 
5.21( -13) 3.14( -12) 
5.37( -13) 6.05( -12) 

Stieltjes's procedure becomes relevant also in connection with absolutely continu
ous measures d). if one adopts the following idea (cf. [5, §2.2]). Approximate d). by 
a discrete measure dlN such that rx~c(d).N) -rxk(dl) and {Jk(d).N)- {Jk(d).) as N- oo, 
for fixed k. The discretization d). ;:::: dlN can often be accomplished by applying 
a suitable N -point quadrature rule to the inner product associated with dA. (In this 
connection, Example 3.3 suggests the use of Fejer's quadrature rule as especially 
appropriate.) Possible occurrences of pseudostability, in such applications, are 
usually of no concern, since convergence is realized for a value of N that is 
considerably larger than the maximum value of k for which the rxk, {Jk are desired. 
The onset of pseudostability is thereby avoided; see [6, §8] for a numerical illustra
tion. The same is true in the curve fitting context, where the number of data points, 
N, is usually much larger than the degree k of the least squares approximant. 
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THE COMPUTATION OF SPECIAL 
FUNCTIONS BY LINEAR 
DIFFERENCE EQUATIONS* 

WALTER GAUTSCHI 
Department of Computer Sciences, Purdue 
University, West Lafayette, IN 47907-1398 USA 

Abstract The use of linear difference equations for the 
computation of special functions is discussed, especially with 
regard to numerical stability. The emphasis is on difference 
equations of the first and second order. Phenomena of 
instability and pseudostability are exhibited along with 
numerical algorithms to deal with them. 

1. INTRODUCTION 

Difference equations are a popular means of computing special func
tions a.nd can indeed be quite eff~ctive if proper attention is given to 
the possible occurrence of instabilities. A vast majority of special func
tions in practical use satisfy linear difference equations, either of first 
order, or, more often, homogeneous of order two. We shall restrict our
selves, therefore, to linear first-order and homogeneous second-order 
difference equations and want to show, largely by examples, how they 
can be used to compute special functions that satisfy them. For sim
plicity we consider only special functions of real variables, although 
the techniques we shall discuss are applicable also to functions of com
plex variables. Our intent is not to develop complete general-purpose 
routines of computing special functions; for this, we refer to software 

*Work supported in part by the National Science Foundation under grant DMS-
9305430. 
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exhaustively referenced in [16]. Our aim is more modest: we merely 
illustrate one particular approach toward computing special functions 
- the one based on linear difference equations - which may typically 
constitute part of a more comprehensive computational algorithm. 

Readers interested in a more exhaustive treatment of numerical 
aspects of difference equations, including linear equations of higher or
der and nonlinear equations, may wish to consult Wimp's monograph 
[22]. 

2. DIFFERENCE EQUATIONS OF ORDER ONE 

The gamma function, defined by Euler's integral, is arguably one of the 
most fundamental special functions. Not only is its occurrence perva
sive in the theory of special functions, and crucial even in important 
branches of physics, but it also has significantly partaken in the devel
opment of many ideas in real and complex analysis. A masterly account 
of Euler's integral in historical perspective, from the time of Euler to 
the present, can be found in the essay of P.J. Davis (3]. 

It seems appropriate, therefore, to start, in §2.1, with the gamma 
function and related functions and the very simple difference equations 
satisfied by them. Not surprisingly, they are essentially unproblematic 
(at least in the real domain), although in the case of the logarithm 
of the gamma function, and to a lesser degree, the digamma function, 
improper use of the equations can lead to numerical instabilities. In 
§2.2 we then look at the incomplete gamma function and its difference 
equation and discover a first instance of genuine numerical instabil
ity. This will prompt us, in §2.3, to investigate more systematically 
the numerical properties of general first-order difference equations and 
to develop a simple theory of numerical stability and pseudostability 
based on amplification factors. Equipped with this theory, we return in 
§2.4 to the examples involving the gamma function and, in §§2.5-2. 7, 
present additional examples illustrating different stability phenomena 
and computational algorithms to deal with them. 

2.1. The Gamma Function. The gamma function 

(2.1) 

was introduced by the young Euler (then 22 years of age) in response to 
a letter of Christian Goldbach, who sought an analytic expression of a 
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function interpolating the factorials when a is an integer' n! = r( n + 1 ), 
n = 0, 1, . . . . It satisfies the identity 

r(a + 1) = ar(a) (2.2) 

for all posttt ve a. This equation is certainly one of the most basic 
difference equations in analysis. It may he appropriate, therefore, to 
use it as the starting point in our discussion of numerical aspects of 
linear difference equations. 

The numerical properties of (2.2), at least for real a, are almost 
self-evident, since the only operation involved is multiplication - a 
numerically benign operation - regardless of whether (2.2) is applied 
in forward or in backward direction. This is illustrated in Table 2.1, 
where the column headed by "errj" shows relative errors in forward 
recursion, and the one headed by "erd" those in backward recursion 
initiated with exact starting values. Computations, here and in the 
sequel, are done on a Sun SPARC station IPX in double precision 
(machine precision eps ::::: 1.1 X 10-16 ) and in quadruple precision to 
ascertain errors. Numbers in parentheses are decimal exponents. 

TABLE 2.1. Recurrence (forward and backward) for the gamma function 

n errj r(n + 1) errl 
2 0.0000( 0) 0.20000000000000( 1) 0.8882(-15) 

40 0.6196(-16) 0.81591528324790( 48) 0.7335(-15) 
80 0.3278{-15) 0.71569457046264{119) 0.1729(-15) 

120 0.4670( -15) 0.66895029134491(199) 0.9406( -17) 
160 0.4994( -15) 0.4 714 7236359921 (285) 0.6090( -16) 

If there is any problem with the difference equation (2.2), it is the 
rapid growth of the solution itself, which on many computers quickly 
leads to "overflow". {In single precision, we could not have gone beyond 
n = 34.) Working with the logarithm of the gamma function alleviates 
this problem hut introduces others. The difference equation indeed 
becomes 

In r( a + 1) = ln f( a) + ln a, (2.3) 

which requires the evaluation of a logarithm, In a, in each step, and is 
thus considerably more expensive than (2.2). Also, multiplication has 
been replaced by addition, which is a potentially dangerous operation. 
It is benign when both terms to he added are of the same sign, which 
is the case when a ;::: 1 and the recursion (2.3) is applied in forward 
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direction. If it is applied in the backward direction, the two terms are of 
opposite sign and there is the potential danger of "cancellation errors''. 
In the case of (2.3), this indeed can be a problem, as is seen in Table 
2. 2, which exhibits results in a format similar to the one in Table 2.1. 
In the range 2 :::; n :::; 105 shown, the results of backward recursion, 
while comparable to those in forward recursion over much of the range, 
significantly deteriorate near the end of the recursion. 

TABLE 2.2. Recurrence (forward and backward) for the logarithm of the 
gamma function 

n errf 
2 0.3346(-16) 

20000 0.5066( -14) 
40000 0.6129(-14) 
60000 0.1238(-14) 
80000 0.5321(-14) 

100000 0.2973(-14) 

ln r(n + 1) 
0.69314718055995{0) 
0.17807562173720(6) 
0.38387160658183(6) 
0.60013241046210(6) 
0.82318911692301(6) 
0.10512992218991(7) 

erd 
0.4562( -08) 
0.1275(-13) 
0.2211(-14) 
0.3806( -14) 
0.1644( -14) 
0.9343(-16) 

Similar results are observed for the digamma function t/J( a) = 
r'(a)jr(a), which satisfies 

1 
'1/J(a + 1) = '1/J(a) + -, 

a 
(2.4) 

again, like (2.2), an inexpensive recursion. Its numerical properties in 
the terminal phase of backward recursion turn out to be rather more 
favorable than those for the Logarithm of the gamma function. The 
reason for this will become apparent later in §2.4. 

2.2. The Incomplete Gamma Function. We now make in (2.1) 
what appears to be an innocuous change, extending the integration to 
a finite positive limit x instead of infinity, 

(2.5) 

This gives rise to (one form of) the incomplete gamma function. Inte
gration by parts immediately yields the difference equation 

(2.6) 

When x -t oo, it reduces to (2.2) as it should. One would expect, 
therefore, that for large x the two difference equations (2.2) and (2.6) 
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have similar numerical behavior. This is only partially true, however, 
and less so the smaller x; see Table 2.3. What is happening is that 
initially, for relatively small a = n, the recursion (2.6) does indeed 

TABLE 2.3. Recurrence (forward and backward) for the incomplete 
gamma function 

n errj 
X = 20 0 0.4129( -16) 

10 0.2073(-15) 
20 0.7525( -15) 
30 0.2381( -13) 
40 0.1256( -10) 
50 0.6616(- 7) 
60 0.2319(- 2) 

X = 15 0 0.274})( -16) 
10 0 .1689( -15) 
20 0.4382(-14) 
30 0.1818(-11) 
40 0.1531(- 7) 
50 0.1357(- 2) 

X= 10 0 0.5891(-17) 
10 0.6166( -15) 
20 0.1616(-12) 
30 0.3215(- 8) 
40 0.1444(- 2) 

1(n + l,x) 
0.99999999793885( 0) 
0.35895664347218( 7) 
0.10726845372436(19) 
0.35741977445572{31) 
0.20745721643958(44) 
0.14686167183265(57) 
0.11461624033194(70) 

0.99999969409768( 0) 
0.31989163434435(07) 
0.20186009363578(18) 
0.52337877233360{29) 
0.19120505355427( 41) 
0.80383949798391(52) 

0.99995460007024( 0) 
0.15130653544997( 7) 
0.3864082553 7 4 24{ 16) 
0.21177243656947(26) 
0.14501602968492(36) 

erd 
0.1808(-15) 
0.1819(-15) 
0.8274( -16) 
0.2469(-16) 
0.6625( -16) 
0.2385( -16) 
0.1543( -16) 

0.8353( -16) 
0.2329( -16) 
0.5648( -16) 
0.8649( -16) 
0.3119(-17) 
0.6448(-16) 

0.2279( -15) 
0.1103( -17) 
0.6301(-16) 
0.8637( -17) 
0.1870(-16) 

v(60) 
87 

83 

79 

X= 1 0 0.1966(-16) 0.63212055882856( 0) 0.1966(-16) 70 
10 0.3362(- 8) 0.36461334624107( -1) 0.4260( -16) 
20 0.44 79( 4) 0.18350467697256( -1) 0.4673( -17} 

behave like the one in (2.2), but from some n on, the results begin 
to deteriorate and eventually become completely meaningless. While 
the critical changeover point increases with increasing x, it cannot be 
avoided and will eventually be surpassed (unless overflow comes to the 
rescue!). On the other hand, if we recur in the backward direction, 
taking an arbitrary 0 as the initial value at the integer v(60) shown in 
the last column, we obtain all answers for 0 ~ n ~ 60 accurately to full 
machine precision. Clearly, this calls for analysis! 
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2.3. Numerical Stability of First-order Difference Equations; 
Amplification Factors. Much insight is provided into the numerical 
behavior of difference equations by analyzing the effect of a small ( rela
tive) error at some starting value n = s upon a terminal value at n = t. 
This is easily done, for a general first-order difference equation 

n = 1, 2, 3, ... ; (2.7) 

Indeed, if {fn} is the desired solution, the general solution is known 
to be Yn = fn + chn, where { hn} is the solution of the homogeneous 
equation, 

n = 1, 2, 3, ... ; h0 = 1, (2.8) 

and c an arbitrary constant. The latter is uniquely determin~d by 
Ys = fs(l + c:) and yields Yt = ft (1 + 'J.-f.c:), provided ft f: 0. Thus, 

a relative error c; at n = s gives rise to a relative error }:-f.c; at n = t, 
assuming exact arithmetic (except for the initial error). Here, t can be 
larger or smaller than s, the former case relating to forward recursion, 
the latter to backward recursion. With c: 1 denoting the relative error 
induced at n = t by a relative error C:s at n = s, we have 

(2.9) 

wheret 
fohn 

Pn = --, hn = anan-1 · · ·ao (ao = 1). 
fn 

(2.10) 

This suggests defining amplification factors 

(2.11) 

for the recursion from s to t, which measure the amplification of error 
involved. Clearly, W 8 __. 8 = 1 and w1_,. 5 = 1/ws ..... t· The behavior of the 
quantities lPnl = w0 .... n in (2.10) completely determines the numerical 
stability of the recursion (2. 7). If, for example, IPnl increases monoton
ically in the range no ::; n ::; n 11 then for any s, t in this range, w5 .... t > 1 
if t > s, and w5 .... t < 1 if t < s, which means that in forward recursion, 
errors are consistently enlarged, whereas in backward recursion, they 
are consistently diminished. 

tHere, fo is included merely for the purpose of normalization a.nd could, in fact 
must (if fo = 0), be omitted. 
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The following definition is thus immediate. 

Definition 2.1. The difference equation (2. 7) is said to be unstable for 
computing the solution {/n} (in forward direction) if 

lim IPnl = 00. 
n-+oo 

Technically speaking, we may call (2. 7) stable if 

sup \Pnl = C < oo. 
n~O 

(2.12) 

(2.13) 

In practice, however, stability in this sense may be misleading. It could 
well be that (2.13) holds with a constant C which is very large (many 
decimal orders in magnitude, for example). In this case, initial errors 
will be magnified by many orders of magnitude, which may completely 
distort the terminal values. We then speak of pseudostability. 

It is interesting to note that in the case of instability, we can 
compute fN for any fixed N, in principle, as accurately as we wish 
by starting the recurrence at some sufficiently large n = v > N, with 
Yv = 0, and recurring from n = v down ton= N: 

1 
Yn-1 = -(yn - bn), n = v, v- 1, ... , N + l; Yv = 0. 

an 

Then the initial (relative) error is C:v = l, and (2.9) tells us that 

PN 
C:N = -. 

Pv 

(2.14) 

(2.15) 

To obtain fN to a relative error£, it thus suffices to take v so large that 
IPN!Pvl S c. However, this is foolproof only if IPnl increases monotoni
cally for n 2': N. Then all rounding errors introduced in the course of 
the recursion are consistently attenuated in downward direction. If, on 
the other hand, IPn I decreases significantly for n 2': N before turning 
around and tending to oo as n --t oo, then in the terminal phase of 
backward recursion, rounding errors could be significantly amplified. 
\Vhether this is tolerable or not depends on several factors: first on 
the magnitude of the quantity R = sup IPt/ Psi, secondly on the accu-

N<t<s 
racy desired, and finally on the mach~ne precision eps used. If R · eps 
is still within the relative accuracy desired, then backward recursion 
as in (2.14) is permissible; otherwise, it is not. Examples illustrating 
these matters as well as phenomena of pseudostability will be given in 
§§2.5-2. 7. 
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2.4. The Gamma and Incomplete Gamma Function Revisited. 
We now re-examine the numerical examples of §§2.1-2.2 iri the light of 
what we learned in §2.3. 

Since the difference equation (2.2) for the gamma function is 
homogeneous, the associated amplification factors (2.10) are simply 
Pn = 1, and there is neither amplification nor attenuation of errors. 
The recursion is entirely stable in either direction. The results in Table 
2.1 attest to that. 

For the logarithm of the gamma function, the difference equation 
(2.3) with a= n (and n ~ 2 to avoid zero initial values) has 

ln 2 ln 2 
Pn = ln f( n + 1) ""' n ln n' n - ex:>. 

(2.16) 

Here, Pn decreases monotonically, so errors are dampedout in forward 
recursion. There are, nevertheless, rounding errors, which, if randomly 
distributed, can be expected, after n steps, to amount to about y'ri 
times the machine precision. For n = 105 ' this is about 7 X w-14• 

Yet, the relative error in Table 2.2 for n = 105 is seen to be only 
3 x 10-15 , which is more than a decimal order smaller; evidently, this 
is the result of consistent error damping. In contrast, for backward 
recursion from n = 105 down to 2, one expects an amplification of the 

initial error by the amount of _!:._ ~ 2 x 106 , whereas the amplification 
Pn 

observed in Table 2.2 is about 5 x 107 , again more than a decimal 
order larger. This time, the discrepancy is due to all intermediate 
rounding errors being consistently amplified. Note, however, that going 
from s = 105 to t = 2 x 104 , there is hardly any amplification, since 
ptf Ps ~ 6, and the observed mild deterioration of accuracy is entirely 
due to rounding errors. On the other hand, when s = 2 x 104 and t = 2, 
then ptf p8 ~ 3 x 105 , and one loses about five orders of accuracy, as 
confirmed in Table 2.2. 

For the digammafunction ~(n+ 1), one obtains from (2.4) that 

I I 
Pn = t/J( n + 1) rv ln n' n- oo, (2.17) 

where 1 is Euler's constant 1 = .5772 .... This still decreases mono
tonically with n, but at a much slower rate. Accordingly, also the error 
growth in backward recursion is much less than before. One finds, in
deed, that in place of the error .4562 X w-s in the last column of Table 
2.2, one now has only .8058 X lQ-13 • 
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FIGURE 2.1. Amplification factors wo-n= Pn for the incomplete gamma 
function (on a logarithmic scale) 

To explain the results of Table 2.3 for the incomplete gamma 
function, it is useful to plot 

(1 - e-x)n! 
Pn = , n = 0, 1, 2, ... , 

1(n + l,x) 

as a function of n for various (positive) values of x. This is shown in 
Figure 2.1. It is evident (and can easily be proved from the recurrence 
relation (2.6)) that Pn increases monotonically for every x. Figure 2.1 
also shows the rate of growth increasing for decreasing x. This explains 
the more rapid loss of accuracy as one goes down in Table 2.3 from larger 
to smaller values of x. This type of behavior of Pn makes the difference . 
equation (2.6) ideally suited for backward recursion ala (2.14), at least 
when x is not excessively large. 

2.5. The Remainders of the Exponential Series. A more ele~ 
mentary example, similar in its numerical behavior to the incomplete 
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gamma function, is provided by 

x2 xn 
en (X) = 1 + X + -21 + · · · + - 1 , . n. 

(2.18) 

the scaled remainders of the exponential series. One easily verifies that 
{rn} is a solution of the difference equation 

0 
-E 
Cl 
.Q 

Yn = nyn-1- xn, n = 1, 2,3, ... (2.19) 

20.---.---.----.--.-----.-----.----.---.----~ 

X=-1 X=-5 X::-10 X=-15 X=-20 

-1QL---~----~----~---J----~-~~-~---~---~ 

0 10 20 30 40 50 60 70 80 
n 

FIGURE 2.2. Amplification factors IPnl for the remainders of the 
exponential series, when x < 0 (on a logarithmic scale) 

90 

Since hn = n! is the solution of the associated homogeneous equation, 
one obtains from (2.10) 

ex - 1 
Pn = 

ex- en(x) 
(2.20) 

As n -+ oo, the denominator tends to zero, so that IPnl -+ oo, show
ing that (2.19) is unstable for computing {rn}. In fact, for x > 0, 
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we have monotonic growth of Pn, just as in the case of the incomplete 
gamma function. When x < 0, the situation becomes a bit more com
plicated. The amplification factors (2.20) then behave in modulus as 
shown in Figure 2.2. There is a significant downward dip of IPnl (note 
the logarithmic scale of the vertical axis!) before its journey to infin
ity. Backward recursion therefore loses accuracy in its final stage, as 
explained at the end of §2.3. Since the minimum of IPnl is attained at 
n ~ jxj, the remedy is rather simple: recur forward for all n < jxl, 
and backward otherwise. In this way one always enjoys a regime of 
consistent error damping. 

The following two examples involve phenomena of pseudostabil-
ity. 

2.6. Successive Derivatives of ex jx. The nth derivative dn(x) 
da;" (ex/ x) satisfies the difference equation 

Yn = .!:_ (-nYn-1 +ex), n = 1,2,3, ... , 
X 

(2.21) 

which is most easily obtained by applying Leibniz's rule of differenti
ation to the product x ·ex fx = ex. The corresponding homogeneous 
equation has the solution hn = ( -1 )nn!x-n, which, combined with the 

I 
identity dn(x) = (-1) 11 x:~ 1 exen(-x), gives rise to the amplification 
factors 

1 
(2.22) Pn = en( -x) 

with en(·) as defined in (2.18). For x < 0, therefore, Pn decreases 
monotonically to e-lrl as n ---t oo, and forward recursion is completely 
satisfactory. When x > 0, the behavior of IPnl is rather bizarre, as 
indicated in Figure 2.3. It is clear for one thing that Pn ---t ex as 
n ---t oo, so that the difference equation (2.21) is stable for dn, but 
pseudostable if x > 0 is large. What is striking is the abruptness with 
which the limit is attained. An explanation is provided by the identity 

(2.23) 

in which, for large x > 0, the first term or the second term is dominant 
depending on whether n is relatively large or not. As long as the 
integral dominates, it varies slowly with n so that IPnl = ]dohn/dn] 
is approximately proportional to ]hnl = n!x-n. As soon as the first 
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term becomes dominant - and this happens rather quickly - then Pn 
becomes practically constant equal to ex. 

10 X=20 

-8 

-10L---~-----L-----L----~----~----L---~-----L----~ 

0 10 20 30 40 50 60 70 80 90 
n 

FIGURE 2.3. Amplification factors for the derivatives of ex jx, x > 0 (on a 
logarithmic scale) 

This last observation also provides a clue as to an appropriate 
method to calculate dn(x) accurately when x > 0. Figure 2.3 suggests 
that for n > x backward recursion is indicated. But we cannot start 
with an arbitrary zero initial values for n = v sufficiently large, as in 
(2.14), since Pv does not tend to oo. Instead, we have to start with an 
accurate starting value dv. From the discussion above it is clear that 
an appropriate choice is d11 (x) ~ ( -l) 11 vlfx 11+I. It is possible, indeed, 
to estimate precisely how large v must be taken for this approximation 
to ensure any prescribed relative accuracy (cf. [13]). 

2. 7. Exponential Integrals. The exponential integrals, defined by 

(2.24) 

are important in many physical applications, such as transport theory 
and radiative transfer. For negative integer values of n they are known 
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as molecular integrals in quantum chemistry and are in fact equal to 
( -l)ndlnl(x) (cf. §2.6). Here we consider positive integer values of n 
only, although the discussion extends easily to arbitrary positive n. 

Integration by parts shows that fn = En+l { x) satisfies 

1 ( -x ) Yn = - e - XYn-1 , n = 1, 2, 3, ... (2.25) 
n 

For the corresponding amplification factors 

xnEt(x) 
Pn = 'E ( ) , n. n+l X 

n = 0, I, 2, ... , (2.26) 

one finds that, when p1 ~ 1, i.e., x :::=; .61006 ... , they are monotonically 
decreasing from 1 to 0, making the recursion (2.25) particularly effec
tive for the computation of fn· This, of course, requires fo = E1 ( x ), 
which for such small values of x, however, is easily calculated by Taylor 
expansiOn. For larger values of x, the Pn initially increase to some 
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maximum value (which can be significantly large) before turning around 
and decreasing monotonically to zero; cf. Figure 2.4. Clearly, IPn I is 
uniformly bounded for each fixed x > 0, and (2.25) thus stable for 
computing fn = En+l (x ); but for large x the extremely large value 
of max !Pnl renders (2.25) pseudostable. Since this maximum occurs 

n 
near x, the proper procedure of computing fn = En+t(x) is to recur 
backward from n 1 = ( x) (the integer closest to x) down ton, if n < n 1, 

and to recur forward from n 1 to n, if n > n 1 . In this way one again 
enjoys the benefit of consistent error attenuation. The starting value 
En1 +t ( x) can be computed effectively from a continued fraction. This 
indeed is a procedure used as early as 1960 by G.F. Miller {17, pp. 4-5] 
and also adopted in our algorithmt [7]. 

3. DIFFERENCE EQUATIONS OF ORDER TWO 

A great majority of special functions satisfy difference equations of 
the second order, and they are often linear and homogeneous. [t is of 
interest, therefore, to consider the class of linear homogeneous difference 
equations of order two, 

Yn+l + UnYn + bnYn-1 = 0, n = 1, 2, 3, ... ; bn -1- 0, (3.1) 

where the coefficients an, bn may typically depend on additional param
eters. The numerical characteristics of (3.1) can be described, similarly 
as in §2.3, in terms of amplification factors, but there are now two 
starting values that need to be considered and studied as to their effect 
on terminal values of the solution. This will be discussed in §3.1. The 
phenomenon of instability will be seen in §3.2 to be tied to the presence 
of a minimal solution of (3.1), which in turn can be characterized in 
terms of the convergence of a continued fraction. This leads to use
ful computational algorithms. Some representative examples will be 
discussed in §3.3, involving Bessel functions, Coulomb wave functions, 
and repeated integrals of the coerror function. Another vast area in 
which difference equations of the type (3.1) play a fundamental role are 

tlf n < nt, we could use the continued fraction to compute EnH(.r) directly 
and dispense with the backward recurrence from n 1 to n. This is accomplished by 
inserting the statement "if nl > nmax then n l := nmax;" immediately after the 
statement "nl := entier(x + .5);" on p. 763 of (7J,and accordingly delete the clause 
"if nl ~ nmax then" (but not the assignment statement following it!) in the two 
occurrences near the end of the algorithm. 
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orthogonal polynomials. Here, as shown in §3.4.1, minimal solutions 
occur when the variable is outside the interval of orthogonality, which 
is a case of interest, for example, in the study of Gaussian quadrature 
remainders for analytic functions. Finally, a phenomenon of pseudosta
bility is shown in §3.4.2 to arise in connection with discrete orthogonal 
polynomials. 

3.1. Numerical Stability of Second-order Difference Equa
tions; Amplification Factors. Suppose that {In} is the solution 
of (3.1) to be computed. For simplicity assume that In =J 0 for all n, 
so we can talk about relative errors. Let {gn} be an arbitrary second 
solution of (3.1 ), linearly independent of {In}, and assume g0 =J 0. In 
analogy to the discussion in §2.3, we consider the problem of error prop
agation: given that relative errors E8 and cs+l are committed at some 
starting indices n = s and n = s + 1, what is the resulting relative error 
at the "terminal" index n = t? The problem amounts to identifying 
the solution {yn} of (3.1) satisfying 

(3.2) 

and comparing Yt with It· This is an elementary exercise in the theory 
of linear difference equations. We know that the general solution of 
(3.1) is a Linear combination of two linearly independent solutions, say, 
Yn = Ctln+c2gn. The two conditions (3.2) then serve to fix the constants 
c1 and c2 , and hence the solution {Yn}, which can then be compared 
at n = t with It· The result is conveniently expressed in terms of the 
quantities§ 

in the form 

lo9n 
Pn=-1 , 

9o n 
n = 0, 1, 2, ... , 

Yt- ft 
!t 

(Pa+l - Pt)cs- (p.,- Pt)Es+t 

Ps+l - Ps 

This suggests to define amplification factors as follows: 

JPs+t - Ptl + IPs - Ptl 
Ws-+t := IPs+l - PsI • 

(3.3) 

{3.4) 

(3.5) 

§The factor fo/9o is included in (3.3) solely for aesthetic reasons, namely to 
make Po = 1. It is not essential, however, and could be removed from the subse
quent expressions in (3.4) and (3.5) by dividing it out, both in the numerator and 
denominator. This must be done if g0 = 0. Also, if / 1 = 0, the expressions in (3.4), 
(3.5) must be similarly modified. 
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They tell us the amount by which initial (relative) errors c3 , C:s+l at 
n = s, n = .s+ 1, are amplified at n = t. Obviously, Ws-s = Ws-s+l = l. 
Also, the quantity Ws-+t. having an intrinsic meaning, does not depend 
on the choice of {gn} in (3.3), so long as {gn} is linearly independent 
of {In}· 

If for fixed .s we have that Ws-t tends to infinity as t -+ oo, 
then forward recursion is unstable for computing {In}· This happens 
precisely if IPn I -+ oo as n -+ oo. Thus: 

Definition 3.1. The difference equation (3.1) is said to be unstable for 
computing {fn} (in forward direction) if 

lim IPnl = oo, 
n-oo 

(3.6) 

where Pn is defined by (3.3). The difference equation is called stable if 

sup IPnl = C < oo. 
n?;O 

{3. 7) 

Again, we must be prepared to deal with pseudostability, i.e., 
with the case in which the constant C in (3. 7) is unacceptably large 
(though finite). 

It is worth observing that if one puts es+l = -1, which in view 
of (3.2) means Ys+l = 0, then as a consequence of {3.4) one gets 

(3.8) 

independently of the error e3 • Thus, in the case of instability, since 
Ps+I -+ oo as s -+ oo, if we recur backward, starting from some suffi
ciently large n = s with starting values Ys = 1, Ys+l = 0, the quantity 
on the left of (3.8) approximates It arbitrarily well for any fixed t. This 
is the basis of J.C.P. Miller's backward recurrence algorithm (cf. §3.2). 

In contrast to first-order equations, we may now also consider 
boundary value problems. Thus, we may be given the values of {In} 
at n = 0 and n = N and are to obtain the intermediate values In for 
1 ~ n ~ N - 1. We are then interested in the relative errors in these 
intermediate values caused by relative errors eo, eN in the boundary 
values. An analysis similar to the one above will show that in this 
context, 

Yn- fn (PN- Pn)eo + (Pn- l)eN 
-In PN- 1 

(3.9) 
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with the p's defined as before by (3.3). The appropriate error amplifi
cation measure is now 

Wo:N := lPN- II (3.10) 

In effect, we are dealing here with the solution of a system of 
linear equations in the unknowns Yt, y2, ... , YN-l having a tridiagonal 
coefficient matrix A E JR(N-t)x(N-l) and special right-hand vector b E 
IRN-1 

' 

at l 0 -btfo 
b2 a2 1 0 

A= 
' b= 

bN-2 aN-2 1 0 
0 bN-I aN-t -fN 

The quantity (3.10), in a sense, is the condition number for this special 
linear system. It may well be that the difference equation (3.1) is 
unstable for initial value problems (i.e., PN --+ oo as N --+ oo ), but 
stable for boundary value problems (i.e., Wo:N only moderately larger 
than 1, or even equal to 1). This is particularly evident if we are 
interested only in relative errors (3.9) for 0 ~ n ~ n0 , with no < N 
fixed, and accordingly consider 

Wo:no:N := - lPN- ll 
max (lPN- Pnl + IPn- 11) 

O<n<no (3.10o) 

Then indeed Wo:no:N --+ 1 as N --+ oo. 

3.2. Minimal Solutions and Continued Fractions; Backward 
Recurrence Algorithm. Instability, by definition (3.6) and (3.3), 
means that the solution {/n} of (3.1) has the property that 

l. fn O 
lffi -= 

n-+oo 9n 
(3.11) 

for some solution {gn} linearly independent of fn· It is easily seen that 
(3.11) then holds for any linearly independent solution 9n of (3.1). A 
solution {fn} which has this property is called a minimal solution of 
(3.1 ). A minimal solution is determined, if it exists, up to a constant 
factor; in other words, the set of minimal solutions, if not empty, is 
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a. one-dimensional subspace of the linear space of all solutions. To 
determine {fn} uniquely thus requires one condition, not two, as for 
other solutions. 

To remove the arbitrary factor inherent in a minimal solution, 
it is natural to consider ratios 

fn+l 
rn = J.' n = 0, 1, 2, .... (3.12) 

From the difference equation (3.1), dividing it by fn, one then immedi
ately obtains 

hence 

Iterating this equation indefinitely yields formally the continued frac
tion 

fn -bn bn+l bn+2 
1'n-1 = -- = --

fn-1 an- an+l- an+2-
{3.13) 

For n = 1, in particular, 

(3.131) 

A result of Pincherle now tells us that the continued fraction on the 
right of (3.131) converges precisely if (3.1) has a minimal solution {fn}, 
a.nd the limit then is expressible in terms of it by the left-hand side of 
{3.13t). More precisely, we have 

Theorem 3.1 ([21, Ch. III, §15]). The continued fraction on the right 
of (3.13.) converges if and only if the difference equation (3.1) possesses 
a minimal solution {fn} with fo =f. 0. In case of convergence, moreover, 
(3.13) holds for each n = 1, 2, 3, ... , provided fn f. 0 for all n. 

For a proof, see, e.g., [5, p. 3lj. 
To compute a minimal solution {fn} of (3.1), it would be un

reasonable to employ (3.1) in forward direction. Not only would this 
require two starting values (whereas one would be enough to identify 
it), but also unavoidable rounding errors would activate other solutions 
of the equation, which by their dominance (cf. (3.6)) would eventually 
completely overshadow the desired solution. Theorem 3.1 provides a 
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more natural means of computation. Suppose, indeed, that the minimal 
solution is specified by a general linear condition of the form 

00 

L ).mf m = S, S # 0, (3.14) 
m=O 

where >.m and s are known, and the series is known to converge. (A 
special case of (3.14) is ).0 = 1, Am = 0 for m > 0, which specifies 
fo = s.) Assume, moreover, that we want to compute fn for n = 
0, 1, 2, ... , N. Define rn as in (3.12) and Sn by 

(3.15) 

Then, if r, and s, were known for some v > N, we could proceed as 
follows: 

s 
fo = ). + ' fn = rn-Ifn-11 n = 1, 2, ... 'N. 

o so 

(3.16) 

These formulae follow easily from the definition of rn and Sn in (3.12) 
and (3.15), respectively. It turns out that choosing r, = 0, s, = 0 
in (3.16) yields a viable algorithm for computing the minimal solution 
{fn}: 

Theorem 3.2 ([5, p. 39]). lf (3.1) has a nonvanishing minimal so
lution {fn} satisfying (3.14), and r~~~, s~~1 , f~v) are the quantities 
generated in (3.16) using r, = s, = 0, then 

if and only if 

lim j(v) = fn, n = 0, 1, 2, ... , N, 
v-+oo n 

l. fv+l ~ \ O 
Im -- £._, Am9m = 

v-+oo gv+l m=O 

for some solution {gn} of(3.1) linearly independent of {fn}· 

(3.17) 

(3.18) 

The speed of convergence in (3.17) is determined by the speed 
of convergence in (3.18) and by how fast the infinite series in (3.14) 
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converges {cf. [5, Eq. (3.15))). If only a finite number of the >.m are 
nonzero, then (3.18) follows trivially from (3.6). 

An alternative interpretation of the algorithm in Theorem 3.2 is 
in terms of the solution {y~11)} of {3.1) defined by 

Y11 = 1, Yv+I = 0 (v > N). (3.19) 

It can be shown, indeed, that ((5, p. 38]) 

f~v) = v s Yiv)' n = 0, l, 2, ... 'N. (3.20) 

LAmY~) 
m=O 

In other words, {f~v)} is the solution {y~v)} of (3.1) obtained by back
ward recursion, using the starting values (3.19), "normalized" by the 
factor s/E"m=o Amy!:;). In this form, the algorithm is called Miller's 
backward recurrence algorithm. It was first proposed by J.C.P. Miller 
as a means of computing Bessel functions {1, p. xvii] and has since 
found applications to many other special functions. Nevertheless, the 
quantities y!;> generated in this algorithm can become quite large and 
on many computers may produce "overflow". No such problems are 
present in the "continued fraction algorithm" (3.16). 

While the algorithm (3.16) is based on backward recurrence (d. 
(3.5) with s = v and t = n), there are also algorithms based on bound
ary value techniques (cf. (3.10)). The best known is Olver's algorithm 
([18], [20], [8, §2.2.2(iv)]), which has a built-in feature of estimating an 
appropriate value of v to ensure any prescribed accuracy. Realistic er
ror bounds for difference equations of oscillatory and monotone type are 
provided in [19]. All known recurrence algorithms can be interpreted 
and unified in terms of triangular matrix factorization and numerical 
linear algebra techniques; for this, and also for extensions to systems 
of difference equations, see [2]. 

3.3. Examples. We begin with the example of Bessel functions, which 
gave rise to Miller's algorithm,. 

Example 3. L Bessel functions ln(x ), n = 0, 1, 2, ... ; x > 0. 
The difference equation here is 

2n 
Yn+l - - Yn + Yn-1 = 0, n = l, 2, 3,... . 

X 
(3.21) 

11 As pointed out in [5, p. 46], the idea of backward recurrence in connection with 
spherical Bessel functions can be traced back at least to Lord Rayleigh (1910). 
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The Bessel functions of the first kind, { ln( x)}, are a minimal solution, a 
second solution being {Yn(x)}, the Bessel functions of the second kind. 
Their dominance is rather pronounced, since 

Yn(x) "' -2 (2n)2n n --. oo, 
Jn(x) ex ' 

(3.22) 

but starts "taking hold" only once n exceeds x. For extremely large 
values of x, backward recurrence thus will become expensive, and other 
techniques may be more appropriate. (For modified Bessel functions 
In(x), there is an alternative continued fraction due to Perron, which 
is particularly effective to calculate r 11 = I v+l ( x) /I 11 ( x) when x is very 
large; see [14]). 

There are many infinite series in the Bessel functions Jn that can 
be used for normalization. One that was found particularly convenient, 
for real x > 0, is 

00 

lo(x) + 2 L J2m(x) = 1. 
m=l 

The algorithm (3.16) then becomes (we write rn-t instead of r!;'l 1, etc.) 

2n-xrn n=v,v-1, ... ,1, 
rv = 0, rn-1 = X l 
Sv = 0, Sn-1 = Tn-d1 + ( -1)n + Sn] 

1 
fo = , fn = rn-1fn-1, n = 1, 2, ... , N. 

1 +so 
(3.23) 

For Bessel functions with integer order, it may actually be more 
efficient to simply evaluate rN from the continued fraction (3.13), use 
the recursion in the first line of (3.23) to obtain the ratios rn_ 1 for 
n = N, N- 1, ... , 1, compute fo = J0 (x) from some known ratio
nal approximation, and finally use the last relation in (3.23) to obtain 
fn = Jn(x) for n = 1, 2, ... , N. The technique outlined above is more 
important for Bessel functions la.+n• 0 < a < l, of arbitrary positive 
orders, or for Bessel functions of real order and complex argument. In 
either case, appropriate series are again available for normalization (see, 
e.g., [5, Eqs. (5.9) and (5.7)]). 

Example 3.2. Coulomb wave functions FL(TJ, p), L = 0, l, 2, .... 
Coulomb wave functions, of interest in the study of nuclear inter

actions between charged particles in a Coulomb field, behave in many 

132



234 W. GAUTSCHI 

ways similarly to Bessel functions. Corresponding to Bessel functions of 
the first and second kind, there are now the so-called regular and irreg
ular Coulomb wave functions, denoted by FL('f], p) and GL('TJ, PL respec
tively. Here, Lis a nonnegative integer, the orbital angular-momentum 
quantum number of the particle, 1J a real nonzero parameter depend
ing on the relative charges, and p > 0 a scaled radial distance. Both 
functions satisfy the difference equation 

L[(L + 1)2 + 'f] 2 ]LI2YL+l- (2£ + 1) [r/ + L(Lp+ l)l YL 
(3.24) 

+(L + 1)[£2 + q2 ] 112YL-l = 0, L = 1, 2, 3, ... , 

with {FL(q,p)} being the minimal solution, and 

GL(q,p) rv 2et+.,.'~ (2L)2L+I' L-+ oo. 
FL(fJ,p) ep 

(3.25) 

Compare (3.25) with (3.22) to see the analogy with Bessel functions. 
For computational purposes, it is more convenient to deal with 

(3.26) 

where· 

The factors introduced in (3.26) are easily computed, since 

( 27r1J ) 1/2 (£2 + T/2)1/2 
Co(fJ) = e21t17 _ 1 , CL(17) = £(2£ + l) CL-I(fJ), L = 1, 2,3, .... 

In effect this removes square roots from the difference equation (3.24), 
which now (for JL) assumes the form 

L[(L+l)2 +q2] [ L(L+l)l L(L+l) 
(L + l)(2L + 3) YL+l - 1J + p YL + 2£ _ l YL-1 = 0. 

(3.27) 
The choice of an appropriate infinite series (3.14) for (3.26) is a 

rather delicate matter and depends on the value of 

p 
T=-. 

21] 
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For reasons explained in [5, pp. 64-65], we are led to use 

00 

L A£/L = pewp, A£ = iL Pt"·-i'l) ( -iw ), (3.28) 
L=O 

where Pt'~·-il'l)(z) is the Jacobi polynomial of degree L with imaginary 
parameters a= iq, /3 = -iq, and w is defined by 

1( .f 
- 1 T > l, 2r -

w = 2~ (1r- 2cos-1 Ji +2Jr(l- r)] if 0 < r < 1, 

0 jf T < 0. 

As r increases from 0 to oo, the function w decreases from oo to 0, 
hence is positive for all r > 0. 

Equally intriguing as the choice of (3.28) for the normalizing 
series is the computation of its coefficients A£. From the three-term 
recurrence relation for Jacobi polynomials, they can be seen to satisfy 
the difference equation 

2L + 1 L2 + rl 
AL+t- L+ 1 WAL- L(L + 1) AL-l =0, L = 1,2,3, ... , (3.29) 

with initial values 
(3.30) 

(In particular, the A£ are all real.) Moreover, it can be shown that 
{AL} is not a minimal solution of (3.29). It would appear, therefore, 
that forward recurrence in (3.29), with starting values (3.30), is the 
method of choice. Curiously, this is only conditionally true, namely 
only when '1 > 0 is not too large. (Note that for TJ < 0 we have w = 0, 
in which case (3.29), (3.30) pose no computational problems.) The 
difference equation (3.29) actually does have a minimal solution, A~, 
which, when normalized by A~ = 1, satisfies 

Ao = A~, At - A~ -+ 0 as TJ -+ oo. 

Therefore, for TJ large enough, the initial values Ao and A1 of {A£} are 
indistinguishable (in machine arithmetic) from those of the minimal 
solution {A£}, in spite of A£ going to +oo and A£ to 0 as L -+ oo. 
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Forward recurrence in (3.29), therefore, is doomed to fail when TJ is 
large! 

A way out of this dilemma is to define { Af:} as the solution of 
(3.29) with initial values 

\If \I 
AO = -A1, 

("orthogonal" to those of {A~}), and to observe that 

AL = A~ + c 2 CA1 + A~ A~), 
l + A~ 

where 

(3.31) 

c = )q - A;. (3.32) 

When c is small, the relation (3.31) shows that AL initially behaves 
like the minimal solution {A~} but starts deviating from it once the 
dominance of A'£ begins to outweigh the smallness of c. The trick now 
is to compute c not by (3.32) (which would cause large cancellation 
errors), but explicitly by (cf. (6, Eq. (3.5)]) 

21] 
c;--~

- e2'1<1>- 1' 
1 

4> = tan- 1 - (w > 0). 
w 

(3.33) 

Then the computation of AL from (3.31) (using our continued fraction 
algorithm for X~) is completely stable, and we are ready to apply the 
algorithm of Theorem 3.2 to the difference equation (3.27) and normal
izing series (3.28). 

Example 3.3. Repeated integrals of the coerror function in erfcx, n = 
-1 , 0, 1, 2, . . . j 'X > 0. 

These are defined by 

Let 
fn = in-l erfcx, n = 0, 1, 2, ... 

Then {fn} is a solution of the difference equation 

X 1 
Yn+l +- Yn- 2- Yn-1 = 0, n = 1, 2, 3, .... 

n n 
(3.34) 

A second solution is given by 

!In= ( -l)n in- 1 erfc( -x).. 

135



LINEAR DIFFERENCE EQUATIONS 237 

and since, for any fixed z {real or complex), 

(3.35) 

( cf. (4, Eq. {3.5))), one finds that for x > 0 

( )n+I 9n+l in erfc( -X) 2.,;2;.x -1 -- = rv e n-+ oo, 
fn+I jn erfc x ' 

(3.36) 

showing that {/n} is a minimal solution of (3.34). In this case, no 
normalizing series (3.14) is required, since we know / 0 = -}; e-x2 and 
we can take .Xo = 1, Am = 0 for m > 0, a.nd $ = /0 in the algorithm of . c· (v) Theorem 3.2 1.e., all sn-l = 0). 

It can be shown that ([4, §4]) 

I I _ in- I erfc( -x) 
Pn - • 1 f ' tn- er ex 

n = 0, 1, 2, ... , (3.37) 

is monotonically increasing for any fixed x > 0. Moreover, from (3.8) 
(with s = v, t = n) and (3.2o), we see that the approximations !Av> 
produced by the algorithm (3.16) have relative errors 

n = 0, 1, ... , N + 1, 

so that, up to an additive term of O(p;;;1 ), 

J~v)- fn < 1 + IPnl < 1 + IPN+Il < 2IPN+d . 
fn - IPv+tl· - IPv+II - IPv+tl 

To guarantee a. relative error £ for all f~v), 0 :S n :S N + 1, it suffices, 
therefore, to choose v _such that 

2IPN+tl < 
I £. 
Pv+Il -

(3.38) 

Assuming N (and hence v) large enough for the 0-term in (3.35) to be 
negligible, we obtain from (3.38) and (3.37) 
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that is, 

( In 1 + 2-..fiNx + ln2) 2 
v > _.:,.€ __ --=:-----

- 2v'2x 

Since the dominance of the second solution 9n' by (3.36), be
comes weaker as x decreases, one may get away with forward recursion 
for x sufficiently small and N not too large. This can be carefully ana
lyzed and implemented in a general-purpose procedure to compute fn, 
or a suitably normalized version of fn that avoids over- or underflow as 
much as possible ( cf. [9, 10]). 

3.4. Orthogonal Polynomials. An important source of linear second
order difference equations are orthogonal polynomials relative to some 
(nonnegative) mass distribution du supported on a finite or infinite in
terval, or on a finite set of points on the real line. In the former case, 
if all moments 

mn = kxndu(x), n = 0,1,2, ... , 

exist and are finite, there are infinitely many orthogonal polynomials 
Pn(x) = Pn(x; du ), n = 0, 1, 2, ... , in the latter case exactly N of them, 
Po, P1, ... , PN -11 where N is the number of support points of du = duN. 
In either case, if assumed monic, they satisfy the difference equation 

. I 

(3.39) 

with starting values 

Y-1 = 0, Yo= l (Yn = Pn( ·; du)). 

The coefficients an, bn are uniquely determined by du, except for b0 , 

which is conveniently defined to be the total mass, bo = fa du( x ). 
Generally speaking, all solutions of (3.39) behave similarly if 

x is located on the support interval of du. (Chebyshev polynomials 
on [-1,1] are a case in point!) This is no longer true if x is outside 
the support interval, as will be seen in the next subsection. There is 

·also a phenomenon of pseudostability that may occur in connection 
with discrete orthogonal polynomials (corresponding ,to a discrete mass 
distribution): This will be discussed in §3.4.2. 

3.4.1. Associated functions. There is an interesting set of functions 
associated with du and the orthogonal polynomials {pn( ·;do-)}, defined 
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by 

A Pn(x; da) 
qn(z) = qn(z;da) = da(x), 

JR Z- X 
n = 0, 1, 2, ... , 

where z is real or complex and assumed outside the support interval 
of da. These satisfy exactly the same difference equation (3.39) (with 
b0 as defined above) as the one for orthogonal polynomials, but with 
starting values 

Yo = h da(x) Y-t = 1, 
R z-x 

{3.40) 

and with x in (3.39) replaced by z. Moreover, they constitute a minimal 
solution of (3.39), inasmuch as 

l. q11 (z; da) O 
tm = , 

n-+oo Pn( z; du) 
z E C \ supp du, (3.41) 

at least for the class of distributions da which give rise to a determined 
moment problem {11 ). This includes all distributions da supported on 
a finite interval, and many others with unbounded support. 

Since we know the initial value for n = -1, Theorem 3.2 provides 
a simple algorithm to compute q11 ~z) for 0:::;: n::; N: 

r(v) = 0 
v ' 

( v) bn r - ------,.-.,-
n-1 - (v) ' 

z-an- rn 
n= v,v -1, ... ,1,0, 

(3.42) 

Under the assumptions above, we have 

lim q(v) = qn(z), n = 0, 1, ... , N. 
v-oo n 

The algorithm is of interest even in the case N = 0, as it allows us 
to compute the "Cauchy transform" of the distribution da ( cf. y0 

in (3.40) ). Another interesting application is to Gaussian quadrature 
(with weight distribution da supported on a finite interval), since the 
ratio in (3.41) is nothing but the kernel in the remainder term 

138



240 W. GAUTSCHI 

of the quadrature rule [15]. Here, r is a contour surrounding the sup
port interval of da and f is assumed analytic in the domain enclosed 
by r. 
3.4.2. Discrete orthogonal polynomials. Numerical difficulties with dis
crete orthogonal polynomials have been known for some time, but were 
recognized only recently (12] to be attributable to a phenomenon of 
pseudostability. Pseudostability is relevant also in cases, such as here, 

·where the difference equation (3.39) holds only for a finite number of 
n-values, n = 0, 1, ... , N - l (where n = N - 1 yields PN( · ; daN), 
which, though well defined, is no longer orthogonal, since it vanishes at 
all N support points of daN). It simply means that the amplification 
factors Ws-+t defined in (3.5 ), as s and t vary over 0 ::; s < t ::; N - 1, 
may become very large in parts of this region. (Isolated large values 
may be due to near zeros of Pn ( ·) and need not be of any concern.) 

We illustrate the phenomenon in the simplest case of discrete 
Legendre polynomials, i.e., the polynomials Pn( ·;daN) orthogonal with 
respect to the discrete N-point distribution do-N having support points 
Xj and jumps Wj, where 

j-1 
Xj = -1 + 2 N ' - 1 

2 
Wj = N' j = 1,2, ... ,N. 

The respective recursion coefficients an, bn are known explicitly: 

an= 0, n = 0, 1, ... , N- l; 

1 2l-(}J)2 
bn = ( 1 + N-l) 4 _ _L , n = 1, 2, ... , N- l. 

n2 

b0 = 2, 

It is thus easy to generate the solutions of (3.39) with starting val
ues Y-t = 0, Yo = 1 (producing fn = Pn( ·;daN)) and Y-1 = 1, Yo = 0 
(producing a linearly independent solution, 9n)· The respective amplifi
cation factors W 8 _.t in (3.5) are then readily computed (paying attention 
to footnote (§)). 

In Figure 3.1 (a)-( d) are shown two-dimensional plots of Ws-+t on 
a logarithmic vertical scale, for N = 40 and x = x1, j = 1, 5, 10, 20. 
(By symmetry, this covers also the cases x = Xk k = N- j + 1.) It can 
be seen that pseudostability starts developing for t > s as t approaches 
N. It is rather pronounced when x is one of the lateral support points 
(cf. (a), (b) of Figure 3.1) and much less so as x moves toward the 
center of the interval (-1,1] (cf. (c), (d) of Figure 3.1). 
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(a) (b) 

0 0 

(c) (d) 

... 

FIGURE 3.1. Amplification factors Ws-+t for discrete 
Legendre polynomials, N = 40 

(a)x=Xt (b)x=xs (c)x=xw (d)x=x2o 

Similar phenomena can be observed for other discrete orthogonal 
polynomials with equally spaced support points, e.g., the Krawtchouk 
polynomials ((12, Example 3.2]). Nonequally spaced points, such as 
Chebyshev points, on the other hand, seem to stay clear from such 
problems of pseudostability ([12, Example 3.3]). 
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Numerical integration of ordinary differential equations 
based on trigonometric polynomials 

By 

WALTER GAUTSCHI * 

There are many numerical methods available for the step-by-step integration 
of ordinary differential equations. Only few of them, however, take advantage 
of special properties of the solution that may be known in advance. Examples 
of such methods are those developed by BROCK and MuRRAY [2], and by DENNIS 

[4], for exponential type solutions, and a method by URABE and MrsE [5] designed 
for solutions in whose Taylor expansion the most significant terms are of relatively 
high order. The present paper is concerned ·with the case of periodic or oscillatory 
solutions where the frequency, or some suitable substitute, can be estimated in 
advance. Our methods will integrate exactly appropriate trigonometric poly
nomials of given order, just as classical methods integrate exactly algebraic 
polynomials of given degree. The resulting methods depend on a parameter, 
v=hw, where h is the step length and w the frequency in question, and they 
reduce to classical methods if v--+0. Our results have also obvious applications 
to numerical quadrature. They will, however, not be considered in this paper. 

1. Linear functionals of algebraic and trigonometric order 

In this section [a, b J is a finite closed interval and CS [a, b J (s 0} denotes the 
linear space of functions x (t) having s continuous derivatives in [a, b]. We 
assume CS [a, b J normed by 

(1.1) l!x!! 

A linear functional L in CS [a, b J is said to be of algebraic order p, if 

(1.2) Lt 0 (r 0, 1, ... , p); 

it is said to be of trigonometric order p, relative to period T, if 

(1. 3) L1=Lcos(r 2}t)=Lsin(r 2
n t)=o (r= 1, 2, ... ,p). 

Thus, a functional L is of algebraic order p if it annihilates all algebraic poly
nomials of degree p, and it is of trigonometric order p, relative to period T, 
if it annihilates all trigonometric polynomials of order p with period T. 

Functionals of trigonometric order p are comparable with those of algebraic 
order 2p, in the sense that both involve the same number of conditions. The 

* Oak Ridge National Laboratory, operated by Union Carbide Corporation for 
the U.S. Atomic Energy Commission, Oak Ridge, Tennessee. 
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relationship turns out to be much closer if we let L depend on the appropriate 
number of parameters. In fact, consider functionals of the form 

{1.4) 

where L:~ (.A.> 1) are fixed linear continuous functionals in CS[a, b] and fJ:~ real 
parameters. Then the following theorem holds. 

Theorem 1. Let the functionals L,. in (1.4) satisfy the following conditions: 

(i) L:~1=0 (.A. 1,2, ... ,2p 1). 
(ii) There is a unique set of parameters, fJ:~=fJ~, such that the functional L i1~ 

(1.4) is of algebraic order 2p, that is to say, 

{ 1. 5) (
x row index, A column index) . 

X,A 1,2, ... ,2p ' 

Then, for T sufficiently large, there is also a uniqtJ;e set of parameters, fJ:~=fJ:~(T), 
such that L is of trigonometric order p relative to period T. Furthermore, 

(1.6) 

Proof. The main difficulty in the proof is the fact that in the limit, as T -HxJ, 

equations (1.3) degenerate into one single equation, L 1 =0. We therefore trans
form (1.3) into an equivalent set of equations from which the behavior of the 
solution at T = oo can be studied more easily. 

In this connection the following trigonometric identities are helpful, 

r 

( 1.7) sin2
' ~ = L a,e (1- cos(! x) 

e=I 
(r 1, 2, 3, ... ), 

where a,!! are suitable real numbers and a,, 0. The existence of such numbers 

is obvious, if one observes that sin2
' ~ = [(1- cosx)/2]' can be written as a 

cosine-polynomial of exact order r. Differentiating both sides in (1.7) gives also 

(1.8) · 2r-l X X 
Sm -COS---

2 2 
(r 1,2,), ... ), 

where -r,Q=(!a, 11 fr, and in particular -r,=a,=!=O. 
Equations (1.3) are equivalent to 

L1=0, 

( 
2:n ) L . 2:n L 1 cos r T t = sm r T t = 0 (r = 1, 2, ... , p). 

Because of assumption (i) the first of these equations is automatically satisfied. 
The remaining equations are equivalent to 

r r 

(1.9) L a,('L ( 1- cos(! Zn t) = L T,(!L sine Zn t = 0 
g=l u=l 

(r=1,2, ... ,p). 
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Using (1.7) and the linearity of L we have 

r ( 2 n ' '-. ( L:a,QL 1-cose t)=LL:a,Q 1 
(!=1 (!=1 

2n ) [ 'n '] cos e T t, = L sin2
' (y t) . 

Similarly, using (1.8), we find 

r . 2n [ · 2r-l ( n ) n ] L T r e L sm e t = L sm \ T t. cos T t . 
e=l 

Therefore, letting 

(1.10) n 
tt = ----

T' 

we can write (1.9), after suitable multiplications, as follows: 

(1.11) 

r( sin u t )2r-1 l L [ - -t~ cos u t = o 

L [( ~i~t~rJ = 0 
' u ' 

(r = 1, 2, ... , p). 

This represents a system of 2P linear algebraic equations in the same number 
of unknowns {J;,, the coefficient matrix and known vector of which both depend 
on the parameter u. We show that in the limit as u -->-0 the system ( 1.11) goes 
over into the system of equations Lt'=O (r=1, 2, ... , 2p). 

In fact, it is readily seen, by expansion or otherwise, that for any integers 
0, r ~ 1 , as ~~ __,.. 0, 

tl d11 
t2r-1 cos u __,. ' 

the convergence being uniform with respect to t in any finite interval. In par
ticular, 

(u-;..0), 

so that, by the continuity of the L;,, also 

r-l COS tt t]-->- L;, f2r-l 

(u --'>- 0). 
-> LJ. t2r 

From this our assertion follows immediately. 

Since the limiting system, by assumption, has a unique solution, fit the 
matrix of the system {1.11) is nonsingular for u=O, and hence remains so for 
u sufficiently small. It follows that for sufficiently large T there is a unique 
solution, {J;,(T), of {1.11). satisfying {1.6). Theorem 1 is proved. 
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Remark 1. Assumption (i) in Theorem 1 is not essential, but convenient for 
some of the applications made later. The theorem holds without the assumption 
(i) if the functional L in (1 .4) is made to depend on 2P+ 1 parameters, 

(1.4') Lx fJ0 L0 x+fJ1 L1 x ··· +/12pL2 px+L2 p+1 x, 

and assumption (1.5) is modified, accordingly, to 

( 1. 5 ') (
'x row index, A column index) . 
X,A-0,1, ... ,2p 

The proof remains the same. 

Remark 2. For particular choices of the L;. it may happen that the functional 
L can be made of higher algebraic order than the number of parameters would 
indicate. Even if the excess in order is a multiple of 2, this does not mean neces
sarily that a similar increase in trigonometric order is possible. For example, 

Lx fJ x(O) + x(1)- -i-x'(O)- -;tx'(1), p -1 

if of algebraic order 2, but in general cannot be made of trigonometric order 1, 
since 

L sin u t ] --~~cosut 
u 

sin 2u - __!_ (1 cos 2u) > 0 (o < u < 
2
n)· . 

2'U 2 

2. Linear multi-step methods 

Linear functionals in C1 play an important role in the numerical solution of 
first order differential equations 

(2.1) x' f(t, x), 

in that they provide the natural mathematical setting for a large class of numerical 
methods, the so-called linear multi-step methods. These are methods which 
define approximations Xm to values x(t0 +mh) of the desired solution by a relation 
of the following form 

(2.2) 
(n k-1,k,k+1, ... ), 

where 
x:n f(t0 m h, xm). 

Once k "starting" values x0 , x1 , ... , xk_1 are known, (2.2) is used to obtain 
successively all approximations xm (m > k) desired. 

The integer k> 0 will be called the index of the multi-step method, assuming, 
of course, that not both ock and pk vanish. (2.2) is called an extrapolation method 
if {10 =0, and an interpolation method if Po 0. Interpolation methods require 
the solution of an equation at each stage, because .X:+1 in (2.2) is itself a function 
of the new approximation xn+1. 

It is natural to associate with (2.2) the linear functional 
k 

(2.3} Lx l:[oc;.x(t0 (n 1 A)h) h{J;.x'(t0 (n 1 A.)h)J (oc0 =1). 
l=O 

The multi-step method (2.2) is called of algebraic order p, if its associated linear 
functional (2.3) is of algebraic order p; similarly one defines trigonometric order 
of a multi-step method. 
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Since any linear transformation t' at+ b (a 0) of the independent variable 
transforms an algebraic polynomial of degree p into one of the same kind, 
it is clear that {2.2) is of algebraic order p if and only if the functional 

/?; 

(2.4} D x = ~ [oc;. x (k - J.) - {J;. x'(k --- J.) J 
).=0 

is of algebraic order p. Here, the parameter h has dropped out, so that the 
coefficients oc; .• {J'- of a multi-step method of algebraic order do not depend on h. 
The situation is somewhat different in the trigonometric case, where a linear 
transformation other than a translation (or reflexion) changes the period of a 
trigonometric polynomial. By a translation, however, it is seen that (2.2) is 
of trigonometric order p, relative to period T, if and only if 

k 

(2.5) L" X=~ {oc4 x [(k- J.) h J- h{J;. x' [(k- },) hJ} 
il=O 

is of trigonometric order p relative to period T. 

For a multi-step method to be useful it must be numerically stable, which 
above all imposes certain restrictions on the coefficients oc_. (see, e.g., [1, sec. 9]). 
In view of this we shall consider the ocA. as prescribed numbers satisfying the 
conditions of stability. Also they shall satisfy 

(2.6) 

to insure algebraic and trigonometric order p 0. 

It is then well known ([1, sec. 6]) that to any given set of k+ 1 coefficients 
oc~. satisfying (2.6) there corresponds a unique extrapolation method with index k 
and algebraic order k. Letting therefore k=2P we can apply Theorem 1 to 
L = L ", identifying 

2p 
(2.7) L).x -hx'[(2p-J,)h] (1 A 2p), L2 p-t- 1 x=~oc~.x[(2p-J.)hJ. 

A=O 

It follows that there exists a unique extrapolation method with even index 
k= 2p and trigonometric order p relative to any sufficiently large period T. 
Again, as is well known, given k 1 coefficients oc;., there corresponds a .unique 
interpolation method with index k and algebraic order k 1. Letting now 
k 1 = 2p, a similar application of Theorem 1 shows the existence, forT sufficient
ly large, of an interpolation method with odd index k=2P ~ 1 and trigonometric 
order p relative to period T. Furthermore, in the limit as T -+oo, the resulting 
methods of trigonometric order p reduce to those of algebraic order 2p. 

The essential parameter is actually not T, but hfT, as is seen if the conditions 
(1.11) of trigonometric order p are written down for the functional I}. Since 

- ~~~~ cosut d [(sinut)2r-1 ] 
dt u ' 

- ~-- -2r --- cosu d [(sinut)2'J ~ (sinut)2r-l t 
dt . u u 

Numer. Math. Bd. 3 27 
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one finds 1 

(2rcos2 [u(k .A)h] 1) 

cos[u(k ),)h], 

2r h ± P-< (~~Ju(:-}.) h] )2r-l cos [u (k- .A) h J 
).=0 

Dividing the first relation by h2r-t, and the second relation by h2
', and letting 

v 2uh l-_"!_h 
T ' 

one gets1 

;.tp" ( 2 sin[!~ ;,) vJ rr-2 (zrcos2 [ ~ (k- .A) v]- 1) 

(2.8) 
~ (2sin[t(k A.)v])2r-1 [ 1 ( • ] = L..J OC,< ----~--V~~-- COS -2 k - A) V , 

A=O 

r-1 [ 1 ] k cos {k - A) v = L OC;. 
2 A=O 

(r 1,2, ... ,p). 

We summarize our findings in the following 

Theorem 2. In correspondence to each set of coefficients oc_. with zero sum there 
exist unique sets of coefficients p;. (v), Pf (v) depending on the parameter 

v = 2nhfT, 

such that for v sufficiently small, 

(2.9) Xn+l + tx1 X.,+ · · · OC2p Xn+l-2P = h [pl (v) X~ 

is an extrapolation method of trigonometric order p relative to period T, and 

Xn+l + OC1 X,.+···+ OC2p-1 Xn+2-2P 

= h [P~ (v) x~+l + Pf (v) x~ + · · · + p:p-1 (v) x~+2-2 p] 
(2.10) 

is an interpolation method of trigonometric order p relative to period T. The P;. (v) 
solve the system of linear algebraic equations (2.8) with zp, Po=O, the Pf(v) 
solve the same system with 2P -1 and with no restrictions on the P's. As v_,..O 
the multi-step methods (2.9) and (2.10) reduce to those of algebraic order 2p, respec
tively. 

3. Existence criterion for trigonometric multi~step methods 
Theorem 2 establishes the existence of trigonometric multi-step methods only 

for V= 2nhfT sufficiently small. A more precise condition on v is furnished by 
the following 

1 If r= 1 the coefficient of (Jk in the first relation, to be meaningful, must be 
defined as unity. 

150



Numerical integration of ordinary differential equations )87 

Theorem 3. Multi-step methods (2.9) and (2.10) of trigonometric order p, relative 
to period T, exist if 

(3.1) lvl <min(vp, i~~~d (v= 2nhfT), 

where Vp is the smallest positive zero of the cosine-polynomial 

l
(p•£)

12 
vp (P"" ~ ~ p _!_- n) cos(2n- 1) v (p odd) 

n=l 2 . 2 

1 ( 1 ' P'/
2 

( 1 ) 2 Vp / 2
-

2 
P) t:

1
vp .P2

-
2 

p ~ n cosnv (p even). 

(3.2) Cp (v) 

Here, vp(m) denotes the number of combinations of p nonnegative 2 integers not 
exceeding 2P ~ 1 which have the sum m. 

Proof. The linear functional associated with the extrapolation method (2.9) is 

2p 

LX LfJAL). X+ L2P+1 X, 
il=l 

whereL"x= hx'[(2P A.)h](1 A.<2p)andL2 p+tisgivensuchthatL2 P+1 1=0. 
Similarly, 

2p-l 

L * X L.: fJi L! X L: p X 
1=0 

with Lf =L1.·t1> L:p 1 =0, is the functional associated with the interpolation 
method (2.10). It is apparent, therefore, that the conditions (1.3) of trigonometric 
order for these particular functionals give rise to a system of 2 p linear algebraic 
equations in the unknowns {J" and fJ1, respectively, the matrix of which in either 
case is given by 

vsin(2P -1) v v sin (2P - 2) v v sin v 0 

v cos (zp 1) v - v cos(2P ~ 2) v vcosv v 

2v sin 2 (2P 1) v 2v sin 2 (2P 2) v 2v sin 2v 0 
B(v) = - 2 v cos 2 ( 2 p - 1) v ~ 2v cos2(2p- 2) v 2v cos 2v 2v 

. . .. . . . . . . . 
pvsinp(2P 1) v pvsinp(2p 2) v ... pvsinpv 0 

~pvcosp(zp-t)v ~pvcosp(2p~2)v ... ~pvcospv ~pv 

The instance v=O (in which B is singular) is sufficiently dealt with by 
Theorem 2. Theorem 3 will therefore be proved if it is shown that B (v) is non
singular for all non vanishing values of v satisfying (3 .1). 

Replacing the trigonometric functions in B (v) by Euler's expressions and 
applying a few obvious elementary operations on rows and columns of the 

2 In terms of partitions (more commonly used in combinatorial analysis) which 
involve positive integers with given sum, we have 

vp(m) np_1 (2p-1, m)+np(2p-1, m), 

where nk (l, m) denotes the number of partitions of m into k unequal parts not ex
ceeding l. 

27* 
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resulting matrix, one shows that the determinant of B is equal to 

I 2p 2p ,2P ,2p 
W2p-1 W2p-2 · · · W1 'li·o 

W2p 2 • · • W1 Wo 

1 . .. 1 1 

The last determinant is a minor of the Vandermonde determinant 

2p-1 

uP ~P-l ... wt w~ II (u - w,) II (wli- w,), 
O;Sa<Q:S2P-1 

... 1 1 

namely, up to the sign ( -1)P, the coefficient of uP in the expansion along the 
first column. From the right-hand side it is seen that this coefficient is equal to 

(-1)Pap(w0 ,w1 , ... ,w2 p_1) II (we-wa), 
O;Sa<e:S2p-l 

where ap denotes the p-th elementary symmetric function in 2p variables. There
fore, 

detB(v)=(P!) 2 2-PiPv2Pe-P"(2p-t)ivap(w0 ,w1 , ... ,W2 p-1) IJ (we wa) 
{).}) O:Sa<e:S2p-1 

(w-. ei.:tv). 
For the product in (3.3) we have 

II (wll- Wa) =II etl!l+a)iv II [e~(g-a)iv 
a<Q a<e a<f! 

(2i)P(2p-l) e~P(2p-l)'iv rr sin i(e- a) v. 
a<e 

Also, 

where the sum extends over all combinations (..l1 , A.2 , ..• , Ap) of p nonnegative 
integers not greater than 2P -1. Thus, 

(3.4) 
det B (v) = 1 )P (p !)2 22P !P-ll v2 P x 

X [e-H!2P-l)iv L e<.:tl+ ... +.lp)iv] II sin i (e- a) v. 
o;:;;a<q;;;;2p-l 

It is seen from this that B (v) for v =f= 0 is singular if and only if either the ex
pression in brackGtS or the product following this expression vanishes. 

As regards the first expression we can write it in the form 

p(3p-l)/2 p (3p-l)f2 
e-!P(2p-l)iv .2: 'Vp (n) einv = L 'Vp (n) eln-ip(2p-l)]iv, 

n=p(p-1)/?. n=p(p-1)/2 
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vvith v P ( n) as defined in Theorem 3. Consider first the case p even. Then, by 
a shift of summation index, the last sum is seen to be 

P'f2 
L Vp (p'J..- !P n) eniv. 

n=~P'i2 

Since the determinant (3.4) is real, this sum must be real too, which is only 
possible if 

Our sum then becomes 
p•f2 

(3-5) 2,L:vp(p2 ~tp-n)cosnv (p even). 
n=l 

Analogously, if p is odd, the sum in question is 

·(P(2 p~l) -1)/2 p(3 p-1)12 l 
I L + L Pp(n)e[n~!P(2p-l)]iv 
· n=p(P-1)/2 n=(P<2P-ll+ll/2 

{P'+l)/2 
= L [vp(p2-!P ! n)e-{2n-1)ivf2 'l'p(pz l!P ! n)e(2n-1Jivf2J. 

n=l 

Since this again must be real we also have 

and our sum becomes 

().6) ...:!_- n) cos(2n- 1) '/}_ (p odd). 
2 2 

Substituting ().5) and (3.6) for the bracketed expression in (3.4) we finally obtain 

(3-7) det B (v) = 1 )P (p !)2 22P•-zp-+-I v2P Cp (v) [] sin! (Q -a) v, 
O~a<e~2p-l 

with Cp(v) as defined in (3.2). 

Now, Cp(v)70 for O<lv[ <1Jp if Vp is the smallest positive zero of CP. Also, 
the sine-product in (3.7) is certainly nonvanishing for O< J vj < 2nj(2P 1). 
Therefore, detB (v) is nonvanishing for 

( 
2:n • 

0 < I vI < min v P, . ·) , 
, 2p-1 

which proves our theorem. 
For reference we list the cosine-polynomials Cp (v) for 

v cos 2 , 

C2 (v) = 1 +cos v cos 2v, 

v v v v 
C3 (v)=)cos +)cos) +2cos5 +cos7

2 2 2 2 

1, 2, 3: 

v 
COS9···-2 . 
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One finds easily that 

WALTER GAUTSCHI: 

n 
2 

so that the bounds in (3.1) for P=1, 2, 3 are respectively n, n/2, 2n/S 

We also note from (3.2} that 

O<!v! < ;. 

is a sufficient condition for nonvanishing of det B (v). 

4. Trigonometric extrapolation and interpolation methods of Adams' type 
Multi-step methods with 

oc0 = oc1 = 1, (). > 1} 

and maximal algebraic order for fixed index are called Adams methods. In 
this section we list methods of trigonometric order that correspond to Adams' 
extrapolation and interpolation methods in the sense of Theorem 2. The 
coefficients {J;. (v) and {J!(v) are obtained as the power series solution of the 
appropriate system of equations (2.8) where coefficient matrix and known vector 
are expanded into their Taylor series. 

Adams extrapolation methods of trigonometric order p 
2p 

Xn+l = Xn + h L: {Jp;, (v) X~+ I-). (v 2n hfT) 
A=l 

fJ = 3 (1 - 1 v2 + 1 v4 + .. ·) 11 2 4 . 120 ' 

~(1- J1.v2+.12._v4 + .. ·)· 
24 132 792 ' 

4277(1 
1440 

5257 v2 
3666 

196147 v4 •• ·), 

439920 

fJ = _ 7923 (1 _ 486~] v2 + 2341619 v4 
32 1440 15 846 633 840 

fJ -· 9982 (1 
33 ~ 1440 

{134= 7298 (1 
1440 ' 

flsu=- 475·(1 
1440 

j94~3 v2 
21894 

55 v2 
114 

_!51276~73 v4 

2627280 

···L 
I 

154



Numerical integration of ordinary differential equations 391 

Adams interpolation methods of trigonometric order p 

2p-1 

x,.u = x,. h .Z: fJt 4 (v) x~+l-.t (v = 2nhfT) 
J.=O 

19 (· 1 _ _±I~ v2 -t- ____ 13 ~ v4 •• ·), 

24 ' 228 360 

__ 4~~ (1 + _ll_ v2 + 2_00267 v4 + .. ·) 
1440 ' 114 22800 ' 

{J* = 1427 (t- -~-149 v2 - 15139837 v4 
31 1440 8562 342480 

p:
2 

= _ -~21!. (1 _ 163 v2 1964441 v4 

1440 114 10640 

{J* - 482 (1 
sa- 1440 

.. -), 

··-), 
.. ·)' 

{J* = _ 173 (1 + 29 v2 _ 22688263 v4 + .. ·)· 
34 1440 1 41 520 , 

{J* _ 27 (1 13 vl!.- 187111 v4 +· .. )· 
3

1) - 1440 ' 240 ' ' 

As shown in Section 3 the series for {Jp;. and p;.t certainly converge for I vi< rp 
where r1=n, r 2=nf2, r3 =2n/5. 

We also note the explicit formulae 

{J sin l v 
11 = --- -- ---, 

v cosiv 
-{J12={Jfo= tanh. 

v 

5. Trigonometric extrapolation and interpolation methods of Stormer's type 
Linear multi-step methods are also used in connection with differential 

equations of higher order, in particular with second order differential equations 
in which the first derivative is absent, 

(5.1) x" f (t, x), 

They take here the form 

(5.2) x,.-H + (X.1 x,~ (X.k Xn+l-k h2 ({Jo x~~l + fJ1 x~' + .. · {Jk x~~t-k)' 
x:.; = f (t0 m h, xm) . 

The terminology introduced in Section 2 extends in an obvious manner to this 
new situation. With the multi-step method (5.2) there is now associated the 
functional 

k 

Lx=.Z:[(X.;,X(t0 (n 1-A)h)-h2{J;.x"(t0 (n 1-.lt)h)] ((X.0 =1). 
l=O 
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Theorem 1 (with the modification mentioned in Remark 1 on p. 384) can then 
be applied to this functional provided that not all the values of ai, are fixed in 
advance. Otherwise our assumption (1.5') would not hold. Except for this 
provision, however, the construction of multi-step methods (5.2) of trigonometric 
order follows the same pattern as outlined in Sections 2 and 4 for first order 
differential equations. 

We content ourselves in this section with listing a few methods that result 
if one takes 

(5. 3) ct.A-=0 for }.> 2. 

In the algebraic case such methods of maximal order (for given index k) are 
called Stormer methods (cf., e.g., [3, p. 125]). 

Stormer extrapolation methods of trigonometric order p 

(v = 2nh/T) 

ct.u -2, (J.l.2= 1, Pu 
(J.22 = - (X21 - 1 ) 

2 ' 9 ~- ~ . . 
--I 1 ~ -v2 + Jl v4 +- .. ·) 

12 \ 4 . 120 . ' 

1 (1 + _!_ v2 -l- v4 + ... )· . 
12 ' 4 ' 120 , 

4315 v2 

5382 

p
32 

= _ 176 (1 _ )_1~1- v2 
240 792 

_ 264 593 v 4 -l- ... \I 
47 52Q I } > 

fJ = 194 (1 3047 v2 + ]£!_29 v4 ••. \ 
33 240 . 582 7760 ) ' 

{134 = __2§_ (1 _2!:3_ vz _?92_3_ v4 .. ·) ' 
240 432 25920 

{135= ~ 1 19 ( 
240 

-~~ v2 _1_U21 v4 + .. ·). 
342 41 040 , 

Stiirmer interpolation methods of trigonometric order p 
2P-2 

Xn+! +(4t(v) Xn+o:.;2(v) Xn_ 1 =h2 2::: p;i.x~~l-J.. (v= 2nhfT) 
•=o 

- 2 (1 + 1 v2 + _!_!_ v4-L 3_2!_ v6 + ... ,1 
. 2 24 I 720 ) 
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oct1 =- 2, (X:2 = 1' fJto 1 (1 1 2 7 v"- .. -), 
12 4 v 120 

fJ* = 10 (1- 1 v2 + 1 v4 ···), fJ* - 1 ( 1 + 1 vll 7 \ v4 .. ·); 
21 12 ' 20 120 

22-
12 4 120 

oct! -2 (1 3 v6 .. ·)' (X:2 - (X:l- 1' 
40 

fJto 19 ( 1 221 v2 17521 v4 ... ), 
240 342 41040 I 

fJtl 204 ( 1 _ ~9..~ v2 + _1_1Qr2_ v4 
240 459 ' 110160 

.. -). 

fJ* 14 (' 95 2 32= - 1+ -V 
240 ' 42 

4: __ (t _ t6 v2 _ ±7_1!. v4 + .. ·)' 
240 9 2160 ' , 

1 (1 
240 ' 

38~_v4 
2160 

The for ocp;..{JpJ. converge if !vi <rp where r1=oo, r2=nf2, those for 
oc;,,,fJ;~. converge if lvl<r; where ri n/3, ri=n/2. This can be shown by 
reasonings similar to, but more complicated than, those in Section 3· The values 
of r3 , r: were not obtained because of the complexity of the calculations required. 

We also note the explicit formulae 

2cosv 
2cos v-1 ' 

6. Effect of uncertainty in the choice of T 

Multi-step methods of trigonometric order presuppose the knowledge of the 
period T of the solution, if it is periodic, or of a suitable substitute, if the solution 
is only oscillatory. Precise knowledge of this kind is usually not available in 
advance, so that one has to rely on suitable estimates of T. Since T enters only 
through the parameter v= 2 nh/T and T = oo gives the classical multi-step 
methods, one expects that uncertainties in the value of T should not seriously 
impair the effectiveness of trigonometric multi-step methods (when applicable) 
as long as T is not significantly underestimated. 

It is instructive to study from this point of view the simple initial value 
problem 

(6.1) 

which has the solution 

dx 
dT 

x(t) (c~s t). 
\sm t 

Every multi-step method of trigonometric order 1 relative to period 2n is 
exact in this case, so that the example allows us to isolate the effect of inaccu
rately estimating the period. 
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Let us select Adams' interpolation method of trigonometric order 1, which 
can be written in the form 

(6.2) (v = 2nhfT). 

The correct choice of T is 2n, giving v h. We consider now T to be some 
"estimate" of 2n and use 

to measure the quality of the estimate (underestimation, if A> 1, overestimation, 
if A< 1 , precise estimate, if ;, 1). 

Letting 
1 ). h T=-tan 
A. 2 ' 

application of (6.2) to (6.1) then gives 

or else, collecting terms, 

If we set 

we get 

Obviously, 

(6.3) 

r tantO, 

(
cosO 

sinD 
-sinD) 

cosO 
Xn. 

( 
1 ), h. 

D = 2 arc tan - -tan ---) A. 2 . 

The n-th approximation xn to the solution of (6.1) is thus obtained by rotating 

the initial vector x0 = (
1
) n-times through the angleD, where Dis given by (6.3). 

Therefore 0 

=(cos nO) xn . , 
smnD 

which shows that the approximations have the correct amplitude, but phase errors 

(6.4) {
2 1 1 A.h) sn = tt(D h)= nh T arc tan tl.- tan 2 

If It 1 then sn = 0, as we expect. In the limit as A --Jo-0 we obtain the phase 
error of the method of algebraic order 1, which in our example is the trapezoidal 
rule. The expression in curled brackets, as function of J.., has a behavior as shown 
in Figure 1. It is seen from this, in particular, that the error in absolute value 

158



Numerical integration of ordinary differential equations 395 

is less than the error at 0 for all ). ·with 0< A.< ).0 where )-o> 1. This means 
that in using the modified trapezoidal rule (6.2) we may overestimate the period 
as much as we wish, and even underestimate it 
somewhat, and still get better results than with t&n!nh 
the ordinary trapezoidal rule. On the other hand, 
the curve in Figure 1 also shows that the error 
reduction is not very substantial unless ). is close 
to 1. If h .1, for example, there is a gain of at 
least one decimal digit only if the estimated period 
differs from the true period by 5 o/o or less. 

7. Numerical examples 

Fig.1 

An important class of differential equations to which trigonometric multi-step 
methods may advantageously be applied is given by equations of the form 

(7.1) x" P(t) x = 0, 

where P(t) is a nearly constant nonnegative function, 

(7.2) P(t) = P0 [ 1 p (t)] 0 (t t0). 

Here, P0 is a positive constant and p (t) a function which is "small" in some 
sense for t0 . 

Equation (7.1) may be considered a perturbation of x" P0 x=O, the dif
ferential equation of a harmonic oscillator with angular frequency V,Po. This 
suggests the following values of T (and thus of v) as natural choices in methods 
of trigonometric order, 

(7.3) 

If one is willing to select these values anew at each step of integration, one can 
improve upon (7.3) by using 

(7.4) 

in the computation of xn+I· 

Particularly favorable results are expected if t0 is relatively large and p (t) 
such that 

(X) 

(7. 5) J 1 p (t) 1 d t < oo, 

in which case it is known that x c1 cos V Jit c2 sin Vitt + o ( 1) (c1 , c2 constants, 
t--Too) for every solution of (7.1). Our first example belongs to this type. 

( 
1 \ 

Example 1. x" 100 + 4 i2) x = 0, t 10. 

The general solution can be expressed in terms of Bessel functions, x 

c1 Vi]0 (10t) c2 VtY0 (10t). We single out the particular solution Vt ]0 (10t) by 
choosing the initial values accordingly. Table 1 below shows selected results 
(every 50th value, using t0 = 1, h= .02) obtained by the Stormer extrapolation 
methods of algebraic order 2 and 4, and of trigonometric order 1 and 2, in this 
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order 3 . In the latter two methods the constant value (7-3) of Twas used, that 
is, T =n/5, v= .2. 

Table 1 reveals an average increase in accuracy of about three decimal digits 
in favor of the trigonometric extrapolation methods. This it should be noted 
is at practically no extra cost in computation, since the modified coefficients 
of the trigonometric methods, if (7-3) is used, need only be computed once, at 

Table 1. Stormer extrapolation method of various algebraic and trigonometric orders. 
Example 1 with t0 = 1 

alg. ord. P=2 alg. ord. P=4 trig. ord. P= 1 trig. ord. P=2 
1 

exact 7 D values 

1 -.2459358 -.2459358 -.2459358 -.245 935 8 -.2459358 
2 .234 590 1 .2354337 .236205 5 .236211 5 .236208 5 
3 -.1425368 -.1485247 -.1495871 -.149 5966 -.149 593 7 
4 .001 887 5 .0143880 .014 725 7 .0147349 .014 733 8 
5 .1393247 .1234167 .124 8068 .124801 5 .1248002 
6 -.2330076 I -.2205650 -.2240619 .224 063 0 -.2240592 
7 .247 293 5 .2461304 .2511024 .2511101 .2511049 
8 -.1773539 -.1924022 -.1972536 -.1972659 -.1972606 
9 .0470268 .0771940 .079 8806 .0798938 .0798900 

10 .0993055 .0620548 .063 2097 .0631997 .0632007 

the beginning of the computations. If the choice (7.4) is made an additional 
! decimal digit is gained on the average, the amount of computing being some
what larger than before. 

Stormer interpolation methods of algebraic order 2 and of trigonometric 
order 1, applied to Example 1, gave results which are 10-20 times worse than 
the corresponding results in Table 1, the trigonometric method being, on the 
average, more accurate by 2t decimal digits. The interpolation method of 
algebraic order 4, however, is almost 100 times better than the corresponding 
extrapolation method. Nevertheless there is also here an improvement of about 
1 t decimal digits in favor of the trigonometric modification. 

Larger values of t0 would put trigonometric methods into an even more 
favorable light. As t0 decreases from 1 to 0, trigonometric methods gradually 
lose their superiority. 

In our next example - a Mathieu differential equation - the relation (7. 5) 
is not satisfied any more. 

Example2. x" 100(1-or.cos2t)x=O, t0 0, x0 =1, x~=O (O<or. 1). 
We integrated this equation for various values of or. using the same methods 
and the same step length h = .02 as in Example 1. An independent calculation 
was done with the help of Nystrom's method, which was also used to obtain 
starting values. Selected results (every 25th value) of the Stormer extrapolation 
methods, in the case or.= .1, are displayed in Table 2 8• Trigonometric order, 
also in this example, is to be understood relative to period T=:n/5. 

3 Calculations were done on ORACLE in 32 binary bit floating point arithmetic 
(the equivalent of about 9 significant decimal digits). The final results were rounded 
to 7 decimal places. - The author takes the opportunity to acknowledge the able 
assistance of Miss RuTH BENSON in performing these calculations. 
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The results in Table 2 follow a similar pattern as those above in Table 1, 
the main difference being a reduction, to roughly half the size, of the improvement 
of trigonometric methods over the algebraic ones. The average gain in accuracy 
is now about 1 i decimal digits. The remarks made above on interpolation 
methods hold true also ·in Example 2, except for the reduction just mentioned. 
Obviously, as oc decreases to 0, trigonometric methods become increasingly 

Table 2. Stormer extrapolation method of various algebraic and trigonometric orders. 
Example 2 with oc= .1 

alg. ord. P=2 alg. ord. P=4 trig. ord. P=1 trig. ord. P=2 I exact 7 D values 

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
o.s .0767165 .069029 5 .0685134 .069127 3 .069208 5 
1.0 -.903 5098 -.9056448 -.9089870 -.9080120 -.908417 9 
1.5 .7105151 .6908656 .6942472 .693 845 3 .693 9608 
2.0 .198 5482 .228 7643 ! .2304036 ' .2311394 .2309590 
2.5 .971 5966 .967 9083 ! .976463 3 -976 7822 .9763699 
3.0 .2552862 .204 5198 .2060842 .205 6667 .205 766 7 
3.5 -.9456869 -.9505080 -.9618456 -.9613337 .9616794 
4.0 --.483315 5 -.4221211 -.4260400 -.4262622 -.4265317 
4.5 .5453242 .5922666 .6026736 .602105 3 .602236 7 
5.0 .9517667 .9263164 .9422702 ' .9418659 .941 737 3 

superior to algebraic methods. We have experienced only a slight decrease in 
this superiority when we let oc increase from .1 to 1. 

It is anticipated that trigonometric methods can be applied, with similar 
success, also to nonlinear differential equations describing oscillation phenomena. 
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Global error estimates in "one-step" methods 
for ordinary differential equations* ** 
Walter Gautschi 

Dedicated to Professor Mauro Picone on the occasion 
of his ninetieth birthday 

Abstract. We consider one-step methods for the numerical solution of ordinary differential 
equations and propose to utilize recent progress in local error estimation in order to 
asymptotically estimate the global error. 

1. Introduction 

The majority of numerical methods for the solution of systems of ordinary differen
tial equations generates approximations of the solution vector corresponding to a 
finite sequence of points. By global error one usually understands the difference be
tween the vector of approximation and the solution vector at the respective points. 
The local error, on the other hand, is the difference between the approximate solu
tion and the exact one, after a single step of the method initiated with exact data. 
It is generally agreed that "one-step" methods, in particular methods of Runge
Kutta type, notoriously do not permit an easy and efficient estimate of the local 
error, not to speak of the global one. The situation, in recent years, has changed a 
bit after rather efficient schemes have become known for accurately estimating the 
local error (at least asymptotically for small steps). It is natural, then, to attempt 
incorporating these schemes in procedures for the estimation of the global error. 
This is the subject of our work. 

* This work has been sponsored in part by the National Science Foundation, research grant GP-
36557 

** English translation by Walter Gautschi of ''Stime dell'errore globale nei metodi "one-step" per 
equazioni differenziali ordinarie", Rend. Mat. (2) 8 (1975), 601-617. 
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The desired estimates (as, in principle, has been known for some time) can be 
obtained by integrating the variational differential equation satisfied by the princi
pal part of the global error. This approach requires computing the Jacobian matrix 
of the differential system evaluated along the solution trajectory and therefore, 
in practice, may limit the applicability of the procedure to problems of small or 
medium dimensions. Nevertheless, the occurrence of the Jacobian matrix is quite 
natural in view of the well-known role it plays in the theory of perturbation. (For 
procedures not using the Jacobian matrix, see [20]). 

In Sections 2-7 we recall some basic concepts for "one-step" methods, including 
also their properties of stability and convergence ([11], [10], [21]). The implemen
tation, and the theoretical justification, of the procedure for estimating the global 
error is presented in Sections 8-9. Section 10, finally, contains a numerical example. 

2. The differential system 

We consider the Cauchy problem 

(2.1) dyjdx = f(x,y), a<::: x <:: b, y(a) = Ya, 

for a system of m ordinary first-order differential equations. We assume f to be 
defined, and sufficiently regular, in the rectangular domain 

no= [a,b] X Do, Do= {y E JR.m: Ci <::: yi <::: dj, i = 1,2, ... ,m}, 

where yi denotes the ith component of y. We consider no the fundamental domain 
which is to include not only the exact solution, but also all approximations gener
ated. Later, for various reasons, we will have to enlarge somewhat the domain in 
which f is defined. 

Meanwhile, we ass'ume, once and for all, that Ya E D0 , and that (2.1) has a 
unique solution y(x) on [a, b] such that y(x) E D0 for a<::: x <:::b. 

3. "One-step" methods 

A "one-step" method for the calculation of an approximate solution of (2.1) can be 
identified by a function 

(3.1) <I> : [a, b] x Do x [0, ho] -+ JR.m, 

which in some way is connected with the function fin (2.1). By means of 

(3.2) Yh = y + h<P(x, y; h), 0 < h :S ho, 

it indicates how to proceed from a generic point (x, y) to the" next" point (x+h, Yh), 

just as f indicates how to proceed from (x, y) to (x + dx, y + fdx). 
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In order to obtain a sequence Un ~ y(J:n) of approximations to the solution of 
(2.1), the formula (3.2) is used in the following manner: 

where Xn = a + h1 + h2 + · · · + hn, and XN = b. The choice of the "steps" 
h1, h2, ... , hN is part of the steering mechanism for (3.3), which, normally, is de
signed with the intention of keeping the norm of the error, ilun- y(xn) II, sufficiently 
small. More generally, the steering mechanism may also involve the choice of" one
step" methods varying from step to step. 

As indicated in (3.1), we want <I> to be defined in all of Ro x [0, ho]- For some 
methods this assumption requires that the domain of definition of f be slightly 
enlarged. For example, if <I> represents the midpoint rule, 

<I>(x,y;h) =J(x+ ~h,y+ ~hf(:r,y)), 

the interval [a, b] should be enlarged to the right by the quantity ! h0 , whereas the 
sides of Do should be extended from both extremes by the quantity ! h0 JIII0 , where 
Mo = maxllf(x,y)II-

Ro 

We assume, once and for all, that 0 < hn+l < ho and Un E Vo for each 
n = 0, 1, ... , N - 1. 

4. Local description of "one-step" methods 

There are a few concepts that describe local properties of a method <I>. We begin 
with the one of truncation error (or "local error"). 

Given a generic point (x, y) E R 0 , we construct a solution tract of (2.1) ema
nating therefrom, 

( 4.1) du/dt = f(t, u), x:::; t:::; x + ho, u(x) = y. 

We call u(t), x:::; t:::; x+ho, the reference solution at the point (x, y), and denote it, 
if necessary, more completely by u( t; x, y). \Ve assume that u( t; x, y), x :::; t :::; x + h0 , 

is defined for all points (x, y) E R 0 ; once again, this assumption requires a slight 
extension of the domain in which f is defined. 

DEPfNITION 4.1. For arbitrary (x, y) E R 0 and hE (0, ho], the truncation error 
of <I> at the point ( x, y) is defined by 

( 4.2) t(x, y; h)= h- 1 [Yh- u(x + h; x, y)]. 

By (3.2), therefore, 

( 4.2') t(x, y; h) = <I>(x, y; h) - h- 1 [u(x +h)- u(x)]. 
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DEFINITION 4.2. The method <I> is called consistent if 

t(x, y; h) ~+ 0 ash ----t 0, 

uniformly for (x, y) E Ro. 

By (4.2') and (4.1), if <f> is consistent, then necessarily 

(4.3) <I>(x, y; 0) = f(x, y). 

DEFINITION 4.3. The method <I> is said to have order p, if there exists a constant 
C > 0 not depending on x, y and h such that 

( 4.4) jjt(x, y; h)jj :::; ChP for each (x, y) E Ro, hE [0, ho]. 

Property ( 4.4) will be expressed more briefly in the form 

(4.4') t(x, y; h) = O(hP), h ----t 0. 

Normally, pis an integer. (See, however, [5]). vVe call p the exact order of <f> if ( 4.4) 
does not hold for any larger p. Evidently, p > 0 implies consistency of <f>. 

DEFINITION 4.4. A function T(x, y) on Ro for which T(x, y) t 0 and 

(4.5) t(x, y; h) T(x, y)hP + O(hP+l ), h ----t 0, 

is called principal error function of the method <I>. 

Since T t 0, pin (4.5) is the exact order of <f>. 

5. Global description of "one-step" methods 

\Ve now examine the global behavior of algorithm (3.3). The set of points 

will be called a grid on the interval [a, b], and we will denote it by rnh[a, b], where h 
stands for the collection of lengths h 1 , h2, ... , hN. The fineness of the grid mh[a, b] 
is defined by 

jhj = max hn. 
l~n~N 

A (vector-valued) function defined on the grid mh[a, b] is called a grid function. 
Any function y(x) defined on [a, b] induces a grid function by restriction. 

vVith the algorithm (3.3) we associate an operator Dh defined by 
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Dh acts on grid functions (with Un E Do) and generates a new grid function defined 
on the whole grid except the final point XN. Note that for the exact solution y(x) 
of (2.1), by virtue of (4.2'), 

(5.2) 

DEFINITION 5.1. The method <I> is called stable on [a, b] if for any grid mh[a, b], 
with jhj arbitrarily small, and for arbitrary grid functions v, w (with Vn E Do, 
Wn E Do), there exists a constant K > 0 not depending on n and h such that 

(5.3) 

We refer to (5.3) as the stability inequality. In order to motivate Definition 5.1, 
let u, w be grid functions for which 

(Dh u)n = 0, 0:::;: n <::: N- 1, Uo = Ya, 

(Dh w)n =En, 0:::;: n:::;: N- 1, Wo = Ya + E, 

where En, E are" small" vectors. We may interpret u as the result of applying algo
rithm (3.3) in infinite precision, and w the result of applying it in finite precision. 
The residual vectors En and E may reflect the presence of rounding errors. Stability, 
then, implies that 

max llun- wnll :::;: K(jjE!I + max I!Enll), 
O<::;n<::;N O<::;n<::;N-1 

that is, the error of the finite-precision result is of the same order of magnitude as 
the rounding errors, for any grid, no matter how fine. 

It is remarkable that essentially all "one-step" methods are stable. 

THEOREM .5.1. If <I>(x, y; h) satisfies a Lipschitz condition with respect to y, 
uniformly on [a, b] x D0 x [0, h0 ], that is, 

(5.4) 
jj.P(x, y; h)- <I>(x, y*; h)jj :::;: Mjjy- y*ll, 

for each x E [a, b], y, y* E Do, hE [0, hoJ, 

then the method ci> is stable. 

For the proof one takes any two grid functions v, w and verifies that 

en:::;: (1 + hnM)en-1 + hnd, n = 1, 2, ... , N, 
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where 

en= llvn- Wnll, 

It then easily follows that 

that is, 

n 

en :S: e(b-a).M eo+ e(b-a)M .I:= hkd :S: e<b-a)M {eo+ (b a)d}, 

k=l 

n-O,l,2, ... ,N, 

max en :S: e(b-a)M {eo+ (b a)d}, 
O<:::n<:::N 

which is the stability inequality (5.3) with K = e<b-a)M rnax(l, b- a). 
Theorem 5.1 remains valid for variable-methods algorithms involving a family 

of" one-step" methods { <Pn} if each satisfies a Lipschitz condition with constant l\II 
not depending on n. 

It is useful to note that <P need not necessarily be continuous in x. 

CoROLLARY. Let mh[a, b] be an arbitrary grid on [a, b] and let An, bn be two 
grid functions on mh fa, b], the former matrix-valued, the latter vector-valued, such 
that 

(5.5) J!Anll :S: a, llbnll :S: f3 for n = 0, 1, ... , N -- 1, 

where o:, f3 do not depend on n and h. Given any (vector·-valued) grid function u 
on mh [a, bj satisfying 

(5.6) 1Ln+1 = tLn + hn+l(AnUn + bn), n = 0, 1, ... 'N- 1, 

ther·e exists a constant 1 > 0 not depending on n and h, and depending only on a, 
(3, and no, such that 

(5.7) llunll :S: /', n = 0, 1, ... , N. 

The corollary follows by letting An = A(.rn), bn = b(xn) for certain bounded 
functions A(x), b(x), and by observing that 

<P(x, y; h) = A(x)y + b(x) 

satisfies a Lipschitz condition (5.4) on R 0 = [a, b] x Rm with constant A1 a. 
Taking Vn = nn, Wn = 0 in the stability inequality (5.3), we obtain the desired 
bound (5.7) with 1 = K(lluoll + (3). The constant K depends on a. 
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6. Convergence of "one-step" methods 

DEFINITION 6.1. The method <I> is said to be convergent on [a, b] if for arbitrary x 
with a < x :s; b one has 

(6.1) 

where a= Xo < Xt < · · · < XN =xis a grid on [a, x] with fineness I hi = max (xn
l~n~N 

Xn~l ), { Un} are the approximation vectors generated on this grid by algorithm (3.3), 
and y(xn) is the exact solution vector of (2.1) at the grid point Xn· 

The stability inequality (5.3) applied with Vn = 1Ln, Wn = y(xn), together with 
(5.2), immediately gives the following result: 

THEOREM 6.1. The method <I> is conver:qent if it is consistent and stable. iVIore-
over, if <T> has order p, then 

(6.2) 

7. Asymptotic error formula 

In what follows, we shall need a refinement of Theorem 6.1, obtained indepen
dently by HENRICI [11] and TIHONOV and GORBUNOV [23], [24]. (For more recent 
alternative results, see RAKITSKII [16]). vVe assume that 

(7.1) hn+l = rJ(xn)h, n = 0, 1, ... , N- 1, 

where rJ(x) is piecewise continuous on [a, b] and 

() :s; rJ(x) :s; e on [a, b], 0 < () :s; 1 :s; e. 

In addition, for the "base step" h in (7.1) we require that 

so that hn+l :S: ho in agreement with previous assumptions. 
Algorithm (3.3) then becomes 

Xn+J = Xn + rJ(xn)h, 

(7.2) Un+l = Un + rJ(xn)h<I>(xn, Un; rJ(xn)h), n = 0, 1, ... , N- 1, 

Xo =a, Uo = Ya, 

with N such that x N = b. 

THEOREM 7.1. Assume that 
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(i) cf!(x, y; h) E C2[Ro x [0, ho]J, 
(ii) if! is a method of order p 2: 1 admitting a principal error function T(x, y) E 

C[Ro], 
(iii) e(x) is the solution of the linear initial value problem 

(7.3) { 
e' = fy(x, y(x))e + [~(x)]PT(x, y(x)), 

e(a) = 0, 

where fy = [f~i] denotes the Jacobian matrix of f. 
Then 

(7.4) 

a ::; x ::; b, 

The last relation will be expressed more briefly in the form 

(7.4') Un - y(xn) = e(xn)hP + O(hP+l ), 0 ::; n ::; N. 

8. Global error estimate 

In order to estimate the error Un - y(xn), neglecting terms of order O(hP+l ), it 
suffices, according to (7.4') to obtain e(xn) with an error of order O(h). This can 
be achieved by integrating (7.3) with Euler's method, using appropriate approxi
mations of the Jacobian matrix and the principal error function along the solution 
trajectory. 

THEOREM 8.1. Assume that 

(i) cf!(x, y; h) E C 2 [Ro x (0, ho]J, 
(ii) if! is a method of order p 2: 1 admitting a principal error function T(x, y) E 

C1 [Ro], 
(iii) an estimate r(x, y; h) E C[Ro x [0, h0 ]] is available for the truncation error 

t(x, y; h) satisfying 

(8.1) r(x, y; h) = t(x, y; h)+ O(hP+l), h-+ 0, 

uniformly for (x, y) E Ro, 

(iv) along with Un we generate the sequence Vn, n = 0, 1, ... , N, in the following 
manner: 

(8.2) 
Un+l = Un + ~(xn)hcf!(xn, Uni 79(xn)h), 

Vn+l = Vn + ~(xn)h[fy(Xn, Un)Vn + h-Pr(xn, Vn; ~(xn)h)], 

Xo =a, uo = Ya vo = 0, 
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where XN =b. 
Then 

(8.3) 

PROOF. We note, first of all, that 

(8.4) 

(8.5) 

Indeed, Eq (8.4) follows from (6.2) and from assumption (i), according to which 
f(x, y) = <T>(x, y; 0) E C 2 [R0 ]. Moreover, since Ty is continuous by assumption (ii), 

where Un is a point on the segment from Un to y(xn) (its exact location varies 
from component to component). Therefore, using again (6.2), we get r(xn, un) = 
r(xn,y(xn)) +O(hP), and by assumption (iii) and (4.5), 

r(xn, Un; h) = t(xn, Un; h)+ O(hP+l) = r(xn, Un)hP + O(hP+l) 

=- T(Xn, y(xn) )hP + O(h2 P) + O(hP+l ), 

from which (8.5) follows, since p ~ l. 
Let now g(x, y) = jy(x, y(x))y + [t9(.r)]Pr(x, y(.r)). Since the equation for Vn+l 

in (8.2) has the form Vn+l = Vn +hn+l(Anvn +bn), with An bounded matrices and 
bn bounded vectors, it follows from the corollary to Theorem 5.1 that 

(8.6) Vn = 0(1), h---+ 0. 

Substituting (8.4), (8.5), and (8.6) into the equation for Vn+l, and noting from (8.5) 
that 

we find 

Vn+l = Vn + O(xn)h{fy(Xn, y(xn))vn + [O(xn)]PT(Xn, y(xn)) + O(h)} 

= Vn + O(xn)hg(xn, Vn) + O(h2 ). 

Since vo = 0, this is a O(h2 )-perturbation of Euler's method applied toe' = g(x, e), 
e(a) = 0-the "variational equation" (7.3) of Theorem 7.1. Euler's method being 
stable, we can conclude that Vn = e(xn) + O(h), from which, by virtue of (7.4'), 
there follows (8.3). Theorem 8.1 is thus proved. 
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It is of some interest to note that assumption (ii), concerning T, can be weakened 
to r(x, y) E C[R0 ]. Since the stronger assumption has been used only to prove (8.5), 
it suffices to show that (8.5) can be obtained under the weaker assumption. 

From the definition ( 4.2') of the truncation error, we have 

(8.7) 

where uy(t) is a solution of the initial value problem 

X :s; t :s; X+ ho, 

I being the unit matrix. Moreover, uy E C 2 [x, x + h0 ]. Therefore, 

where x < f;, < x + h (the exact location off;, varies from component to compo
nent). Using this last relation in (8.7), together with <I>y(x, y; h) = <I>y(x, y; 0) + 
h<I>yh(x, y; h)= jy(x, y) + O(h), we obtain 

(8.8) ty(x,y;h)=O(h), h-?0. 

Now, by (8.1), 

r(xn, Uni h) = t(xn, Un; h)+ O(hP+l) 

= t(xn, y(xn); h)+ ty(Xn, Un; h)[un- y(xn)] + O(hP+l ), 

and therefore, by (8.8) and (6.2), 

r(xn, Un; h) = t(xn, y(xn); h)+ O(hP+l) = r(xn, y(xn)))hP + O(hp+l L 

which, again, establishes (8.5). 

9. Local error estimators 

Many estimators r( x, y; h) for the truncation error have been found that satisfy 
(8.1). The best known, perhaps, is the one based on Richardson extrapolation 
to zero. Yet, this procedure is rather inefficient in terms of additional function 
evaluations. More attractive are estimators that use pairs of "one-step" methods. 
If <I> is the basic method of integration, of order p, and <I>* any method of order 
p* = p + 1, then 

(9.1) r(x, y; h) = <I>(x, y; h)- <I>*(x, y; h) 
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is an acceptable estimator. Indeed, from the definition (4.2), 

<f>(x,y;h) -h- 1[u(x+h) -u(x)j =t(x,y;h), 

<P*(x, y; h) - h - 1[u(x +h) - u(x)] = O(hP+l ), 

from which (8.1) follows by subtraction. 
Frequently, <f> is an explicit Runge-Kutta process with s stages, 

k1 = J(x, y), 

ko = J (X + pah, Y + h ~ Aur kr). a= 2,3, ... , s, 

s 

<P(x, y; h)= L aaka(x, y; h). 
a=l 

In order to make (9.1) efficient, one chooses for <f>* an analogous process with s* 
stages, where s* > s, in such a way that 

The estimator r(x, y; h) then "costs" only s* - s additional evaluations of f. If 
s* = s + 1, one can even try to save another evaluation by choosing (if possible) 

(9.2) /1 8 • = 1, As•r = ar, forT= 1,2, ... ,s* -1. 

In this case, indeed, ks• will be identical with k1 of the next step. 
Many pairs of Runge-Kutta formulae of this type have been developed by 

FEHLBERG [6], [7], [8]. There is considerable freedom in the choice of the pa
rameters f1<n Aan aa. The choices made by Fehlberg were guided by an attempt to 
reduce the magnitude of the principal error function r(x, y) of the method <f>. His 
formulae correspond to values of p, s, s* shown below: 

p 345 6 7 8 

s 4 5 6 8 11 15 

s* 5 6 8 10 13 17 

For p = 3 (p* = 4), for example, the formulae satisfy (9.2), and take on the 
following form: 
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k1 = f(x,y), 
2 2 k2 = f(x+ 7 h,y+ 7 hkt), 

k3 = f(x + 175 h, y + 9~70 hk1 + ~cig hk2), 

k !( 35 h 805 hk 77175 hk 97125 hk ) 
4 = X+ 38 1 y + 1444 1 - 54872 2 + 54872 3 1 

Yh = Y + h(Jio k1 + ~g~ k2 + ~~~~ k4), 

k5 = f(x + h, Yh), 

Yh = Y + h( 1~:Jo k1 + ~~i~ k3 + g;~~ k4 + /8 ks), 

r(.r, y; h) = h- 1(Yh- yj;J 

Similar formulae were developed by other authors; see for example, 
CESCHINO [2], TANAKA [22], BACHMANN {1], SARAFYAN [17], ENGLAND [4]. Es
timators that use information on several consecutive steps are given by SHINTANI 
[18], (19], PROTHERO [15], Krs [13], (14], and HUDDLESTON [12]. 

10. Numerical example 

We illustrate Theorem 8.1 by applying Fehlberg's third-order method (9.3) to an 
example taken from [9], that is 

(10.1) 

where q;:::: 0 is an integer. The initial conditions are chosen to be 

(10.2) c = 1, dcjdx = 0, s = 0, ds/dx = 27rv'Q for x = 2y/q, 

which (for each q = 0, 1, 2, ... ) identify the solution 

(10.3) c(x) =cos(~ x2 ), s(x) =sin(~ x2 ), 2v'Q:::; x:::; 2y/q + 1. 

For the purpose of this illustration, (10.1) is treated as a system of four first-order 
differential equations for the vector-valued function 

y(x) = 

c(x) 

c'(x) 

s(x) 

s'(x) 
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The length of the interval of integration is kept constant at 1, but the interval 
itself is moved to the right as q assumes the values 0, 1, 2, ... , thus entering into 
regions of gradually increasing frequencies. One expects, therefore, that the error 
estimation becomes more difficult with increasing q. 

We choose (arbitrarily) the step-control function to be 

iJ(x) = 

1 if 0 :::;; ~ :::;; i' 
1 .f 1 c < 1 2 1 4<.,_z-, 

lif!<~:S;i, 

2 if i < ~:::;; 1, 

where ~ = x - 2yfri. Selected numerical results are reported below in Table 1. 
The first column contains the values of q, the second some selected values Xn of x, 
the third the observed global errors llun- y(xn)!!oo, and the fourth the estimates 
l!vnh3 IJ 00 according to (8.3) (where p = 3). The column headed by "%" indicates 
the discrepancy in percents between the actual and estimated errors. The lower 
part of the table shows only the errors and estimates of maximum discrepancy. 

Table 1. Global errors, and their estimates, for the example (10.1), computed by Fehlberg's 
method (9.3) and the estimation procedure (8.2). (Numbers in parentheses indicate deci
mal exponents, for example 4.17(-5) = 4.17 X 10-5 ). 

h = .025 h = .0125 h = .00625 
q X error est % error est % error est % 

x10' x10' x101j xlOIJ x10Y x10y 
0 .1 .67665 .67638 .04 .84548 .84529 .02 1.0566 1.0565 .01 

.2 1.3532 1.3484 .36 1.6850 1.6818 .19 2.1017 2.0996 .10 

.3 1.7165 1.7037 .75 2.1259 2.1175 .39 2.6442 2.6388 .20 

.4 1.7566 1.7400 .95 2.1663 2.1555 .50 2.6885 2.6815 .26 

.5 1.7439 1.7200 1.37 2.1349 2.1195 .72 2.6395 2.6295 .38 

.6 5.0043 5.1641 3.19 6.5333 6.6252 1.41 8.3289 8.3839 .66 

.7 12.075 12.161 .72 15.551 15.584 .22 19.689 19.704 .07 

.8 69.886 66.962 4.18 89.073 86.832 2.52 111.59 110.06 1.37 

.9 219.68 202.87 7.65 267.98 256.04 4.46 327.51 319.58 2.42 
1.0 417.22 368.32 11.72 476.14 442.74 7.01 559.66 537.85 3.90 

0 max 4.17(-5) 3.68(-5) 11.7 4. 76( ---6) 4.43(-6) 7.01 5.60(-7) 5.38(-7) 3.90 
1max 2.10(-4) 2.63(-4) 25.0 .970(-3) 1.19(-3) 23.1 9.04(-5) 1.05(-4) 16.3 
2max 2.73(-3) 3.69(-3) 34.9 3.95(-4) 5.09(-4) 28.8 2.28(-4) 2.71(-4) 19.0 
3max 7.45(-3) 11.5(··3) 54.4 4.82{-3) 6.67(-3) 38.3 8.43( ---4) 1.11(-3) 31.5 
4max 1.45(-2) 2.62( -2) 81.3 1.49( -3) 2.18(-3) 46.8 1.61(-3) 2.19( -3) 36.1 
5max 3.34(-2) 6.94( -2) 107 2.79(-3) 4.50( -3) 61.1 2.88(-3) 4.07(-3) 41.2 

175



14 ·walter Gautschi 

As expected, the quality of the estimates worsens with increasing q, but improves 
with decreasing h. For q = 0 the percental discrepancy is about halved each time h 
is reduced to h/2, indicating that the results respect the asymptotic law expressed 
in (8.3). For q > 0, the technique is not yet sufficiently refined, at this point, but 
the estimates, nevertheless, are rather satisfactory on the whole. 
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Multistep methods with minimum global error 
coefficient* ** 
W. GAUTSCHI*** and M. NlONTRONEt 

Abstract. We consider linear k-step methods of maximal order in which the roots (i /= 1 
of the first characteristic polynomial are constrained to satisfy J(ij :'::: /, 0 :'::: 1 < 1. We 
find the unique method of this class having minimum global error coefficient. 

l. Let us consider a generic k-step method 

k k 

(1.1) L O:sYn+s = h L Psfn+s, O:k = 1, 
s=O s=O 

for the solution of the initial value problem 

(1.2) y' = f(x, y), y(xo) =Yo· 

With the method (1.1) one associates the linear functional [1, p. 327] 

k 

(1.3) Lu = L[o:su(s)- f3su'(s)]. 
s=O 

The method has order p if and only if 

Ltr = 0, T = 0, 1, ... ,p; LtP+l f 0. 

The global error coefficient is [3, p. 223] 

* Work carried out under the finalized project "Medicina Preventiva" (MPP 1). 
** English translation by Walter Gautschi of "Metodi multistep con minimo coefficiente dell' errore 

globale", Calcolo 17 (1980), 67-75. 
*** Department of Computer Sciences, Purdue University, Lafayette, Indiana, U. S. A. 

t Istituto di Analisi Matematica, Univcrsita di Bari, Collaboratore G. N. I. M. 
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2 W. Gautschi and M. Montrone 

(1.4) 

tP+l 

C - L fP+Tfi 
k,p- k ' 

Ls=O f3s 

where p is the order of the method. 

We assume that the characteristic polynomial 

k 

(1.5) p(() = ~ as(8 

s=O 

has roots (s with 

(1.6) 

(s simple if l(s I = L 

These conditions, as is known, are indispensable for the convergence of the 

method. Moreover, Dahlquist's theory ensures that, given such a polynomial p(() 

of degree k, it is always possible to determine, correspondingly, a convergent k-step 

method of order at least k + 1. Only if k is even, (2 = -1, and the roots ( 8 , 

s = 3, ... , k, are distinct and complex of modulus one, can the method have order 

k + 2, which is the maximum order possible. 

As far as the interval of absolute stability associated with the method is con

cerned, it is well known, however, that this interval is the larger the further inside 

the unit circle the roots of p( () different from 1 are located. 

In view of these considerations, we fix 1, 0 ~ 1 < 1, in this work, and examine 

the class /)..'Y of characteristic polynomials for which (I = 1, l(sl ~ 1 for s = 

2, 3, ... , k, and, among all polynomials in /)..-y, we look for the one that minimizes 

in absolute value the global error coefficient in the corresponding k-step method of 

order k + 1. 
\Ve find that this minimum is attained for the polynomial having all roots 

different from 1 concentrated at the point -;. 

For some values of 1 and k we construct the multistep methods associated with 

this characteristic polynomial, and we determine the respective intervals of absolute 

stability. 

2. Consider the transformation ( = i~~ , z = m, which maps the unit circle 

into the negative half-plane and, in particular, the point ( = 1 into z = 0; moreover, 

it maps the circler"~ : 1(1 ~ ~f < 1 into a circle C"~ in the same half-plane (see Figure 

1 ). 
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pio.no l; 

Fig. 1. 

The circle C-y intersects the real axis in the points -w and 
1-')' 

W=--. 
1+1' 

Let the transformed characteristic polynomials be 

(2.1) 
r(z) = ( 1; z) k p ( ~ ~;)' 

( 1-z)k (1+z) s(z) = - 2- () ~ , 

k 

where ()(() = L /38 ( 8 is the second characteristic polynomiaL 
s=O 

3 

1 
where 

w 

If the polynomial p( () has a root of multiplicity p at (, then the polynomial 

r( z) has a root of the same multiplicity at z = ~ - 1 , if ( -:F -1, or has degree 
(+1 

k- p, if ( = -1, and vice versa. Therefore, all the roots of r(z) are contained in 
the negative half-plane. Furthermore, r(l) = 1 and, letting 

(2.2) 

we have that a8 > 0, s = 1, 2, ... , k, if p E ,0,-y· 
We denote the zeros of r(z) by Z8 , 0 = Z1 < /z2/ :S jz3j :S · · · :S izk/· 
The class ,0,-y of polynomials p(() transforms into the class D-y of polynomials 

r( z) defined by 

(2.3) D-y = {r(z): Z1 = O,zs E G.fl s = 2,3, ... ,k}. 
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4 W. Gautschi and M. Montrone 

If we put 

(2.4) 
z r(z) 2 

-- · -- = bo + b1 z + b2z + · · · 1 ln l+z z 
1-z 

it is known ( cf. [3 1 p. 230]) that for every polynomial r( z) one obtains the k-step 
formula of maximum order by letting 

(2.5) 

1\foreover 1 

(2.6) 

where pis the order realized in this way. If r E D'Y 1 then p = k + L 
The problem at hand, therefore, consists in determining 

(2.7) . . I bk+l I mm /Ck,k+il = mm k+lf . 
rED, rED-y 2 Jo 

3. We put 

(3, 1) 

and recall (cf. [3, p. 231]) that A.o = ~' A2v < 0 for v ~ 1. 
It then follows from (2.4) that 

bo 

(3.2) { 
Ak+ial + Ak-la3 + · · · + A.2ab k odd, 

bk+l = 
Aka2 + Ak-2a4 + · · · + A.2ak, k even. 

\Ve must minimize 

k odd, 
(3.3) 

k even. 

Putting Uj = -zj, j = 2,3, ... , k, we have 
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Fig. 2. 

(3.4) 

The points Uj are located in the circle -C1 (see Figure 2). 

Now, 

k 

(3.5) rr (z + UJ) = O"o(u)zk- 1 + 0"1 (u)zk- 2 + · · · + O"k-1 (u), 
j=2 

where 

are the elementary symmetric functions in the variables u2, u3, ... , uk. 
Therefore, 

(3.6) as = D"k-s(u) = ,-s-t("•), k 
) 

v v s = 1, 2, ... ' 1 

a1 D"k-l (u 

5 

where 0"8 _ 1 (v) are the elementary symmetric functions in the variables v2, V3 1 ••• , Vk 
with Vj = ; . Since the transformation v = 1/u maps the circle -C1 into itself, 

J 

we have that Vj E -C1 , j = 2 1 3, ... 1 k. 
If among the 'Uj there are conjugate complex pairs, VJL = eJL + i1]JL' v JL = el-L - iryJL, 

TJJL > 0, then from the identity · 

k 

(3.7) rr (z + V>,) IJ[(z + el-') 2 + TJ~] = 2:::: D"s-l(v)zk-s, 
>. 1-1 s=1 
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6 W. Gautschi and M. Montrone 

where V>. and f,p, are positive, it is clear that each as~ 1 ( v) is a nondecreasing function 

of TJw 
To minimize as~ 1 ( v ), it thus suffices to consider the case in which all Vj are real. 

In this case, the minimum of as~l(v) for the Vj varying in -C'Y clearly obtains if 
v2 = V3 = · · · = Vk-1 = w, independently of s. 

Moreover, 

(3.8) . ( ) (k- 1) s~l m1n as -l v = w . 
VjE-C.., s- 1 

Therefore, by (3.3) and (3.6), one has 

mm !Ck k I - ]_ , +l - 2k 
rED.., 

The polynomial realizing the minimum is 

(3.9) (z+l)k- 1 

r(z) = z ---T 
1 +;:;:; 

to which corresponds the charateristic polynomial 

(3.10) p(() = ((- 1)(( + 'Y)k-1_ 

4. We note, in the case of k odd, that 

(4.1) 

Actually, from (3.3) it follows that 

(4.2) 

k odd, 

where~ is the class of characteristic polynomials satisfying (1.6). Eq (3.10) suggests 
(but does not prove!) that, in general, there does not exist a zero-stable method 
(that is, a polynomial p E ~) for which JCk,k+li is equal to the infimum in (4.2). 
We prove, in fact, as already asserted in [2], that this is true whenever k (odd) 2: 5, 
while for k = 3, every k-step method with zeros (t = 1, (2 = -1, 1 < (3 < 1 has 
minimum coefficient jC3,4! = 1~0 . 
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Multistep methods with minimum global error coefficient 7 

It is clear, by (3.3), that /Ck,k+l/ = 2-k/.Ak+l/ is possible only if a3 =as=···= 
ak = 0, that is, if 

(4.3) 

There follows, in particular, that ( = l is a zero of p((). 
If k = 3, we have 

r(z) = z(al + a2z). 

By the stability assumption it follows that r(z) has the zeros z1 = 0, z2 = e with 
-oo < e < 0 arbitrary, from which 

p(C,) = ((- l)(( + l)((- .A), -1 <.A< l. 

Each of these polynomials thus generates a zero-stable 3-step method, of order 4, 
having minimum coefficient jC3,4! = k /.A4/ = 1~0 · 

Assume now k (odd) ~ 5. Since p E ~. we have ak-l # 0, and the sum of the 
zeros Zj of r(z), being equal to - ak- 2 , must be zero. In particular, 

ak-I 

k-1 

.L:Rezj =0. 
j=l 

On the other hand, by the same assumption p E ~. we have Re Zj ::; 0, from which, 
necessarily, Re Zj = 0, j = 1, 2, ... , k - 1. Since z1 = 0, the latter is compatible 
with zero-stability only if r( z) has odd degree, contradicting ( 4.3). 

In an analogous manner one proves (see also [3, p. 286, Problem 37]) that fork 
(even) ~ 2, 

( 4.4) 

If k ~ 4, there does not exist a zero-stable method of order k + 2 attaining the 
infimum in (4.4), while fork= 2 Milne's method is the unique 2-stcp method with 
C2,4 = ?; !.A4I = 1~9 . 

5. We now examine the methods of Section 3 corresponding to k = 2 and k = 3. 
For k = 2 one obtains 

h 
(5.1) Yn+2- (1- r)Yn+l - /Yn = 12 [(5- r)fn+2 + 8(1 + r)fn+l- (1- 5r)fn] 

with 

(5.2) 1 1-/ 
C=----. 

24 1 +r 
Note that for 1 = 0 one obtains the Adams-Moulton method with error constant 
C = 1/24. For 1 = 1 one obtains Milne's method. 
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8 W. Gautschi and M. Montrone 

The interval of absolute stability is [4, p. 74] 

(5.3) [ 1 -I ] 
-61 +I ,0 . 

For k = 3 one has 

(5.4) 

with 

(5.5) 

The interval of absolute stability is 

(5.6) -3--1 ,0 . [ 1 - ~' ] 
1+1 

If 1 = 0 one obtains the Adams ·Moulton method. 
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Algorithm 726: ORTHPOL-A Package of 
Routines for Generating Orthogonal 
Polynomials and Gauss-Type 
Quadrature Rules 

WALTER GAUTSCHI 
Purdue University 

A collection of subroutines and examples of their uses, as well as the underlying numerical 
methods, are described for generating orthogonal polynomials relative to arbitrary weight 
functions. The object of these routines is to produce the coefficienLs in the thn~c-tcrm recurrence 
relation satisfied by the orthogonal polynomials. Once these are known, additional data can be 
generated, such as zeros of orthogonal polynomials and Gauss-type quadrature rules, for which 
routines are also provided. 

Categories and Subject Descriptors G.l.2 [Numerical Analysis]: Approxin;tation; G.l.4 
[Numerical Analysis]: Quadrature and Numerical Differentiation; G.4 [Mathematical Soft
ware] 

General Terms: Algorithms 

Additional Key Words and Phrases: Gauss-type quadrature rules, orthogonal polynomials 

1. INTRODUCTION 

Classical orthogonal polynomials, such as those of Legendre, Chebyshev, 
Laguerre, and Hermite, have been used for purposes of approximation in 
widely different disciplines and over a long period of time. Their popularity is 
due in part to the ease with which they can be employed and in part to the 
wealth of analytic results known for them. Widespread use of nonclassical 
orthogonal polynomials, in contrast, has been impeded by a lack of effective 
and generally applicable constructive methods. The present set of computer 
routines has been developed over the past 10 years in the hope of remedying 
this impediment and of encouraging the use of nonstandard orthogonal 
polynomials. A number of applications indeed have already been made, for 

This work was supported in part by National Research Foundation grants, most recently by 
grant DMS-9023403. 
Author's address: Department of Computer Sciences, Purdue University, West Lafayette, IN 
47907-1398. 
Permission to copy without fee all or part of this material is granted provided that the copies are 
not made or distributed for direct commercial advantage, the ACM copyright notice and the title 
of the publication and its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or 
specific permission. 
© 1994 ACM 0098-3500/94/0300-0021$03.50 
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22 Walter Gautschi 

example, to numerical quadrature (Cauchy principal value integrals with 
coth-kernel [Gautschi et al. 19871, Hilbert transform of Jacobi weight fimc
tions {Gautschi and Wimp 1987], integration over half-infinite intervals 
[Gautschi 199lc], rational Gauss-type quadrature [Gautschi 1993a; 1993b]), 
to moment-preserving spline approximation (Gautschi 1984a; Gautschi and 
Milovanovic 1986; Frontini et aL 1987], to the summation of slowly conver
gent series (Gautschi 199la, 1991 b], and, perhaps most notably, to the proof 
of the Bieberbach conjecture [Gautschi 1986b]. 

In most applications, orthogonality is with respect to a positive weight 
function, w, on a given interval or union of intervals, or with respect to 
positive weights, w,, concentrated on a discrete set of points, (x,), or a 
combination of both. For convenience of notation, we subsume all of these 
cases under the notion of a positive measure, d A, on the real line ~~- That is, 
the respective inner product is written as a Riemann -Stieltjes integral, 

(u,u) = J u(t)u(t)dA(t), 
Ill; 

(1.1) 

where the function A( t) is the indefinite integral of w for the continuous part, 
and a step function with jumps w, at x, for the discrete part. vVe assume that 
(Ll) is meaningful whenever u, u are polynomials. There is then defined a 
unique set of (monic) orthogonal polynomials, 

7Tk (t) = t" + lower-degree terms, k=0,1,2, ... , 

if k *~'· ( 1.2) 

We speak of "continuous" orthogonal polynomials if the support of dA is an 
interval or a union of intervals, of "discrete" orthogonal polynomials if the 
support of dA consists of a discrete set of points, and of orthogonal polynomi
als of "mixed type" if the support of d A has both a continuous and discrete 
part. In the first and last cases, there arc infinitely many orthogonal polyno
mials, one for each degree, whereas in the second case, there are exactly N 
orthogonal polynomials, 7T 0 , 7T 1 , ... , 7T N _ 1 , where N is the number of support 
points. In all cases, we denote the polynomials by 7Tk(-) = 7Tk(·; dA), or rrk(·; w), 

if we want to indicate their dependence on the measure d A or weight function 
w, and use similar notations for other quantities depending on dA or w. 

It is a distinctive feature of orthogonal polynomials, compared to other 
orthogonal systems, that they satisfy a three-ter·m recurrence relation, 

k=0,1,2, ... , 

7T0 (t) = 1, ( 1.3) 

with coefficients ak = ak(dA} E IR, f3k = f3k(dA) > 0 that are uniquely deter
mined by the measure d A. By convention, the coefficient {30 , which multiplies 
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7T 1 = 0 in (1.3), is defined by 

/30 = {30(dA) = 1 dA(t). 
IR 

{1.4) 

The knowledge of these coefficients is absolutely indispensable for any sound 
computational use and application of orthogonal polynomials [ Gautschi 1982a, 
1990]. One of the principal objectives of the present package is precisely to 
provide routines for generating these coefficients. Routines for related quanti
ties are also provided, such as Gauss-type quadrature weights and nodes and, 
hence, also zeros of orthogonal polynomials. 

Occasionally (e.g., in Gautschi [ 1984al, Gautschi and Milovanovic [ 1986], 
Frontini et al. [ 1987], and Gautschi [ 1993a; 1993bJ), one needs to deal with 
indefinite (i.e., sign-changing) measures dA. The positivity of the {3k is then 
no longer guaranteed, indeed not even the existence of all orthogonal polyno
mials. Nevertheless, our methods can still be formally applied, albeit at the 
risk of possible breakdowns or instabilities. 

There are basically four methods used here to generate recursion coeffi
cients: (1) Methods based on explicit formulas. These relate to classical 
orthogonal polynomials and are implemented in the routine recur of Section 
2. (2) Methods based on moment information. These are dealt with in Section 
3 and are represented by a single routine, cheb. Its origin can be traced back 
to work of Chebyshev on discrete least squares approximation. (3) Bootstrap 
methods based on inner product formulas for the coefficients, and orthogonal 
reduction methods. We have attributed the idea for the former method to 
Stieltjes, and referred to it in Gautschi [ 1982a] as the Stieltjes procedure. The 
prototype is the routine sti in Section 4, applicable for discrete orthogonal 
polynomiais. An alternative routine is lancz, which accomplishes the same 
purpose, but uses the method of Lanczos. Either of these routines can be used 
in mcdis, which applies to continuous as well as Lo mixed-type orthogonal 
polynomials. In contrast to all previous routines, mcdis uses a discretization 
process and, thus, fumishes only approximate answers whose accuracies can 
be controlled by the user. The routine, however, is by far the most sophisti
cated and flexible routine in this package, one that requires, or can greatly 
benefit from, ingenuity of the user. The same kind of discretization is also 
applicable to moment-related methods, yielding the routine mccheb. (4) 
Modification algorithms. These are routines generating recursion coefficients 
for measures modified by a rational factor, utilizing the recursion coefficients 
of the original measure, which are assumed to be known. They can be thought 
of as algorithmic implementations of the Christoffel, or generalized Christof
fel, theorem and are incorporated in the routines chri and gchri of Section 5. 
An important application of all of these routines is made in Section 6, where 
routines are provided that generate the weights and nodes of quadrature 
rules of Gauss, Gauss-Radau, and Gauss-Lobatto types. 

Each routine has a single-precision and double-precision version with 
similar names, except for the prefix d in double-precision procedures. The 
latler are generally a straightforward translation of the former. An exception 
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is the routine dlga used in drecur for computing the logarithm of the 
gamma function, which employs a different method than the single-precision 

companion routine alga. 
All routines of the package have been checked for ANSI conformance and 

tested on two computers: the Cyber 205 and a Sun 4/670 MP workstation. 
The former has machine precisions Es:::::: 7.11 X 10- 15, Ed :::::: 5.05 X 10-29 in 
single and double precision, respectively, while the latter has Es :::::: 5.96 X 

10 8 , Ed ::::: 1.11 X 10 -lG. The Cyber 205 has a large floating-point exponent 

range, extending from approximately -8617 to + 8645 in single as well as in 
double precision, whereas the Sun 4/670 has the rather limited exponent 
range [- 38, 38] in single precision, but a larger range [ -308, 308] in double 
precision. All output cited relates to work on the Cyber 205. 

The package is organized as follows: Section 0 contains (slightly amended) 
netlib routines, namely, rlmach and dlmach, providing basic machine 
constants for a variety of computers. Section 1 contains all of the driver 
routines, named testl, test2, etc., which are used (and described in the body 
of this paper) to test the subroutines of the package. The complete output of 
each test is listed immediately after the driver. Sections 2-6 constitute the 
core of the package: The single- and double-precision subroutines described in 
the equally numbered sections of this paper. All single-precision routines are 
provided with comments and instructions for their use. These, of course, 
apply to the double-precision routines as well. 

2. ClASSICAL WEIGHT FUNCTIONS 

Among the most frequently used orthogonal polynomials are the Jacobi 
polynomials, generalized Laguerre polynomials, and Hermite polynomials, 

supported, respectively, on a finite interval, half-infinite interval, and the 
whole real line. The respective weight functions are 

w(t) = W(a,f3l(t) = (1- t)a(l + t) 13 

on ( -1, 1), a> -1, f3 > -1: Jacobi; (2.1) 

on (0, oo), a > -1: Generalized Laguerre; (2.2) 

on ( -[)(j, oo): Hermite. (2.3} 

Special cases of the Jacobi polynomials are the Legendre polynomials (a = f3 

= 0); the Chebyshev polynomials of the first (a= f3 = - i>, second (a= f3 
= t ), third (a = - f3 = - ~ ), and fourth (a = - f3 = ~) kinds; and the Gegen
bauer polynomials (a = f3 = A - ! ). The Laguerre polynomials are the special 
case a = 0 of the generalized Laguerre polynomials. 

For each of these polynomials, the corresponding recursion coefficients 
ak = ak(w), f3k = f3k(w) are explicitly known (see, e.g., Chihara [1978, 
pp. 217-221) and are generated in single precision by the routine recur. 
Its calling sequence is 

recur(n. ipoly, al, be. a, b, ierr). 
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On entry, 

n 

ipoly 

al,be 

Algorithm 726: ORTHPOL 25 

is the number of recursion coefficients desired; type integer. 

is an integer identifying the polynomial as follows: 

1 = Legendre polynomial on (- 1, 1); 
2 = Legendre polynomial on (0, 1); 
3 = Chebyshev polynomial of the first kind; 
4 = Chebyshev polynomial of the second kind; 
5 = Chebyshev polynomial of the third kind; 
6 = Jacobi polynomial with parameters al, he; 
7 = generalized Laguerre polynomial with parameter al; and 
8 = Hermite polynomial. 

are the input parameters a, f3 for Jacobi and generalized Laguerre 
polynomials; type real; they are only used if ipoly = 6 or 7, and in 
the latter case, only al is used. 

On return, 

a, b are real arrays of dimension n with a(k ), b(k) containing the coeffi
cients ak _ 1 , f3k 1, respectively, h = 1, 2, ... , n. 

ierr is an error flag, where 

ierr = 0 on normal return, 
ierr = 1 if either al or be is out of range when ipoly = 6 or ipoly = 7, 
ierr = 2 if there is potential overflow in the evaluation of {30 when 

ipoly = 6 or ipoly = 7; in this case, {3 0 is set equal to 
the largest machine-representable number, 

ierr = 3 if n is out of range, and 
ierr = 4 if ipoly is not one of the admissible integers. 

No provision has been made for Chebyshev polynomials of the fourth kind, 
since their recursion coefficients are obtained from those for the third-kind 
Chebyshev polynomials simply by changing the sign of the a's (and leaving 
the {3's unchanged). 

The corresponding double-precision routine is drecur; it has the same 
calling sequence, except for real data types now being double precision. 

In the cases of Jacobi polynomials (ipoly = 6) and generalized Laguerre 
polynomials (ipoly = 7), the recursion coefficient {30 (and only this one) 
involves the gamma function f. Accordingly, a function routine, alga, is 
provided that computes the logarithm ln r of the gamma function, and a 
separate routine, gamma, computing the gamma function by exponentiating 
its logarithm. Their calling sequences are 

function alga(x) 
function gamma(x, ierr), 

where ierr is an output variable set equal to 2 or 0 depending on whether the 
gamma function does, or does not, overflow, respectively. The corresponding 
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double-precision routines have the names dlga and dgamma. All of these 
routines require machine-dependent constants for reasons explained below. 

The routine alga is based on a rational approximation valid on the interval 
[ ~, ~ ]. Outside this interval, the argument x is written as 

x=xe+m, 

where 

x =(x-lx]+l 
e x-lxJ 

if x - lxJ < 1 
- 2' 

otherwise 

is in the interval 0, 1] and where m :> - 1 is an integer. If m =, - 1 (i.e., 
0 < x s; 1), then In r(x) =In f(xe) - ln x, while for m > 0, one computes 
ln f(x) = ln f(x,) + lnp, where p = x/xe + l)· .. (xe + m- U If m is so 
large, say, m 2: m 0 , that the producl p would overflow, then ln p is com
puted (at a price!) as ln p = ln xe + ln(xe + 1) + ... + ln(xe + m - n It is 
here where a machine-dependent integer is required, namely, m 0 =smallest 
integer m such that 1 · 3 · 5 ... (2m + l)j2m is greater than or equal to the 
largest machine-representable number, R. By Stirling's formula, the integer 
m 0 is seen to be the smallest integer m satisfYing ((m + l)je) ln((m + l)je) 
2:0nR- ~ln8)je, hence, equal to le·t(OnR- ~ln8)je)J, where t(y) is 
the inverse function of y = t ln t. For our purposes, the low-accuracy approxi
mation of t(y ), t,riven in Gautschi [ 1967b, pp. 51-52], and implemented in the 
routine t, is adequate. 

The rational approximation chosen on [ ~, ~] is one due to W. J. Cody and 
K E. Hillstrom, namely, the one labeled n = 7 in Table II of Cody and 
Hillstrom [ 1967]. It is designed to yield about 16 correct decimal digits (cf 
Table I of Cody and Hillstrom [1967]), but because of numerical cancellation 
furnishes only about 13-14 correct decimal digits. 

Since rational approximations for ln r having sufficient accuracies for 
double-precision computation do not seem to be available in the literature, we 
use a different approach for the routine dlga, namely, the asymptotic approx
imation (cf. eq. 6.1.42 of Abramowitz and Stegun [1964], where the constants 
B 2 m are Bernoulli numbers) 

ln f(y) = (y ··~ ~)ln y- y + ~ ln(2tr) 

n B 
2m -(2m-l)+R() 

2m(2m- l)y n y 
(2.4) + L, 

for values of y > 0 large enough to have 

(2.5) 

where d is the number of decimal digits carried in double-precision arith
metic, another machine-dependent real number. If (2.5) holds for y 2: y 0 and 
if x ~ y 0 , we compute In r(x) from the asymptotic expression (2.4) (where 
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y = x and the remainder term is neglected). Otherwise, we let k 0 be the 
smallest positive integer k such that x + k 2:: y 0 , and use 

In r(x) =In r(x + k 0 ) ~ ln(x(x + 1) ··· (x + k 0 ~ 1)), (2.6) 

where the first term on the right is computed from (2.4) (with y = x + k 0 ). 
Since, for y > 0, 

(cf. Abramowitz and Stegun [ 1964, eq. 6.1.42]), the inequality (2.5) is satisfied 
if 

( 1 [ 2IB2n+21 ]) y :::: exp - ··~ d In 10 + ln · . 
2n + 1 (2n + 2)(2n + 1) 

(2.7) 

In our routine dlga, we have selected n = 9. For double-precision accuracy on 
the Cyber 205, we have d z 28.3, for which (2. 7) then gives y :::: 
exp{.121188 · · · d + .053905 · · · } ;:::; 32.6. 

For single-precision calculation, we selected the method of rational approxi
mation, rather than the asymptotic formula (2.4) and (2.6), since we found 
that the former is generally more accurate, by a factor, on the average, of 
about 20 and as large as 300. Neither method yields full machine accuracy. 
The former, as already mentioned, loses accuracy in the evaluation of the 
approximation. The latter suffers loss of accuracy because of cancellation 
occurring in (2.6), which typically amounts to a loss of2-5 significant decimal 
digits in the gamma function itself. 

Since these errors affect only the coefficient {30 (and only if ipoly = 6 or 7), 
they are of no consequence unless the output of the routine recur serves as 
input to another routine, such as gauss (cf. Section 6), which makes essential 
use of {30 • In this case, for maximum single-precision accuracy, it is recom
mended that [30 be first obtained in double precision by means of drecur 
with n = 1 and then converted to single precision. 

3. MOMENT-RELATED METHODS 

It is a well-known fact that the first n recursion coefficients ak(dlt}, f3k(dlt), 
k = 0, 1, ... , n ~ 1 (cf. (1.3)), are uniquely determined by the first 2n mo
ments JLk of the measure d lt, 

k = 0,1,2, ... ,2n ~ L (3.1) 

Formulas are known, for example, that express the a's and f3's in terms of 
Hankel determinants in these moments. The trouble is that these formulas 
become increasingly sensitive to small errors as n becomes large. There is an 
inherent reason for this: The underlying (nonlinear) map Kn: IR 2 n - IR 2n has 
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a condition number, cond Kn, that grows exponentially with n (cf Gautschi 
[1982a, sect. 3.2]). Any method that attempts to compute the desired coeffi
cients from the moments in (3.1), therefore, is doomed to fail, unless n is 
quite small or extended precision is being employed. That goes, in particular, 
for an otherwise elegant method due to Chebyshev (who developed it for the 
case of discrete measures dA) that generales the a's and f3's directly from 
the moments (3.1), bypassing determinants altogether (cf. Chebyshev [1859] 
and Gautschi [ 1982a, sect. 2.3]). 

Variants of Chebyshev's algorithm with more satisfactory stability proper
ties have been developed by Sack and Donovan [1972] and by Wheeler [1974] 
(independently of Chebyshev's work). The idea is to forgo the moments (3.1) 
as input data and instead depart from so-called modified moments. These are 
defined by replacing the power tk in (3.1) by an appropriate polynomial pk(t) 
of degree k, 

k = 0, 1,2, ... ,2n I. (3.2) 

For example, Pk could be one of the classical orthogonal polynomials. More 
generally, we shall assume that (pk} are monic polynomials satisfying a 
three-term recurrence relation similar to the one in (1.3), 

k=0,1,2, ... , 
(3.3) 

p 0 (t) = 1, p_ 1(t)=O, 

with coefficients ak E IR, bk ::>:: 0 that are known. (In the special case ak = 0, 
b k = 0, we are led back to powers and ordinary moments.) There now exists 
an algorithm, called the modified Chebysheu algorithm in Gautschi [1982a, 
sect. 2.4], which takes the 2n modified moments in (3.2) and the 2n - 1 
coefficients {ak}k:() 2 , {bk}l~o 2 in (3.3), and from them generates then desired 
coefficients ak(dA), f3k(dA), k = 0, 1, ... , n - L It generalizes Chebyshev's 
algorithm, which can be recovered (if need be) by putting ak = b,_ = 0. The 
modified Chebyshev algorithm is embodied in the subroutine cheb, which 
has the calling sequence 

cheb(n, a, b, fnu, alpha, beta, s, ierr, sO, s l, s2) 
dimension a(*), b( * ), fnu( * ), alpha(n), beta(n), s(n), 

sO(*),sl(*),s2(*) 

On entry, 

n is the number of recursion coefficients desired; type integer. 

a, b are arrays of dimension 2 X n - 1 holding the coefficients a(k) = 

ak 1, b(ld = bk_ 1, k = 1,2, ... ,2n- 1. 

fnu is an anay of dimension 2 X n holding the modified moments fnu(k) 
= v k _ 1 , k = 1, 2, ... , 2 X n. 
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On return, 

alpha, beta 

s 

ierr 
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are arrays of dimension n containing the desired recursion 
coefficients alpha(k) = ak 1 , beta(k) = f3k _ 1, k = 1, 2, ... , 
n. 

is an array of dimension n containing the numbers s(k) 
=fiR 7Tl_ 1 dA,k = 1,2, ... ,n. 

is an error flag, equal to 0 on normal return, equal to 1 if /v0 / 

is less than the machine zero, equal to 2 if n is out of range, 
equal to (k ~ 1) if s(k), k = 1, 2, ... , n, is about to under
flow, and equal to +(h ~ 1) if it is about to overflow. 

The arrays sO, sl, s2 of dimension 2 X n are needed for working space. 
There is again a map Kn: fR 2 n ~ IR 2 " underlying the modified Chebyshev 

algorithm, namely, the map taking the 2 n modified moments into the n pairs 
of recursion coefficients. The condition of the map Kn (actually of a somewhat 
different, but closely related, map) has been studied in [Gautschi 1982a, sect. 
3.3; 1986a] in the important case where the polynomials Pk defining the 
modified moments are themselves orthogonal polynomials, pk(-) = pk(·; dJL), 
with respect to a measure dJL (e.g., one of the classical ones) for which the 
recursion coefficients ak, b k are known. The upshot of the analysis then is 
that the condition of Kn is characterized by a certain positive polynomial 
g,(·; dlt) of degree 4n ~ 2, depending only on the target measure dA, in the 
sense that 

(3.4) 

Thus, the numerical stability of the modified Chebyshev algorithm is deter
mined by the magnitude of gn on the support of dJL. 

The occurrence of underflow (overflow) in the computation of the a's and 
f3's, especially on computers with limited exponent range, can often be 
avoided by multiplying all modified moments by a sufficiently large (small) 
scaling factor before entering the routine. On exit, the coefficient (30 (and 
only this one!) then has to be divided by the same scaling factor. (There may 
occur harmless underflow of auxiliary quantities in the routine cheb, which 
is difficult to avoid since some of these quantities actually are expected to be 
zero.) 

Example 3.1 dA,(t) = [(1- w 2 t 2 Xl ~ t 2 )j- 1 12 dt on ( -1, 1), 0::; w < 1. 
This example is of some historical interest, in that it has already been 
considered by Christoffel [ 1877, example 6]; see also Rees [ 1945]. Computa
tionally, the example is of interest as there are empirical reasons to believe 
that for the choice d~-t(t) = (1 ~ t 2 )- 112 dt on ( ~ 1, 1), which appears rather 
natural, the modified Chebyshev algorithm is exceptionally stable, unifonnly 
in n, in the sense that in {3.4) one has g n ::; 1 on supp df..L for all n (cf. 
Gautschi [1984b, example 5.2]). With the above choice of d~-t, the polynomials 
Pk are clearly the Chebyshev polynomials of the first kind, Po = T 0 , Pk = 
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2 -t k -urk, k ::>: l, and the modified moments are given by 

v0 = j 1 dA)t ), 
-1 

k = 1' 2' 3' . . . . ( 3.5) 

They are expressible in terms of the Fourier coefficients C/ w 2 ) in 

X 

(1- w 2 sin2 8)- 112 = C0(w~) + 2 L Cr(w 2 kos2r8 (3.6) 
r= l 

by means of (cf. Gautschi [ 1982a, example 3.3]) 

m=1,2,3, .... 
(3.7) 

The Fourier coefficients (C/w 2 )}, in tum, can be accurately computed as the 
minimal solution of a certain three-term recurrence relation (see Gautschi 
[1982a, pp. 310--311]). 

The ordinary moments 

ILk= / 1 tk dA.)t), 
-1 

k = 1,2,3, ... , (3.8) 

likewise can be expressed in terms of the Fourier coefficients C/w 2 ) by 
writing t 2 "' as a linear combination of Chebyshev polynomials T0 , T2 , ... , T2 m 

(cf. Luke [ 1975, Eq. 22, p. 454]). The result is 

m = 1,2,3, ... , (3.9) 

where 

Yit' = 1, 

2m+ 1- r 
~'r(m) = _____ .,_,(m} 
I• lr-1> r=l,2, ... ,m-l, 

r 

rn + 1 
-vm(m) = ---'V(m) ,, 2 m 1m-1· (3.10) 

The driver routine testl (in Section 1 of the package) generates for 
& 2 = .1(.2).9, .99, .999 the first n recurrence coefficients f3k(dAw) (all ak = 0), 
both in single and double precision, using modified moments if modmom = 
.true. and ordinary moments otherwise. In the former case, n = 80; in the 
latter, n = 20. It prints the double-precision values of f3k, together with the 
relative errors of the single-precision values (computed as the difference of 
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Table I. Selected Output from testl in the Case of Modified Moments 

wz k pfouble err f3tmgle 

.100 0 3.224882697 440438796459832725 l.433( ~ 14) 
1 0.5065840806382684475158495727 Ll87( -14) 
5 02499999953890031901881028267 Ll09( ~ 14) 

11 0.2499999999999999996365048540 1.454(- 18) 
18 0.2500000000000000000000000000 0.000 

.500 0 3.708149354602743836867700694 9.005( -15) 
1 0.5430534189555363746250333773 2.431( -14) 
8 0.2499999846431723296083779480 4.109( -15) 

20 0.2499999999999999978894635584 8.442(- 18) 
35 0.2500000000000000000000000000 0.000 

.900 0 5.156184226696346376405141543 6.950( -15) 
1 0 6349731661452458711622492613 7.920( ~ 15) 

19 0.2499999956925950094629502830 1.820( -14) 
43 0.2499999999999998282104100896 6.872( -16) 
79 0.2499999999999999999999999962 1.525(. 26) 

.999 0 9.68226fr121100594060678208257 L194( -13) 
1 0.7937821421385176965531719571 6.311( ~ 14) 

19 0.2499063894398209200047452537 1.026( -14) 
43 0.2499955822633680825859750068 8.282( -15) 
79 0.2499998417688157876153069211 1.548( -15) 

the double-precision and single-precision values divided by the double-preci
sion value). In testl, as well as in all subsequent drivers, not all error flags 
are interrogated for possible malfunction. The user is urged, however, to do so 
as a matter of principle. 

The routine 

fmm(n, eps. modmom,()m2, fnu, ierr, f, ro, rr) 

used by the driver computes the first 2 X n modified (ordinary) moments for 
UJ 2 = om2, to a relative accuracy cps if modmom = .true. (.false.). The 
results are stored in the array fnu. The arrays f, ro, and rr are internal 
working arrays of dimension n, and ierr is an error flag. On normal return, 
ierr = 0; otherwise, ierr = 1, indicating lack of convergence (within a pre
scribed number of iterations) of the backward recurrence algorithm for 
computing the minimal solution {Cr(w 2 )}. The latter is likely to occur if w 2 is 
too close to 1. The routine fmm, as well as its double-precision version dmm, 
is listed immediately after the routine testl. 

Table I shows selected results from the output of testl, when modmom = 
.true. (Complete results are given in the package immediately after testl.) 
The values for k = 0 are expressible in terms of the complete elliptic integral, 
/30 = 2K(w2 ), and were checked, where possible. against the 168-values in 
Abramowitz and Stegun [1964, Table 17.1]. In all cases, there was agreement 
to all 16 digits. The largest relative error observed was 2.43 X 10 -l 3 for 
w 2 = .999 and k = 2. When UJ 2 s .99, the error was always less than 2.64 X 
10 -l\ which confirms the extreme stability of the modified Chebyshev algo-
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Table II. Selected Output from testl in the Case of Ordinary Moments 
--------- ----------

k err {Jk k err f3k 

1 1.187( -14) .100 .900 1 3 270( -15) 

7 2 603( -10) 7 4.819(- to) 

13 9663( -6) 13 1.841( -- 5) 

19 4.251(- 1) 19 6272( -1) 

1 2.431(- 14) .500 .999 l 6.3ll(- 14) 

7 5.571( -10) 7 L745( -9) 

t::l 9.307( -6) 13 E\.589( -5) 

19 5.798( -1) 19 4.808(0) 

rithm in this example. It can be seen (as was to be expected) that for w 2 not 

too close to 1 , the coefficients converge rapidly to i. 
In contrast, Table II shows selected results (for complete results, see the 

package) in the case of ordinary moments (modmom = .false.) and demon

strates the severe instability of the Chebyshev algorithm. Note that the 

moments themselves are all accurate to essentially machine precision, as has 

been verified by additional computations. 
The next example deals with another weight function for which the modi

fied Chebyshev algorithm performs rather well. 

Example 3.2 dA.a(t) = t cr ln(ljt) dt on (0, 1], u > ~ L 

What is nice about this example is that both modified and ordinary 

moments of d Aa are known in closed form. The latter are obviously given by 

1 
Jkk(dA") = 2 

(o-+1+h) 
h=0,1,2, ... , (3.11) 

whereas the former, relative to shifted monic Legendre polynomials (ipoly = 

2 in recur), are (cf. Gautschi ( 1979]) 

(2k)! 
-~-v (dA ) 

k!2 k 0" 

u!2(k ~ o- ~ 1)! 
( ~ 1) k- 0" ----:-----

(k + (J + 1)! ' 
O~u<k, 

o- an integer, 

0" ~ l ( 0" ~ l + r~l ( 0" + : + r - o- + : ~ r)) 
k 

·fl 
r= l 

u+l-r 

cr+l+r' 
otherwise. 

(3.12) 

The routines from and dmm appended to test2 in Section 1 of the package, 

similarly as the corresponding routines in Example 3.1, generate the first 
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Table HL Selected Output from test2 in the Case of Modified Moments 
(T k ak fJk 

-.5 0 .1111111111111111111111111 4.000000000000000000000000 
12 .4994971916094638566242202 0.06231277082877488477563886 
24 .4998662912324218943801592 0.06245372557342242600457226 
48 .4999652635485445800661969 0.0624885[, 7177 48684 7 42433618 
99 .4999916184024356271670789 0.06249733823051821636937156 0 0 .2500000000000000000000000 1.000000000000000000000000 
12 .4992831802157361310272625 0.06238356835953571123560330 
24 .4998062839486146398501532 0.06247100084469111001639128 
48 .4999494083797023879356424 0.06249281268110967462373889 
99 .4999877992015903283047919 0.06249832670616925926204896 

.5 0 .3600000000000000000000000 0.4444444444444444444444444 
12 .4993755732917555644203267 0.06237082738280752611960887 
24 .4998324497706394488722725 0.06246581011945496883543089 
48 .4999567275223771727791521 0.06249115332711027176695932 
99 .4999896931841789781887674 0.06249787251281682973825635 

2 X n modified moments v0 , v 1, ... , v2 n-l ifmodmom =.true. and the first 
2 X n ordinary moments otherwise. The calling sequence of fmm. is 

fmm(n, modmom, intexp, sigma, fnu). 

The logical variable intexp is to be set .true. if u is an integer and .false. 
otherwise. In either case, the input variable sigma is assumed to be of type 
real. 

The routine test2 generates the first n recursion coefficients ak(d>..u), 
{3k(dAu) in single and double precision for u = - t, 0, t, where n = 100 for 
the modified Chebyshev algorithm (modmom = .true.) and n = 12 for the 
classical Chebyshev algorithm (modmom =.false.). Selected double-preci
sion results to 25 significant digits, when modified moments are used, are 
shown in Table III. (The complete results are given in the package after 
test2.) 

The largest relative errors observed, over all k = 0, 1, ... , 99, were, respec
tively, 6.211 X 10-11, 2.237 X 10- 12 , and 1.370 X 10- 12 for the a's and 
1.235 X 10- 10,4.446 X 10- 12 , and 2.724 X 10- 12 for the f3's, attained consis
tently at k = 99. The accuracy achieved is slightly less than in Example 3.1, 
for reasons explained in Gautschi ( 1984b, Example 5.3]. 

The complete results for a = - ~ are also available in Gautschi [1991b, 
Appendix, Table 1]. (They differ occasionally by one unit in the last decimal 
place from those produced here, probably because of a slightly different 
computation of the modified moments.) The results for a = 0 can be checked 
up to k = 15 against the 30S-values given in Stroud and Secrest [ 1966, p. 92], 
and for 16 ~ k s 19 against 12S-values in Danloy {1973, Table 3]. There is 
complete agreement to all 25 digits in the former case and agreement to 12 
digits in the latter, although there are occasional end-figure diacrepancies of 
one unit. These are believed to be due to rounding errors committed in 
Danloy [1973], since similar discrepancies occur also in the range k s 15. We 

ACM Transactions on Mathematical Software, Vol. 20. No. 1, March 1994. 

201



34 Walter Gautschi 

Table fV. Selected Output from test2 in the Case of Ordinary Moments 

k () err ak err f3k u err ak err f3k () err ak err {Jk 
-------~--~ 

2 -.5 l.S(- 13) 77(-14) 0 4.2(- 13) 7.6( -13) .5 1.6( -12) 2.6( -13) 

5 22( -9) 1.2( -9) 4.2( -9) 1.2( 10) 1.3( 8) 6 6( -9) 

8 l.l( -5) 5.5( -6) 4.3( . 6) 3.8( -6) 6.0(. 5) 52( -6) 

11 2.5( -1) 1.7( -1) 1.3(0) 3.2( -1) 2.2<0) 4.7( -l) 

do not know of any tables for if = ~, but a test is given in Section 5, Example 
5.1. 

The use of ordinary moments (modmom = .false.) produces predictably 
worse results, the relative errors of which are shown in Table IV. 

4. STIEL T JES, ORTHOGONAL REDUCTION, AND DISCRETIZATION 
PROCEDURES 

4.1 The Stieltjes Procedure 

It is well known that the coefficients ak(d;..), f3k(d)..) in the basic recurrence 
relation (1.3) can be expressed in terms of the orthogonal polynomials (1.2) 
and the inner product (1.1) as follows: 

k ~ 0; 

k ~ L (4.1) 

Provided that the inner product can be readily calculated, (4.1) suggests the 
following "bootstrap" procedure: Compute a 0 and f3 0 by the first relations in 
(4.1) fork = 0. Then use the recurrence relation (1.3) for k = 0 to obtain 1r1 . 

With 7T0 and 1r 1 known, apply (4.1) fork = 1 to get a 1 , {3 1, then again apply 
(1.3) to obtain 1r2 , and so on. In this way, alternating between (4.1) and (1.3), 
we can bootstrap ourselves up to as many of the coefficients ak, f3k as are 
desired. We attributed this procedure to Stieltjes and called it Stieltjes's 
procedure in Gautschi { 1982a]. 

In the case of discrete orthogonal polynomials, that is, for inner products of 
the form 

N 

(u,u) = L wku(xk)v(xk), 
k~l 

(4.2) 

Stieltjes's procedure is easily implemented; the resulting routine is called sti 
and has the calling sequence 

stHn, neap, x, w, alpha, beta, ierr, pO, pl, p2). 
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On entry, 
n 

neap 

x,w 

is the number of recursion coefficients desired; type integer. 

is the number of terms, N, in the discrete inner product; type 
integer. 

are arrays of dimension neap holding the abscissas x(k) = xk and 
weights w(k) = w k, k = 1, 2, ... , neap, of the discrete inner product. 

On return, 

alpha, beta 

ierr 

are arrays of dimension n containing the desired recursion 
coefficients alpha(k) = ak-l• beta(k) = f3k-l• k = 1,2, ... , 
n. 

is an error flag having the value 0 on normal return and the 
value 1 if n is not in the proper range 1 :<; n :s; N; if during 
the computation of a recursion coefficient with index k there 
is impending underflow or overflow, ierr will have the value 
- k in case of underflow and the value + k in case of 

overflow. (No error flag is set in case of harmless underflow.) 
The arrays pO, pl, p2 are working arrays of dimension neap. The double-pre
cision routine has the name dsti. 

Occurrence of underflow (overflow) can be forestalled by multiplying all 
weights w k by a sufficiently large (small) scaling factor prior to entering the 
routine. Upon return, the coefficient {30 will then have to be readjusted by 
dividing it by the same scaling factor. 

4.2 Orthogonal Reduction Method 
Another approach to producing the recursion coefficients ak, f3k from the 
quantities xk, wk defining the inner product (4.2} is based on the observation 
(cf. Boley and Golub [ 1987] and Gautschi [ 1991d, sect. 7]) that the symmetric 
tridiagonal matrix of order N + 1, 

(4.3) 

0 

(the "extended Jacobi matrix" for the discrete measure d>..N implied in (4.2)), 
is orthogonally similar to the matrix 

(4.4) 
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Hence, the desired matrix J(dA.N) can be obtained by applying Lanczos's 
algorithm to the matrix (4.4). This is implemented in the routine 

lancz(n, neap, x, w, alpha, beta, ierr, pO, pO, 

which uses a judiciously constructed sequence of Givens transformations to 
accomplish the orthogonal similarity transformation (cf. Rutishauser [ 1963], 
de Boor and Golub [ 1978], Gragg and Harrod [ 1984], and Boley and Golub 
[1987]; the routine lancz is adapted from the routine RKPW in Gragg and 
Harrod [ 1984, p. 328]). The input and output parameters of the routine lancz 
have the same meaning as in the routine sti, except that ierr can only have 
the value 0 or 1, while pO, pl are again working arrays of dimension neap. 
The double-precision version of the routine is named dlancz. 

The routine lancz is generally superior to the routine sti: The procedure 
used in sti may develop numerical instability from some point on and 
therefore give inaccurate results for larger values of n. It furthermore is 
subject to underflow and overflow conditions. None of these shortcomings is 
shared by the routine lancz. On the other hand, there are cases where sti 
does better than lancz (cf. Example 4.5). 

We illustrate the phenomenonofinstability(which is explained in Gautschi 
[ 1993c]) in the case of the "discrete Chebyshev" polynomials. 

Example 4.1 The inner product (4.2) with xk = -1 + 2(k - l)j(N- 1), 

wk = 2jN, k = 1,2, ... ,N. 
Tbis generates discrete analogues of th'e Legendre polynomials, which they 

indeed approach as N -> oo. The recursion coefficients are explicitly known: 

k=O,l, ... ,N-1; 

f3o =2, 

k = 1,2, ... ,N-1. (4.5) 

To find out how well the routines sti and lancz generate them (in single 
precision), when N = 40, 80, 160, and 320, we wrote the driver test3, which 
computes the respective absolute errors for the a's and relative errors for the 
f3's. 

Selected results for Stieltjes's algorithm are shown in Table V. The gradual 
deterioration, after some point (depending on N), is clearly visible. Lanczos's 
method, in contrast, preserves essentially full accuracy; the largest error in 
the a's is 1.42( -13), 2.27( -13), 4.83( 13), and 8.74( -13) for N = 40, 80, 

160, and 320, respectively, and 3.38( -13), 6.63( -13), 2.17(- 12), and 
5.76( -12) for the f3's. 

4.3 Multiple-Component Discretization Procedure 

We now assume a measure d A of the form 

p 

dA.(t) = w(t) dt + L y1 B(t- x 1 ) dt, 
j=l 
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Table V. Errors in the Recursion Coefficients ak, {3k of(4.5) Computed by Stieltjes's Procedure 

N n err a err {3 N n err a err {3 

40 ::;; 35 ::;; 1.91( 13) .s; 7.?8( -13) 160 .s; 76 .s; 2.98( -- 13) s 7.61( -13) 
36 3.01( -12) 1.48( -11) 85 1.61( -9) 1.57( -8) 
37 6.93( -11) 3.55( -10) 94 1.25( -4) 1.17( -3) 
38 2.57( -9) 1.30( -8) 103 2.64( -3) 1.51(-l) 
39 1.93( -7) 9.58( -7) 112 2.35( -3) 1.16{0) 

80 .s; 53 :; 2.04(- 13) s 692( -13) 320 s 106 s; 8.65(- 13) ::;; 7.39( -13) 
57 2.04( -lO) 5.13(- 10) 117 396(-10) 7.73( -10) 
61 3.84( .. 7) 9.35( -7) 128 2.46( 6) 4.67( - 6) 
65 1.94( -3) 4.61(· 3) 139 2.94( -2) 627( -2) 
69 1.87( 1) 6.14(0) 150 115(- 3) 2.18( -2) 

consisting of a continuous part, w(t) dt, and (if p > 0) a discrete part written 
in terms of the Dirac &-function. The support of the continuous part is 
assumed to be an interval or a finite union of disjoint intervals, some of which 
may extend to infinity. In the discrete part, the abscissas x1 are assumed 
pairwise distinct, and the weights positive, y1 > 0. The inner product {Ll), 
therefore, has the form 

p 

(u, v) = j u{t)u(t)w(t) dt + L y1u(x)v(x). 
~ j=i 

(4.7) 

The basic idea of the discretization procedure is rather simple: One approx
imates the continuous part of the inner product, that is, the integral in {4.7), 
by a sum, using a suitable quadrature scheme. If the latter involves N terms, 
this replaces the inner product ( 4. 7) by a discrete inner product ( ·, · )N + P 

consisting of N + p terms, the N "quadrature terms," and the p original 
terms. In effect, the measure dA. in (4.6) is approximated by a discrete 
(N + p)-point measure dA.N+p· We then compute the desired recursion coeffi
cients from the formulas (4.1), in which the inner product (-, · ) is replaced, 
throughout, by(-,· )N+p· Thus, in effect, we approximate 

o:k(di\.) """ o:k(dA.N+p), f3k(di\.) :::= fJk(di\.N+p). {4.8) 

The quantities on the right can be computed by the methods in Section 4.1 or 
4.2, that is, employing the routines sti or lancz. 

The difficult part of this approach is to find a discretization that results in 
rapid convergence, as N--> oo, of the approximations on the right of (4.8) to 
the exact values on the left, even in cases where the weight function w in 
(4.6) exhibits singular behavior. (The speed of convergence, of course, is 
unaffected by the discrete part of the inner product (4.7).) To be successful in 
this endeavor often requires considerable inventiveness on the part of the 
user. Our routines, mcdis and dmcdis, which implement this idea in single 
(resp., double) precision, however, are designed to be flexible enough to 
promote the use of effective discretization procedures. 

Indeed, if the support of the weight function w in (4.7) is contained in the 
(finite or infinite) interval (a, b), it is often useful to first decompose that 
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interval into a finite number of subintervals, 

m 

suppw c [a,b] = U [a,,b,], m ;:::_ 1, (4.9) 
l= 1 

and to approximate the inner product separately on each subinterval [a" b,], 
using an appropriate weighted quadrature rule. Thus, the integral in (4.7) is 
written as 

m b J u(t)u(t)w(t) dt = L J 'u(t)v(t)w,(t) dt, 
IR '= 1 a, 

(4.10) 

where w, is an appropriate weight function on [a, bJ The intervals [a, b,J 
are not necessarily disjoint. For example, the weight function w may be the 
sum w = w 1 + w 2 of two weight functions on [a, b ], which we may want to 
treat individually (cf. Example 4.2). In that case, one would take (a 1, b 1 ] = 
f a 2 , b 2 ] =[a, b] and w 1 on the first interval, and w 2 on the other. Alterna
tively, we may simply want to use a composite quadrature rule to approxi
mate the integral, in which case (4.9) is a partition of[ a, bJ and w,(t) = w(t) 
for each i. Still another example is a weight function w that is already 
supported on a union of disjoint intervals; in this case, (4.9) would be the 
same union, or possibly a refined union where some of the subintervals are 
further partitioned. 

In whichever way ( 4.9) and ( 4.10) are constructed, each integral on the 
right of(4.l0) is now approximated by an appropriate quadrature rule, 

j 6' u(t)u(t)w,(t) dt::::: Q,(uv), 
a, 

(4.11) 

where 

N, 

QJ = L wr.J(xr,)· (4.12) 
r= 1 

This gives rise to the approximate inner product 

m N. p 

(u,v)Ntp = L '[ wr,,u(xr,,)v(xr,,) + L y1u(x1)v(x), 
t=l r~l ;=1 

{4.13) 
m 

N = L N,. 
l= l 

In our routine mcdis, we have chosen, for simplicity, all N, to be the same 
integer N 0 , 

i = 1,2, ... ,m, (4.14) 

so that N = mN0 . Furthermore, if n is the number of ak and the number of 
{3k desired, we have used the following iterative procedure to determine the 
coefficients ak, {3k to a prescribed (relative) accuracy E: Let N 0 be increased 
through a sequence (NJsl}s=O.l,Z, of integers, for each s use Stieltjes's (or 
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Lanczos's) algorithm to compute at"'~ = ak(dArnNb'ltp), f3ksJ = f3k(dAmNb'J+p), 
k = 0, 1, ... , n - 1, and stop the iteration for the first s ~ 1 for which all 
inequalities 

k = 0, 1, ... , n - 1, (4.15) 

are satisfied. An error flag is provided if within a preset range NJsl s; N 0max 
the stopping criterion (4.15) cannot be satisfied. Note that the latter is based 
solely on the f3-coefficients. This is because, unlike the a's, they are known to 
be always positive, so that it makes sense to insist on relative accuracy. (In 
our routine we actually replaced f3lsl on the right of (4.15) by its absolute 
value to ensure proper termination in cases of sign-changing measures d A.) 

In view of formulas (4.1), it is reasonable to expect, and indeed has been 
observed in practice, that satisfaction of (4.15) entails sufficient absolute 
accuracy for the a's if they are zero or small, and relative accuracy otherwise. 

Through a bit of experimentation, we have settled on the following se
quence of integers NJ s I: 

NJ0 1 = 2n, 

~l = 1, 

NJsi = NJs-1] + ~s, 
~ = 2ls/5J. n 

s ' 

s=1,2, ... , 
(4.16) 

s = 2,3 .... 

Note that if the quadrature formula (4.11) is exact for each i, whenever u · v 
is a polynomial of degree s; 2 n - 1 (which is the maximum degree occurring 
in the inner products of(4.1), when k s; n - 1), then our procedure converges 
after the very first iteration step! Therefore, if each quadrature rule Q, has 
(algebraic) degree of exactness ~ d(N0 ) and if d(N0 )/N0 = o + O(N0 1 ) as 
N0 ~ oo, then we let NJ0 l = 1 + L(2n- 1)/oJ in an attempt to get exact 
answers after one iteration. Normally, o = 1 (for interpolatory rules) or o = 2 
(for Gauss-type rules). 

The calling sequence of the multiple-component discretization routine is as 
follows: 

medis(n, neapm, me, mp, xp, yp, quad, cps, iq, idelta, irout, 
finl, finr, endl, endr, xfer, wfer, alpha, beta, neap, 
kount, ierr, ie, be, x, w, xm, wm,pO,pl, p2) 

dimension xp( * ) , yp( * ), endl(md, endr(md, xfer(ncapm), 
wfer<ncapm), alpha(n), beta(n), be(n), x(ncapm), 
w(neapm), xm( * ), wm( d, pO( *),pi(*), p2( *) 

logical finl, finr · 

On entry, 

n is the number of recursion coefficients desired; type integer. 

ncapm is the integer N 0max above, that is, the maximum integer N 0 
allowed (ncapm = 500 will usually be satisfactory). 

me is the number of component intervals in the continuous part of the 
spectrum; type integer. 

mp is the number of points in the discrete part of the spectrum; type 
integer; if the measure has no discrete part, set mp = 0. 
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xp,yp 

quad 

cps 

iq 

idelta 

irout 

Walter Gautschi 

are arrays of dimension mp containing the abscissas and the 
jumps of the point spectrum. 

is a subroutine determining the discretization of the inner product 
on each component interval, or a dummy routine if iq =F 1 (see 
below); specifically, quad(n, x, w, i, ierd produces the abscissas 
x(r) = xr., and weights w( r) = wr,,, r = 1, 2, ... , n, of the n-point 
discretization of the inner product on the interval [a, b,] (cf. 
{4.13)); an error flag ierr is provided to signal the occurrence of an 
error condition in the quadrature process. 

is the desired relative accuracy of the nonzero recursion coeffi
cients; type real. 

is an integer selecting a user-supplied quadrature routine quad if 
iq = 1 or the OHTHPOL routine qgp (see below) otherwise. 

is a nonzero integer, typically 1 or 2, inducing fast convergence in 
the case of special quadrature routines; the default value is idelta 

L 

is an integer selecting the routine for generating the recursion 
coefficients from the discrete inner product; specifically, irout 1 
selects the routine sti, and irout i= 1 selects the routine lancz. 

The logical variables finl, finr and the arrays endl, endr, xfcr, wfer are 
input variables to the subroutine qgp and are used (and, hence, need to be 
properly dimensioned) only if iq i= L 

On return, 

alpha, beta 

neap 

kount 

ierr 

ic 

are arrays of dimension n holding the desired recurswn 
coefficients alpha(k) = ak 1> beta(k) f3k-l• k c= 1,2, ... , 
n. 

is the integer N0 yielding convergence. 

is the number of iterations required to achieve convergence. 

is an error flag, equal to 0 on normal return, equal to - 1 if n 
is not in the proper range, equal to i if there is an error 
condition in the discretization on the ith interval, and equal 
to neapm if the discretized Stieltjes procedure does not 
converge within the discretization resolution specified by 
neapm. 

is an error flag inherited from the routine sti or lanez 
(whichever is used). 

The arrays be, x, w, xm, wm, pO, pl, p2 are used tor working space, the last 
five having dimension me X ncapm + mp. 

A general-purpose quadrature routine, qgp, is provided tor· cases in which 
it may be difficult to develop special discretizations that take advantage of 
the structural properties of the weight function w at hand. The routine 
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assumes the same setup (4.9)~(4.14) used in medis, with disjoint intervals 
[a,, b,), and provides for Q, in (4.12) the Fejer quadrature rule, suitably 
transformed to the interval fa i, b J, with the same number N, = N 0 of points 
for each i. Recall that the N-point Fejer rule on the standard interval [ - 1, 1] 
is the interpolatory quadrature formula 

N 

Q~f = I: w:r<x;>, (4.17) 
r ~ 1 

where x; = cos((2r - 01Tj2N) are the Chebyshev points. The weights are 
all positive and can be computed explicitly in terms of trigonometric functions 
(cf., e.g., Gautschi [1967aJ). The rule (4.17) is now applied to the integral in 
(4.11) by transforming the interval [ -1, 1] to [a, bJ via some monotone 
function ¢, (a linear function if [a,. bJ is finite) and letting f = uvw,: 

jb'u(t)v(t)w,(t)dt ~ j 1 u(¢,(r))v(¢,(r))w,(¢i(T))¢;(r)dr 
a, -1 

N 

"" L w: w,( <P,(x;))¢;(x;l · u( <b,(x;>)u( <f;,(x;>). 
r=l 

Thus, in effect, we take in (4.13) 

i = 1, 2, ... , m. (4.18) 

If the interval [ a 11 b,J is half-infinite, say, of the form l 0, oo), we use <f>Jt) = (1 
+ t) /(1 - t ), and similarly for intervals of the form f- oo, b J and [a, oo]. If 
[a,,bJ =I -oo,oo], we use <f>/t) = tj(l ~ t 2 ). 

The routine qgp has the following calling sequence: 
subroutine qgp(n, x. w, i, ierr, me, finl, finr, endl, emir, xfer, wfed 
dimension x(n), w(n), endHmd, endr(md, xfer( * ), wfer( *) 
logical finl, finr 

On entry, 

n is the number of terms in the Fejer quadrature rule. 

i indexes the interval [a,, b,J for which the quadrature rule is 
desired; an interval that extends to - oo has to be indexed by 1, 
and one that extends to + x by me. 

me is the number of component intervals; type integer. 

finl is a logical variable to be set .true. if the extreme left interval 
is finite and .false. otherwise. 

finr is a logical variable to be set .true. if the extreme right interval 
is finite and .false. otherwise. 

endl is an array of dimension me containing the left endpoints of 
the component intervals; if the first of these extends to - oo, 
endl(l) is not being used by the routine. 
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endr is an array of dimension me containing the right endpoints of 
the component intervals; if the last of these extends to + 00 , 

enddmc) is not being used by the routine. 

xfer, wfer are working arrays holding the standard Fejer nodes and 
weights, respectively; they are dimensioned in the routine 
mcdis. 

On return, 

x, w are arrays of dimension n holding the abscissas and weights (4.18) of 
the discretized inner product for the i th component intervaL 

ierr has the integer value 0. 

The routine calls on the subroutines fejer, symtr and tr, which are ap
pended to the routine qgp in Section 4 of the package. The first generates the 
Fejer quadrature rule; the others perform variable transformations. The user 
has to provide his or her own function routine wf(x, i) to calculate the weight 
function w/x) on the ith component intervaL 

Example 4.2 Chebyshev weight plus a constant: wc(t) = (1 t 2 ) 112 + c, 
c > 0, -1 < t < L 

It would be difficult here to find a single quadrature rule for discrctizing 
the inner product and to obtain fast convergence. However, using in (4.9) 
m = 2, [a 1, b 1 ] = [a 2 , b 2 ] = [ -1, 1], and w/t) = (1- t 2 )- 112, wz(t) = c in 
(4.11), and taking for Q 1 the Gauss-Chebyshev, and for Q 2 the 
Gauss-Legendre n-point rule (the latter multiplied by c), yield convergence 
to ak(wc), {3k(wc), k = 0, 1, ... , n - 1, in one iteration {provided 8 is set 
equal to 2)1 Actually, we need N0 = n + 1, in order to test for convergence; cf. 
(4.15). The driver test4 implements this technique and calculates the first 
n = 80 beta-coefficients to a relative accuracy of 5000 X E 5 for c = 1, 10, 100. 
(All ak are zero.) Attached to the driver is the quadrature routine qchle used 
in this example. It, in turn, calls for the Gauss quadrature routine gauss, to 
be described in Section 6. Anticipating convergence after one iteration, we put 
ncapm = 81. 

The weight function of Example 4.2 provides a continuous link between the 
Chebyshev polynomials (c = 0) and the Legendre polynomials (c = oo); the 
recursion coefficients {3k(wc) indeed converge (except for k = 0) to those of 
the Legendre polynomials, as c ~ oo_ 

Selected results of test4 (where irout in mcdis can be arbitrary) are 
shown in Table VL The output variable kount is 1 in each case, confirming 
convergence after one iteration. The coefficients f3o<wc) are easily seen to be 
7T + 2c. 

Example 4.3 Jacobi weight with one mass point at the left endpoint: 
w(a,f3)(t; y) = [ JL~a,PJ}- 1 (1 - t)"'(l + t) 11 + y8(t + 1) on ( -1, 1), JLba.{J) = 
2a+{Hlf(O' + 1)f({3 + l)jf{a + {3 + 2), 0' > -1, {3 > -1,y > 0. 
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Table VL &lected Recursion Coefficients {3k(wc) for c = 1, 10, 100 

k f3k(w1) {Jk(wlo) f3k(wtoo) 

0 5.1415926540 23.14159265 20:1.1415927 
1 0.4351692451 0.3559592080 0.3359108398 
5 

12 
25 
51 
79 

0.2510395775 
0.2500610870 
0.2500060034 
0.2500006590 
0.2500001724 

0.2535184 776 0.2528129500 
0.2504824840 0. 2.'505324193 
0.2500682357 0.2501336338 
0.2500082010 0.2500326887 
0.2500021136 0.2500127264 

The recursion coefficients ak, f3k are known explicitly (see Chihara {1985, 
Eqs. 6.23, 3.5F) and can be expressed, with some effort, in terms of the 
recursion coefficients a;!, f3t for the Jacobi weight w(a, rno = w{a, tll(-; 0). 
The formulas are 

where 

c0 = 1 + y, 

and 

a;{- y 
ao = 1 + y , f3o = {3;[ + Y, 

2k(a + k) 
ak =a;!+ -------------(ck - 1) 

(a+ {3 + 2k)(a + {3 + 2k + 1) 

+ --1 
2( f3 + k + 1 )(a + f3 + k + 1) ( 1 ) 

(a+ {3 + 2k + l)(a + {3 + 2k + 2) ck ' 

k=1,2,3, ... , 

( f3 + k + l)(a + f3 + k + 1) 

(4.19) 

1 + k(a + k) ydk 

1 ·I ydk 
k = 1,2, ... , 

(4.20) 

dl = 1, 

( {3 + k )(a + f3 + k) 
d - d 
k- (a+k -1)(k -1) k-l• 

(4.21) 
k = 2,3, .... 

Again, it is straightforward with medis to get exact results (modulo 
rounding) after one iteration, by using the Gauss-Jacobi quadrature rule (see 
gauss in Section 6) to discretize the continuous part of the measure. The 
driver test5 generates in this manner the first n = 40 recursion coefficients 
ak, f3k, k = 0, 1, ... , n - 1, to a relative accuracy of 5000 X E 5 , for y = t, 1, 2, 

1 In Chihara {1985] the interval is taken to be {0, 2], rather than { -1,1]. There is a typographical 
error in the first formula of (6.23), which should have the numerator 2/3 + 2 instead of 2 {3 + L 
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4, and 8. For each a = - .8(.2)1. and {3 = - .8(.2)1., it computes the maximum 
relative errors (absolute error, if ak ""0) of the ak, {3k by comparing them 
with the exact coefficients. These have been computed in double precision by 
a straightforward implementation of formulas (4.19)-(4.21). 

As expected, the output of test5 reveals convergence after one iteration, 
the variable kount having consistently the value L The maximum relative 
error in the ak is found to lie generally between 2 X 10 8 and 3 X 10-8, the 
one in the {3k between 7.5 X 10 -l:l and 8 X 10- 12 ; they are attained for k at 
or near 39. The discrepancy between the errors in the ak and those in the {3k 
is due to the ak being considerably smaller than the {3k, by 3-4 orders of 
magnitude. Replacing the routine sti in mcdis by lancz yields very much the 
same error picture. 

It is interesting to note that the addition of a second mass point at the 
other endpoint makes an analytic determination of the recursion coefficients 
intractable (cf. Chihara [198S, p. 71:3]). Numerically, howevec, it makes no 
difference whether there are two or more mass points and whether they are 
located inside, outside, or on the boundary of the support interval. It was 
observed, however, that if at least one mass point is located outside the 
interval r l, 1] the procedure sti used in mcdis becomes severely unstable2 

and must be replaced by lancz. 

Example 4.4 Logistic density function: w(t) = e-t /(1 + e- 1 ) 2 on (- oo,oo). 
In this example we illustrate a slight variation of the discretization procedure 
(4.9)-(4.13), which ends up with a discrete inner product of the same type as 
in (4.13) (and thus implementable by the routine mcdis), but derived in a 
somewhat different manner. The idea is to integrate functions with respect to 
the density w by splitting the integral into two parts, one from -:xl to 0 and 
the other from 0 to oo, changing variables in the first part, and thus obtaining 

t -t x 'X .e rx: e J f(t )w(t) dt = J f( -t)- - ---2 dt + [, f(t) 2 dt. (4.22) 
_, o (l+e- 1 ) o (l+e- 1 ) 

Since (1 + e -t r 2 quickly tends to 1 as t ~ 'Xl, a natural discretization of both 
integrals is provided by the Gauss-Laguerre quadrature rule applied to the 
product f(±t) · (1 + e-1 )-2 . This amounts to taking, in (4.13), rn = 2 and 

r = 1,2, ... ,N, 

where xf, w:> are the Gauss-Laguerre N-point quadrature nodes and 
weights. 

2 This has also been obser-ved in a similar example [Gautschi 1982a, Example 4.81, but was 
incorrectly attributed to a phenomenon of ill-conditioning. Indeed, the statement made at the end 
of Example 4.8 can now be retracted: Stable methods do exist, namely, the method embodied by 
the routine mcdis in combination with lancz. 
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Table VII. Selected Output from test6 

k {3k err ak err f3k 

0 1.000000000000000000000000 4.572( -13) 1.918(- 13) 
1 3.2898681336964528 72944830 1.682( -13) 5.641( -13) 
6 89.44760352315950188817832 2187( -12) 2.190( 12) 

15 555.7827839879296775066697 1.732( -13) 2915( -12) 
26 1668.580222268668421827788 3.772( -12) 4.112( -12) 
39 3753.534025194898387722354 2.482( 11) 4.533( -12) 

The driver test6 incorporates this discretization into the routines mcdis 
and dmcdis, runs them for n = 40 with error tolerances 5000 X E s and 
1000 X Ed, respectively, and prints the absolute errors in the a's (ak = 0, in 
theory) and the relative errors in the {3's. (We used the default value o = L) 
Also printed are the numbct· of iterations #it ( = kount) in (4.15) and the 
corresponding final value N6( = neap). In single precision we found that 
#it= 1, N[ = 81, and in double precision, #it = 5, N[ = 281. Both routines 
returned with the error flags equal to 0, indicating a normal course of events. 
A few selected double-precision values3 of the coefficients {3k along with 
absolute errors in the a's and relative errors in the f3's are shown in Table 
VIL The results are essentially the same no matter whether sti or lancz is 
used in mcdis. The maximum errors observed are 2.482 X 10- 11 for the a's 
and 4.939 X 10- 12 for the {3's, which are well within the single-precision 
tolerance c.= 5000 X £ 5 • 

On computers with limited exponent range, convergence difficulties may 
arise, both with sti and lancz, owing to underflow in many of the Laguerre 
quadrature weights. This seems to perturb the problem significantly enough 
to prevent the discretization procedure from converging. 

Example 4.5 Half-range Hermite measure: w(t) = e- 1 2 on ( 0, oo ). 
This is an example of a measure for which there do not seem to exist 

natm·al discretizations other than those based on composite quadrature rules. 
Therefore, we applied our general-purpose routine qgp (and its double-preci
sion companion dqgp), using, after some experimentation, the partition 
[0, ooj = [0, 3] u {3, 6] u [6, 9] u [9, oo]. The driver test7 implements this, with 
n = 40 and an error tolerance 50 X E 5 in single precision, and 1000 X Ed in 
double precision. 

The single-precision routine mcdis (using the default value o = 1) con
verged after one iteration, retuming neap= 81, whereas the double-preci
sion routine dmcdis took four iterations to converge and returned ncapd = 
201. Selected results (where err ak and err {3k both denote relative errors) are 
shown in Table VIII. The maximum error err ak occurred at k = 10 and had 
the value 1.038 X 10 12 , whereas max k err {3k = 3.180 X 10 -iJ is attained at 
k = 0. The latter is within the error tolerance E, the former only slightly 

3Note added in proof" Alphonse Magnus, in an email message, May 5, 1993, kindly pointed out to 
the author that the f3-coefficients arc known explicitly: f3t = k 4rr 2 f( 4k 2 - 1), k = 1, 2, .... 
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Table VHI. Selected Output from test7 

k 

0 

1 

6 

15 

26 

39 

0.5641895835477562869480795 
L096( -13\ 

0.98842539284680028548706:34 
1.514(- 13) 

2.080620336400833224817622 
1.328( -- 13) 

3.214270636071128227448914 
2.402(- 14) 

·1.20304857887200 1952660277 
L4151 -13) 

5.131532886894296519319692 
6.712( -13) 

{3k and 
err {3k 

0.8862269254527 580136490837 
3.180( -13) 

0 1816901138162093281622325 
7.741( -14) 

1.00234 7851011010842224538 
5801(-14) 

2.500927917133702669954321 
8. 186( 14) 

4 3a3867901229950443604430 
7.878( -14) 

6.500356237707132938035155 
1.820(- 14) 

larger. Comparison of the double-precision results with Table I on the mi
crofiche supplement to Galant [ 1969] revealed agreement to all 20 decimal 
digits given there, for all k in the range 0 :s: k :s: 19. Interestingly, the routine 
sti in mcdis did consistently better than lancz on the {3 's, by a factor as 
large as 235 (for k = 33), and is comparable with lancz (sometimes better, 
sometimes worse) on the a's. 

Without composition, that is, using me = 1 in mcdis, it takes 8 iterations 
(N£ = 521) in single precision and 10 iterations (N[ = 761) in double preci
sion to satisfy the much weaker error tolerances € = 110-6 and Ed = ~ 10- 12 , 

respectively. All single-precision results, however, turn out to be accurate to 
about 12 decimal places. (This is because of the relatively large final incre
ment i\ 8 = 2 n = 80 in N 0 (cf. ( 4.16)) that forces convergence.) 

4.4 Discret1zed Modified Chebyshev Algorithm 

The whole apparatus of discretization (cf. (4.9)-(4.14)) can also be employed 
in connection with the modified Chebyshev algorithm (cf. Section 3), if one 
discretizes modified moments rather than inner products. Thus, one approxi
mates (cf. (4.14), (4.16)) 

(4.23) 

and iterates the modified Chebyshev algorithm with s = 0, 1, 2, ... until the 
convergence criterion (4.15) is satisfied. (It would be unwise to test conver
gence on the modified moments, for reasons explained in Gautschi [ 1982a, 
sect. 2.5).) This is implemented in the routine mccheb, whose calling se
quence is as follows: 

mccheb(n, ncapm, me, mp, xp, yp, quad, eps, iq, idelta, finl, 
finr,endl, endr, xfer, wfer, a, b, fnu, alpha, beta, neap, 
kount, ierr, be, x, w, xm, wm, s, sO, sl, s2) 

Its input and output parameters have the same meaning as in the routine 
mcdis. In addition, the arrays a, b of dimension 2 X n - 1 are to be supplied 
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with the recursion coefficients a(k) = ak-l, b(k) = bk-t• k = 1, 2, ... , 2 X n 
- 1, defining the modified moments. The arrays be, x, w, xm, wm, s, sO, sl, s2 
are used for working space. The double-precision version of the routine has 
the name dmcheb. 

The discretized modified Chebyshev algorithm must be expected to behave 
similarly as its close relative, the modified Chebyshev algorithm. In particu
lar, if the latter suffers from ill-conditioning, so does the former. 

Example 4.6 (Example 3.1, revisited). 
We recompute the n = 40 first recursion coefficients ak, {3k of Example 3.1 

to an accuracy of 100 X € 5 in single precision, using the routine mccheb 
instead of the routine cheb. For the discretization of the modified moments, 
we employed the Gauss-Chebyshev quadrature rule: 

N J1 f(t)(l- w 2 t 2 )- 11\1- t 2 )- 112 dt-:::::: !!__ L f(x,)(1- w 2 x;)- 112 , 
-1 N r=l 

(4.24) 

where xr = cos((2r lhrj2N) are the Chebyshev points. This is accom
plished by the driver testS. The results of this test (shown in the package) 
agree to all 10 decimal places with those of testL The routine mccheb 
converged in one iteration, with neap = 81, for w2 = .1, .3, .5,. 7, .9; in 4 
iterations, with neap = 201, for w 2 = .99; and in 8 iterations, with neap = 
-521, for w 2 = .999. A double-precision version of testS was also run with £ 

= ~ X w-zo (not shownin the package) and produced correct results to 20 
decimals in one iteration (neap= 81) for w 2 = .1,.3,.5,.7; in 3 iterations 
(neap = 161) for w 2 = .9; in 6 iterations (neap = 361) for w 2 = .99; and in 11 
iterations (neap = 921) for w 2 = .999. 

5. MODIFICATION ALGORITHMS 

Given a positive measure dJ-..(t) supported on the real line, and two polynomi
als u(t) = ±n~=it- up), v(t) = n~=l(t vu) whose ratio is finite~ on~ the 
support of dJ-.., we may ask for the recursion coefficients &k = ak(dA), {3k = 
{3k(dA) of the modified measure 

~ u(t) 
dJ-..(t) = v(t) dJ-..(t), t E supp(dA), (5.1) 

assuming known the recursion coefficients ak = ak(dJ-..), {3k = {3k(dJ-..) of the 
given measure. Methods that accomplish the passage from the a's and j3's to 
the a's and jj~s are called modification algorithms. The simplesl case s = 0 
(i.e., v(t) = 1) and u positive on supp(dJ-..) has already been considered by 
Christoffel [1858], who represented the polynomial u(-)77-k(·) = u(-)7Tk(·; dA) in 
determinantal form in terms of the polynomials 1r}·) = 1r/-; dJ-..), j = k, k + 
1, ... , k + r. This is now known as Christoffel's theorem. Christoffel, however, 
did not address the problem or how to generate the new coefficients ak, t3k in 
terms of the old ones. For the more general modification (5.1), Christoffel's 
theorem has been generalized by Uvarov [1959; 1969]. The coefficient prob-
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lem stated above, in this general case, has been treated in Gautschi [ 1982b], 
and previously by Galant [ 1971] in the special case u(t) == 1. 

The passage from d A to d A can be carried out in a sequence of elementary 
steps involving real linear factors t -- x or real quadratic factors (t - x)2 + y 2 , 

either in u(t) or in u(t ). The corresponding elementary steps in the passage 
from the a's and f3's to the a's and /3's can all be performed by means of 
certain nonlinear recurrences. Some of these, however, when divisions of the 
measure dA are involved, are liable to instabilities. An alternative method 
can then be used, which appeals to the modified Chebyshev algorithm 
supplied with appropriate modified moments. These latter are of independent 
interest and find application, for example, in evaluating the kernel in the 
contour integral representation of the Gauss quadrature remainder term. 

5.1 Nonlinear Recurrence Algorithms 

The routine that carries out the elementary modification steps is called chri 
and has the calling sequence 

chri(n,iopt,a,b,x,y ,hr,hi,alpha,beta,ierr). 

On entry, 

n 

iopt 

a,h 

x,y 

hr,hi 

is the number of recursion coefficients desired; type integer. 

is an integer identifying the type of modification as follows: 
(1) dA(t) = (t- x) dA(t). 
(2) dA(t) = ((t - x)2 + y 2 ) dA(t), y > o. 
(3) dA(t) = (t 2 + y 2 ) dA(t) with dA(t) and supp(dA) assumed 

symmetric with respect to the origin and y > 0. 
(4) dA(t) = dA(t)j(t - x). 
(5) dA(t) = dA(t)j((t - x)2 + y 2 ), y > o. 
(6) dA(t) = dA(t}j(t 2 + y 2 ) with dA(t) and supp(dA) assumed sym

metric with respect to the origin and y > 0. 
(7) dA(t) = (t - x)2dA(t). 

are arrays of dimension n + 1 holding the recursion coefficients 
a(k) = ak_ 1(dA), b(k) = f3k_ 1(dA), k = 1,2, ... ,n + 1. 

are real parameters defining the linear and quadratic factors (or 
divisors) of d A. 

are the real and imaginary part, respectively, of fR dA(t )j(z - t), 
where z = x + iy; the parameter hr is used only if iopt = 4 or 5, 
and the parameter hi only if iopt = 5 or 6. 

On return, 

alpha, beta 

ierr 

are arrays of dimension n containing the desired recursion 
coefficients alpha(k) = ak_ 1(dA), beta(k) = f3k_ 1(dA), k = 
1,2, ... ,n. 

is an error flag, equal to 0 on normal return, equal to 1 if 
n s 1 (the routine assumes that n is larger than or equal to 
2), and equal to 2 if the integer iopt is inadmissible. 
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It should be noted that in the cases iopt = 1 and iopt = 4, the modified 
measure dA is positive (negative) definite if x is to the left (right) of the 
support of d A, but indefinite otherwise. Nevertheless, it is permissible to 
have x inside the support of dA (or inside its convex hull), provided the 
resulting measure dA is still quasi-definite (cf. Gautschi [ 1982b]). 

For iopt = 1, 2, ... , 6, the methods used in chri are straightforward impLe
mentations of the nonlinear recurrence algorithms, respectively, in Eqs. (3. 7), 
(4.7), (4.8), (5.1), (5.8), and (5.9) of Gautschi [1982b]. The only minor modifica
tion required concerns fio = {30(d'A}. In Gautschi [1982bl this constant was 
taken to be 0, whereas here it is defined to be f, 0 = f~a dA(t). Thus, for 
example, if iopt = 2, 

= jrii((t -- ao)2 + (a 0 - x)2 + y 2 ) dA(t), 

since fJR(t- a 0 ) dA(t) = fiR 1T 1(t) dA(t) = 0. Furthermore (cf. (4.1)), 

j (t- ao)2 dA(t) = f3of3t, 
IR 

so that the formula to be used for /30 is 

~ ( 2 2) f3o = f3o f3t + ( ao - x) + Y (iopt = 2). 

Similar calculations need to be made in the other cases. 
The case iopt = 7 incorporates a QR step with shift x, following Kautsky 

and Golub [1983], and uses an adaptation of the algorithm in Wilkinson 
[1965, Eq. 67.11, p. 567], to carry out the QR step. The most significant 
modification made is the replacement of the test c =I= 0 by lei > E, where 
E = 5 X E 8 is a quantity dose to, but slightly larger than, the machine 
precision. (Without this modification, the algorithm could fail.) 

The methods used in chri are believed to be quite stable when the measure 
dA is modified multiplicatively (iopt = 1, 2, 3, and 7). When divisions are 
involved (iopt = 4, 5, and 6), however, the algorithms rapidly become unsta
ble as the point z = x + iy E C moves away from the support interval of dA. 
(The reason for this instability is not well understood at present; see, how
ever, Galant [1992].) For such cases there is an alternative routine, gchri 
(see Section 5.2), that can be used. 

Example 5.1 Checking the results (for u = t) of test2. 
We apply chri (and the corresponding double-precision routine dchri) with 

iopt = 1, x = 0, to d>..u(t) = tu ln(1/l) on (0, 1) with u = - !. to recompute 
the results of test2 for u = %- This can be done by a minor modification, 
named test9, of test2. Selected results from it, showing the relative discrep
ancies between the single-precision values ak, {3k (resp. double-precision 
values af, f3{), computed by the modified Chebyshev algorithm and the 
modification algorithm, are shown in Table IX (cf. Table III). The maximum 
errors occur consistently for the last value of k( = 98). 
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Table IX. Comparison between i\Iodified Chebyshev Algorithm and Modification Algorithm 
in Example 5.1 (cf. Example 3.2) 

k err ak err f3k err a!i err f3t 
0 7.895( ~ 14) 4 796( ~ 14) 2805( ~28l 7 952( ~ 2il) 

12 :3.280( ~ 12) G.l95( ~ 121 8 958( ~ 26) u:n( 25) 

24 7.648( . 12) L47il(11) 2.065( .. 25) 3.985( 25) 

48 2.076( 11) <L088( - 11) 5 683(- 25) 1.121( -24) 
98 6.042( ~ 11) 1.201<-lO) 15041- 24) 2987( ··24) 

----------- ··-----~-- ------------

Example 5.2 Induced orthogonal polynomials. 
Given an orthogonal polynomial -rrrr/-; dA) of fixed degree m ::: 1, the se

quence of orthogonal polynomials irk_m(-) ~ 7Tk(-;-rr,7 dA), k • 0, 1,2, ... , has 
been termed induced orthogonal po{ynomials in Gautschi and Li ( 1993]. 
Since their measure dAm modifies the measure d A. by a product of quadratic 
factors, 

m 

dA"'U>= nu-x,J2 ·dt...<tl, (5.2) 
/J ~ 1 

where x 1, arc the zeros of 7T111 , we can apply the routine chri (wi~h io~t ~ 7) 
m times to compute then recursion coefficients fik m = ak(dA.m), f3k m = 
{3~,(d A,), k = 0, 1, ... , n l, from the n + rn coefficie~1ts ak = a. 1,{dA), i3k = 

f3k(dA.), k = 0, 1, ... , n ·- 1 + m. The subroutines indp and dindp in the 
driver testlO implement this procedure in single (resp., double) precision. 
The driver itself uses them to compute the first n = 20 recursion coefficients 
of the induced Legendre polynomials with rn = 0, 1, ... , 1 L lt also computes 
the maximum absolute errors in the a's (fik m = 0 for all m) and the 
maximum relative errors in the P's by comparing single-precision with 
double-precision results. 

An excerpt of the output of testlO is shown in Table X. It already suggests 
a high degree of stability of the procedure employed by indp. This is 
reinforced by an additional test (not shown in the package) generating 
n = 32o recursion coefficients ak_ m, fik. ,, o :s:. "- .:s:. 319, for m = 40, so, 160, 
320 and dA. being the Legendre, the first-kind Chebyshev, the Laguerre, and 
the Hermite measure. Table XI shows the maximum absolute error in the 
ak m, 0 .:::;; h :0:. 319 (relative error in the Laguerre case), and the maximum 
reiati ve error in the /i k m, 0 .:::;; h :s; 319. 

5.2 Methods Based on the Modified Chebyshev Algorithm 

AB was noted earlier, the procedure chri becomes unstable for modified 
measures involving division of d A.(t) by t - x or (t - x )2 + y 2 as z = x ..)_ iy 
E C moves away from the "support interval" of dA., that is, from the smallest 
interval containing the support of dA. We now develop a procedure that 
works better the further away z is from that interval. 

The idea is to use modified moments of dA relative to the polynomials 
1Tk(·; dJt) to generate the desired recursion coefficients fik, fjk via the modi
fied Chebyshev algorithm (cf. Section 3). The modified moments in question 
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Table X. Induced Legendre Polynomials 

k 

0 
1 
6 

12 
19 

err a 
err rJ 

rn = 0, /Jk. m 

2.0000000000 
0.3333333333 
0.2517482517 
0.250434 7826 
0.2501732502 

0.000(0) 

1.737( --14) 

m = 2, Pk,m 
0.1777777778 
0.5238095238 
0.1650550769 
0.2467060415 
0.2214990335 

1.350( -1:3) 

2.032(- 13) 

m ~ 6, Pk,m m 11,/Jk,m 

0.0007380787 0.0000007329 
0.5030303030 0.5009523810 
0.2947959861 0.2509913424 
0.2521022519 0.1111727541 
0.2274818789 0.2509466619 

9.450(- 13) 1.357( -12) 

2.055( -12) :3748( 12) 

Table XI. Accuracy of the Recursion Coefficients for Some Classical Induced Polynomials 

Legendre Chebyshev Laguerre Hermite - --- --~ -~----- --------~ 

m err a err fj etTa err /3 err a err fj err a err fj 
40 3.4( -11) 1.5( -10) L9( -9) 7.9( -to) 3.0( lO) 6.0( -10) 1.8( 9) 27(-10) 
80 1.4( -10) 5.4( -10) 2.1( -9) 2.2( -9) 5.8( -10) 9.2( -10) 7.9( -9) 9.2( 10) 

160 1.5( -9) 5.1( -9) 9.5( -9) l.l( -8) 7.8( -10) 1.4( .. 9) Ll( -8) 6.8( -10) 
320 3.3( -- 9) 2.1( 8) 9.6( -9) 2.1(-8) 3.9( -9) 7.2( -9) 2.5( -8) Ll( -9) 

are 

k=0,1,2, ... , (5.3) 

for linear divisors and 

1 7rk(t; dA) 
vk=vk(x,y;dA)= 2 dA.(t), 

IR (t -X) + y 2 
k =0,1,2, ... , (5.4) 

for quadratic divisors. Both can be expressed in terms of the integrals 

1 7rk(t; dA) 
Pk = Pk(z; dA.) = dA(t), 

1R Z - t 
z E= C "· supp(dA), h = 0, 1,2, ... , 

the first by means of 

vk(x;dA) = -pk(z;dA), 

and the others by means of 

Im z 

(5.5) 

z =x, (5.6) 

Z =X+ iy. (5.7) 

The point to observe is that { pk(z; dA)} is a minimal solution of the basic 
recurrence relation (1.3) for the orthogonal polynomials {7rk(; dA)} (cf. 
Gautschi f1981]). The quantities p/z; dA), k = 0, 1, ... , n, therefore, can be 
computed accurately by a backward recurrence algorithm [Gautschi 1981, 
sect. 5], which, for v > n, produces approximations p~" l(z; d A) converging to 
pk(z; dA) when v -4 co, for any fixed k, 

(5.8) 
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The procedure is implemented in the routine 

knum(n, nuO, numax, z, eps, a, b, rho, nu, ierr, rold), 

which computes pk(z; d>..) fork = 0, 1, ... , n to a relative precision eps. The 
results are stored as rho(k) = Pk 1( z; d ,.\), k = 1, 2, ... , n + 1, in the complex 
array rho of dimension n + 1. The user has to provide a starting index 
nuO = v0 > n for the backward recursion, which the routine then increments 
by units of 5 until convergence to within eps is achieved. If the requested 
accuracy eps cannot be realized for some v ~ numax, the routine exits with 
ierr = numax. Likewise, if v 0 > numax, the routine exits immediately, 
with the error flag ierr set equal to nuO. Otherwise, the value of v for which 
convergence is obtained is returned as output variable nu. The arrays a, b of 
dimension numax are to hold the recursion coefficients a(k) ak 1( d >..), 
b(k) = f3k _ 1(d A), k = 1, 2, ... , numax, for the given measure d A. The com
plex array rold of dimension n + 1 is used for working space. In the interest 
of rapid convergence, the routine should be provided with a realistic estimate 
of v0 . For classical measures, such estimates are known (cf. Gautschi [1981, 
sect. 5]) and are implemented here by the function routines 

nuOjadn, z, eps), nuOiag(n, z, al, eps), nuOher·(n, z,eps). 

The first is for Jacobi measures, the second is for generalized Laguerre 
measures with parameter al = a > - 1, and the last is for the Hermite 
measure. Note that v 0 for ,Jacobi measures does not depend on the weight 
parameters a, {3, in contrast to v 0 for the generalized Laguerre measure. 

The name knum comes from the fact that Pn(z; dA) in (5.5) is the numera
tor in the kernel 

Pn(z;d.\) 
Kn(z; dA) = d ) 

7Tn(z; A 
(5.9) 

of the remainder tenn of the n-point Gaussian quadrature rule for analytic 
functions (cf., e.g., Gautschi and Varga [1983]). For the sequence of kernels 
K 0 , K 1, •.. , Kn, we have the following routine: 

subroutine kern(n, nuO, numax, z, eps, a, b, ker, nu, ierr, rold) 
complex z, ker, rold, pO, p, pml 
dimension a(numax), b(numax>, ker( * ), rold( *) 
call knum(n, nuO, numax, z, eps, a, b, ker, nu, ierr, rold) 
if(ierr.ne.O) return 
p0 = (O.,OJ 
p=(L,OJ 
do 10 k = 1, n 

pml = pO 
pO = p 
p = (z a(k)hpO- b(k) *pm1 
ker(k + 1) = ker(k + l) I p 

10 continue 
return 
end 

The meaning of the input and output parameters is the same as in knum. 
The double-precision version of the routine is named dkern. 
ACM Transactwns on Mathematical Software, VoL 20, No 1, March 1994. 

220



Algorithm 726: ORTHPOL 53 

All of the ingredients are now in place to describe the workings of gchri, 
the alternative routine to chri when the latter is unstable. First, the routine 
knum is used to produce the first 2n modified moments vk(x; dA) (resp., 
vk(x, y; dA)), k = 0, 1, ... , 2n - 1. These are then supplied to the routine 
cheb along with the recursion coefficients ak(d>..), f3k(dA) (needed anyhow 
for the computation of the vk ), which produces the desired coefficients 
ak(dA), {3/dA), k = 0, 1, ... , n - 1. The routine has the following calling 
sequence: 

gchrHn, iopt, nuO, numax. eps, a, b, x, y, alpha, beta, 
uu, ierr, ierrc, fnu, rho, rold, s, sO, sl, s2L 

On entry, 
n 

iopt 

nuO 

numax 

eps 

a,b 

is the number of recursion coefficients desired; type integer. 

is an integer identifYing the type of modification as follows: 
(1) dA(t) = d>..(t)j(t x), where x is assumed to be outside of the 

smallest interval containing supp(dJI.). 
(2) dA(t) = d>..(t)j((t - x) 2 + y 2 ), y > 0. 

is an integer v0 ::>: 2n estimating the starting index for the back
ward recursion to compute the modified moments; if no other 
choices are available, take nuO = 3 X n. 

is an integer used to terminate backward recursion in case of 
nonconvergence; a conservative choice is numax = 500. 

is a relative error tolerance; type real. 

are arrays of dimension numax to be supplied with the recursion 
coefficients a(k) = ak 1(dA), b(k) = {3k_ 1(dA), k = 
1, 2, : . . , numax. 

x, y are· real parameters defining the linear and quadratic divisors of 
d>... 

On return, 
alpha, beta 

nu 

ierr 

ierrc 

are arrays of dimension n containing the desired recursion 
coefficients alpha( h)= &k_ 1, beta(k) = §k- 1, k = 1, 2, ... , 
n. 

is the index v for which the error tolerance eps is satisfied 
for the first time; if it is never satisfied, nu will have the 
value numax. 

is an error flag, where 
ierr = 0 on normal return, 
ierr = 1 if iopt is inadmissible, 
ierr = nuO if nuO > numax, 
ierr = numax if the backward recurrence algorithm does 

not converge, and 
ierr = -1 if n is not in range. 

is an error flag inherited from the routine cheb. 
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The real arrays fnu,s,sO,sl,s2 are working space, all of dimension 2 X n, 
except s, which has dimension n. The complex arrays rho, rold are also 
working space, both of dimension 2 n. The routine calls on the subroutines 
knum and cheb. The double-precision version of gchri has the name dgchri. 

Since the routine gchri is based on the modified Chebyshev algorithm, it 
shares with the latter its proneness to ill-conditioning, particularly in cases of 
measures supported on an infinite interval. On finitely supported measures, 
however, it can be quite effective, as seen in the next example. 

Example 5.3 The performance of chri and gchri. 
To illustrate the severe limitations of the routine chri in situations where 

divisions of the measure dl are involved, and at the same time to document 
the effectiveness of gchri, we ran both routines with n = 40 for Jacobi 
measures dl1"·f3i with parameters a, {3 = -.8(.4).8, f3 ;:>:a. This is done in 
testll. 

The routine testll first tests division by t - x, where x = -1.001, -1.01, 
-1.04, -1.07, and -1.1. Both routines chri and gchri are run in single and 
double precision, the latter with E = 10 X E 8 and E = 100 X Ed, respectively. 
The double-precision results are used to determine the absolute errors in the 
a's and the relative errors in the /3's for each routine. The required coeffi
cients ak' f3k' 0 5 k 5 vmax - 1 ( vmax = 500 for single precision and 800 for 
double precision) are supplied by recur and drecur with ipoly = 6. The 
routine nuOjac is used to provide the starting recurrence index v 0 (resp., 
vg ). In Tables XII and XIII, relating, respectively, to linear and quadratic 
divisors, we give only the results for the Legendre measure (a = f3 = 0). The 
first line in each three-line block of Table XII shows x, v0 , vg, and the 
maximum (over h, 0 5 k 5 39) errors in the &k and ~k for gchri, followed by 
the analogous information (except the v0's) for chri. The recurrence index v 

yielding convergence was found (not shown in testll) to be If = l'o + 5 and 
vd = vg + 5, without exception. 

It can be seen from the leading lines in Table XII that chri rapidly loses 
accuracy as x moves away from the interval [- 1, 1], all single-precision 
accuracy being gone by the time x reaches 1.1. Similar, if not more rapid, 
erosion of accuracy is observed for the other parameter values of a, {3. The 
next two lines in each three-line block show "reconstruction errors," that is, 
the maximum errors in the a's and f3's if the &'sand ~'s produced by gchri, 
chri and dgchri, dchri are fed back to the routines chri and dchri with 
iopt = 1 to recover the original recursion coefficients in single and double 
precision. The first of these two lines shows the errors in reconstructing these 
coefficients from the output of gchri (resp., dgchri), and the second from the 
output of chri (resp., dchri). Rather remarkably, the coetlicients are recov
ered to essentially full accuracy, even when the input coefficients (produced 
by chri and dchri) are very inaccurate! This is certainly a phenomenon that 
deserves further study. It can also be seen from Table XII (and the more 
complete results in Section 1 of the package) that gchri consistently produces 
accurate results, some slight deterioration occurring only very close to x = 

- 1, where the routine has to work harder. 
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Table XII. Performance of gchri and .chri for Elementary Divisors t - x of the 
Legendre M cas ure d A( t ) 

gchri chri 
---------

X vo vd 
0 err a err P err a err P 

- 1.001 418 757 8.000( -14) 1.559( 13) 1.0 13( -- 13) 1.647( - 13) 
8.ii27(- 14 )* 1705( -13) 1.0 10( . 27) 2423( -27) 
1.421( -14)* 5.329( -14) 2.019( -28) 1.211(- 27) 

-1.010 187 294 4016(-14) 6 907( -14) 1.396( -lO) 2.424( 10) 
3.553( -14) 9.946( -14) 6.058( 28) L2ll( -27) 
7.105(- 15) 4.262(- 14) 1.515(- 28) 9.080< -28) 

-1.040 133 187 3.590( -14) 4.759( -14) 5.944( -6) 8.970( -6) 
2.842( -14) 7.103( -14) 5.554( -28) 1.312( -27) 
7.105( -15) 4.263(- 14) 1.010(- 28) 9.080( -28) 

-1.070 120 161 2.194( -14) 4.850( -14) 5.334( -3) 7.460(- 3) 
2842( -14) 7.104( -14) 6.058( --28) l.2ll( -27) 
7.105( -15) 4.263( - 14) LOIO( 28l 7062( -28) 

-1.100 114 148 2.238( -14) 4.359( -14) 4.163(0) 4959( + 1) 
2.1:32( -14l 5.683( -14) 3.534( -28) L009( -27) 
1.549( -12) 1.833( -12) 1.010( -28) 6.057( -28) 

~The second two lines of each three-line block show reconstruction errors. 

Table XlfL Performance of gchri and cb.ri for Elementary Divisors (t x)2 I y 2 ofthe 
Legendre Measure dA(t) with z = x + iy on Jf,. 

gchri chri 
---------

p lio -d vo err a err/3 err a err/3 

1050 390 700 7.879( -13) 1.440( -12) 7.685( -14) 1.556( -13) 
7.814(- 13)* 1.433( -12) 1.786( -26) 3.042( -26) 
2.024( -14)* 8.442( -14) 3.016( -28) 1.742( -27) 

1.275 142 204 6.252( -14) L287( -13! 4.562( -7) 6.162( 7) 
6.554( -14) L279( -13) 1.541( -27) 3.061( -27) 
2.295( -14) 8.970( -14) :3.579( -28) 1.646( -27) 

1.500 117 154 3.991( -14) 7.966( -14) 4.906( -1) 2.339(0) 
4.207( -14) 9.064( -14) 6.932( -28) 1.676( -27) 
3.805( -14) 8.971( -14) 4.351( -28) 1.744( -27) 

'The second two lines of each three-line block show reconstruction errors. 

The second half of testll tests division by (t ~ x )2 + y 2 , where z = x + iy 
is taken along the upper half of the ellipse 

.WP = ( z E C: z = ~ ( pei11 + ;e _, 11 ), 0 ~ {} :-:::; 27T), p > 1, (5.10) 

which has foci ± 1 and sum of the semiaxes equal to p. (These ellipses are 
contours of constant v0 for Jacobi measures.) We generated information 
analogous to the one in Table XII, for p = 1.05, 1.1625, 1.275, 1.3875, and 1.5, 
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except that all quantities are averaged over 19 equally spaced points on g~ 
corresponding to [} = jiT/20, j = 1, 2, ... , 19. Selected results (bars indicate 
averaging), again for the Legendre case, are shown in Table XIII. They reveal 
a behavior very similar to the one in Table XII for linear divisors. 

6. GAUSS- TYPE QUADRATURE RULES 

One of the important uses of orthogonal polynomials is in the approximation 
of integrals involving a positive measure dA by quadrature rules of maxi
mum, or nearly maximum, algebraic degree of exactness. In this context, it is 
indispensable to know the recursion coefficients for the respective orthogonal 
polynomials (JTk(-; dA)}, since they allow us to generate the desired quadra
ture rules accurately and effectively via eigenvalue techniques. The software 
developed in the previous sections thus finds here a vast area of application. 

6.1 Gaussian Quadrature 

Given the (positive) measure dA (having an infinite number of support 
points), there exists, for each n E N, a quadrature rule 

11 

j f(t)dA(t) = L wkf(xk) + R/f) 
IR k = l 

(6.1) 

having algebraic degree of exactness 2n - 1, that is, zero errDr, Rn( f) ·~ 0, 
whenever f is a polynomial of degree :<::; 2 n - L The nodes x h indeed are the 
zeros of the nth-degree orthogonal polynomial 1rnC dA), and the weights wk> 
which are all pDsitive, are also expressible in terms of the same orthogonal 
polynomials. Alternatively, and more importantly for computational pur
poses, the nodes xk are the eigenvalues of the nth-order Jacobi matrix 

a 0 ~ 0 

..[if; a l {if; 
Jn(dA) = {13; (6.2) 

V f3n -1 

0 

where a, = ak(dA), {3~, = {3~,(dA) are the recurrence coefficients for the (monic) 
orthogonal polynomials {1rk{-; dA)}, and the weights wk are expressible in 
terms of the associated eigenvectors. Specifically, if 

(6.3) 

that is, if uk is the normalized eigenvector of Jn(dA) corresponding to the 
eigenvalue x k, then 

k=1,2, ... ,n, (6.4) 
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where {30 = {30(d>..) is defined in (1.4) and vk 1 is the first component of vk (cf. 
Golub and Welsch [1969]). There are well~known and efficient algorithms, 
such as the QR algorithm, to compute eigenvalues and (part of the) eigen
vectors of symmetric tridiagonal matrices. These are used in the routine 
gauss, 4 whose calling sequence is as follows: 

gauss(n, alpha, beta, eps, zero, weight, ierr, d. 

On entry, 

n is the number of terms in the Gauss formula; type integer. 

alpha, beta are arrays of dimension n assumed to hold the recursion 
coefficients alpha(k) = ak _ 1 , beta(k) CCC f3k _ 1, k = l, 2, ... , n. 

eps is a relative error tolerance, for example, the machine preci
siOn. 

On return, 

zero, weight 

ierr 

are arrays of dimension n containing the nodes (in increas
ing order) and the corresponding weights of the Gauss 
formula, zero(k) = xk, weight(k) = wk, k = l,2, ... ,n. 

is an error flag equal to 0 on normal return, equal to i if the 
QR algorithm does not converge within 30 iterations on 
evaluating the ith eigenvalue, equal to -1 if n is not in 
range, and equal to -2 if one of the (J's is negative. 

The array e of dimension n is used for working space. The double-precision 
routine has the name dgauss. 

We refrain here from giving numerical examples, since the use of the 
routine gauss and the routines yet to be described is straightforward. Some 
use of gauss and dgauss has already been made in Examples 4.2-4.4 and 
5.2. 

6.2 Gauss- Radau Quadrature 

We now assume that d>.. is a measure whose support is either bounded from 
below, bounded from above, or both. Let x 0 be either the infimum or the 
supremum of supp dA., so long as it is finite. (Typically, if supp d>.. = [ -1, 1], 
then x 0 could be either -1 or + 1; if supp dA. = {0, oo], then x 0 would have to 
be 0; etc.). By Gauss-Radau quadrature we then mean a quadrature rule of 
maximum degree of exactness that contains among the nodes the point x 0 • It 
thus has the form 

n 1 f(t) dA.(t) = w 0[(x0 ) + L wkf(xk) + R,(f) (6.5) 
~ k=l 

4 This routine was kindly supplied to the author by Professor G. H. GDlub. 
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and, as is well known, can be made to have a degree of exactness 2n, that is, 
R/f) = 0 for all polynomials of degTee s;; 2n. Interestingly, all nodes 
x 0 , x 1, .•• , xn and weights w 0 , w 1, .•• , wn can again be interpreted in terms of 
eigenvalues and eigenvectors, exactly as in the case of Gaussian quadrature 
rules, but now relative to the matrix (cf. Golub [1973]} 

ao ff3: 0 

ff3: 0'1 

J:+/dA) = ~ E IR(n 1 l)o<(n + 11, (6.6) 

~ an-l {if; 
0 {if; a* n 

where cxk = cxk(dA)(O s;;k s;; n - 0, [3 11 = J3k(dA)(l s k s;; n) as before, but 

(6.7) 

Hence, we can use the routine gauss to generate the Gauss-Radau formula. 
This is done in the following subroutine: 

c 

subroutine radau(n, alpha, beta, end, zero, weight, ierr, e, a, b) 
dimension alpha(*), beta(*), zero(*), weight(*), e( *),a(*), b( *) 

c The arrays alpha, beta, zero, weight, e, a, b are assumed to have 
c dimension n + l. 
c 

epsma = rlmach(3) 
c 
c epsma is the machine single precision. 
c 

npl = n + l 
do 10 k = l,npl 

a(k) = alpha(k) 
b(k) = beta(k) 

10 continue 
pO = 0. 
pl = l. 
do 20 k = l,n 

pml = pO 
pO = pl 
pl =(end- a(k)hpO- b(khpml 

20 continue 
a(npO =end- b(npO*pOjpl 
call gauss(npl, a, b, epsma, zero, weight, ierr, e) 
return 
end 

The input variables are n, alpha, beta, and end, representing, respectively, 
n; two arrays of dimension n + 1 containing the ak(dA), J3k(dA), k = 
0, 1, 2, ... , n; and the "endpoint" x0 . The nodes (in increasing order) of the 
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Gauss-Radau formula are returned in the array zero, and the corresponding 
weights in the array weight. The arrays e, a, b are working space, and ierr 
is an error flag inherited from the routine gauss. The double-precision 
routine has the name dradau. 

We remark that x 0 could also be outside the support of dA., in which case 
the routine would generate a "Christoffel-type" quadrature rule. 

6.3 Gauss - Lobatto Quadrature 

Assuming now the support of dA. bounded on either side, we let x 0 = 
inf supp ( d A) and x n + 1 = sup supp ( d A.) and consider a quadrature rule of the 
type 

n 1 f(t) dA.(t) = Wof(xo) + L wkf(xk) + wn+lf(xn 11) + Rn(f) (6.8) 
~ k=l 

having maximum degree of exactness 2n + 1. This is called the Gauss-Lo
batto quadrature rule. Its nodes x0 , x 1, ... , x, +1 and weights w 0 , w 1, ..• , wn+ 1 
again admit the same spectral representation as in the case of the Gauss and 
Gauss-Radau formulas, only this time the matrix in question has order 
n + 2 and is given by (cf. Golub [1973]) 

ao {t3~ 0 

{13: at 

{13;-

{if: 
(6.9) 

{fi:: a, J t3: + l 

0 J !3::+ 1 a:+l 

Here, as before, ak = ak(dA)(O :::; k :::; n), f3k = {3k(dA)(l :::; k :::; n), and a:+ 1, 

13:; + 1 are the unique solution of the linear 2 X 2 system 

[ 
7Tn+ l( xo; dA) 

7Tn+l(xn+l;dA) 

Hence, we have the following routine for generating the Gauss-Lobatto 
formulas: 

c 

subroutine lob(n, alpha, beta, aleft, right, zero, weight, ierr, e, a, b) 
dimension alpha(*), beta(*), zero(*), weight(*), e( *),a(*), b( *) 

c The arrays alpha, beta, zero, weight, e, a, b are assumed to have 
c dimension n + 2. 
c 

epsma = rlmach(3) 
c 
c epsma is the machine single precision. 
c 
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npl = n + l 
np2 = n + 2 
do 10 k = l,np2 

a(k) = alpha(k) 
b(k) = beta(k) 

10 continue 
pOl= 0. 
pOr = 0. 
pll = 1. 
plr = L 
do 20 k = I, np I 

pmll =pOl 
pOl ~~ pll 
pmlr = pOr 
pOr = plr 
pll = (aleft- a(k)hpOl- b(khpmll 
plr =(right- a(k)hpOr- b(khpmlr 

20 continue 
--o-e~ = pll*l>ttr-"- plr *pOt___ ------- -------

a(np2) = (alefhpll*pOr- righhplr*pOI) jdet 
b(np2) = (right - alefth pll * plr j det 
call gauss(np2, a, b, epsma, zero, weight, ierr, e) 
return 
end 

The meaning of the input and output variables is as in the routine radau, 
the variable aleft standing for xD and right for x n + 1. The double-precision 
routine is named dlob. 

A remark analogous to the one after the routine radau applies to the 
routine lob. 
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Summary. One of the main problems in the constructive theory of orthogonal 
polynomials is the computation of the coefficients, if not known explicitly, in the 
three-term recurrence relation satisfied by orthogonal polynomials. Two classes of 
methods are discussed: those based on moment information, and those using dis
cretization of the underlying inner product. Other computational problems consid
ered are the computation of Cauchy integrals of orthogonal polynomials, and the 
problem of modification, i.e., of ascertaining the effect on the recurrence coefficients 
of multiplying the weight function by a (positive) rational function. Moment-based 
methods and discretization algorithms are also available for generating Sobolev or
thogonal polynomials, i.e., polynomials orthogonal with respect to an inner product 
involving derivatives. Of particular interest here is the computation of their zeros. 

Important applications of orthogonal polynomials are to the development of 
quadrature rules of maximum algebraic degree of exactness, most notably Gauss
type quadrature rules, but also Gauss-Kronrod and Gauss-Tunin quadratures. Mod
ification algorithms and discretization methods find application to constructing 
quadrature rules exact not only for polynomials, but also for rational functions 
with prescribed poles. Gauss-type quadrature rules are applicable also for comput
ing Cauchy principal value integrals. Gaussian quadrature sums are expressible in 
terms of the related Jacobi matrix, which has interesting applications to generating 
orthogonal polynomials on several intervals and to the estimation of matrix func
tionals. 

In the realm of approximation, the classical use of orthogonal polynomials, in
cluding Sobolev orthogonal polynomials, is to least squares approximation to which 
interpolatory constraints may be added. Among other uses considered are moment
preserving spline approximation and the summation of slowly convergent series. 

All computational methods and applications considered are supported by a soft
ware package, called OPQ, of Matlab routines which are downloadable individually 
from the internet. Their use is illustrated throughout. 
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1 Introduction 

Orthogonal polynomials, unless they are classical, require special techniques 
for their computation. One of the central problems is to generate the coeffi
cients in the basic three-term recurrence relation they are known to satisfy. 
There are two general approaches for doing this: methods based on moment 
information, and discretization methods. In the former, one develops algo
rithms that take as input given moments, or modified moments, of the un
derlying measure and produce as output the desired recurrence coefficients. 
In theory, these algorithms yield exact answers. In practice, owing to round
ing errors, the results are potentially inaccurate depending on the numerical 
condition of the mapping from the given moments (or modified moments) to 
the recurrence coefficients. A study of related condition numbers is therefore 
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of practical interest. In contrast to moment-based algorithms, discretization 
methods are basically approximate methods: one approximates the underlying 
inner product by a discrete inner product and takes the recurrence coefficients 
of the corresponding discrete orthogonal polynomials to approximate those of 
the desired orthogonal polynomials. Finding discretizations that yield satis
factory rates of convergence requires a certain amount of skill and creativity 
on the part of the user, although general-purpose discretizations are available 
if all else fails. 

Other interesting problems have as objective the computation of new or
thogonal polynomials out of old ones. If the measure of the new orthogonal 
polynomials is the measure of the old ones multiplied by a rational function, 
one talks about modification of orthogonal polynomials and modification algo
rithms that carry out the transition from the old to the new orthogonal poly
nomials. This enters into a circle of ideas already investigated by Christoffel 
in the 1850s, but effective algorithms have been obtained only very recently. 
They require the computation of Cauchy integrals of orthogonal polynomials 
- another interesting computational problem. 

In the 1960s, a new type of orthogonal polynomials emerged - the so
called Sobolev orthogonal polynomials - which are based on inner products 
involving derivatives. Although they present their own computational chal
lenges, moment-based algorithms and discretization methods are still two of 
the main working tools. The computation of zeros of Sobolev orthogonal poly
nomials is of particular interest in practice. 

An important application of orthogonal polynomials is to quadrature, 
specifically quadrature rules of the highest algebraic degree of exactness. Fore
most among them is the Gaussian quadrature rule and its close relatives, the 
Gauss-Radau and Gauss-Lobatto rules. More recent extensions are due to 
Kronrod, who inserts n + 1 new nodes into a given n-point Gauss formula, 
again optimally with respect to degree of exactness, and to Turan, who al
lows derivative terms to appear in the quadrature sum. When integrating 
functions having poles outside the interval of integration, quadrature rules of 
polynomial/rational degree of exactness are of interest. Poles inside the in
terval of integration give rise to Cauchy principal value integrals, which pose 
computational problems of their own. Interpreting Gaussian quadrature sums 
in terms of matrices allows interesting applications to orthogonal polynomials 
on several intervals, and to the computation of matrix functionals. 

In the realm of approximation, orthogonal polynomials, especially discrete 
ones, find use in curve fitting, e.g. in the !east squares approximation of dis
crete data. This indeed is the problem in which orthogonal polynomials (in 
substance if not in name) first appeared in the 1850s in work of Chebyshev. 
The presence of interpolatory constraints can be handled by a modification 
algorithm relative to special quadratic factors. Sobolev orthogonal polynomi
als also had their origin in least squares approximation, when one tries to 
fit simultaneously functions together with some of their derivatives. Physi
cally motivated are approximations by spline functions that preserve as many 
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moments as possible. Interestingly, these also are related to orthogonal poly
nomials via Gauss and generalized Gauss-type quadrature formulae. Slowly 
convergent series whose sum can be expressed as a definite integral naturally 
invite the application of Gauss-type quadratures to speed up their conver
gence. An example are series whose general term is expressible in terms of 
the Laplace transform or its derivative of a known function. Such series occur 
prominently in plate contact problems. 

A comprehensive package, called OPQ, of Matlab routines is available that 
can be used to work with orthogonal polynomials. It resides at the web site 

http://www.cs.purdue.edu/archives/2002/wxg/codes/ 
and all its routines are downloadable individually. 

2 Orthogonal Polynomials 

2.1 Recurrence Coefficients 

Background and Notation 

Orthogonality is defined with respect to an inner product, which in turn in
volves a measure of integration, d.\. An absolutely continuous measure has the 
form 

d.\(t) = w(t)dt on [a,b], ~oo::; a< b::; oo, 

where w is referred to as a weight function. Usually, w is positive Oil (a, b), in 
which case d.\ is said to be a positive measure and [a, b] is called the support 
of d.\. A discrete measure has the form 

N 

d.\N(t) = L wkJ(t ~ xk)dt, x1 < x2 < · · · < XN, 
k=l 

where J is the Dirac delta function, and usually wk > 0. The support of 
dAN consists of its N support points x 1, x 2 , . .. , x N. For absolutely continuous 
measures, we make the standing assumption that aU moments 

f.Lr= [trd.\(t), r=0,1,2, ... , 

exist and are finite. The inner product of two polynomials p and q relative to 
the measure d.\ is then well defined by 

(p,q)d.x = 1. p(t)q(t)d.\(t), 

and the norm of a polynomial p by 
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Orthogonal polynomials relative to the (positive) measure d). are defined by 

1Tk( ·) = 1Tk( ·; d,\) a polynomial of exact degree k, k = 0, 1, 2, ... , 

( ) { 
= o, k ~c e, 

7fk, 1rc dA > o, k =e. 
There are infinitely many, if d). is absolutely continuous, and they are uniquely 
defined up to the leading coefficient. If aU leading coefficients are equal to 1, 
they are said to be monic. For a discrete measure d).N, there are exactly N or
thogonal polynomials 1r0 , 1r1 , ... , 7r N _ 1 . Orthonormal polynomials are defined 
and denoted by 

They satisfy 

( _ _ ) 5 { o, k ~c e, 
7fk, 1T£ dA = k,f = l, k = e. 

Examples of measures resp. weight functions are shown in Tables 1 and 2. The 
former displays the most important "classical" weight functions, the latter the 
best-known discrete measures. 

Three-Term Recurrence Relation 

For any n ( < N -1 if d). = d).N ), the first n + 1 monic orthogonal polynomials 
satisfy a three-term recurrence relation 

1fk+t(t) = (t- ak)7rk(t)- /3k1fk-t(t), k = 0, l, ... , n- 1, 

7f_t(t) = 0, 1ro(t) = l, 
(2.1) 

where the recurrence coefficients ak = ak ( d>..), f3k = (3k( d).) are real and 
positive, respectively. The coefficient (30 in (2.1) multiplies 1r _ 1 = 0, and hence 
can be arbitrary. For later use, it is convenient to define 

Table 1. "Classical" weight functions d..\(t) = w(t)dt 

name w{t} support comment 

Jacobi (1- t)"'(1 + t)f3 [-1, 1] a:> -l, 
fJ > -l 

Laguerre t"'e-t [0, oo] a:> -1 

Hermite jtj2"'e -t2 [-oo, oo] a:>-~ 

Meixner- 2lrr ,p¢-rr)tjr(A. + itW f -oo, oo] ,\ > 0, 
Pollaczek 0<</;<7f 
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Table 2. "Classical" discrete measures d..\(t) = ~;::0 wkJ(t- k)dt 

name M Wk comment 

discrete N -l l 
Chebyshev 

Krawtchouk N (~)pk(l _ p)N-k O<p<l 

Charlier 00 e-aak /k! a>O 

Meixner 00 
ck r(kHl) 

0 < c < 1, f3 > 0 F(/3) _k_!_ 

Hahrr N ("tk) (!3~~k) Q > -1,{3 > -l 

f3o = /3o(d.-\) = L d.-\(t). (2.2) 

The proof of (2.1) is rather simple if one expands 7Tk+I(t)- t1rk(t) E ll\ 
in orthogonal polynomials 7To, 1r1, ... , 7Tk and observes orthogonality and the 
obvious, but important, property (tp, q)d>. = (p, tq)d>. of the inner product. 
As a by-product of the proof, one finds the formulae of Darboux, 

(2.3) 

The second yields 
(2.4) 

Placing the coefficients ak on the diagonal, and v7Jk on the two side diagonals 
of a matrix produces what is called the Jacobi matrix of the measure d.-\, 

ao Jlfi. 0 

Jlfi. O:t J7J2 
J(d.-\) = J7J2 0:2 (2.5) 

0 

It is a real, symmetric, tridiagonal matrix of infinite order, in general. Its 
principal minor matrix of order n will be denoted by 

Jn(d.-\) = J(d.-\){l:n,l:nJ· (2.6) 

Noting that the three-term recurrence relation for the orthonormal poly
nomials is 
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~iiMt(t) = (t- o:k)iik(t)- J73kiik~t(t), k = 0, 1, 2, ... , 

ii~ 1 (t) = 0, ifo(t) = 1/,fffO, 

or, in matrix form, with ir(t) = (ii0(t), ii1(t), ... , iin~ 1 (t)]T, 

(2.7) 

(2.8) 

one sees that the zeros Tv of iin( ·; d>.) are precisely the eigenvalues of J n( d>.), 
and ir( Tv) corresponding eigenvectors. This is only one of many reasons why 
knowledge of the Jacobi matrix, i.e. of the recurrence coefficients, is of great 
practical interest. For classical measures as the ones in Tables 1 and 2, all 
recurrence coefficients are explicitly known ( cf. [10, Tables 1.1 and 1.2]). In 
most other cases, they must be computed numerically. 

In the OPQ package, routines generating recurrence coefficients have the 
syntax ab=r _name(N), where name identifies the name of the orthogonal poly
nomial and N is an input parameter specifying the number of o:k and of f3k 
desired. There may be additional input parameters. The as and f3s are stored 
in the N x 2 array ab: 

NEN. 

For example, ab=r _jacobi (N, a, b) generates the first N recurrence coefficients 
of the (monic) Jacobi polynomials with parameters o:=a, f3=b. 

j Demo# 1j The first ten recurrence coefficients for the Jacobi polynomials 
with parameters a = - ~, f3 = ~. 

The Matlab command, followed by the output, is shown in the box below. 

>> ab=r_jacobi(l0,-.5,1.5) 
ab 

6.666666666666666e-014.712388980384690e+OO 
1.333333333333333e-01 1.388888888888889e-01 
5.714285714285714e-02 2.100000000000000e-01 
3.174603174603174e-02 2.295918367346939e-01 
2.020202020202020e-022.376543209876543e-01 
1.398601398601399e-02 2.417355371900826e-01 
1.025641025641026e-02 2.440828402366864e-01 
7.843137254901961e-03 2.455555555555556e-01 
6.191950464396285e-032.465397923875433e-01 
5.012531328320802e-03 2.472299168975069e-01 
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2.2 Modified Chebyshev Algorithm 

The first 2n moments Jlo, Jlt, ... , /12n~l of a measured,\ uniquely determine 
the first n recurrence coefficients ak(d,\) and /h(d-\), k = 0, l, ... , n~ L How~ 

th d . t J[J)2n llll2n [ ]2n~l [ /3 Jn~l · ever, e correspon mg momen map J& ~---+ J& : Jlk k=O ~---+ ak, k k=O IS 

severely ill~conditioned when n is large. Therefore, other moment maps must 
be sought that are better conditioned. One that has been studied extensively 
in the literature is based on modified moments 

mk = 1 Pk(t)d-\(t), k = 0, l, 2, ... , {2.9) 

where {pk}, Pk E IP'k, is a given system of polynomials chosen to be close 
in some sense to the desired polynomials { 1rk}. We assume that Pk> like 1fkJ 

satisfies a three~term recurrence relation 

Pk+t(t) = (t ~ ak)Pk(t) ~ bk1rk~t(t), k = 0, 1, 2, ... , 

P~t(t) = 0, Po(t) = 1, 
(2.10) 

but with coefficients ak E JR, bk 2: 0, that are known. The case ak = bk = 0 
yields powers Pk(t) = tk, hence ordinary moments Jlk, which however, as 
already mentioned, is not recommended. 

The modified moment map 

(2.11) 

and related maps have been well studied from the point of view of conditioning 
( cf. [10, §2. 1.5 and 2. 1.6]). The maps are often remarkably well-conditioned, 
especially for measures supported on a finite interval, but can still be ill
conditioned otherwise. 

An algorithm that implements the map (2.11) is the modified Chebyshev 
algorithm ( cf. [10, §2. L 7]), which improves on Chebyshev's original algorithm 
based on ordinary moments. To describe it, we need the mixed moments 

<Jkf = 17rk(t;dA.)pe(t)dA.(t), k,£ 2: -1, (2.12) 

which by orthogonality are clearly zero if e < k. 
Algorithm 1 Modified Chebyshev algorithm 

initialization: 
ao = ao + mtfmo, f3o = mo, 
(J ~ l,e = 0, e = 1, 2, ... '2n ~ 2, 
<Jo,e = me, e = 0, l, ... '2n ~ 1 

continuation {if n > 1 ): for k = 1, 2, ... , n- 1 do 
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Computing stencil 

(Jk,l + k 

n-1 • (!J 

(!J~ • • 
~(!I • • • • 

~~· • • • • • 
~ cr0,1= ml 

t 0 0 0 0 0 0 0 0 t ~ (J_l.l = 0 

0 2n-1 

Fig. 1. Modified Chebyshev algorithm, schematically 

+beJk-t,k-1, l!=k,k+l, ... ,2n-k-l, 

Jk,k+l CYk-i,k 
ak = ak + --- - ---'-- Jkk 

f3k = ---
Jkk CYk-l,k-1 CTk-l,k-1 

If ak = bk = 0, Algorithm 1 reduces to Chebyshev's original algorithm. 
Fig. l depicts the trapezoidal array of the mixed moments and the com

puting stencil indicating that the circled entry is computed in terms of the 
four entries below. The entries in boxes are used to compute the as and (Js. 

The OPQ Matlab command that implements the modified Chebyshev algo
rithm has the form ab=chebyshev(N ,mom, abm), where mom is the lx2N array 
of the modified moments, and abm the ( 2N -1) x 2 array of the recurrence co
efficients ak, bk from (2.10) needed in Algorithm 1: 

mom 

abm 
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If the input parameter abm is omitted, the routine assumes ak = bk = 0 and 
implements Chebyshev's original algorithm. 

I Demo#2l "Elliptic" orthogonal polynomials. 
These are orthogonal relative to the measure 

To apply the modified Chebyshev algorithm, it seems natural to employ 
Chebyshev moments (i.e. Pk = the monic Chebyshev polynomial of degree 
k) 

mo = 11

1 
d>.(t), mk = 2k~l 11

1 
Tk(t)d>.(t), k 2 1. 

Their computation is not entirely trivial ( cf. [10, Example 2.29]), but a stable 
algorithm is available as OPQ routine mm_ell.m, which for given N generates 
the first 2N modified moments of d>. with w 2 being input via the parameter 
om2. The complete Matlab routine is as follows: 

function ab=r_elliptic(N,om2) 
abm=r_jacobi(2*N-1,-1/2); 
mom=mm_ell(N,om2); 
ab=chebyshev(N,mom,abm) 

For om2=.999 and N=40, results produced by the routine are partially shown 
in the box below. 

ab 
0 9o682265121100620e+OO 
0 7o937821421385184e-01 
0 10198676724605757e-01 
0 2 0 270401183698990e-01 
0 2. 410608787266061e-01 
0 2. 454285325203698e-01 
0 2. 473016530297635e-01 
0 20482587060199245e-01 

0 2 0 499915376529289e-01 
0 2.499924312667191e-01 
0 20499932210069769e-01 

Clearly, f3k ---t ~ as k ---t oo, which is consistent with the fact that d>. belongs 
to the Szego class ( cf. [10, p. 12]). Convergence, in fact, is monotone fork 2 2. 

203 Discrete Stieltjes and Lanczos Algorithm 

Computing the recurrence coefficients of a discrete measure is a prerequisite 
for discretization methods to be discussed in the next section. Given the mea
sure 
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N 
d>.N(t) = L Wk15(t- Xk)dt, (2.13) 

k=1 

the problem is to compute av,N = au( d,\N ), f3v,N = f3v( d,\N) for all v 'S n -1, 
n 'S N, which will provide access to the discrete orthogonal polynomials of 
degrees up to n, or else, to determine the Jacobi matrix J N ( d.>w), which will 
provide access to all discrete orthogonal polynomials. There are two methods 
in use, a discrete Stieltjes procedure and a Lanczos-type algorithm. 

Discrete Stieltjes Procedure 

Since the inner product for the measure (2.13) is a finite sum, 

N 

(p,q)d;,N = L Wkp(xk)q(xk), (2.14) 
k=l 

Darboux's formulae (2.3) seem to offer attractive means of computing the 
desired recurrence coefficients, since all inner products appearing in these 
formulae are finite sums_ The only problem is that we do not yet know the 
orthogonal polynomials 7rk = 7rk,N involved. For this, however, we can make 
use of an idea already expressed by Stieltjes in 1884: combine Darboux's 
formulae with the basic three-term recurrence relation. Indeed, when k = 0 
we know that Jro,N = 1, so that Darboux's formula for a 0 ( d,\N) <:>~n be applied, 
and /3o( d>.N) is simply the sum of the weights Wk- Now that we know a 0 ( d,\N ), 
we can apply the recurrence relation (2.1) for k = 0 to compute lft,N(t) for 
t = Xk, k = 1, 2, _ .. , N. \Ve then have all the information at hand to reapply 
Darboux's formulae for a 1,N and f31,N, which in turn allows us to compute 
7r2,N(t) for all t = Xk from (2-1). In this manner we proceed until all au,N, 
f3v,N, v 'S n- 1, are determined. If n = N, this will yield the Jacobi matrix 
J N(d,\N ). 

The procedure is quite effective, at least when n « N_ As n approaches 
N, instabilities may develop, particularly if the support points Xk of d,\N are 
equally, or nearly equally, spaced. 

The OPQ routine implementing Stieltjes's procedure is called by ab= 
stieltjes(n,xw), where n 'S N, and xw is anN x 2 array containing the 
support points and weights of the inner product, 

xw 

As usual, the recurrence coefficients av,N, f3v,N, 0 'S v :s; n - l, are stored in 
the nx2 array ab. 
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Lanczos-type Algorithm 

Lanczos's algorithm is a general procedure to orthogonally tridiagonalize a 

given symmetric matrix A. Thus, it finds an orthogonal matrix Q and a 
symmetric tridiagonal matrix T such that QT AQ = T. Both Q and Tare 

uniquely determined by the first column of Q. 
Given the measure (2.13), it is known that an orthogonal matrix Q E 

rn;,(N+l)x(N+l) exists, with the first column being e 1 = [1,0, ... ,o]T E rn;,N+l, 

such that (see [10, Corollary to Theorem 3.1]) 

[ 

1 yWl vfW2 " . jWN 
yWl X1 0 .. · 0 

QT yiW2 0 Xz .. · 0 
. . . . . . . . . . . . 

jWN 0 0 XN 

(2.15) 

where ak = ak,N, f3k = f3k,N· \Ve are thus in the situation described above, 
where A is the matrix displayed on the left and T the matrix on the right, 

the desired Jacobi matrix J N ( d,\N) bordered by a first column and a first 
row containing {30 . The computation can be arranged so that only the leading 

principal minor matrix of order n + 1 is obtained. 
Lanczos's algorithm in its original form (published in 1950) is numerically 

unstable, but can be stabilized using ideas of Rutishauser (1963). An algorithm 

and pseudocode of Gragg and Harrod [14], using a sequence of Givens rotations 

to construct the matrix Q in (2.15), forms the basis for the OPQ Matlab code 

ab= lanczos (n, xw), where the input and output parameters have the same 

meaning as in the routine stieltjes.m. 
This routine enjoys good stability properties but may be considerably 

slower than Stieltjes's procedure. 

2.4 Discretization Methods 

The basic idea is to discretize the given measure dA., i.e. approximate it by a 
discrete measure 

(2.16) 

and then use the recurrence coefficients ak(dA.N), f3k(d>.N) of the discrete 

measure to approximate ak(dA.), ,Bk(d>.). The former are computed by either 

Stieltjes's procedure or a Lanczos-type algorithm. The effectiveness of the 

method is crucially tied to the quality of the discretization. We illustrate this 

by a simple, yet instructive, example. 

Example 1. Chebyshev weight function plus a constant, 

w(t) = (1- t2)- 112 + c on [-1,1], c > 0. 

It suffices to approximate the inner product for the weight function w. This 

can always be done by using appropriate quadrature formulae. In the case at 
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hand, it is natural to treat the two parts of the weight function separately, 
indeed to use Gauss-Chebyshev quadrature for the first part and Gauss
Legendre quadrature for the second, 

(p, q)w = j_1

1 
p(t)q(t)(1- t2 )-l/2dt + C j_1

1 
p(t)q(t)dt 

M M 

~I: wfhp(xfh)q(xfh) + c I: w~p(xr)q(xr). (2.17) 
k=l k=l 

Here, xj?h, wfh are the nodes and weights of the Jvf -point Gauss-Chebyshev 
quadrature rule, and xr, wr those of the Gauss-Legendre quadrature rule. 
The discrete measure implied by (2.17) is dAN with N =2M and 

~f Nf 

d>.N(t) = L wfh6(t- xfh) + c L wtJ(t- xr). (2.18) 
k=l k=l 

What is attractive about this choice is the fact that the approximation in 
(2.17) is actually an equality whenever the product p · q is a polynomial of 
degree -s 2M- 1. Now if we are interested in computing ak(w), fJk(w) for 
k -s n - 1, then the products p · q that occur in Darboux's formulae are aU of 
degree-s 2n- L Therefore, we have equality in (2.17) if n -sM. It therefore 
suffices to take M = n in (2.17) to obtain the first n recurrence coefficients 
exactly. 

In general, the quadrature rules will not produce exact results, and M will 
have to be increased through a sequence of integers until convergence occurs. 

Example 1 illustrates the case of a 2-component discretization. In a general 
multiple-component discretization, the support [a, b] of d>. is decomposed into 
s intervals, 

s 

[a,b] = U [aj,bj], (2.19) 
j=l 

where the intervals [a1,b1] may or may not be disjoint. The measured>. is 
then discretized on each interval [aj, bj] using either a tailor-made M-point 
quadrature (as in Example 1), or a general-purpose quadrature. For the latter, 
a Fejer quadrature rule on [ -1, 1], suitably transformed to [aj, b1], has been 
found usefuL (The fejer rule is the interpolatory quadrature formula based 
on Chebyshev points.) If the original measure d). has also a discrete compo
nent, this component is simply added on. Rather than go into details (which 
are discussed in (10, §2.2.4]), we present the Matlab implementation, another 
illustrative example, and a demo. 

The OPQ routine for the multiple-component discretization is ab=mcdis 
(N, epsO, quad, Mmax), where in addition to the variables ab and n, which 
have the usual meaning, there are three other parameters, epsO: a prescribed 
accuracy tolerance, quad: the name of a quadrature routine carrying out 
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the discretization on each subinterval if tailor-made (otherwise, quadgp .m, 
a general-purpose quadrature routine can be used), Mmax: a maximal allow
able value for the discretization parameter M. The decomposition (2.19) is 
input via the mex2 array 

AB= 

where me is the number of components (the sin (2.19)). A discrete component 
which may possibly be present in d). is input via the array 

Xt Yr 
X2 Y2 

DM= 

Xmp Ymp 

with the first column containing the support points, and the second column 
the associated weights. The number of support points is mp. Both me and mp, 
as well as AB and DM, are global variables. Another global variable is iq, which 
has to be set equal to 1 if the user provides his or her own quadrature routine, 
and equal to 0 otherwise. 

Example 2. The normalized Jacobi weight function plus a discrete measure. 
This is the measure 

p 

d>.(t) = (,BJ) - 1(1 - t)"'(1 + t)~dt + L Wjb(t- Xj )dt on [ -1, 1], 
j=l 

where 

Here, one single component suffices to do the discretization, and the obvious 
choice of quadrature rule is the Gauss-Jacobi At-point quadrature formula to 
which the discrete component is added on. Similarly as in Example l, taking 
M = n yields the first n recurrence coefficients a:k(d>.), ,Bk(d..\), k :::; n- 1, 
exactly. The global parameters in Matlab are here me=l, mp=p, iq=1, and 

AB= fE1D]J DM= 

I Demo#3l Logistic density function, 
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e-t 
d-\(t) = ( tp dt, 1 +e-

t E JR. 

The discretization is conveniently effected by the quadrature rule 

1 100 p( -t) -t ~o= p(t) -t 
p(t)d-\(t) = ( -t)Z e dt + ( -tp e dt 

IR 0 l+e 0 1+e 

~ ~ ,L p( -Tt) + p(Tt) 
~ ~ /\k L ' 

k=l (1 +c-r. )2 

where Tk, -\r are the nodes and weights of the Af -point Gauss-Laguerre 
quadrature formula. This no longer produces exact results for M = n, but 
converges rapidly as Af -t oo. The exact answers happen to be known, 

ak(d-\) = 0 

!3o(d-\) = l, 

by symmetry, 
k4TI2 

iJk(d-\) = 4k2- 1' k ?. l. 

Numerical results produced by mcdis .m with N=40, eps0=103 xeps, along 
with errors (absolute errors for a.k, relative errors for iJk) are shown in the 
box below. The two entries in the bottom row are the maximum errors taken 
over 0 <::: n <::: 39. 

n iJn err a err ;3 
0 1.0000000000 0~ 7.18 -17) 33ll6l 1 3.2898681337 0 1.29 -[6l2.70 -[6 
6 8.9447603523 1l4.52 -16 1.43 -15) 
15 5.5578278399 2 2.14 -14 0.00( +00) 
39 3. 7535340252 3 6.24 --14~ 4.48( -15~ 

6.24 -14 8.75 -15 

2.5 Cauchy Integrals of Orthogonal Polynomials 

The Jacobi Continued Fraction 

The Jacobi continued fraction associated with the measured-\ is 

( !3o iJ1 iJz J=Jt;d-\)= ---------
t - a.o - t - ar - t - az -

(2.20) 

where a.k = ak(d-\), iJk = iJk(d-\). From the theory of continued fractions it 
is readily seen that the nth convergent of J is 

/3n -1 

z- ao- z- a 1 - Z- tYn-l 

iTn(z; d-\) 
Tln(z;d-\)' 

n = 1,2,3, ... , (2.21) 

where 1f n is the monic orthogonal polynomial of degree n, and IT n a polynomial 
of degree n -1 satisfying the same basic three-term recurrence relation as 1fn, 

but with different starting values, 
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o-k+I(z) = (z- o:k)ak(z) -/hak-l(z), k = 1, 2,3, ... , 

o-o(z) = 0, o-1(z) = f3o. 
(2.22) 

Recall that (30 = JJR dA.(t). If we define o-_1 = -1, then (2.22) holds also for 
k = 0. We have, moreover, 

(Jn(z) = 11fn(z)- 1fn(t) d\(t), "' n = 0, l, 2, ... , 
IR Z- t 

(2.23) 

as can be seen by showing that the integral on the right also satisfies (2.22). 
If we define 1. d>..(t) 

F(z) = F(z;d>.) = -
IR Z- t 

(2.24) 

to be the Cauchy transform of the measure d)., and more generally consider 

Pn(z) = Pn(z;dA.) = { 1fn(t) dA.(t), 
}IR Z- t 

(2.25) 

the Cauchy integral of the orthogonal polynomial7rn, we can give (2.23) the 
form 

o-n(z) = 1fn(z)F(z)- Pn(z), (2.26) 

and hence 
o-n(z) = F(z) _ Pn(z) 
1fn(z) 1fn(z). 

(2.27) 

An important result from the theory of the moment problem tells us that, 
whenever the moment problem for d). is determined, then 

lim a-n ((z )) = F( z) for z E <C\fa, bj, 
n-+oo 1fn Z 

(2.28) 

where [a, b] is the support of the measure d).. If [a, b] is a finite interval, then 
the moment problem is always determined, and (2.28) is known as Markov's 
theorem. 

Note from (2.26) that, since o-_1 = -i, we have 

P-l(z) = l, (2.29) 

and the sequence {Pn};:"=-l satisfies the same three-term recurrence relation 
as { 1fn};:"=-l· As a consequence of (2.27) and (2.28), however, it behaves quite 
differently at infinity, 

lim Pn(z) = 0 
n-+oo 1fn(z) ' 

(2.30) 

which implies that {Pn(z)} is the minimal solution of the three-term recur
rence relation having the initial value (2.29). It is well known that a minimal 
solution of a three-term recurrence relation is uniquely determined by its 
starting value, and, moreover, that 
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Pn(z) 
Pn-t(z) 

(2.31) 

i.e. the successive ratios of the minimal solution are the successive tails of the 
Jacobi continued fraction (Pincherle's theorem). In particular, by (2.31) for 
n = 0, and (2.21), (2.28) and (2.29), 

Po(z) = F(z), (2.32) 

i.e., p0 is the Cauchy transform of the measure. 
We remark that (2.25) is meaningful also for real z = x in (a,b), if the 

integral is interpreted as a Cauchy principal value integral ( cf. ( 4.36)) 

Pn(x) = j Kn(t;dA) dA(t), X E (a, b), 
]TR X- t 

(2.33) 

and the sequence {Pn ( x)} satisfies the basic three-term recurrence relation 
with initial values 

P-t(x) = 1, 

but is no longer minimaL 

Continued Fraction Algorithm 

Po(x) = [ dA(t) ' 
h_ x-t 

(2.34) 

This is an algorithm for computing the minimal solution Pn(z), z E <C\[a, bj, 
of the basic three-term recurrence relation. Denote the ratio in (2.31) by 

Pn(z) 
Tn-t = ( ) · Pn-1 Z 

(2.35) 

Then, clearly, 
fJn r n-t = ---'---- (2.36) 

If, for some v 2: N, we knew r v 1 we could apply (2.36) for r = v, v- 1, ... , 0, 
and then obtain 

Pn(z} = Tn-tPn-t(z), n = 0, 1, ... , N. (2.37) 

The continued fraction algorithm is precisely this algorithm, except that r v is 
replaced by 0. All quantities generated then depend on v, which is indicated 
by a superscript. 

Algorithm 2 Continued fraction algorithm 
backward phase; v 2: N: 

r[v] =0 
v ' 

n = v, v - l, ... , 0. 
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18 Walter Gautschi 

forward phase: 

It can be shown that, as a consequence of the minimality of {Pn(z)} (cf. [10, 
pp. 114-115]), 

limp~l(z)=pn(z), n=0,1, ... ,N, ifzEC\[a,b]. (2.38) 
V-+00 

Convergence is faster the larger dist(z, [a,b]). To compute Pn(z), it suffices to 
apply Algorithm 2 for a sequence of increasing values of v until convergence 
is achieved to within the desired accuracy. 

The OPQ command implementing this algorithm is 

[rho,r,nu]=cauchy(N,ab,z,epsO,nuO,numax) 

where the meanings of the output variables rho, r and input variable ab are 
as shown below. 

Po(z) 
Pl (z) 

PN(z) 

ro(z) 
r1 (z) 

f3o 
f3t 

O:'numax f3numax 

rho r ab 
The input variable epsO is an error tolerance, the variable nuO a suitable 
starting value of v in Algorithm 2, which is incremented in steps of, say 5, 
until the algorithm converges to the accuracy epsO. If convergence does not 
occur within v ::; numax, an error message is issued, otherwise the value of v 
yielding convergence is output as nu. 

2.6 Modification Algorithms 

By "modification" of a measure d.X, we mean here multiplication of d.X by a 
rational function r which is positive on the support [a, bj of dA. The modified 
measure thus is 

d~(t) = r(t)d.X(t), r rational and r > 0 on [a,b]. (2.39) 

We are interested in determining the recurrence coefficients &k, ~k for d~ in 
terms of the recurrence coefficients O:k, fJk of d>.. An algorithm that carries out 
the transition from o:k, fJk to &k, ~k is called a modification algorithm. While 
the passage from the orthogonal polynomials relative to d>. to those relative 
to d5.. is classical (at least in the case when r is a polynomial), the transition 
in terms of recurrence coefficients is more recent. It was first treated for linear 
factors in 1971 by Galant. 
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Example 3. Linear factor r(t) = s(t- c), c E IR\[a,b], s = ±1. 
Here, s is a sign factor to make r(t) > 0 on (a, b). Galant's approach 

is to determine the Jacobi matrix of d~ from the Jacobi matrix of d>. by 
means of one step of the symmetric, shifted LR algorithm: by the choice of 
s, the matrix s[J n+l ( d>..) - cf] is symmetric positive definite, hence admits a 
Cholesky decomposition 

where Lis lower triangular. The Jacobi matrix Jn(d~) is now obtained by 
reversing the order of the product on the right, adding back the shift c, and 
then discarding the last row and column, 1 

J n ( d~) = ( L T L + cl) . 
[l:n,l:n] 

Since the matrices involved are tridiagonal, the procedure can be implemented 
by simple nonlinear recurrence relations. These can also be obtained more 
systematically via Christoffel's theorem and its generalizations. 

Generalized Christoffel's Theorem 

vVc write 

A u(t) 
d>..(t) = v(t) dA.(t), 

f m 

u(t) =±II (t- u>,), v(t) = II (t- viL), (2.40) 
~<=1 

where U>, and vf.J. are real numbers outside the support of d>.. The sign of u( t) 
is chosen so that d~ is a positive measure. Christoffel's original theorem (1858) 
relates to the case v(t) = 1, i.e. m = 0. The generalization to arbitrary v is 
due to Uvarov (1969). It has a different form depending on whether m::; nor 
rn > n. In the first case, it states that 

where 

u(t)7rn(t;d~) = const x 

1rn-m(t) · · · 'irn-l(t) 7rn(t) · · · 1fn+£(t) 
'irn-m(ut) · · · 1rn-l(ut) 1rn(ut) · · · 1fn+£(ur) 

1fn-m(ue) 'irn-l(ue) 7rn(ue) · · · 'irnH(ue) 
Pn-m(vt) · · · Pn-l(vr) Pn(vt) · · · PnH(vt) 

Pk(z) = 17rk(t;d>.) d\(t), A k = 0, l, 2, ... 1 
IR z-t 

(2.41) 

1 See, e.g. [9], where it is also shown how a quadratic factor (t- ci)(t- c2 ) can be 
dealt with by one step of the QR algorithm; see in particular §3.2 and 3.3 
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20 Walter Gautschi 

are the Cauchy integrals of the orthogonal polynomials 1fk- They occur only 
if m > 0. To get monic polynomials, the constant in (2.41) must be taken to 
be the reciprocal of the (signed) cofactor of the element 1fn+C(t). 

If m > n, the generalized Christoffel theorem has the form 

u(t)7rn(t;d~) = const x 

0 0 
0 0 

0 
0 

0 0 0 
m-n-1 

V1 · · · V 1 

7ro(t) · · · 1fnH(t) 
1fo(ul) · · · 1fn+C(ut) 

7ro(ui) · · · 1fnH(ue) 
Po( vi) · · · PnH( vr) 

(2.42) 

Both versions of the theorem remain valid for complex u,\, vJJ. if orthogo
nality is understood in the sense of formal odhogonality. 

Linear Factor 

Generalizing Example 3 to arbitrary complex shifts, we let 

dr\(t) = (t ~ z)d.\(t), z E C\[a, b]. (2.43) 

Using Christoffel's theorem, letting ifn( ·) = 1fn( · ;dr\), we have 

(2.44) 

where 

(2.45) 

Following Verlinden [17], we write (t ~ z)tii-k(t) in two different ways: in the 
first, we use the three-term recurrence relation for 1fk to obtain 

(t ~ z)tii-k(t) = t1fk+t(t) ~ rk · t1fk(t) 

= 1fk+2(t) + (ak+l ~ rk)7rk+l(t) + (lh+l ~ rkak)7rk(t) ~ rkf3k1fk-l(t); 

in the second, we use the three-term recurrence relation directly on irk, and 
then apply (2.44), to write 

(t ~ z)tirk(t) = (t ~ z)[ifk+l + &kirk(t) + ~kifk-l(t)J 

= 1fk+2(t) + (iik ~ Tk+l)7rk+l(t) + (~k ~ TkCtk)1fk(t) ~ Tk-1~k1fk-1(t). 
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Since orthogonal polynomials are linearly independent, the coefficients in the 
two expressions obtained must be the same. This yields 

hence the following algorithm. 
Algorithm 3 Modification by a linear factor t - z 

initialization: 

ro = z- a 0 , r1 = z- Ctt- f3tlro, 

&o = Ctt + r1 - ro, ~o = -ro f3o. 

continuation (if n > 1): for k = 1, 2, ... , n- 1 do 

&k = IYk+l + rk+l - rk, 

A = fJkrk/rk-1· 

Note that this requires an, fJn in addition to the usual n recurrence coefficients 
IYk, fJk fork <::; n- l. Algorithm 3 has been found to be numerically stable. 

The OPQ Matlab command implementing Algorithm 3 is 

ab=chril(N,abO,z) 

where abO is an (N + 1) x 2 array containing the recurrence coefficients etA:, Bk, 
k = 0, l, ... , N. 

Quadratic Factor 

We consider (real) quadratic factors ( t - x )2 + y2 = ( t - z )( t - z), z = x + iy, 
y > 0. Christoffel's theorem is now applied with u 1 = z, u2 = z to express 
(t- z)(t- z)nn(t) as a linear combination of 1fn, 1fn+l, and 1fn+2 , 

(2.46) 

where 

( 1 1'~+1 1) 
Sn = - r n+l + r~ r n ' 

r" 
t _ n+l I 12 n- rn · 

r" n 
(2.47) 

Here we use the notation 

(2.48) 

where rn(z) continues to be the quantity defined in (2.45). The same tech
nique used before can be applied to (2.46): express (t- z)(t- z)tirk(t) in two 
different ways as a linear combination of 1fk+3, 1fk+2, ... , 1fk-l and compare 
the respective coefficients. The result gives rise to the following algorithm. 
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Algorithm 4 Modification by a quadratic factor (t ~ z)(t ~ z), z = x + iy 
initialization: 

continuation (if n > l): fork = l, 2, ... , n ~ l do 

Note that this requires o:k, fh for k up to n + L Algorithm 4 is also quite 
stable, numerically. 

The OPQ routine for Algorithm 4 is 

ab=chri2(N,abO,x,y) 

with obvious meanings of the variables involved. 
Since any real polynomial can be factored into a product of real linear and 

quadratic factors of the type considered, Algorithms 3 and 4 can be applied 
repeatedly to deal with modification by an arbitrary polynomial which is 
positive on the support [a, b]. 

Linear Divisor 

In analogy to (2.43), we consider 

d.\(t) = d>.(t) , z E C\[a, bJ. 
t~z 

(2.49) 

Now the generalized Christoffel theorem (with£= 0, m = 1) comes into play, 
giving 

where now 

1
1rn-l(t) 1rn(t) l 

, Pn-t(z) Pn(z) 
7rn(t) = ( ) = 7rn(t) ~ Tn-l1rn-I(t), 

~pn-1 Z 

Pn+I(z) 
Tn = Pn(z) . 

(2.50) 

(2.51) 
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Similarly as before, we express titk(t) in two different ways as a linear combi
nation of 7rk+l, nk, ... , 7rk-Z and compare coefficients. By convention, 

~ 1 .~ 1 d.\(t) f3o = d.\(t) = -- = -po(z). 
IR IRt-z 

The result is: 

Algorithm 5 Modification by a linear divisor 
initialization: 

&o = o:o + ro, ~o = -po(z). 

continuation (if n > 1): fork= 1, 2, ... , n- 1 do 

&k = O:k + rk- rk-1, 

~k = f3k-1rk-t/rk-2· 

Note that here no coefficient O:k, f3k beyond k S:: n - 1 is needed, not even 
f3n-1· 

The ratios rk of Cauchy integrals that appear in Algorithm 5 can be pre
computed by Algorithm 2, where only the backward phase is relevant, conver
gence being tested on the rfl. Once converged, the algorithm also provides 
Po(z) = r~1 . 

As z approaches the support interval [a, b], the strength of minimality of 
the Cauchy integrals {Pk(z)} weakens and ceases altogether when z = x E 
[a, bj. For z very dose to [a, b], Algorithm 2 therefore converges very slowly. 
On the other hand, since minimality is very weak, one can generate Pk with 
impunity, if n is not too large, by forward application of the basic three-term 
recurrence relation, using the initial values p_ 1(z) "= 1 and p0 (z). 

All of this is implemented in the OPQ routine 

[ab,nu]=chri4(N,abO,z,epsO,nuO,numax,rhoO,iopt) 

where all variables except rho and iopt have the same meaning as before. The 
parameter rho is p0 (z), whereas iopt controls the method of computation for 
rk: Algorithm 2 if iopt=l, and forward recursion otherwise. 

Quadratic Divisor 

We now consider 

d_\(t) = d.\(t) 
(t-z)(t-z) 

d,\( t) 
Z =X+ iy, X E JR, y > 0. (2.52) 

Here we have 
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, 1 td,\.(t)jjt- zj2 Repo(z) 
ao = -'--'{'-0.------ = x + Y 1 ( ) 1 

J'R d,\.(t)jjt - zj2 mpo z 

' 1 
f3o = -- ImpD(z). 

y 
(2.53) 

We are in the case € = 01 m = 2 of the generalized Christoffel theorems (2.41) 
and (2.42) 1 which give respectively 

1fn-2(t) 1fn-1(t) 1fn(t) 
Pn-2(z) Pn-1(z) Pn(z) 
Pn-2(z) Pn-1(z) Pn(z) 

I Pn-2(z) Pn-1(z) I 
Pn-2(z) Pn-1 (z) 

This becomes 

where 

1 n 2': 2; 

0 7ro(t) 1r1(t) 
1 Po(z) P1(z) 
1 Po(z) P1 (z) 

llpo(z)l 
1 Po(z) 

r" 
t - n-1 J J2 > 2 n - , Tn-2 1 n _ 1 

rn-2 

. (2.54) 

(2.55) 

(2.56) 

with rn as defined in (2.51) and notation as in (2.48). Exactly the same pro
cedure used to obtain Algorithm 5 yields 

Algorithm 6 Modification by a quadratic divisor 
initialization: 

' I I II ao=x+PoYPo, /Jo = -pVy, 

/J1 = !31 + St(ao- &I)- t2, 

/J2 = fJ2 + s2(a1- &2)- t3 + t2. 

continuation (if n > 3): for k = 3 1 4, ... , n - 1 do 

The OPQ routine for Algorithm 6 is 

[ab,nu]=chriS(N,abO,z,epsO,nuO,numax,rhoO,iopt) 

where the input and output variables have the same meaning as in the routine 
chri4.m. 

Just like Algorithms 3 and 4, also Algorithms 5 and 6 can be applied 
repeatedly to deal with more general polynomial divisors. 
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Exercises to §2 (Stars indicate more advanced exercises.) 

l. 

2. 

3. 

4. 

5. 

Explain why, under the assumptions made about the measure d.\, the 
inner product (p, q )d.\ of two polynomials p, q is well defined. 
Show that monic orthogonal polynomials relative to an absolutely con-
tinuous measure are uniquely defined. {Hint: Use Gram-Schmidt orthog-
onalization.} Discuss the uniqueness in the case of discrete measures. 
Supply the details of the proof of (2.1}. In particular, derive (2.3) and 
(2.4). 
Derive the three-term recurrence relation (2.7) for the orthonormal poly-
nomials. 

(a) With irk denoting the orthonormal polynomials relative to a measure 
d.\, show that 

{ 
0 if Jk ~ €1 > 1, 1 tirk(t)ire(t)d.A.(t) = Jf3,:;; if lk ~ €1 = 1, 

!fl; o:k if k = e, 
where O:k = o:k(d.A.), fJk = fJk(d.\). 

(b) Use (a) to prove 

J = Jn(d.\) = i tp(t)pT(t)d.\(t), 

where pT(t) = [iro(t), irt(t), ... , irn-l(t)J. 
(c) With notation as in (b), prove 

where en = {0, 0, ... , l]T E lRn. 
6. Let d.\( t) = w( t )dt be symmetric on [~a, aj, a > 0, that is, w( ~t) = w( t) 

on [~a, a]. Show that o:k(d.\) = 0, all k 2:0. 
7*. Symmetry of orthogonal polynomials. 

Let d.A.(t) = w(t)dt be symmetric in the sense of Exercise 6. 
(a) Show that 

where 1f~ are the monic polynomials orthogonal on [0, a 2 ] with respect 
to d>.±(t) = t=F 112w(t 112 )dt. 

(b) Let ( cf. Exercise 6) 

7fk+I(t) = t7rk(t) ~ f3k7Tk-t(t), k = 0,1,2, ... ' 

Lt(t) = 0, JTo(t) = 1 

be the recurrence relation for { 7rk( ·;d.\)}, and let at, /3~ be the 
recurrence coefficients for { 7r~}- Show that 
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f3t =ext 

f32k = f3i; I f32k-1 } 

f32k+l = exi; - f32k 
k = 1, 2,3, .... 

(c) Derive relations similar to those in (b) which involve at and aJ:, {3J:. 
(d) Write a Matlab program that checks the numerical stability of the 

nonlinear recursions in (b) and (c) when { 1fk} are the monic Legendre 
polynomials. 

8. The recurrence relation, in Matlab, of the Chebyshev polynomials of the 
second kind. 

(a) Using Mat lab, compute Uk(x) for 1 ::; k ::; N either by means of 
the three-term recurrence relation Un+l(x) = 2xUn(x)- Un_ 1(x) for 
n = 0, 1, ... , N -1 (where U_ 1(x) = 0, U0 (x) = 1), or else by putting 
n = 1 : N in the explicit formula U n (cos B) = sin( n + 1 )e I sine, where 
x =cos B. For selected values of x and N, determine which of the two 
methods, by timing each, is more efficient. 

(b) Using Matlab, compute the single value UN(x) either by use of the 
three-term recurrence relation, or by direct computation based on the 
trigonometric formula for UN(cose). For selected values of x and N, 
determine which of the two methods, by timing each, is more efficient. 

9*. Orthogonality on two separate (symmetric) intervals. 
Let 0 < f; < 1 and consider orthogonal polynomials 1fk relative to the 
weight function 

t E [-1,(] U [f;, 1], 

otherwise. 

Here, "( E lR and a > -1, f3 > - L Evidently, w is a symmetric weight 
function (in the sense of Exercise 6). Define 7ft as in Exercise 7(a). 

(a) Transform the polynomials 7ft orthogonal on [t;2,1] to orthogonal 
polynomials 1rt on the interval [ -1, 1] and obtain the respective weight 
function w±. 

(b) Express f32k and f32k+ 1 in terms of 1!:', the leading coefficient of the 
orthonormal polynomial of degree r relative to the weight function 
w± on [-1,1]. {Hint: Use f3r = !17rr]] 211!1fr-tll 2 (cf. eqn (2.4)) and 
relate this to the leading coefficients "/k, "'t, and 'Yt, with obvious 
notations.} 

(c) Prove that 

. 1 ( )2 hm f32k = - 1 - ~ , 
k-+oo 4 

. 1 ( )2 hm f32k+l = - 1 + f; . 
k-+oo 4 

{Hint: Use the result of (b) in combination with the asymptotic equiv
alence 
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-y± = 7f~if2 exp{ - 2~ j11 lnw±(x)(1-x2 )~ 1 f2dx}, 
ask -+ oo 

(cf. [16, eqn (12.7.2)]). You may also want to use 

f 1+(1-a2)t/2 Jo ln(l-a2x2)(1-x2 )~ 1 f 2dx=7rln 2 , 

(see [13, eqn 4.295.29]).} 
(d) Prove that 

. ± l +e hm ak =--, 
k-+= 2 

. ± (1-e) 2 
hm (Jk = --

k-+oo 4 

{Hint Express at, f3f in terms of &t, ~f, and use the fact that the 
weight function w± is in the Szego class.} 

(e) The recurrence coefficients {(Jk} must satisfy the two nonlinear recur
sions of Exercise 7(b),(c). Each of them can be interpreted as a pair 
of fixed-point iterations for the even-indexed and for the odd-indexed 
subsequence, the fixed points being respectively the limits in (c). Show 
that, asymptotically, both fixed points are "attractive" for the recur
sion in 7(b), and "repelling" for the one in 7(c). Also show that in the 
latter, the fixed points become attractive if they are switched. ·what 
are the numerical implications of all this? 

(f) Consider the special case 'Y = ± 1 and a = j3 = - ~. In the case 
1 = 1, use Matlab to run the nonlinear recursion of Exercise 7 (b) and 
compare the results with the known answers 

1 2 1 + 'f/2k-2 
j32k = 4 (1 - ~) 1 + ry2k , k = 1, 2, 3, ... , 0 ~ t ~ 1 

and 

1 2 1 2 1 + T]2k+2 
f3t = 2(1 + ~ ), i3zk+l = 4 (1 + ~) 1 + ry2k ' k = 1, 2, 3, ... , 

where ry = (1- ~)/(1 + ~) (see [10, Example 2.30]). Likewise, in the 
case 'Y = -1, run the nonlinear recursion of Exercise 7(c) and compare 
the results with the exact answers 

and 

Comment on what you observe. 
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10. Prove the validity of Algorithm l. 
(a) Verify the initialization part. 
(b) Combine CTk+l,k-1 = 0 with the three-term recurrence relation for 1Tk 

to prove the formula for f3k in the continuation part. 
(c) Combine CTk+l,k = 0 with the three-term recurrence relation for both, 

1Tk and Pk, and use the result of (b), to prove the formula for ak in 
the continuation part. 

11 *. Orthogonal polynomials { 1Tk( · ; w)} relative to the weight function ("hat 
function") 

{
1+t 

w(t) = 1 ~ t 
if - 1 s: t s: 0, 
if 0 s: t s: 1, 
otherwise. 

(a) Develop a modified Chebyshev algorithm for generating the first n 
recurrence coefficients f3k( w ), k = 0, 1, ... , n-1 (all ak(w) = 0; why?). 
Define modified moments with respect to a suitable system of (monic) 
orthogonal polynomials. 

(b) What changes in the routine are required if one wants { 1Tk ( · ; 1-w)}, 
or { 1Tk( ·; w(1 - w) )}, or { 1Tk( ·; wP)} where p > -1? 

(c) Download from OPQ the routine chebyshev .m, write a routine mom.m 
for the modified moments to be used in conjunction with chebyshev .m 
to implement (a), and write a Matlab driver to produce results for 
selected values of n. 

(d) Devise a 2-component discretization scheme for computing the first 
n recurrence coefficients f3k(w), k = 0, 1, 2, ... , n- 1, which uses an 
n-point discretization of the inner product on each component interval 
and is to yield exact answers (in the absence of rounding errors). 

(e) Same as (b). 
(f) Download from OPQ the routine mcdis .m, write a quadrature rou

tine qhatf .m necessary to implement (d), and append a script to the 
driver of (c) that produces results of the discretization procedure for 
selected values of n. Download whatever additional routines you need. 
Run the procedure with irout = 1 and irout fc 1 and observe the re
spective timings and the maximum discrepancy between the two sets 
of answers. Verify that the routine "converges" after one iteration if 
idelta is properly set. Compare the results with those of (a). 

(g) Use the routines acondG.m and rcondG.m to print the absolute and 
relative condition numbers of the relevant map Gn. Do any of these 
correlate well with the numerical results obtained in (c)? If not, why 
not? 

12*. Orthogonal polynomials { 1Tk( ·; w)} relative to the weight function ("ex
ponential integral") 

w(t) = E 1(t), E1 (t) = _e -ds on [O,oo]. j = -ts 

1 s 

These are of interest in the theory of radiative transfer (Chandrasekhar 
[2, Chapter II, §23]). 
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(a) Develop and run a multiple-component discretization routine for 
generating the first n recurrence coefficients ak(w), /h(w), k = 
0, 1, ... , n - 1. Check your results for n = 20 against [3, Table 3]. 
{Hint: Decompose the interval [0, ooJ into two subintervals [0, 2] and 
[2, oo] (additional subdivisions may be necessary to implement the 
developments that follow) and incorporate the behavior of E 1(t) near 
t = 0 and t = oo to come up with appropriate discretizations. For 
0 ~ t ~ 2, use the power series 

where 1 = .57721566490153286 ... is Euler's constant, and for t > 2 
the continued fraction ( cf. [1, eqn 5.1.22]) 

Evaluate the continued fraction recursively by ( cf. [7, §2]) 

where 

t0 = 1, tk = p1p2 • · · Pk, k = 1, 2, 3, ... , 

-ak(1 + Pk-d 
Po =0, Pk = 1 +ak( 1 +Pk-d, k = 1,2,3, .... 

Download the array abjaclog(101:200, :) to obtain the recurrence 
coefficients ab for the logarithmic weight function ln(l/t).} 

(b) Do the same for 

E2 (t) = ~ds on [O,ooj. l oo -ts 

I S 

Check your results against the respective two- and three-point Gauss 
quadrature formulae in Chandrasekhar [2, Table VI]. 

(c) Do the same for 

w(t) = Em(t) on [0, cJ, 0 < c < oo, m = 1, 2. 

Check your results against the respective two-point Gauss quadrature 
formulae in Chandrasekhar [2, Table VII]. 
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13. Let C = bo + b~+ b:~ b:~ · · -be an infinite continued fraction, and Cn = 
bo + _!!__L_ · • · an = An its nth convergent. From the theory of continued 

b1 + bn Bn 
fractions, it is known that 

where 
A_ 1 = l, A0 =b0 ; B_t =0, Bo = L 

Use this to prove (2.21) and (2.22). 
14. Prove (2.23). 
15. Show that (2.30) implies limn-too & = 0, where Yn is any solution of the 

Yn 
three-term recurrence relation (satisfied by Pn and 7rn) which is linearly 
independent of Pn· Thus, {Pn} is indeed a minimal solution. 

16. Show that the minimal solutions of a three-term recurrence relation form 
a one-dimensional manifold. 

17. (a) Derive (2-47). 
(b) Supply the details for deriving Algorithm 4. 

18. Supply the details for deriving Algorithm 5. 
19. (a) Prove (2.53). 

(b) Prove (2.55), (2.56). 
(c) Supply the details for deriving Algorithm 6. 

3 Sobolev Orthogonal Polynomials 

3.1 Sobolev Inner Product and Recurrence Relation 

In contrast to the orthogonal polynomials considered so far, the inner product 
here involves not only function values, but also successive derivative values, 
all being endowed with their own measures. Thus, 

(p,q)s = k p(t)q(t)d>.o(t) + 1 p'(t)q'(t)d>.1(t) 

+ ·-- + 1 P(s)(t)q(s)(t)d>.8 (t), S 2::: l. 
(3.1) 

If all the measures d>.a are positive, the inner product (3.1) has associated 
with it a sequence of (monic) polynomials 7rk(-; S), k = 0, l, 2, ___ ,orthogonal 
in the sense 

( ) { 
= 0, k cl c, 

1fkJ1fe 8 > 0, k =C. (3.2) 

These are called Sobolev orthogonal polynomials. We cannot expect them to 
satisfy a three-term recurrence relation, since the inner product no longer 
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has the shift property (tp, q) = (p, tq). However, like any sequence of monic 
polynomials of degrees 0, 1, 2, ... , orthogonal or not, they must satisfy an 
extended recurrence relation of the type 

k 

7fk+t(t) = t7rk(t)- E /3f7rk-j(t), k = o, 1, 2,... . (3.3) 
j=O 

Associated with it is the upper Hessenberg matrix of recurrence coefficients 

!38 /3{ 
1 f3J 
0 1 

(32 ... (3n-2 (3n-1 
2 n-2 n-1 

(32 ... (3n-2 (3n-1 
l n-3 n-2 

(3 2 ... Bn-2 (3n-1 
0 ' n-4 n-3 

0 0 0 ... (3[;- 2 (3~-[ 
0 0 0 . . . 1 (3[;- l 

(3.4) 

In the case s = 0 (of ordinary orthogonal polynomials) there holds /3f = 0 for 
j > 1, and the matrix H n is tridiagonaL If symmetrized by a (real) diagonal 
similarity transformation, it becomes the Jacobi matrix J n( d>.0 ). When s > 0, 
however, symmetrization of H n is no longer possible, since H n may well have 
complex eigenvalues (see Example 6). 

3.2 Moment-Based Algorithm 

There are now s + 1 sets of modified moments, one set for each measure d>.a, 

mi") = 1 Pk(t)dA.a, k = 0, 1, 2, ... ; J = 0, 1, ... , s. (3.5) 

The first 2n modified moments of all the sets will uniquely determine the 
matrix H n in (3.4), i.e. there is a well-determined map 

[ (<T)J2n-l 0 l H mk k=O ' J = , ' ... 'S H n, (3.6) 

called modified moment map for Sobolev orthogonal polynomials. In the case 
where the polynomials Pk in (3.5) satisfy a three-term recurrence relation 
with known coefficients, and for s = 1, an algorithm has been developed that 
implements the map (3.6). It very much resembles the modified Chebyshev 
algorithm for ordinary orthogonal polynomials, but is technically much more 
elaborate (see [12]). The algorithm, however, is implemented in the OPQ routine 

B=chebyshev_sob(N,mom,abm) 

which produces the NxN upper triangular matrix B of recurrence coefficients, 
with f3J, 0 <::; j <::; k, 0 <::; k <::;N-1, occupying the position (j + 1, k + 1) in the 
matrix. The input parameter mom is the 2 x (2N) array of modified moments 
mi"), k = 0, 1, ... , 2N-l; J = 0, 1, of the two measures d.\o and d>.11 and abm 
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the (2N-l) x 2 array of coefficients ak, bk, k = 0, 1, ... , 2N-2, defining the 
polynomials Pk· 

Example 4. Althammer's polynomials (1962). 
These are the Sobolev polynomials relative to the measures d.\0 ( t) = dt, 

d.\1(t) = rdt on [-1, 1], 1 > 0. 
A natural choice of modified moments are the Legendre moments, i.e. 

Pk(t) is the monic Legendre polynomial of degree k. By orthogonality of the 

Legendre polynomials, all modified moments m~o) and m~l) are zero fork > 0, 

while m~O) = 2 and m~1 ) = 2r. The following Matlab routine, therefore, can 
be used to generate the Althammer polynomials. 

mom=zeros(2,2*N); 
mom(1,1)=2; mom(2,1)=2*g; 
abm=r_jacobi(2*N-1); 
B=chebyshev_sob(N,mom,abm); 

3.3 Discretization Algorithm 

Taking the inner product of both sides of (3.3) with 1fk-j gives 

0 = (1fk+t,1fk-j)S = (t7rk,1fk-j)S- f3j(1fk-j, 1fk-j)S, j = 0, 1, ... , k, 

hence 

f3J= t1fk,1fk-J)), j=0,1, ... ,k; k=0,1, ... ,n-L (3.7) 
1fk-j, 1fk-j s 

These are the analogues of Darboux's formulae for ordinary orthogonal poly: 
nomials, and like these, can be combined with the recurrence relation (3.3) to 
successively build up the recurrence coefficients (Jj in the manner of Stieltjes's 
procedure. The technical details, of course, are more involved, since we must 
generate not only the polynomials 1fk, but also their derivatives, in order to be 
able to compute the Sobolev inner products in (3. 7). This all is implemented, 
for arbitrary s 2 1, in the Matlab routine stieltjes__sob.m. The basic as
sumption in the design of this routine is the availability, for each measure d.\a, 
of an na-point quadrature rule 

that is exact for polynomials p of degree ::; 2(n- u) - L These are typically 
Gaussian quadrature rules, possibly with discrete components (present in d.\a) 
added on. The information is supplied to the routine via the 1 x ( s + 1) array 

nd= [no, n1, ... , ns] 
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and the mdx(2s + 2) array 

(0) (s) (0) (s) x1 ... x1 w1 ... wt 

x~O) ... x~s} w~o) ... w~s} 
xw= 

{0) (s} (0} (s) 
xmd xmd wmd · · · wmd 

where md=max (nd). In each column of xw the entries after x~:) resp. wt) (if 
any) are not used by the routine. Two more input parameters are needed; the 
first is aO, the coefficient o:0 ( d.\.0 ), which allows us to initialize the matrix of 
recurrence coefficients, 

!300 __ (t, l)s __ (t, l)d.\o ( ) 
...;----,----"- = o:o d.\.o . 

(1, l)s (1, l)d.\0 

The other, same, is a logical variable set equal to 1 if all quadrature rules have 
the same set of nodes, and equal to 0 otherwise. The role of this parameter is 
to switch to a simplified, and thus faster, procedure if same=l. A call to the 
routine, therefore, has the form 

B=stieltjes_sob(N,s,nd,xw,aO,same) 

Example 5. Althammer's polynomials, revisited. 
Here, the obvious choice of the quadrature rule for d.A0 and d.\. 1 is the 

n-point Gauss-Legendre rule. This gives rise to the following routine: 

s=l; nd=(N N]; 
aO=O; same=l; 
ab=r_j acobi (N); 
zw=gauss(N,ab); 
xw=[zw(: ,1) zw(:,l) 

zw(:,2) g*zw(:,2)]; 
B=stieltjes_sob(N,s,nd,xw,aO,same); 

The results are identical with those obtained in Example 4. 

3.4 Zeros 

If we let 1r T ( t) = [7r0 (t), 7f 1 (t), ... , 7f n- 1 ( t)], where 1fk are the Sobolev orthog
onal polynomials, then the recurrence relation (3.3) can be written in matrix 
form as 

(3.9) 

in terms of the matrix H n in (3.4). This immediately shows that the zeros Tv 

of 7f n are the eigenvalues of H n and 1r T (Tv) corresponding left eigenvectors. 
Naturally, there is no guarantee that the eigenvalues are real; some may well be 
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complex. Also, if n is large, there is a good chance that some of the eigenvalues 
are ill-conditioned. 

The OPQ routine for the zeros of 7f n is 

z=sobzeros(n,N,B) 

where B is the NxN matrix returned by chebyshev_sob.mor stieltjes_sob.m, 
and z the n-vector of the zeros of 1fn, 1 ~ n ~ N. 

Example 6. Sobolev orthogonal polynomials with only a few real zeros 
(Meijer, 1994). 

The Sobolev inner product in question is 

(u, v)s = i 3

1 
u(t)v(t)dt + 'Y i 1

1 
u'(t)v'(t)dt + ~3 

u'(t)v'(t)dt, 'Y > 0. 

(3.10) 
Meijer proved that for n(even) 2: 2 and 'Y sufficiently large, the polynomial 
1fn( ·;S) has exactly two real zeros, one in [-3, -1] and the other in [1,3]. If 
n(odd) 2: 3, there is exactly one real zero, located in [1,3], if 'Y is sufficiently 
large. We use the routine stielt j es_sob. m and sobzeros. m to illustrate this 
for n = 6 and 'Y -"' 44, 000. (The critical value of 'Y above which Meijer's 
theorem takes hold is about 'Y = 43,646.2; see [10, Table 2.30].) 

The inner product corresponds to the case s = 1 and 

{ ')'dt if t E (-1, 1], 
d>.o(t) = dt on (-1,3], d>.. 1(t) = dt if t E (1, 3]. 

Thus, we can write, with suitable transformations of variables, 

i 3

1 
p(t)d>..o(t) = 2 i 1

1 
p(2x + 1)dx, 

i 3

1 
p(t)d>.. 1(t) = i 1

1
('Yp(x) +p(x +2)Jdx 

and apply n-point Gauss-Legendre quadrature to the integrals on the right. 
This will produce the matrix H n exactly. The parameters in the routine 
stielt j es_sob. m have to be chosen as follows: 

2Tf + 1 TG 
l 2.-\f 1>-f 

2T;{ + 1 TG 2.-\G f'A;; 
E JR2nx4 1 nd = [n, 2n], n n 

XY= 

Tf +2 >..G 
l 

TG +2 n 
AG 

n 
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where r;?, A~ are the nodes and weight of then-point Gauss-Legendre quadra
ture rule. Furthermore, a0=1 and same=O. The complete program, therefore, 
is as follows: 

N=6; s=1; a0=1; same=O; g=44000; nd=[N 2*N]; 
ab=r_jacobi(N); zw=gauss(N,ab); 
xw=zeros(2*N,2*(s+1)); 
xw(1:N,1)=2*zw(: ,1)+1; xw(1:N,2)=zw(:,1); 
xw(1:N,3)=2*zw(:,2); xw(1:N,4)=g*zw(: ,2); 
xw(N+1:2*N,2)=zw(: ,1)+2; xw(N+1:2*N,4)=zw(: ,2); 
B=stieltjes_sob(N,s,nd,xw,aO,same); 
z=sobzeros(N,N,B) 

It produces the output 

z = 

-4.176763898909848e-01 - 1.703657992747233e-01i 
-4.176763898909848e-01 + 1.703657992747233e-01i 
8.453761089539369e-01 - 1.538233952529940e-01i 
8.453761089539369e-01 + 1.538233952529940e-01i 

-1.070135059563751e+OO 
2.598402134930250e+OO 

confirming Meijer's theorem for n = 6. A more detailed numerical study, also 
in the case of odd values of n, has been made in [10, Table 2.30]. 

Exercises to §3 

1. Show that a Sobolev inner product does not satisfy the shift property 
(tp,q) = (p,tq). 

2. Prove (3.3). 
3. The Sobolev inner product (3.1) is called symmetric if each measure dAa 

is symmetric in the sense of Problem 6, §2. For symmetric Sobolev inner 
products, 
(a) show that 1fk(-t;S) = (-l)k7rk(t;S); 
(b) show that f3~r = 0 for r = 0, 1, ... , Lk/2J. 

4. Consider a Sobolev inner product with s = 1 and 

and d.\ a symmetric measure. Use the routines chebyshev_sob.m and 
sobzeros .m to check numerically whether or not the positive zeros of 
the Sobolev orthogonal polynomials are monotonically increasing with I· 
Experiment in turn with d.\(t) = dt on [-1, 1] (Althammer polynomials), 
d.\(t) = {1-t2 )a on f-1, 1], o: > -1, andd.\(t) = exp(-t2 ) onR Identify 
any computational problems and how to deal with them. 

5. Special Sobolev orthogonal polynomials. 
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(a) Consider the special Sobolev orthogonal polynomials that have an 
absolutely eontinuous (or, possibly, discrete) ground measure d.-\0 and 
all d.Au, 1 <::: <J <::: s, identically zero except for d.Ark' k = 1, 2, ... , K, 
where 1 <::: r 1 < r 2 < · · · < r K <::: s, which are atomic measures located 
at the points ck and having masses mk. Assuming that the ground 
measure is given by the array ab of recurrence coefficients, write a 
Matlab routine specsob .m that uses the OPQ routine stieltjes_sob.m 
to compute the recurrence matrix B of the special Sobolev orthogonal 
polynomials. 

(b) Use your routine together with the OPQ routine sobzeros. m to check 
Tables 2-4 in [8], relating to the Hermite measure d.A0 (t) = exp( -t2 )dt 
and a single atomic measure involving the rth derivative. In the cited 
reference, the results were obtained by a different method. 

(c) In the case of the Laguerre measure d.A0 (t) = exp( -t)dt on JR:+ and 
rk = k, ck = 0, mk = 1, it may be conjectured that any complex zero 
that occurs has negative real part. Use your routine and sobzeros. m 
to check out this conjecture. 

(d) For d.Ao, rk, CkJ mk as in (c), determine the pattern of occurrence of 
complex zeros. Cover the range 1 <::: s <::: 10, 1 <::: n <::: 40. 

(e) Repeat (c) and (d) with d.\0 the Laguerre measure plus an atomic 
measure with mass 1 at the origin. 

4 Quadrature 

4.1 Gauss-Type Quadrature Formulae 

Gauss Formula 

Given a positive measure d.\, the n-point Gaussian quadrature formula asso
ciated with the measure d.\ is 

(4.1) 

which has maximum algebraic degree of exactness 2n- l, 

R~{f) = 0 iff E lP'2n-l· (4.2) 

It is well known that the nodes T[! are the zeros of 1fn( ·; d.A), and hence the 
eigenvalues of the Jacobi matrix Jn(d.A); cf. §2.1. Interestingly, the weights 
>.;?, too, can be expressed in terms of spectral data of J n ( d.A); indeed, they 
are {Golub and Welsch, 1969) 

(4.3) 
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where Vv,t is the first component of the normalized eigenvector Vv correspond
ing to the eigenvalue Tf, 

(4.4) 

and, as usual, (30 =fiR d>..(t). This is implemented in the OPQ Matlab routine 

xw=gauss(N,ab) 

where ab, as in all previous routines, is the Nx2 array of recurrence coefficients 
ford>.., and xw the Nx2 array containing the nodes T;} in the first column, and 
the weights >..~ in the second. 

\Ve remark, for later purposes, that the Gauss quadrature sum, for j suf
ficiently regular, can be expressed in matrix form as 

n 

L >..~ j(Tf) = f3oeT f(Jn(d>..))et, el = [1, 0, ... 'o]T. (4.5) 
v=l 

This is an easy consequence of ( 4.3) and the spectral decomposition of J n, 

Jn(d>..)V= VDr, Dr =diag(Tf,Tf, ... ,T~), 

where V = [vt, v2, ... , Vn]· 
Example 7. Zeros of Sobolev orthogonal polynomials of Gegenbauer type 
( Groenevelt, 2002). 

The polynomials in question are those orthogonal with respect to the 
Sobolev inner product 

!1 jl (1 t2)'" (u, v)s = u(t)v(t)(1- t2 )'"- 1dt + 1 u'(t)v'(t) 2- 2 dt. 
-1 -1 t + y 

Groenevelt proved that in the case 1 --+ oo the Sobolev orthogonal polyno
mials of even degrees n 2: 4 have complex zeros if y is sufficiently small. By 
symmetry, they must in fact be purely imaginary, and by the reality of the 
Sobolev polynomials, must occur in conjugate complex pairs. As we illustrate 
this theorem, we have an opportunity to apply not only the routine gauss. m, 
but also a number of other routines, specifically the modification algorithm 
embodied in the routine chri6. m, dealing with the special quadratic divisor 
t2 + y2 in the second integral, and the routine stieltjes_sob .m generating 
the recurrence matrix of the Sobolev orthogonal polynomials: 

s=1; same=O; eps0=1e-14; numax=250; nd=[N N]; 
abO=r_jacobi(numax,alpha); 
z=complex(O,y); 
nuO=nuOjac(N,z,epsO); rhoO=O; iopt=l; 
ab1=chri6(N,abO,y,epsO,nuO,numax,rho0,iopt); 
zw1=gauss(N,ab1); 
ab=r_jacobi(N,alpha-1); zw=gauss(N,ab); 
xw=(zw(:,l) zw1(:,1) zw(:,2) gamma*zw1(:,2)]; 
a0=ab(1,1); B=stieltjes_sob(N,s,nd,xw,aO,same); 
z=sobzeros(N,N,B) 
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J Demo#4j The case N=l2, o: = !, and"(= 1 of Example 7. 
Applying the above routine for y = .1 and y = .09 yields the following 

zeros (with positive imaginary parts; the other six zeros are the same with 
opposite signs): 

y zeros y zeros 
.1 .027543282225 .09 .011086169153 i 

.284410786673 .281480077515 

.541878443180 .540697645595 

.756375307278 .755863108617 

.909868274113 .909697039063 

. 989848649239 .989830182743 

The numerical results (and additional tests) suggest that Groenevelt's theo
rem also holds for finite, not necessarily large, values of"(, and, when 1 = 1, 
that the critical value of y below which there are complex zeros must be 
betweeen .09 and . L 

Gauss-Radau Formula 

If there is an interval fa, ooJ, -oo < a, containing the support of d-X., it may 
be desirable to have an ( n + 1 )-point quadrature rule of maximum degree of 
exactness that has a as a prescribed node, 

1 f(t)d-X.(t) = ).gj(a) + t -\~f( T~) + R~(f). 
IR v=l 

(4.6) 

Here, R~(J) = 0 for all f E JP>2n, and T:; are the zeros of 7rn( · ;dAa), 
dAa(t) = (t-a)dA(t). This is called the Gauss-Radauformula. There is again 
a symmetric, tridiagonal matrix, the Jacobi-Radau matrix 

where en = [0, 0, ... , 1JT E lRn, fJn = tJn(d-X.), and 7rk( ·) = 1fk( ·; dA), which 
allows the Gauss-Radau formula to be characterized in terms of eigenvalues 
and eigenvectors: all nodes of ( 4.6), including the node a, arc the eigenvalues of 
( 4. 7), and the weights ).~ expressible as in ( 4.3) in terms of the corresponding 
normalized eigenvectors Vv of ( 4. 7), 

>.~ = f3ov~, 1 , v = 0, 1, 2, ... , n. (4.8) 

As in ( 4.5), this implies that the Gauss-Radau quadrature sum, for smooth 

f, can be expressed as f3oe'[ f(J~;'1 )et, where e1 = [1, 0, ... , OJ E JRn+l. 

Naturally, if the support of d). is contained in an interval [ -oo, b], b < oo, 
there is a companion formula to (4.6) which has the prescribed node b, 
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The eigenvalue/vector characterization also holds for ( 4.9) if in the formula 
for a~ in ( 4. 7), the variable a, at every occurrence, is replaced by b. 

The remainder terms of (4.6) and (4.9), iff E C 2n+l[a,b], have the useful 
property 

R~(f) > 0, R~(f) < 0 if sgnf(2n+l) = 1 on [a, b], (4.10) 

with the inequalities reversed if sgn JC2n+l) = -1. 
For Jacobi resp. generalized Laguerre measures with parameters a, fJ rcsp. 

a, the quantity a~ is explicitly known (cf. [10, Examples 3.4 and 3.5]). For 
example, if a= -1 (in the case of Jacobi measures), 

R 2n(n +a) a = -1 + .,-------''c--..:..._ __ -..,.. 

n (2n+a+fJ)(2n+a+fJ+1)' 
(4.11) 

whereas for a = 1, the sign of a~ must be changed and a and fJ interchanged. 
The respective OPQ Matlab routines are 

xw=radau(N,ab,endO) 
xw=radau_jacobi(N,iopt,a,b) 
xw=radau_laguerre(N,a) 

In the first, ab is the (N+l)x2 array of recurrence coefficients ford>.., and 
endO either a (for (4.6)) orb (for (4.9)). The last two routines make use of the 
explicit formulae for a[; in the case of Jacobi resp. Laguerre measures, the 
parameters being a=a, fJ=b. The parameter iopt chooses between the two 
Gauss-Radau formulae: the left-handed, if iopt=1, the right-handed other
wise. 

Gauss-Lobatto Formula 

If the support of dA. is contained in the finite interval [a, b], we may wish to 
prescribe two nodes, the points a and b. Maximizing the degree of exactness 
subject to these constraints yields the Gauss-Lobatto formula 

b n 1 f(t)d>..(t) = >..{; f(a) + L >..tf(T~) + >..~+d(b) + R~·b(f), 
a v=l 

(4.12) 

which we write as an (n + 2)-point formula; we have R~·b(f) = 0 for f E 
lP'2n+1· The internal nodes T[: are the zeros of the polynomial 1fn( ·;d>..a,b), 
d>..a,b(t) = (t -a)(b- t)d>..(t). All nodes and weights can be expressed in terms 
of eigenvalues and eigenvectors exactly as in the two preceding subsections, 
except that the matrix involved is the Jacobi-Lobatto matrix 
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( 4.13) 

where o:~+l and {3~+ 1 are the solution of the 2x2 system of linear equations 

( 4.14) 

For smooth J, the quadrature sum is expressible as {30 e[ f(J~+2 )e 1 . For 
f E C 2n+2 [a, b) with constant sign on [a, bJ, the remainder R~·b(J) satisfies 

R~·b (f) < 0 if sgn f( 2n+2 ) = 1 on [a, b], (4.15) 

with the inequality reversed if sgn j(2 n+2) = ~ 1. 

The quantities o:~+ 1 , {3~+1 for Jacobi measures on [ ~ 1, 1) with parameters 
o:, {3 and a = ~b = ~ 1 are explicitly known ( cf. (10, Example 3.81), 

L o:~{3 

o:n+l = 2n + 0: + {3 + 2 ' 
{3L = 4(n+o:+1)(n+,8+1)(n+o:+f3+1) 

n+ 1 (2n + o: + {3 + 1)(2n + o: + {3 + 2) . 

The OPQ Matlab routines are 

xw=lobatto(N,ab,endl,endr) 
xw=lobatto_jacobi(N,a,b) 

( 4.16) 

with the meaning of ab, a, b the same as in the Gauss-Radau routines, and 
endl=a, endr=b. 

vVe remark that both Gauss-Radau and Gauss-Lobatto formulae can be 
generalized to include boundary points of multiplicity r > 1. The internal 
(simple) nodes and weights are still related to orthogonal polynomials, but the 
boundary weights require new techniques for their computation; see Exercises 
12-13. 

4.2 Gauss~Kronrod Quadrature 

In an attempt to estimate the error of the n-point Gauss quadrature rule, 
Kronrod in 1964 had the idea of inserting n + 1 additional nodes and choosing 
them, along with all 2n + 1 weights, in such a way as to achieve maximum 
degree of exactness. The resulting quadrature rule can be expected to yield 
much higher accuracy than the Gauss formula, so that the difference of the 
two provides an estimate of the error in the Gauss formula. The extended 
formula thus can be written in the form 
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n n+l 1 f(t)d>.(t) = L ;.;: j(T:!) + L ;,;K j(T/:) + R~K(f), (4.17) 
IR v=l M=l 

and having 3n + 2 free parameters >.;::, >-..;K, T/f at disposal, one ought to be 
able to achieve degree of exactness 3n + 1, 

(4.18) 

A quadrature formula (4.17) that satisfies (4.18) is called a Gauss-Kronrod 
formula. The nodes T/f, called K ron rod nodes, are the zeros of the polynomial 
1r;[+1 of degree n + 1 which is orthogonal to all polynomials of lower degree in 
the sense 

( 4.19) 

Note that the measure of orthogonality here is 7rn(t; d>.)d>.(t) and thus oscil
lates on the support of d>.. Stieltjes (1894) was the first to consider polynomials 
1r;[+l of this kind (ford>.( t) = dt); a polynomial 1r;[H satisfying ( 4.19) is there
fore called a Stieltjes polynomial. Stieltjes conjectured (in the case dA.( t) = dt) 
that all zeros of 1r;[+l are real and interlace with the n Gauss nodes~ a highly 
desirable configuration! This has been proved only later by Szego (1935) not 
only for Legendre measures, but also for a class of Gegenbauer measures. The 
study of the reality of the zeros for more general measures is an interesting 
and ongoing activity. 

The computation of Gauss-Kronrod formulae is a challenging problem. An 
elegant solution has been given recently by Laurie (1997), at least in the case 
when a Gauss-Kronrod formula exists with real nodes and positive weights. It 
can be computed again in terms of eigenvalues and eigenvectors of a symmetric 
tridiagonal matrix, just like the previous Gauss-type formulae. The relevant 
matrix, however, is the Jacobi-Kronrod matrix 

(4.20) 

Here, an = an(d>.), fJn = fJn(d>.), etc, and J~ (which is partially known) 
can be computed by Laurie's algorithm (cf. {10, §3.1.2.2]). Should some of the 
eigenvalues of ( 4.20) turn out to be complex, this would be an indication that 
a Gauss-Kronrod formula (with real nodes) does not exist. 

There are two routines in OPQ, 

ab=r_kronrod(N,abO) 
xw=kronrod(n,ab) 

that serve to compute Gauss-Kronrod formulae. The first generates the 
Jacobi-Kronrod matrix of order 2N+l, the other the nodes and weights of 
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the quadrature formula, stored respectively in the first and second column of 
the (2N+1)x2 array xw. The recurrence coefficients of the given measured>.. 
are input via the j3N/2+ 11 x2 array abO. 

4.3 Gauss~Turan Quadrature 

The idea of allowing derivatives to appear in a Gauss-type quadrature formula 
is due to Turan (1950). He considered the case where each node has the same 
multiplicity r :;:, 1, that is, 

1 J(t)d>..(t) = ~[>..vj(Tv) + :(j'(Tv) + · · · + >..}:-ll j(r-l)(Tu)] + Rn(f). 

( 4.21) 
This is clearly related to Hermite interpolation. Indeed, if aU nodes were pre
scribed and distinct, one could use Hermite interpolation to obtain a formula 
with degree of exactness rn ~ 1 (there are rn free parameters). Turan asked, 
like Gauss before him, whether one can do better by choosing the nodes Tv 
judiciously. The answer is yes; more precisely, we can get degree of exactness 
rn ~ 1 + k, k > 0, if and only if 

1 w~(t)p(t) d>..(t) = 0 for all p E lP'k-l, (4.22) 

where Wn(t) = re=l(t ~Tv) is the node polynomial of (4.21). We have here a 
new type of orthogonality: the rth power of Wn, not Wn, must be orthogonal to 
all polynomials of degree k ~ L This is called power orthogonality. It is easily 
seen that r must be odd, 

r = 2s + 1, s :;:, 0, (4.23) 

so that ( 4.21) becomes 

n 2s 1 J(t)d>..(t) = L L >..Sa) J(a)(Tv) + Rn,s(f). 
IR v=l a=O 

(4.24) 

Then in (4.22), necessarily k ::; n, and k = n is optimal. The maximum 
possible degree of exactness, therefore, is (2s + 2)n ~ 1, and is achieved if 

(4.25) 

The polynomial Wn = 7r n,s satisfying ( 4.25) is called s-orthogonal. It exists 
uniquely and has distinct simple zeros contained in the support interval of 
d>... The formula ( 4. 24) is the Gauss- Turrin formula if its node polynomial Wn 
satisfies ( 4.25) and the weights >..Sa) are obtained by Hermite interpolation. 
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The computation of Gauss-Tunin formulae is not as simple as in the case of 
ordinary Gauss-type formulae. The basic idea, however, is to consider the posi
tive measure dA.n,s(t) = [7rn,s(t)] 28dA.(t) and to note that 7rn,s is the nth-degree 
polynomial orthogonal relative to dA.n,s· The difficulty is that this defines 1fn,s 
implicitly, since 7r n,s already occurs in the measure dA.n,s· Nevertheless, the 
difficulty can be surmounted, but at the expense of having to solve a system of 
nonlinear equations; for details, see [10, §3.1.3.2]. The procedure is embodied 
in the OPQ routine 

xw=turan(n,s,epsO,abO,hom) 

where the nodes are stored in the first column of the nx(2s+2) array xw, and 
the successive weights in the remaining 2s+ 1 columns. The input parameter 
epsO is an error tolerance used in the iterative solution of the nonliner sys
tem of equations, and the measure dA. is specified by the ((s+l)n)x2 input 
array abO of its recurrence coefficients. Finally, hom=1 or hom~l depending 
on whether or not a certain homotopy in the variable s is used to facilitate 
convergence of Newton's method for solving the system of nonlinear equations. 

4.4 Quadrature .Formulae Based on Rational Functions 

All quadrature formulae considered so far were based on polynomial degree 
of exactness. This is meaningful if the integrand is indeed polynomial-like. 
Not infrequently, however, it happens that the integrand has poles outside 
the interval of integration. In this case, exactness for appropriate rational 
functions, in addition to polynomials, is more naturaL Vve discuss this for the 
simplest type of quadrature rule, 

(4.26) 

The problem, more precisely, is to determine Av, Tv such that Rn(g) = 0 if 
g E §zn, where §2n is a space of dimension 2n consisting of rational functions 
and polynomials, 

§2n = «:l!m t.B lP'2n-m-l, 0 :s: m :s: 2n, 

IP'2n-m-l = polynomials of degree :S: 2n - m - 1, 

«:l!m = rational functions with prescribed poles. 

Here, m is an integer of our choosing, and 

«:l!m =span {r(t) = 1 , J1 = 1, 2, ... , m}, 
1 +(Mt 

where 

(4.27) 

(4.28) 
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(4.29) 

The idea is to select the poles -1/ (,J.i. of the rational functions in Qm to match 
the pole( s) of g closest to the support interval of d>.. 

In principle, the solution of the problem is rather simple: put Wm ( t) = 
f1;:'= 1 (1 + (,JJ.t) and construct, if possible, the n-point (poynomial) Gauss for
mula r d>.(t) ~ G G 

}JR g(t) Wm(t) = ~ Av 9(Tv ), 9 E lP'zn-1 1 ( 4.30) 

for the modified measure d~(t) = d--\(t)/wm(t). Then 

( 4.31) 

are the desired nodes and weights in (4.26). 
We said "if possible", since in general Wm is complex-valued, and the ex

istence of a Gauss formula for d~ is not guaranteed. There is no problem, 
however, if Wm 2: 0 on the support of d--\. Fortunately, in many instances of 
practical interest, this is indeed the case. 

There are a number of ways the formula ( 4.30) can be constructed: a 
discretization method using Gauss quadrature relative to d>. to do the dis
cretization; repeated application of modification algorithms involving linear 
or quadratic divisors; special techniques to handle "difficult" poles, that is, 
poles very close to the support interval of d>.. Rather than going into details 
(which can be found in [10, §3.1.41), we present an example taken from solid 
state physics. 

Example 8. Generalized Fermi-Dirac integral. 
This is the integral 

F ( 8) = r= tkJl +8t/2 dt 
k 1), Jo e-TJ+t + 1 , 

where 1) E JR., 8 2: 0, and k is the Boltzmann constant (=~, ~'or ~)- The 
ordinary Fermi-Dirac integral corresponds to 8 = 0. 

The integral is conveniently rewritten as 

( 4.32) 

which is of the form (4.26) with 9(t) = Jl + Bt/2/(e-TJ +e-t) and d--\ = d,X[k] 
a generalized Laguerre measure. The poles of 9 evidently are 1) + J.Li'ff, J.L = 
±1, ±3, ±5, ... , and all are "easy", that is, at a comfortable distance from the 
interval [0, ooJ. It is natural to take m even, and to incorporate the first m/2 
pairs of conjugate complex poles. An easy computation then yields 

m/2 

wm(t) = IJ [(1 + ~vt)2 + 1)vt2 J, 2 :S: m(even) :S: 2n, (4.33) 
v=l 
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where 
-ry 

~v = rP + (2v- 1)27T2 ' 
(4.34) 

Once the nodes and weights Tv, Av have been obtained according to (4.31), 
the rational/polynomial quadrature approximation is given by 

(4.35) 

It is CDmputed in the OPQ routine 

xw=fermi_dirac(N,m,eta,theta,k,epsO,Nmax) 

where epsO is an error tolerance, Nmax a limit on the discretization parameter, 
and the other variables having obvious meanings. 

4.5 Cauchy Principal Value Integrals 

When there is a (simple) pole inside the support interval [a, bj of the measure 
d-\, the integral must be taken in the sense of a Cauchy principal value integral 

(CJ)(x; d,\) := jb f(t) d-\(t) =lim (lx-s + 1b ) j(t) d-\{t), X E (a, b). L X - t dO a x+s X - t 
( 4.36) 

There are two types of quadrature rules for Cauchy principal value integrals: 
one in which x occurs as a node, and one in which it does not. They have 
essentially different character and will be considered separately. 

Modified Quadrature Rule 

This is a quadrature rule of the form 

n 

(Cj)(x;d-\) = co(x)f(x) + l:c .. (x)f(rv) + Rn(f;x). (4.37) 
v=l 

It can be made "Gaussian", that is, Rn(J; x) = 0 for f E lP'2n, by rewriting 
the integral in ( 4.36) as 

(CJ)(x;d-\) = f(x) J d-\(t) - f J(x)- j(t) d-\(t) h X- t }'R X- t 
(4.38) 

and applying the n-point Gauss formula for d,\ to the second integral. The 
result is 

( ) ( ) Pn (X) ( ) ~ G f ( T;!) ( ) Cf x;d,\ = -(-) f X + 6,\v --G + Rn f;x, 
1f n X v=1 X - Tv 

(4.39) 
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where Pn(x) is the Cauchy principal value integral (2.33) and T;?, >..~are the 
Gauss nodes and weights for d>... 

Formula ( 4.39) is not without numerical difficulties. The major one occurs 
when x approaches one of the Gauss nodes T;?, in which case two terms on 
the right go to infinity, but with opposite signs. In effect, this means that for 
x near a Gaussian node severe cancellation must occur. 

The problem can be avoided by expanding the integral (4.36) in Cauchy 
integrals Pk(x). Let Pn(f; ·)be the polynomial of degree n interpolating fat 
then Gauss nodes Tf? and at x. The quadrature sum in ( 4.39) is then precisely 
the Cauchy integral of Pn, 

(CJ)(x;d,\) = l Pn(f;t) d>..(t) + Rn(f;x). Ja X- t 
( 4.40) 

Expanding Pn in the orthogonal polynomials 1fk, 

n 

Pn(f; t) = L ak7rk(t), ( 4.41) 
k=O 

and integrating, one finds 

n 

(CJ)(x; d>..) = L akPk(x) + Rn(f;x), (4.42) 
k=O 

where 

n f(x)- j(T;!) 
an= L (x- rG)1f' (rG). 

v=l v n v 

(4.43) 
The Cauchy integrals Pk(x) in (4.42) can be computed in a stable manner 
by forward recursion; cf. the paragraph surrounding (2.33) and (2.34). This 
requires p0 (x ), which is either explicitly known or can be computed by the 
continued fraction algorithm. Some care must be exercised in computing the 
divided difference of f in the formula for an. 

The procedure is inplemented in the OPQ routine 

cpvi=cauchyPVI(N,x,f,ddf,iopt,ab,rhoO) 

with iopt#1, which produces the (N+1)-term approximation (4.42) where 
Rn (f; x) is neglected. The input parameter ddf is a routine for computing 
the divided difference off in a stable manner. It is used only if iopt#l. The 
meaning of the other parameters is obvious. 

Quadrature Rule in the Strict Sense 

This rule, in which the node t = x is absent, is obtained by interpolating f at 
then Gauss nodes Tf? by a polynomial Pn-1(!; ·)of degree n- 1, 
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J(t) = Pn-1(/; t) + En-1(/; t), 

where En-1 is the interpolation error, which vanishes identically if f E IP' n-i· 
The formula to be derived, therefore, will have degree of exactness n ~ 1 
(which can be shown to be maximum possible). Integrating in the sense of 
( 4.36) yields 

( 4.44) 

b 
where R~(f; x) =fa En-1(!; t)d.\(t)j(x ~ t). 

This formula, too, suffers from severe cancellation errors when x is near a 
Gauss node. The resolution of this problem is similar (in fact, simpler) as in 
the previous subsection: expand Pn _1 (.f; ·) in the orthogonal polynomials 1Tk 

to obtain 

n-l 

(Cf)(x;d.\) = I>~Pk(x) + R~(f;x), 

l [b 
a~= jj1rkjj2 }a Pn-l(f;t)7rk(t)d.\(t). 

(4.45) k=O 

It turns out that 
a~ == ak, k == 0, 1,. _., n- 1, ( 4.46) 

where ak, k < n, is given by ( 4.43). This is implemented in the OPQ routine 
cauchyPVI .m with iopt=l. 

4.6 Polynomials Orthogonal on Several Intervals 

\Ve are given a finite set of intervals [cj, dj], which may be disjoint or not, and 
on each interval a positive measure d.\j. Let d.\ be the "composite" measure 

dA.(t) = 2:.::: X[cJ,dJJ(t)dA.j(t), 
j 

( 4.47) 

where X[c1 ,d1 J is the characteristic function of the interval [cj,dj]· Assuming 
known the Jacobi matrices J(j) = Jn(dA.j) of the component measures dA.j, 
we now consider the problem of determining the Jacobi matrix J = J n(dA.) of 
the composite measure dA.. We provide two solutions, one based on Stieltjes's 
procedure, and one based on the modified Chebyshev algorithm. 

Solution by Stieltjes's Procedure 

The main problem in applying Stieltjes's procedure is to compute the inner 
products (tnk, nk)d-\ and (nko nk)d-\ fork= 0, 1, 2, ... , n~ 1. This can be done 
by using n-point Gaussian quadrature on each component interval, 
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idj p(t)d.\j(t) = :t AY)P(TSJl), P E 1P'2n~l· 
cJ v=l 

( 4.48) 

Here we use ( 4.5) to express the quadrature sum in terms of the Jacobi matrix 
J(j) 

1 

id1 p(t)d>.1(t) = f3~j)eJp(JUl)e 1 , 
c, 

Then, for the inner products (t1rk, 7rk)dA, k <:::: n- l, we get 

(t7rk, 7rk)dA = 1 t7r~(t)d.\(t) = L idj t7r~(t)d.\j(t) 
R j 0 

= L f3~i) eT JVl[7rk(JUl)fel 
j 

= L P~j) eT[1rk( JCil )]T J(j)7rk(J(i))el 
j 

and for ( Kk, 7rk )<U similarly (in fact, simpler) 

(1rk1 7rk)dA = LP~j)eT!Kk(JUl)]T7rk(JUl)el. 
j 

This can be conveniently expressed in terms of the vectors 

( 4.49) 

which, as required in Stieltjes1s procedure, can be updated by means of the 
basic three-term recurrence relation. This leads to the following algorithm. 

Algorithm 7 Stieltjes procedure for polynomials orthogonal on several inter
vals 

initialization: 

(~j) = e1, (C!i = 0 (all j), 
'\' fJ(j) TJ(j) 

_ uj o el e1 _ "' (j) 
ao - (") , f3o - L.)3o . 

~i f3oJ i 

continuation (if n > 1): for k = 0, 11 ... 1 n - 2 do 

( (j) = (J(j) -a I)((j) - fl ((j) (all J.) k+l k k Pk k~l 1 

'\' {3(j)((j)T J(j)((j) '\' {3(j)((j)T((j) 
uj o k+l k+l uj o k+l k+l 

C¥k+l = (j) (j)T (j) , f3k+l = (j) (j)T (j) 
~i Po (k+l (k+l ~j f3o (k (k 

In Matlab, this is implemented in the OPQ routine 
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ab=r~ultidomain_sti(N,abmd) 

where abmd is the array containing the ( o:, j))-coefficients of the measures d>-(j l. 

Example 9. Example 1, revisited. 
This is the case of two identical intervals [ ~ 1, 1] and two measures d>-(j) 

on [ ~ 1, 1], one a multiple c of the Legendre measure, the other the Cheby
shev measure. This was solved in Example 1 by a 2-component discretization 
method. The solution by the 2-domain algorithm of this subsection, in Matlab, 
looks as follows: 

abl=r_jacobi(N); ab1(1,2)=2*c; 
ab2=r_jacobi(N,-.5); 
abmd=[ab1 ab2]; 
ab=r~ultidomain_sti(N,abmd) 

It produces results identical with those produced by the method of Example 
1. 

Solution by the Modified Chebyshev Algorithm 

The quadrature procedure used in the previous subsection to compute inner 
products can equally be applied to compute the first 2n modified moments of 
d>-, 

(4.50) 

The relevant vectors are now 

and the computation proceeds as in 

Algorithm 8 Modified moments for polynomials orthogonal on several inter
vals 

initialization 

z~j) = e1, z~i = 0 (all j), mo = Lf3~j)· 
j 

continuation: fork= 0, 1, ... , 2n ~ 2 do 

(aU j), 

With these moments at hand, we can apply Algorithm 1 to obtain the 
desired recurrence coefficients. This is done in the OPQ routine 
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ab=r~ultidomain_cheb(N,abmd,abmm) 

The array abmd has the same meaning as in the routine r _mul t idomain_st i. m, 
and abmm is a ( (2N -1) x 2) array of the recurrence coefficients ak, bk generating 
the polynomials Pk· 

Applied to Example 9, the Matlab program, using Legendre moments (Pk 
the monic Legendre polynomials), is as follows: 

abm=r_jacobi(2*N-1); 
abl=abm(l:N,:); ab1(1,2)=2*c; 
ab2=r_jacobi(N,-.5); 
abmd=[abl ab2]; 
ab=r~ultidomain_cheb(N,abmd,abm) 

It produces results identical with those obtained previously, but takes about 
three times as long to run. 

4. 7 Quadrature Estimates of Matrix Functionals 

The problem to be considered here is to find lower and upper bounds for the 
quadratic form 

uT f(A)u, u E IRN, !lui/= 1, (4.51) 

where A E R_N x N is a symmetric, positive definite matrix, fa smooth function 
(for which /(A) makes sense), and u a given vector. While this looks more 
like a linear algebra problem, it can actually be solved, for functions f with 
derivatives of constant sign, by applying Gauss-type quadrature rules. The 
connecting link is provided by the spectral resolution of A, 

(4.52) 

where Ak are the eigenvalues of A (which for simplicity are assumed distinct), 
and vk the normalized eigenvectors of A. If we put 

N 

u = LPkVk = v p, p = {pl,P2,· .. ,pN]T, 
k=l 

and again for simplicity assume Pk # 0, all k, then 

uT J(A)u = pTVTV J(A)VTV p = pT f(A)p, 
N 

= LPkf(A.k) =: 1 f(t)dpN(t). 
k=l R+ 

(4.53) 

(4.54) 

This shows how the matrix functional is related to an integral relative to a 
discrete positive measure. Now we know from (4.10) and (4.15) how Ganss
Radau or Gauss-Lobatto rules (and for that matter also ordinary Gauss rules, 
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in view of R<j; = [!C2nl(r)/(2n)'] J:[rrn(t; dA.)Fd>.(t), a< T <b) can be applied 
to obtain two-sided bounds for (4.54) when some derivative off has constant 
sign. To generate these quadrature rules, we need the orthogonal polynomials 
for the measure dpN, and for these the Jacobi matrix J N(dpN ). The latter, in 
principle, could be computed by the Lanczos-type algorithm of §2.3. However, 
in the present application this would require knowledge of the eigenvalues Ak 
and expansion coefficients Pk, which are too expensive to compute. Fortu
nately, there is an alternative way to implement Lanczos's algorithm that 
works directly with the matrix A and requires only multiplications of A into 
vectors and the computation of inner products. 

Lanczos Algorithm 

Let Pk be as in (4.54) and ho = 'L;~=l PkVk (= u), llhol! = 1, as in (4.53). 

Algorithm 9 Lanczos algorithm 
initialization: 

ho prescribed with llholl = 1, h-1 = 0. 

continuation: for j = 0, 1, ... , N- 1 do 

a1 = hJ Ah1, 

hJ+t =(A- a1I)h1 - rJhJ-1, 

Tj+l = lihJ+IIL 
hj+l = hj+Ihj+l· 

While ro in Algorithm 9 can be arbitrary (it multiplies h_ 1 = 0), it is conve
nient to define f'o = L The vectors h0 , h 1, ... , hN generated by Algorithm 9 
are called Lanczos vectors. It can be shown that o;k generated by the Lanczos 
algorithm is precisely ak(dpN ), and /'k = J f3k(dpN ), fork= 0, 1, 2, ... , N- 1. 
This provides us with the Jacobi matrix J N( dpN ). It is true that the algo
rithm becomes unstable as j approaches N, but in the applications of interest 
here, only small values of j are needed. 

Examples 

Example 10. Error bounds for linear algebraic systems. 
Consider the system 

Ax = b, A symmetric, positive definite. (4.55) 

Given an approximation x* ;:o;; x = A-lb to the exact solution x, and the 
residual vector r = b- Ax*, we have x- x* =A-lb+ A -l(r- b)= A - 1r, 
thus 

282



52 Walter Gautschi 

and therefore 
llx ~ x*ll 2 = llrll 2 · u T f(A)u, (4.56) 

where u = r/Jirll and f(t) = t- 2 . All derivatives off are here of constant 
sign on IR+, 

J(2nl(t) > 0, J<2n+ll(t) < 0 fortE IR+. (4.57) 

By (4.54), we now have 

( 4.58) 

The n-point Gauss quadrature rule applied to the integral on the right of 
(4.58), by the first inequality in (4.57), yields a lower bound of l!x ~ x*JI, 
without having to know the exact support interval of dp N. If, on the other 
hand, we know that the support of dpN is contained in some interval [a, b], 
0 < a < b, we can get a lower bound also from the right-handed (n + 1 )
point Gauss-Radau formula, and upper bounds from the left-handed (n + 1)
point Gauss-Radau formula on [a, b], or from the (n+2)-point Gauss-Lobatto 
formula on [a, b]. 
Example 1 L Diagonal elements of A -l. 

Here, trivially 
(4.59) 

where f(t) = t- 1 and e; is the ith coordinate vector. Using n-point Gauss 
quadrature in (4.54), with n < N, yields 

Suppose we take n = 2 steps of Algorithm 9 to compute 

We get 

ao = aii, 

h1 =(A~ aoi)e; = [a1;, ... , ai-l,i, 0, ai+l,i, ... , aNi]T, 

11 = JLa. %i =: si, 
kepi 

ht = ht/s;, 
1 -T - 1 "'"' a1 = 2 h 1 Aht = 2 0 0 aHakiafi. 

8 i 8 i kepi Repi 

( 4.60) 

( 4.61) 
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But 

so that by (4.60) with n = 2, and (4.61), 

(4.62) 

Simpler bounds, both lower and upper, can be obtained by the 2-point Gauss
Radau and Gauss-Lobatto formulae, which however require knowledge of an 
interval [a, b), 0 <a < b, containing the spectrum of A. 

Exercises to §4 (Stars indicate more advanced exercises.) 

L Prove (4.-5). 
2. Prove that complex zeros of the Sobolev orthogonal polynomials of Ex

ample 7 must be purely imaginary. 
3*. Circle theorems for quadrature weights ( cf. [4]). 

(a) Gauss-Jacobi quadrature 
Let w(t) = (1- t)"'(l + t)f3 be the Jacobi weight function. It is known 
[16, eqn (15.3.10)] that the nodes Tv and weights Av of the n-point 
Gauss-Jacobi quadrature formula satisfy 

for Tv on any compact interval contained in ( -1, 1). Thus, suitably 
normalized weights, plotted against the nodes, lie asymptotically on 
the unit circle. Use Matlab to demonstrate this graphically. 

(b) Gauss quadrature for the logarithmic weight w(t) = t"' ln(l/t) on 
{0, 1] (cf. [10, Example 2.27]). 
Tty, numerically, to find a circle theorem in this case also, and ex
periment with different values of the parameter a > - L (Use the 
OPQ routine r_jaclog.m to generate the recurrence coefficients of the 
orthogonal polynomials for the weight function w.) 

(c) Gauss-Kronrod quadrature. 
With w as in (a), the analogous result for the 2n + 1 nodes Tv and 
weights Av of the (2n + 1)-point Gauss-Kronrod formula is expected 
to be 

Av"' !!_ w(rv)Jl- T3, n-+ CXJ. 
2n 

That this indeed is the case, when a, (3 E [0, ~),follows from Theorem 
2 in [15]. Use Matlab to illustrate this graphically. 

(d) Experiment with the Gauss-Kronrod formula for the logarithmic 
weight function of (b), when a= 0. 
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4. Discrete orthogonality. 
Let 7rk(-; d,\), k = 0, 1, 2, ... , be the orthogonal polynomials relative to 
an absolutely continuous measure. Show that for each N 2 2, the first N 
of them are orthogonal with respect to the discrete inner product 

N 

(p, q)N = L ,\~p(T:7)q(T:7), 
v=l 

where T:?, >-;? are the nodes and weights of the N -point Gauss formula 
ford,\. Moreover, ]]7rkJIFv = ]]7rki]~.\ forkS N- L 

5. (a) Consider the Cauchy integral 

1b 7rn(t; d,\) ( 
Pn(z) = Pn(z;d,\) = d,\ t), 

a Z- t 

where [a, b] is the support of d,\. Show that 

Pn(z) = O(z-n-l) as z-+ oo. 

{Hint: Expand the integral defining Pn(z) in descending powers of z.} 
(b) Show that 

1b d,\(t) - o-n(z) = Pn(z) = O(z-2n-l) as z-+ oo. 
a Z- t 7rn(z) 7rn(z) 

{Hint: Use (2.27).} 
(c) Consider the partial fraction decomposition 

of un(z)/7rn(z) in (2.27). Use (b) to show that Av =.A;? are the weights 
of then-point Gaussian quadrature formula ford,\. In particular, show 
that 

;_G = Un(Tf!) 
v 7r~(T~). 

(d) Discuss what happens if z-+ x, x E (a, b). 
6. Characterize the nodes Ti in ( 4.9) as zeros of an orthogonal polynomial 

of degree n, and identify the appropriate Jacobi-Radau matrix for (4.9). 
7. Prove (4.10). {Hint: Use the fact that both formulae (4.6) and (4.9) are 

interpolatory.} 
8. (a) Prove the first formula in (4.11). {Hint: Use the relation between the 

Jacobi polynomials Pk = PkaJJ) customarily defined and the monic Ja

cobi polynomials 7rk = 7r~a,tlJ, expressed by Pk(t) = 2-k ek+:+t3) 7rk(t). 
You also need Pk(-1) = ( -l)k(k!t3) and the ;3-coefficient for Jacobi 
polynomials, j3~ = 4n(n + a)(n + j)){n +a+ j3)/(2n +a+ j3) 2 (2n + 
a+ j3 + 1)(2n +a+ j3- 1).} 
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(b) Prove the second formula in (4.11). {Hint: With 1ri'"' and L~a) de
noting the monic resp. conventional generalized Laguerre polynomials, 
use L~a)(t) = ((~1)k/k!) 7r~a'(t). You also need L~a)(O) = (kka), and 
(3~ = n(n +a).} 

9. Prove (4.16). {Hint: With notation as in the hint to Exercise 8(a), use 
Pk(1) = (kka) in addition to the information provided there.} 

lO. The (left-handed) generalized Gauss-Radau formula is 

00 r~l n 1 f(t) dA(t) = L A~p) J(P)(a) +LA~ j(T:) + R~,r(f), 
a p=O v=1 

where r > 1 is the multiplicity of the end point To = a, and R~,r(f) = 0 

for J E lP'zn-l+r· Let dA[rl(t) = (t ~ aYdA(t) and T[rl, A!;'l, v = 1, 2, ... , n, 
be the nodes and weights of the n-point Gauss formula for dA{r]_ 

(a) Show that 

v = 1,2, ... , n. 

(b) Show that not only the internal weights A~ are all positive (why?), 
but also the boundary weights A0 , >.~ if r = 2. 

1 L The generalized Gauss-Lobatto formula is 

b r-1 n 1 f(t)d).(t) = LA~p)j(P)(a) + 'L,Atf(T,5') 
a p=O v=1 

r-1 

+ L( ··1)P A~~J(P)(b) + R~,r(f), 
p=O 

where r > 1 is the multiplicity of the end points To = a, Tn+l = b, and 
R~ rU) = 0 for f E lP'zn-1+2r· Let dA[rl(t) = [(t ~ a)(b ~ t}td>.(t) and 

T[l, At'l, v = 1, 2, ... , n, be the nodes and weights of then-point Gauss 
formula for d>.[r]_ 

(a) Show that 

v = 1, 2, ... , n. 

(b) Show that not only the internal weights>.~ are aU positive (why?), 
but also the boundary weights Ao, A~ and An+l, >.~+1 if r = 2. 

(c) Show that >.~P) = >.~~~, p = 0, 1, ... , r ~ 1, if the measure d>. is 
symmetric. 
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12*. Generalized Gauss-Radau quadrature. 
(a) Write a Mat lab routine gradau. m for generating the generalized 

Gauss-Radau quadrature rule of Exercise 10 for a measure d). on 
[a, oo], having a fixed node a of multiplicity r, r > 1. {Hint: To 
compute the boundary weights, set up an (upper triangular) sys
tem of linear equations by applying the formula in turn with 1r; ( t), 
(t- a)1r;(t), ... 1 (t- ar-l7r;(t), Where 1rn(t) = n~=l (t- T!").} 

(b) Check your routine against the known formulae with r = 2 for the 
Legendre and Chebyshev measures (see [10, Examples 3.10 and 3.11]). 
Devise and implement a check that works for arbitrary r 2': l and 
another, in particular, for r = l. 

(c) Use your routine to explore positivity of the boundary weights and 
see whether you can come up with any conjectures. 

13*. Generalized Gauss-Lobatto quadrature. 
(a) Write a Mat lab routine globatto. m for generating the generalized 

Gauss-Lobatto rule of Exercise 11 for a measure d>.. on (a, bj, having 
fixed nodes at a and b of multiplicity r, r > L For simplicity, start 
with the case r 2': 2 even; then indicate the changes necessary to deal 
with odd values of r. {Hint: Similar to the hint in Exercise 12( a).} 

(b) Check your routine against the known formulae with r = 2 for the 
Legendre and Chebyshev measures (see [10, Examples 3.13 and 3.14]). 
Devise and implement a check that works for arbitrary r 2': l and 
another, in particular, for r = l. 

(c) Explore the positivity of the boundary weights>..~) and the quantities 

),~2 1 in the quadrature formula. 
14. Show that the monic Stieltjes polynomial 1r::+l in ( 4.19) exists uniquely. 
15. (a) Let d).. be a positive measure. Use approximation theory to show that 

the minimum of fiR !7r(t)jPd).(t), 1 < p < oo, extended over all monic 
polynomials 1r of degree n is uniquely determined. 

(b) Show that the minimizer of the extremal problem in (a), when p = 

2s + 2, s 2': 0 an integer, is the s-orthogonal polynomial 1r = 1rn,s· 
{Hint. Differentiate the integral partially with respect to the variable 
coefficients of 1r.} 

16. (a) Show that r in (4.22) has to be odd. 
(b) Show that in (4.22) with r as in {4.23), one cannot have k > n. 

17. Derive (4.33) and (4.34). 
18. Derive (4.39) from ( 4.38) and explain the meaning of R,.,{f; x ). {Hint: Use 

Exercise 5(c) and (2.27).} 
19. Show that Pn(/; t) in {4.40) is 

and thus prove { 4.40). {Hint: Use Exercise 5{ c).} 

287



Computational Methods 57 

20. Derive ( 4.42) and ( 4.43). {Hint: For k < n, use Gauss quadrature, and 
for k = n insert the expression for Pn(f; t) from Exercise 19 into the 
formula for an in (4.41). Also use the fact that the elementary Lagrange 
interpolation polynomials sum up to L} 

21. Derive ( 4.44). 
22. Prove ( 4.46). {Hint: Use Exercise 4.} 
23. (a) Prove that the Lanczos vectors are mutually orthonormaL 

(b) Show that the vectors { h J} j =O, n < N, form an orthonormal basis 
of the K rylov space 

Kn(A,ho) = span(ho, Aho, ... , Anho). 

(c) Prove that 
hi= PJ(A)h0 , j = 0, 1, ... , N, 

where Pi is a polynomial of degree j satisfying the three-term recur
rence relation 

j = 0, 1, ... , N - 1, 

Po( .A)= 1, P-t(.A) = 0. 

{Hint: Use mathematical induction.} 
24. Prove that the polynomial Pk of Exercise 23( c) is equal to the orthonor

mal polynomial irk(·; dpN ). {Hint: Use the spectral resolution of A and 
Exercises 23(a) and (c).} 

25. Derive the bounds for (A- 1)ii hinted at in the last sentence of Example 
11. 

5 Approximation 

5.1 Polynomial Least Squares Approximation 

Classical Least Squares Problem 

We are given N data points (tk, fk), k = 1, 2, ... , N, and wish to find a 
polynomial fin of degree ::S: n, n < N, such that a weighted average of the 
squared errors (p(tk)- fkF is as small as possible among all polynomials p of 
degree n, 

N N 

L WkWn(tk)- fkF ::S: L Wk(p(tk)- fkj 2 for all p E lP'n. (5.1) 
k=l k=l 

Here, wk > 0 are positive weights, which allow placing more emphasis on data 
points that are reliable, and less emphasis on others, by choosing them larger 
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resp. smaller. If the quality of the data is uniformly the same, then equal 
weights, say Wk = 1, are appropriate. 

The problem as formulated suggests a discrete N-point measure 

N 

d>.N(t) = L wk5(t- tk), J =Dirac delta function, (5.2) 
k=l 

in terms of which the problem can be written in the compact form 

(5.3) 

The polynomials 1rk( ·) = 7rk( ·;dAN) orthogonal (not necessarily monic) with 
respect to the discrete measure (5.2) provide an easy solution: one writes 

n 

p(t) = L C;7r;(t), n < N, (5.4) 
i=O 

and obtains for the squared error, using the orthogonality of 7rk, 

(5.5) 
(AU norms and inner products are understood to be relative to the measure 
dAN.) Evidently, the minimum is attained for ci = G;(f), where 

' (!) (!, 7r;) 
c; = ll1rdl 2 , i = 0, 1, ... , n, (5.6) 

are the "Fourier coefficients" of f relative to the orthogonal system 1fo, 1r1, 

... ,1fN-l· Thus, 
n 

Pn(t) = LG;{f)1fi(t;dAN)· (5.7) 
i=O 

In Matlab, the procedure is implemented in the OPQ routine 

(phat,c]=least_squares(n,f,xw,ab,d) 

The given function values fk are input through the Nxl array f, the abscissae 
tk and weights Wk through the Nx2 array xw, and the measure dAN through 
the (N+l) x2 array ab of recurrence coefficients (the routine determines N au
tomatically from the size of xw). The lx(n+l) array dis the vector of leading 
coefficients of the orthogonal polynomials. The procedure returns as output 
the Nx(n+l) array phat of the values Pv(tk), 0 :.S v :.S n, 1 :.S k :.S N, and the 
( n+ 1) x 1 array c of the Fourier coefficients. 
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Example 12. Equally weighted least squares approximation on N = 10 equally 
spaced points on [ ~ 1, 1]. 

Matlab program: 

N=10; k=(1:N)'; d=ones(1,N); 
XY(k,1)=-1+2*(k-1)/(N-1); xw(:,2)=2/N; 
ab=r_hahn(N-1); ab(:,l)=-1+2*ab(: ,1)/(N-1); 
ab(:,2)=(2/(N-1))-2*ab(:,2); ab(1,2)=2; 
[phat,c]=least_squares(N-l,f,xw,ab,d); 

j Demo#5j The program is applied to the function f(t) = ln(2+t) on [~1, 1], 

and selected least squares errors En are compared in the table below with 
maximum errors E';;:' (taken over 100 equally spaced points on [~1, 1]). 

n En E';;:' 
0 4.88(-Gl) 6.37(-Gl) 
3 2.96(-~3) 3.49( -QJ) 
6 2.07( -os) 7.06( -os) 
9 L74(-l6) 3.44(-G6) 

If n = N ~ 1, the least squares error EN _1 is zero, since the N data points can 
be interpolated exactly by a polynomial of degree S N ~ 1. This is confirmed 
in the first tabular entry for n = 9. The infinity errors are only slightly larger 
than the least squares errors, except for n = 9. 

Constrained Least Squares Approximation 

It is sometimes desirable to impose constraints on the least squares approx
imation, for example to insist that at certain points s j the error should be 
exactly zero. Thus, the polynomial p E lP' n is subject to the constraints 

(5.8) 

but otherwise is freely variable. For simplicity we assume that none of the Sj 

equals one of the support points tk. (Otherwise, the procedure to be described 
requires some simple modifications.) 

In order to solve the constrained least squares problem, let 

m 

Pm(f;t) =pm(f;sl,---,sm;t), <Tm(t) = fl(t~sj), (5.9) 
j=l 

be respectively the polynomial of degree m ~ 1 interpolating J at the points 
sj and the constraint polynomial of degree m. We then write 

p(t) = Pm(f; t) + <Tm(t)q(t). (5.10) 

This dearly satisfies the constraints (5.8), and q is a polynomial of degree 
n ~ m that can be freely varied. The problem is to minimize the squared error 
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( 2 r [f(t) - PmU; t) ( )] 2 
2 ( ) ( ) II/- Pm f; ·) - amq lld.\N = JIR am(t) - q t am t dAN t 

over all polynomials q of degree n- m. This is an unconstrained least squares 
problem, but for a new function r and a new measure dA.N, 

where 

f*(t) = f(t)- Pm(f; t), dA.N(t) = a;,(t)dA.N(t). 
am(t) 

If rJn-m is the solution of (5.11), then 

Pn(t) = Pm(f; t) + O"m(t)Qn-m(t) 

(5.11) 

(5.12) 

(5.13) 

is the solution of the .constrained least squares problem. The function f*, 
incidentally, can be given the form of a divided difference, 

as follows from the theory of interpolation. Note also that the discrete or
thogonal polynomials 7rk( · ;dA.N) needed to solve (5.11) can be obtained from 
the polynomials 7rk( · ;dA.N) by m modifications of the measure dA.N(t) by 
quadratic factors (t- s1)2 . 

Example 13. Bessel function 10( t) for 0 :S t :S Jo,3· 
Here, j 0 ,3 is the third positive zero of 10 . A natural constraint is to repro

duce the first three zeros of 10 exactly, that is, m = 3 and 

J Demo#6j The constrained least squares approximations of degrees n = 3, 4, 5 

(that is, n - m = 0, 1,2) using N = 51 equally spaced points on [O,j0 ,3 ] 

(end points included) are shown in Fig. 2. The solid curve represents the 
exact function, the dashdotted, dashed, an dotted curves the approximants 
for n = 3, 4, and 5, respectively. The approximations are not particularly 
satisfactory and show spurious behavior near t = 0. 

Example 14. Same as Example 13, but with two additional constraints 

p(O) = 1, p'(O) = 0. 

j Demo#7j Derivative constraints, as the one in Example 14, can be incorpo

rated similarly as before. In this example, the added constraints are designed 
to remove the spurious behavior near t = 0; they also improve considerably 
the overall accuracy, as is shown in Fig. 3. For further details on Matlab 
implementation, see [lO, Examples 3.51 and 3.52]. 
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Fig. 2. Constrained least square approximation of the Bessel function 
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Fig. 3. Derivative-constrained least squares approximation of the Bessel function 

Least Squares Approximation in Sobolev Spaces 

The task now is to approximate simultaneously functions and some of their 
first derivatives. More precisely, we want to minimize 

s N 

L L Wk<T)[p(<T)(tk)- ~~0")]2 
0"=0 k=l 

over all polynomials p E lP' n, where f~u), a = 0, 1, ... , s, are given function 

and derivative ·values, and wi<T) > 0 appropriate weights for each derivative. 
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These are often chosen such that 

k = 1,2, ... ,N, 

in terms of one set of positive weights Wk. Evidently, the problem, analogously 
to (5.3), can be written in terms of the Sobolev inner product and norm 

s N 

(u, v)s = 2::: L wi"")u(""l(tk)v(al(tk), !lulls= J(u, u)s (5.14) 
a=Ok=l 

in the compact form 

minimize : liP - /II~ for all p E lP' n· (5.15) 

The solution is entirely analogous to the one provided earlier, 

n 

Pn(t) = 2::: ci(J)1ri(t), (5.16) 
i=O 

where {1ri} are the orthogonal polynomials of Sobolev type. In Matlab, the 
procedure is 

[phat,c]=least_squares_sob(n,f,xw,B) 

The input parameter f is now an N x ( s + 1) array containing the N values 
of the given function and its first s derivatives at the points tk. The abscissae 
tk and the s + 1 weights wl"") of the Sobolev inner product are input via the 
N x (s + 2) array xw (the routine determines Nand s automatically from the 
size of the array xw). The user also has to provide theN x N upper triangular 
array B of the recurrence coefficients for the Sobolev orthogonal polynomials, 
which for s = 1 can be generated by the routine chebyshev_sob.m and for 
arbitrary s by the routine stieltjes_sob.m. The output phat is an array of 
dimension (n+l) x (N *(s+ 1)) containing theN values of the derivative of order 
O" of the vth-degree approximant Pv, v ::; n, in positions ( v + 1, CJ + 1 : s + 1 : N * 
(s+ 1)) of the array phat. The Fourier coefficients ci are output in the (n+1)x 1 
vector c. 

Example 15. The complementary error function on [0,2J. 
This is the function 

0 ::; t ::; 2, 

whose derivatives are easily calculated. 

I Demo#8j The routine leasLsquares_sob. m is applied to the function 
f of Example 15 with s = 2 and N=5 equally spaced points tk on {0, 2]. All 
weights are chosen to be equal, wia) = 1/N forO" = 0, l, 2. The table below, 
in the top half, shows selected results for the Sobolev least squares error En 
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s n En E'::o e;;:l e;;:2 
2 0 1.153(+00) 4.759(-Gl) 1.128(+00) 2.000(+00) 

2 7.356(-01) 8.812(-02) 2.860(-01) 1.411(+00) 
4 1.196(-ol) 1.810(-02) 5.434(-D2) 1.960(-D1) 
9 2.178(-o5) 4.710(-06) 3.0ll(-o5) 3.159(-o4) 
14 3.653(-16) 1.130(-o9) uu(-o8) L966(-o7) 

0 0 2.674(-D1) 4.759(-G1) 1.128(+00) 2.000(+00) 
2 2.245(-G2) 3.865(-G2) 3.612(-G1) 1.590(+00) 
4 1.053(-16) 3.516(-G3) 5.160{-G2) 4.956(-G1) 

and the maximum errors E::00 , E::01, E::02 (over 100 equally spaced points on 
[0, 2]) for the function and its fu~t two' derivatives. In the bottom half are 
shown the analogous results for ordinary least squares approximation (s = 0) 
when n <:::: N- 1. (It makes no sense to consider n > N- 1.) Note that the 
Sobolev least squares error E3 N _ 1 is essentially zero, reflecting the fact that 
the Hermite interpolation polynomial of degree 3N - 1 interpolates the data 
exactly. In contrast, En = 0 for n ~ N -1 in the case of ordinary least squares. 

As expected, the table shows rather convincingly that Sobolev least squares 
approximation approximates the derivatives decidedly better than ordinary 
least squares approximation, when applicable, and even the function itself, 
when n is sufficiently large. 

5.2 Moment-Preserving Spline Approximation 

There are various types of approximation: those that control the maximum 
pointwise error; those that control some average error (like least squares error); 
and those, often motivated by physical considerations, that try to preserve the 
moments of the given function, or at least as many of the first moments as 
possible. It is this last type of approximation that we now wish to study. 
We begin with piecewise constant approximation on the whole positive real 
line JR.+, then proceed to spline approximation on IR+, and end with spline 
approximation on a compact intervaL 

Piecewise Constant Approximation on JR.+ 

The piecewise constant approximants to be considered are 

n 

sn(t) = L avH(tv- t), t E JR.+, (5.17) 
v=l 

where av E IR, 0 < t1 < t2 < · · · < tn, and H is the Heaviside function 

{ 
1 if u > 0, 

H(u) = -
0 otherwise. 

294



64 Walter Gautschi 

The problem is, for given f E C 1 (IR;.+), to find, if possible, the av and tv such 
that 100 

sn(tWdt = /Lj, j = 0, l, ... , 2n- l, 

where 

/LJ = 1oo f(t)tJdt, j = 0, 1, ... , 2n- l, 

are the moments off, assumed to exist. 

(5.18) 

(5.19) 

The solution can be formulated in terms of Gauss quadrature relative to 
the measure 

d-\(t) = -tf'(t)dt on IR;.+· (5.20) 

Indeed, if f(t) = o(t-2n) as t--+ oo, then the problem has a unique solution if 
and only if d,\ in (5.20) admits ann-point Gauss quadrature formula 

r= g(t)d-\(t) = t A~g(T;:), g E IP'2n-l 1 

Jo v=l 

(5.21) 

satisfying 0 < rf < T!j < · · · < T;{. If that is the case, then the desired knots 
tv and coefficients av are given by 

v = 1, 2, ... , n. (5.22) 

A Gauss formula (5.21) always exists iff'< 0 on IR;.+, that is, d-\(t) ~ 0. 
For the proof, we use integration by parts, 

T T T 

{ f(t)tldt=-.-1-tJ+lf(t) --.-1- r J'(t)tj+ldt, j:S2n-1, 
lo J + 1 J + 1 lo 

0 

and let T --+ oo. The integrated paJ-t on the right goes to zero by assumption 
on f, and the left-hand side converges to the jth moment of f, again by 
assumption. Therefore, the last term on the right also converges, and since 
-tj'(t) = d..\(t), one finds 

/Lj = -.- tld,\(t), 1 1(X) 
J + 1 0 

j = 0, 1, ... , 2n- 1. 

This shows in particular that the first 2n moments of d,\ exist, and therefore, 
if d,\ ~ 0, also the Gauss formula (5.21). 

On the other hand, the approximant Sn has moments 

s (t)tidt ="'a tidt = -- "'a t1+ 1 100 n ltv 1 n 

n ~v - lL__.,vv, 
0 v=l 0 J + v=l 

so that the first 2n moments /Lj of f are preserved if and only if 
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n r= 
L)a,Av)t~ = Jo tld>.(t), 
v=l 0 

j =0, 1, ... ,2n- 1. 

This is equivalent to saying that the knots tv are the Gauss nodes in (5.21), 
and avtv the corresponding weights. 
Example 16. Maxwell distribution j(t) = e-t2 on lit+. 

Here, 

d>.(t) = 2t2e-t2 dt on !R+, 

which is a positive measure obtained (up to the factor 2) by twice modifying 
the half-range Hermite measure by a linear factor t. The first n + 2 recur
rence coefficients of the half-range Hermite measure can be computed by a 
discretization method. Applying to these recurrence coefficients twice the rou
tine chril.m, with zero shift, then yields the recurrence coefficients ak(d,\), 
rJk ( d,\), k :S n - 1, and hence the required n-point Gauss quadrature rule 
(5.21) ford,\. The result for n = 5 is depicted in Fig. 4. 

Spline Approximation on lit+ 

The approximant Sn in (5.17) can be interpreted as a spline function of degree 
0. We now consider spline functions sn,m of degree m > 0, 

n 

Sn,m(t) = 2::>v(tv- t)';', t E JR+, (5.23) 
v=l 

where ur;' is the truncated power u'J" = urn if u ::;> 0, and u~' = 0 if u < 0. 
Given the first 2n moments (5.19) of f, the problem again is to determine 
av E lit and 0 < t1 < t2 < --- < tn such that 

0.8 

0.6 

0.4 

0.2 

0 
tl 12 13 14 Is 

0 0.5 1.5 2 2.5 3 

Fig. 4. Piecewise constant approximation of the Maxwell distribution 
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(5.24) 

By a reasoning similar to the one in the previous subsection, but more com
plicated, involving m integrations by part, one proves that for f E cm+l (IR+) 
and satisfying j(l-'l(t) = o(t-Zn- 11 ) as t --t oo, 11 = 0, 1, ... , m, the problem 
has a unique solution if and only if the measure 

(5.25) 

admits an n-point Gauss quadrature formula 

(5.26) 

satisfying 0 < Tf < Tf < · · · < T;?. If that is the case, the knots tv and 
coefficients av are given by 

(5.27) 

Note that dA_[ml in (5.25) is a positive measure, for each m 2: 0, and hence 
(5.26) exists, iff is completely monotonic on IR+, that is, ( -1)~-' j(f.l.)(t) > 0, 
t E IR+, for 11 = 0, 1, 2, .... 

Example 17. Maxwell distribution f(t) = e-t2 on IR+, revisited. 
We now have 

where Hm+l is the Hermite polynomial of degree m + 1. Here, dA.lml if m > 0 
is no longer of constant sign on IR+, and hence the existence of the Gauss rule 
(5.26) is in doubt. Numerical exploration, using discretization methods, yields 
the situation shown in the table below, where a dash indicates the presence 
of a negative Gauss node T~, and an asterisk the presence of a pair 

n m=1 m=2 m=3 n m= 1 m=2 m=3 
1 6.9(-2) 1.8(-1) 2.6(-1) 11 ~ Ll(-3) 1.1(-4) 

. 2 8.2(-2) ~ 2.3(-1) 12 ~ ~ * 
3 ~ Ll( -2) 2.5( -3) 13 7.8(-3) 6.7(-4) * 
4 3.5(-2) 6.7(-3) 2.2(-3) 14 8.3(-3) 5.6(-4) 8.1(-5) 
5 2.6( -2) ~ L6(-3) 15 7.7(-3) ~ 7.1(-5) 
6 2.2(-2) 3.1(-3) * 16 ~ 4.9( -4) 7.8( -5) 
7 ~ 2.4(-3) * 17 ~ 3.8( -4) 3.8( -5) 
8 1.4(-2) ~ 3.4(-4) 18 5.5( -3) 3.8( -4) * 
9 L1(-2) 1.7(-3) 2.5(-4) 19 5.3(-3) ~ * 
10 9.0(-3) 1.1(-3) - 20 5.4(-3) 3.1(-4) * 
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of conjugate complex Gauss nodes. In all cases computed, there were never 
more than one negative Gauss node, or more than one pair of complex nodes. 
The numbers in the table represent the maximum errors Jlsn,m - Jllcm the 
maximum being taken over 100 equally spaced points on [0, T:?J-

Spline Approximation on a Compact Interval 

The problem on a compact interval, say [0, 1], is a bit more involved than 
the problem on IR+- For one, the spline function sn,m may now include a 
polynomial p of degree m, which was absent before since no moment of p 
exists on JR.+ unless p = 0. Thus, the spline approximant has now the form 

n 

Sn,m(t) = p(t) +La,( tv- t)r;>, p E IP'm, 0 'S: t 'S: 1, (5.28) 
V=1 

where av E JR. and 0 < t 1 < t2 < · · · < tn < L There are two problems of 
interest: 

Problem L Find Sn,m such that 

11 
Sn,m(t)tidt = J.lj, j = 0, 1, ... , 2n + m. (5.29) 

Since we have m + 1 additional parameters at our disposal (the coefficients of 
p), we can impose m + 1 additional moment conditions. 

Problem IL Rather than matching more moments, we use the added degree 
of freedom to impose m + 1 "boundary conditions" at the end point t = 1. 
More precisely, we want to find sn,m such that 

11 
Sn,m(t)tidt = J.lj, j = 0, 1, ... , 2n- 1 (5.30) 

and 
s}:,/n(l) = J(l-')(1), J.l = 0, 1, ... , m. (5.31) 

It is still true that a solution can be given in terms of quadrature formu
lae, but they are now respectively generalized Gauss-Lobatto and generalized 
Gauss-Radau formulae relative to the measure (see [5, 6]) 

d,\[ml(t) = ( -l)~+l J(m+l)(t)dt on [0, 1]. 
m. 

(5.32) 

Problem I, in fact, has a unique solution if and only if the generalized Gauss
Lobatto formula 

11 g(t)d>.fml(t) = f(A~"lg<~-'l(o) + ( -1)~-' >.~~ 1 g<~-'l(l)j 
0 J.L=O 

n (5.33) 

+ L A~g(T;), g E 1P'2n+2m+l 1 

V=1 
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exists with 0 < Tf < · · · < T[; < 1. In this case, 

v = 1, 2, ... . n, (5.34) 

and p is uniquely determined by 

(5.35) 

Similarly, Problem II has a unique solution if and only if the generalized 
Gauss-Radau formula 

11 
g(t)d>Jml(t) = f .\~11 )g(f.Ll(O) + :t .\~g(T;!'), g E I!D2n+m, 

0 J1=0 v=l 

(5.36) 

exists with 0 < T.f < · · · < T/! < 1. Then 

(5.37) 

and (trivially) 

p(t) = f f(J1)1(1) (t- 1)~". 
J.t=O f-L· 

(5.38) 

In both cases, complete monotonicity off implies d>.. 2: 0 and the existence of 
the respective quadrature formulae. For their construction, see Exercises 12 
and 13 of §4. 

5.3 Slowly Convergent Series 

Standard techniques of accelerating the convergence of slowly convergent se
ries are based on linear or nonlinear sequence transformations: the sequence 
of partial sums is transformed somehow into a new sequence that converges 
to the same limit, but a lot faster. Here we follow another approach, more 
in the spirit of these lectures: the sum of the series is represented as a defi
nite integral; a sequence of quadrature rules is then applied to this integral 
which, when properly chosen, will produce a sequence of approximations that 
converges quickly to the desired sum. 

An easy way (and certainly not the only one) to obtain an integral repre
sentation presents itself when the general term of the series, or part thereof, 
is expressible in terms of the Laplace transform (or some other integral trans
form) of a known function. Several instances of this will now be described. 

Series Generated by a Laplace Transform 

The series 
00 

(5.39) 
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to be considered first has terms ak that are the Laplace transform 

(Lf)(s) = 100 e-st j(t)dt 

of some known function f evaluated at s = k, 

ak = (LJ)(k), k = 1,2,3, .... (5.40) 

In this case, 

j ·oo 1 
= -t e-t j(t)dt 

0 1- e 

that is, 

(5.41) 

There are at least three different approaches to evaluate this integral nu
merically: one is Gauss-Laguerre quadrature of (t/(1 - e-t))f(t)jt with 
d,\( t) = e -tdt on IR+; another is rational/ polynomial Gauss-Laguerre quadra
ture of the same function; and a third Gauss-Einstein quadrature of the func
tion f(t)jt with d,\(t) = tdtj(et - 1) on IR+- In the last method, the weight 
function tj(et -1) is widely used in solid state physics, where it is named after 
Einstein (coming from the Einstein-Bose distribution). It is also, incidentally, 
the generating function of the Bernoulli polynomials. 

Example 18. The Theodorus constant 

00 1 
s = L k312 + kl/2 = L86oo25 ___ . 

k=l 

This is a universal constant introduced by P.J. Davis (1993) in connection 
with a spiral attributed to the ancient mathematician Theodorus of Cyrene. 

Here we note that 

= s- 112-- = C-- * e-t s 1 1 ( 1 ) 
5 3/2 + 5 112 5 + 1 y';t ( ), 

where the star stands for convolution. A simple computation yields (5.40) 
with 
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where 
2 2 1x 

F(x) = e~x 
0 

et dt 

is Dawson's integral. 

I Demo#9J To make j(t) regular at t = 0, we divide by .Ji and write 

To the first integral we apply Gauss~Laguerre quadrature with d--\(t) = 
t~ 1 f2e~tdt on JR+, or rational Gauss~Laguerre with the same d--\, and to the 
second integral Gauss~ Einstein quadrature (modified by the factor t~ 112 ). The 
errors committed in these quadrature methods are shown in the table below. 

n Gauss-Laguerre rational Gauss-Laguerre Gauss-Einstein 
1 9.6799(-03) 1.5635(-02) 1.3610(-01) 
4 5.5952( ~06) 1.1893( -Q8) 2.1735( ~04) 
7 4.0004( -Q8) 5.9689( -16) 3.3459( -Q7) 
10 5.9256(-10) 5.0254(~10) 

15 8.2683(~12) 9.4308(~15) 

20 8.9175(-14) 4.7751( ~16) 
timing: 10.8 timing: 8. 78 timing: 10.4 

The dear winner is rational Gauss-Laguerre, both in terms of accuracy and 
run time. 

Example 19. The Hardy-Littlewood function 

00 1 . X 
H(x) = L k sm k' x > 0. 

k=l 

It can be shown that 

1 X 
ak := k sink= (Lf(t; x))(k), 

where 
1 

f(t;x) = 2i {lo(2Jiri)- l 0 (2J=iXt)] 

and ! 0 is the modified Bessel function. This gives rise to the two integral 
representations 
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Among the three quadrature methods, Gauss-Einstein performs best, but all 
suffer from internal cancellation of terms in the quadrature sum. The problem 
becomes more prominent as the number n of terms increases. In this case, 
other methods can be applied, using the Euler-Maclaurin formula [llj. 

Fig. 5 shows the behavior of H(x) in the range 0 S x S 100. 

"Alternating" Series Generated by a Laplace Transform 

These are series in which the general terms are Laplace transforms with al
ternating signs of some function f, that is, series (5.39) with 

ak = ( -l)k-t(L f)(k), k = 1, 2,3, .... (5.42) 

An elementary computation similar to the one carried out in the previous 
subsection will show that 

100 1 1= 1 S = -t f(t)e-tdt = f(t)-t- dt. 
0 l+e 0 e +1 

(5.43) 

We can again choose between three quadrature methods: Gauss-Laguerre 
quadrature of the function f(t)/(1 + e-t) with d>.(t) = e-tdt, rational/poly
nomial Gauss-Laguerre of the same function, and Gauss-Fermi quadrature of 
f(t) with d>.(t) = dt/(et + l) involving the Fermi function 1/(et + 1) (also 
used in solid state physi('B). 

Example 20. The series 

3.5 

3 

2.5 

2 

:g: 1.5 
I 

0.5 

0 ----------------- --- ----

-0.5L-~--~--~--~~~~--~--~--~~ 
0 10 20 30 40 50 60 70 80 90 100 

X 

Fig. 5. The Hardy-Littlewood function 
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00 ( l)k~l 
S = L - k e~lfk_ 

k=1 

One can show that the function fin question here is f(t) = fo(2Vt), with 
JD the Bessel function of order zero. Errors obtained by the three quadrature 
methods are displayed in the table below, showing the clear superiority of 
Gauss~Fermi quadrature. 

n Gauss-Laguerre rational Gauss-Laguerre Gauss-Fermi 
1 1.6961(-ol) 1.0310(~01) 5.6994(~01) 

4 4.4754(-D3) 4.6605(-{)5) 9.6454(-{)7) 
7 1.7468(-{)4) 1.8274(~09) 9.1529(~15) 

10 3.7891(-{)6) 1.5729(~13) 2.8163(~16) 

15 2.6569( -{)7) 1.5490( ~ 15) 
20 8.6155( -{)9) 
40 1.8066(~13) 

timing: 12.7 timing: 19.5 timing: 4.95 

Series Generated by the Derivative of a Laplace Transform 

These are series (5.39) in which 

(5.44) 

In this case one finds 

100 t 100 t S = -t f(t)e~tdt = f(t)-t- dt, 
D 1-e 0 e -1 

(5.45) 

and Gauss~Laguerre, rational/polynomial Gauss~Laguerr-e, and Gauss~Ein
stein quadrature are again options as in Examples 18 and 19. 

Example 21. The series 

<Xl 

s = l:)~k + 1)k~2 (k + 1)~3/2. 
k=l 

The relevant function f is calculated to be 

f( ) _ erfv't 1; 2 t ---·t 
.Ji ' 

where erf is the error function erf x = (2/ J?f) fox e~t2 dt. Numerical results 
analogous to those in the two previous tables are shown below. 
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n Gauss-Laguerre rational Gauss-Laguerre Gauss-Einstein 
1 4.0125(-Q3) 5.1071(-D2) 8.1715(-o2) 
4 1.5108(-05) 4.5309(-D8) L6872(-D4) 
7 4.6576(-08) 1.3226(-13) 3.1571(-D7) 
10 3.0433(-09) 1.2087(-15) 5.4661(-10) 
15 4.3126(-11) 1.2605(-14) 
20 7.6664( -14) 
30 3.4533( -16) 

timing: 6.50 timing: 10.8 timing: 1.58 

The run time is best for Gauss--Einstein quadrature, though the error is worse 
than for the closest competitor, rational Gauss-Laguerre. 

Series Occurring in Plate Contact Problems 

The series of interest here is 

(5.46) 

Rather than expressing the whole general term of the series as a Laplace 
transform, we do this only for the coefficient, 

1 
(k + t)P = (Lf)(k), (5.47) 

Then 

that is, 

z-2 E C\[0, lj. (5.48) 

The case z = 1 can be treated directly by using the connection with the zeta 
function, Rp(1) = (1- 2-P)((p). Assume therefore z fc L When lzl is close to 
1, the integrand in (5.48) is rather ill-behaved near t = 0, exhibiting a steep 
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boundary layer. We try to circumvent this by making the change of variables 
e-t H t to obtain 

1 11 t- 112 [ln(1/t)]P-l 
R (z) = dt. 

P 2P(p- 1)!z 0 z-2 - t 

This expresses Rp ( z) as a Cauchy integral of the measure 

d..\[Pi(t) = t- 112 [ln(1/t)JP- 1dt. 

Since by assumption, z-2 lies outside the interval [0, 1], the integral can be 
evaluated by the continued fraction algorithm, once sufficiently many recur
rence coefficients for d,.\fPI have been precomputed. For the latter, the modified 
Chebyshev algorithm is quite effective. The first 100 coefficients are available 
for p = 2 and p = 3 in the OPQ files absqmllogl and absqmllog2 to 25 resp. 
20 decimal digits. 

Example 22. 

Rp(x), p = 2 and 3, x = .8, .9, .95,.99, .999 and 1.0. 

Numerical results are shown in he table below and are accurate to all digits 

x R2(x) R3(x) 
.8 0.87728809392147 0.82248858052014 
.9 L02593895111111 0.93414857586540 
.95 1.11409957792905 0.99191543992243 
.99 1.20207566477686 1.03957223187364 
.999 1.22939819733 
1.000 1.233625 

1.0505677 4973 
1.051795 

shown. Full acuracy cannot be achieved for x 2: .999 using only 100 recurrence 
coefficients of d..\ (p]. 

Example 23. 

Rp(eia), p=2and3, o:=wJr/2, w=.2,.1,.05,_01,.001and0.0. 

Numerical results are shown in the table below. 

p w 
2 .2 
3 
2 0.1 
3 
2 0.05 
3 
2 0.01 
3 

0. 98696044010894 OA4 7 40227008596 
0_96915102126252 0.34882061265337 
1.11033049512255 0. 27830297928558 
L02685555765937 0.18409976778928 
1.17201552262936 0.16639152396897 
1.04449441539672 0.09447224926029 
1.22136354463481 0.045920092817 44 
1.05140829197388 0.01928202831056 

2 0.001 1.232466849 0.006400460 
3 1.051794454 0.001936923 
2 0.000 L2336 0.0000 
3 1.0518 0.0000 
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Here, too, full accuracy is not attainable for w <S: 0.001 with only 100 re
currence coefficients. Curiously, the continued fraction algorithm seems to 
converge also when z = 1, albeit slowly. 

Series Involving Ratios of Hyperbolic Functions 

More of a challenge are series of the type 

~ 1 cosh(2k + l)x 
Tp(x; b)= L... (2k + l)P cosh(2k + l)b' 0 'S: ,y; S: b, b > 0, p = 2, 3, (5 49) 

k=O 

which also occur in plate contact problems. Here, we first expand the ratio of 
hyperbolic cosines into an infinite series, 

cosh(2k + l)x 
cosh(2k + l)b 

00 

= ~( -lt { e-(2k+l)[(2n+l)b-x) + e·-(2k+l)[(2n+l)b+xj }, 

n=O 

(5.50) 

insert this in (5.49) and apply the Laplace transform technique of the previous 
subsection. This yields, after an elementary computation (using an interchange 
of the summations over k and n), 

Xl 

Tp(x, b)= 2P(/- 1)! ~( -l)ne(2n+l)b[cpn( -x) + 'Pn(x)j, 
n=O 

(5.51) 

where 
( dA[Pl(t) 

'Pn(s) = es Jo e2f(2n+l)b+s]- t' -b 'S: s s: b. (5.52) 

The integral on the right is again amenable to the continued fraction algorithm 
for dAlPl, which for large n converges almost instantaneously. Convergence of 
the series (5.51) is geometric with ratio e-b. 

Exercises to §5 (Stars indicate more advanced exercises.) 

1. With 1r0 , 1r1, ... , 7rN-t denoting the discrete orthogonal polynomials rel
ative to the measure dAN, and ci(j) the Fourier coefficients of f with 
respect to these orthogonal polynomials, show that 

n 

~ JCiUW117r;IJ 2 'S: 11!11 2 , n < N, 
i=O 

with equality holding for n = N - l. 
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2. Prove the following alternative form for the Fourier coefficients, 

and discuss its possible advantages over the original form. 
3. Discuss the modifications required in the constrained least squares ap

proximation when v (0 :::; v:::; rn) of the points Sj are equal to one of the 
support points tk. 

4. What are Pm (!; · ) , f*, and <Y m in Example 13? 
5. Calculate the first and second derivative of the complementary error func

tion of Example 15. 
6*. Prove the unique solvability of the problem (5.24) under the conditions 

stated in (5.25)-(5.26), and, in the affirmative case, derive {5.27). 
7. Derive the measure d)Jm] for the Maxwell distribution of Example 17. 
8. Derive the formula for f in Example 18. 
9. Derive the formula for f in Example 19. 

10. Derive (5.43). 
11. Derive the formula for f in Example 20. 
12. Derive (5.45). 
13. Derive the formula for f in Example 21. 
14. Supply the details for deriving (5.51). 
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Chinese translation in Mathematical Advance in Translation (2–3) (2008).]

29

184 Commentary, Milestones in matrix computation: selected
with commentaries (R. H. Chan, Ch. Greif, and D. P.

O’Leary, eds.), Ch. 22, 345–358 (2007)
works of Gene  H. Golub,

by Walter Gautschi, in

309

Papers on History and Biography

Special
Functions (G. Allasia, ed .), Annals Numer. Math. 2 , 3–19 (1995)



189 (with C. Giordano) Luigi Gatteschi’s work on asymptotics of special functions
tions and their zeros, in 

196 Alexander M. Ostrowski (18 3–1986): his life, work, and students, in
math.ch/100 Swiss Mathematical Society 1910–2010 (B. Colbois, C. Riedtmann,
and V. Schroeder, eds.), 257–278  

201 My collaboration with Gradimir V. Milovanovíc, in Approximation and computa-
tion — in honor of Gradimir V. Milovanović (W. Gautschi, G. Mastroianni,
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We present a historical survey of Gauss-Christoffel quadrature formulae, beginning with 
Gauss' discovery of his well-known method of approximate integration and the early contributions 
of Jacobi and Christoffel, but emphasizing the more recent advances made after the emergence of 
powerful digital computing machinery. One group of ·inquiry concerns the development 
of the quadrature formula itself, e.g. the inclusion of preassigned nodes and the admission of 
multiple nodes, as well as other generalizations of the quadrature sum. Another is directed 
towards the widening of the class of integrals made accessible to Gauss-Christoffel quadrature. 
These include integrals with nonpositive measures of integration and singular principal value 
integrals. An account of the error and convergence theory will also be given, as well as a discussion 
of modern methods for generating Gauss-Christoffel formulae, and a survey of numerical tables. 

Introduction 

Gauss' famous method of approximate integration, almost immediately 
after its discovery and throughout the 19th century, attracted the attention 
of some of the leading mathematicians of the time. It first inspired Jacobi to 
provide an elegant alternative derivation. Christoffel then significantly general
ized the method and subsequently extended it to arbitrary measures of 
integration. Stieltjes established the legitimacy of the method, by proving its 
convergence, while Markov endowed it with an error term. Thus, by the end of 
the 19th century, the Gauss-Christoffel integration method became firmly 
entrenched in the repertoire of numerical methods of approximation. 

Whether or not the Gauss-Christoffel method had actually been wide!y 
used in practice is a matter of some doubt, since the method requires the 
evaluation of functions at irrational arguments, hence tedious interpolation. 
All this changed when powerful digital computers entered the scene, which 
generated a climate of renewed interest in Gauss-Christoffel quadrature. The 
formulae began to be routinely applied, and increased usage, in tum, led to 
important new theoretical developments. The state of the art, including 
applications and extensive numerical tables, has been summarized in the book 
by Stroud & Secrest (1966]. Here we wish to present an extensive historical 
survey of Gauss-Christoffel quadrature formulae, covering the period from the 
early beginnings to the most recent developments, emphasizing, however, the 
progress made in the last 10-15 years. 

We begin in Section 1 with a brief outline of the discovery of Gauss and 
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the early contributions of Jacobi, Christoffel, and others. In Section 2 we 
describe how the Gauss-Christoffel quadrature rule has been extended in 
various directions, first by Christoffel, who introduced preassigned nodes, then 
much later by Turan and others, who introduced derivative values in addition 
to function values. Closely related to Christoffel's work is Kronrod's extension 
of Gauss-Christoffel quadrature rules, which leads to practical schemes of 
implementation. Further miscellaneous extensions of the idea of Gauss con
tinue to be made. Section 3 is devoted to various efforts of extending the scope 
of applications of Gauss-Christoffel formulae. Thus, applications to more 
general types of integrals are considered, including integrals with nonpositive 
measures of integration and singular principal value type integrals. In Section 4 
we review work on the remainder term and related questions of convergence. 
Section 5, finally, will deal with constructive methods of generating 
Gauss-Christoffel formulae and also contains a review of available numerical 
tables. 

Although an effort has been made to make this survey reasonably 
complete, it was not possible to include all topics of interest. Perhaps the most 
important omission is the extension of Gauss-Christoffel quadrature formulae 
to multiple integrals. While it is not entirely clear what constitutes a 
Gauss-Christoffel formula for a multiple integral, various interpretations are 
possible. A full discussion of these, however. would go beyond the scope of this 
review. Indefinite integrals, likewise, have been omitted from consideration. 
Numerous applications of Gauss-Christoffel's quadrature formula have been, 
and continue to be made. both within the fields of numerical analysis and 
outside of it. It was not feasible to survey them all, and we restricted ourselves 
to mentioning only a few selected applications, as the occasion permits. Special 
properties of zeros of orthogonal polynomials and of Christoffel numbers, and 
composite Gauss-Christoffel formulae, are additional tooics left out from 
consideration. 

t. Genesis of Gaussian Quadrature and Early Hb1ory 

The story of Gaussian quadrature begins with Newton and Cotes. Newton, 
in 1676, was the first to suggest a truly general method of approximate 
integration. Cotes, independently, arrived at similar methods, and brought 
them into workable form after learning of Newton's ideas. In 1814, Gauss takes 
the work of Newton and Cotes as a point of departure, comb:nes it with his own 
work on the hypergeometric series, and develops his famous new method of 
integration which significantly improves upon the earlier method of Newton 
and Cotes. Gauss' work in urn was simplified by Jacobi and further developed 
through much of the 19th century by Mehler, Christoffel, and others. Eventu-
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ally, there emerged a coherent theory which receiveo tts first systematic 
expositions by Christoffel (1877], Radau (1880], and Heine [1881] in his book 
on spherical functions. 

In this section, we can only give a bare outline of the developments that 
took place in this period of approximately 200 years. A very detailed historical 
account can be found in Runge & Willers [1915], and a German edition of the 
four principal memoirs (of Newton, Cotes, Gauss and Jacobi) in Kowalewski 
[1917]. The important contribution of Christoffel (1858], which also falls in this 
period but points into new directions, will be discussed later in Section 2.1.1. 

1.1. Newton-Cotes quadrature formulae . 
One of Newton's early accomplishments (which he already alluded to in a 

letter to Leibniz, dated October 24, 1676, and published later in 1687 as Lemma 
5 in the third book of the "Principia") was his " ... expeditious method of 
passing a parabolic curve through given points". In modern terminology, given 
a function f and n pairwise distinct points T.,, Newton constructs the unique 
polynomial p .. -I (f; · ) of degree < n - 1 which at the points T., assumes the 
same .values as f, 

v=1,2, ... ,n, Pn-tEP .. -1. 

Newton ingeniouslyexpresses this interpolation polynomial in terms of divided 
differences. Here we find it more convenient to express it in the form given 
much later (1795) by Lagrange, 

" 
(1.1) Pn-1(/; t) = L J.,(t)/(T.,), 

v=l 

where I, EP,-1 are the special polynomials with iv(T.,)= 1 and /.,(T~'-)=0, 

f-L ~ v. If we write 

(1.2) /(t) = Pn-1(/; t) + Tn(/; 1), 

where r, (/; ·) denotes the interpolation error, we then have, by the uniqueness 
of the interpolation polynomial, 

(1.3) all f E Pn-t· · 

Newton, in the "Principia", already hints at the possibility that " ... the 
area under the curve can be found, since the quadrature of a parabolic curve 
can be effected". Indeed, if 

b 

(1.4) I (f) = If ( t )dt, 
a 

where a < b are finite numbers, integration of (1.2) yields 
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n 

(1.5) I(/)= On(/)+ R,. (/), On(/)= L A,,f( Tv) 
v=l 

where, by (1.1), 

(1.6) A.,= I(t), v = 1,2, ... , n, R,.(f) = I(r,.(f; · )). 

(The quantities A.,, as well as the points T.,, depend on n; for simplicity we 
suppress this dependence in our notation, both here and in subsequent 
discussions.) One calls (1.5) an n-point quadrature formula, O .. (f) the quadra
ture sum, and R,.(f) the remainder. The points T., are also referred to as nodes, 
while the numbers A., are called the weights of the quadrature formula. The 
quadrature sum is expected to approximate the integral, the error being given 
by the remainder. The latter, by virtue of (1.3), satisfies 

(1.7) R,.(f) = 0, all f E Pn-t· 

Following Radau [1880], one expresses (1.7) by saying that the quadrature rule 
0 .. has degree of exactness n - 1, and we write d (On) = n - 1. (On then also has 
degree of exactness k for any integer k with 0 < k < n.) It is easily seen that a 
quadrature formula 0.. has degree of exactness n - 1 if and only if it is 
obtained via interpolation, as described. Hence Q,., for which (1.7) holds, is 
also called interpolatory. 

In the case of equally spaced points T.,, the numbers A., in (1.6) can be 
computed once and for all. They are called Cotes numbers, in recognition of 
Roger Cotes who first computed them for n < 11. (For a history of these 
numbers, see Johnson [1915].) In the case of arbitrary (distinct) nodes T.,, the 
Cotes numbers can be expressed in terms of the node polynomial 

n 

(1.8) W,.(t) = n (t- T.,). 
v=l 

Indeed, from (1.6), using Lagrange's formula for l.,, one gets 

(1.9) A =I[ w..(-) ] 
" w~(T.,)( · - T.,) ' 

v = 1, 2, ... , n. 

The formula (1.5), with A., given by (1.9), is called the Newton-Cotes quadrature 
formula. It includes as special cases the trapezoidal formula, Simpson's 
formula, and many other formulas that were known prior to Newton's time. It 
will serve here as a basis on which to build the more advanced quadrature 
formulae to be discussed later in this survey. 

1.2. The discovery of Gauss 
If we let the nodes T., in the Newton-Cotes formula (1.5) vary freely, and 

for each set of (distinct) nodes compute the weights A., in accordance with (1.9), 
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what is the maximum degree of exactness that can be achieved? And how are 
the nodes r. to be selected in order to realize this optimum? These were 
questions raised by Gauss (1814), and answered most elegantly by means of his 
theory of continued fractions associated with hypergeometric series. 

To begin with, one easily conjectures that maxT".A"d(On) = 2n- 1, since 
there are 2n unknowns to be found, and 2n conditions imposed. To verify the 
conjecture, Gauss starts from the characteristic function of the "monomial 
errors", 

where z is a formal parameter (intended to be large). The problem then 
amounts to determine r., A., such that 

z ---+ oo. 

Observe now that for the integral in (1.4), where b = - a = 1, 

(1.10). r(-1-) =In 1 + l/z = _l_ 1/3_ 2 · 2/3 · 5 3 · 3/5 · 7 .... 
z - · 1- l/z z - z- z- z-

The continued fraction on the right was well known to Gauss, being a special 
case of his general continued fraction for ratios of hypergeometric functions 
(Gauss [1812]). He also knew well that the n-th convergent - a rational 
function R,._,_,. with numerator degree n- 1 and denominator degree n -if 
expanded in reciprocal powers of z, approximates the function on the left up to 
terms of order z -2 .. - 1, 

Gauss now decomposes R,. _,_,. in partial fractions and takes the residues and 
poles to be the weights and nodes in the quadrature formula (1.5), 

It then follows immediately that 

R --=I-- -0--( 1) (1) (1) .. z-· z-· n z-· 

= r(~)- R .. -~. .. (z) = o(z2:+,), z--,)>oo 
' 

hence d ( Q,.) = 2n - 1, as desired. Gauss proceeds to express the denominator 
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and numerator polynomials of R .. -t.n (now known as Legendre polynomials of 
the first and second kind) in terms of his hypergeometric series. 

Gauss' discovery must be rated as one of the most significant events of the 
19th century in the field of numerical integration and perhaps in all of 
numerical analysis. The result not only has great beauty and power, but also 
influenced many later developments in computing and approximation. It soon 
inspired contemporaries, such as Jacobi and Christoffel, to perfect Gauss' 
method and to develop it into new directions. Towards the end of the century, 
it inspired Heun [1900] to generalize Gauss' idea to ordinary differential 
equations, which in tum led to significant developments in the numerical 
solution of differential equations, notably the discovery of the Runge-Kutta 
method (Kutta [1901]). Gauss' influence continues into the 20th century and is 
still felt today, as we shall have ample occasion to document in subsequent 
chapters of this survey. 

1.3. The contribution of Jacobi 
The continued fraction (1.10) and its close association with the integral 

l(l/(z- ·)) is seen by Gauss to be the true source of his new method of 
integration. Jacobi (1826], on the other hand, with characteristic clarity and 
simplicity, derives Gauss' result purely on the basis of polynomial divisibility 
arguments. The central concept that emerges in Jacobi's work is orthogonality. 
(The name "orthogonal" for function systems came into use only later, 
probably first in E. Schmidt's 1905 Gottingen dissertation; see also Schmidt 
[1907, p. 439]. For polynomials, the term appears in the early writings of Szego 
(Szego [1918], (1919]. Murphy (1835] uses the term "reciprocal".) In effect, 
Jacobi shows that, given any integer k, with 0 < k < n, the quadrature rule Q,. in 
(1.5) has degree of exactness d((),.) = n- 1 +kif and only if the following two 
conditions are satisfied: 

(i) Q, is interpolatory 
(ii) l(w,.p)=O, all p EPk+ 

Here w,. is the node polynomial (1.8). Condition (ii) requires w,. to be 
orthogonal to all polynomials of degree < k - 1. (If k = 0, a polynomial of 
degree - 1 is understood to be identically zero.) It is seen, therefore, that each 
additional degree of exactness, over and beyond what is possible with the 
Newton-Cotes formula, requires orthogonality of w,. to one additional power. 
In particular, k < n, since w,. cannot be orthogonal to itself, so that the 
maximum possible degree of exactness is indeed 2n - 1. 

Jacobi's argumentation is extremely transparent; it goes as follows: 
Clearly, (i) is necessary. The necessity of (ii) is a consequence of I(w,.p) = 
Q,.(w,.p) = 0, the degree of exactness of Q,. being n - l + k and w,. vanishing at 
all the nodes Tv. For the sufficiency, let p be an arbitrary polynomial of degree 
< n - 1 + k. Divide p by w,., 
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p = qw,. + r, q E Pk-t. r E Pn-t· 

Then 

I (p) = I ( qw,. ) + I ( r) 

= I(r) [by (ii)] 

= Q,.(r) [by (i)) 

= Q,.(p)- Q,.(qw,.) = Q,.(p), 

i.e., Q,. has degree of exactness n - 1 + k. 
The case k = n, of course, is of particular interest, as it leads to the Gauss 

formula of maximum degree of exactness. In this case,. w,. must be orthogonal 
to all lower degree polynomials, i.e. w,. is the n-th degree Legendre polynomial 
(if the interval [a, b] is standardized to [ 1, 1 ]), 

fork~ I. 

Jacobi then proceeds to obtain the "Rodrigues formula" 

(1.11) • 1r,.(t) = const · D"(t 2 - 1)", D = d/dt, 

from which he concludes that all nodes T., are real, simple, and contained in the 
interior of [- 1, 1). (The simplicity of the nodes is already pointed out by 
Gauss. The fact that all weights A., are positive seems to have escaped both 
Gauss and Jacobi, although Jacobi's result -1 < T., < 1, combined with an 
observation of Gauss (Gauss [1814, §21]) indeed yields positivity). 

The analogue of (1.11) for general 0 < k < n, 

where p has exact degree n - k, but is otherwise arbitrary, is due to Radau 
(1880]. 

1.4. Gauss-Christoffel quadrature formulae 
After the work of Jacobi, the matter of Gaussian quadrature, except for 

Christoffel's 1858 memoir which we discuss later, remained dormant for nearly 
forty years. Then, in 1864, Mehler, and others after him, began to introduce 
weighted integrals, i.e. integrals over [- 1, 1] with respect to a measure 
dA.(t)=w(t)dt with w¢1. This development soon led Posse [1875), and 
Christoffel (1877], to consider the case of a general (nonnegative and integra
ble) weight function w on a finite interval [a, b]. Christoffel, in particular, 
systematically generalizes the Gauss-Jacobi theory to arbitrary weighted 
integrals, and in the process establishes (what is now called) the 
Christoffel-Darboux formula for an arbitrary weight function (anticipating 
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Darboux (1878, p. 413] by one year). Following Stieltjes [1894] we will 
consider, somewhat more generally, integrals of the form 

b 

(1.12) I (f)= f f(t )dA (t), 
a 

where dA(t) is a (positive) Stieltjes measure on the finite or infinite interval 
[a, b). We assume that A (t) has infinitely many points of increase, and dA (t) 
finite moments of all orders. It seems appropriate, then, in view of Christoffel's 
work, to call then-point quadrature formula(l.5) for the weighted integral!(/) 
in (1.12) a Gauss -Christoffel quadrature formula, if it has maximum degree of 
exactness 2n- l. The weights A,,, as has long been customary, will be called the 
Christoffel numbers for dA . 

. With the measure dA there is associated a unique system of (monic) 
orthogonal polynomials 1Tk ( t) = 7Tk ( t; dA ), 

deg 1Tk = k, k = 0, 1, 2, ... ' 
b 

f 1rk{t )1r, (t )dA (t) = 0, all k II. 
Q 

They are known to satisfy a three-term recurrence relation (Christoffel [ 1877], 
Darboux (1878], Stieltjes [1884a]) 

1Tk + ,(t) = (t - ak )1rk{t)- f3k7Tk -l(t ), k = 0, 1, 2, ... ' 
(1.13) 

1T -i(t) = 0, 7To(t) = 1, 

where the coefficients ak, f3k are real, and /3k >0 fork >0. (/30 is arbitrary.) 
The generalized Gauss-Jacobi theory rests precisely on these orthogonal 
polynomials. 

To begin with, there is a verbatim extension of Jacobi's argument: The 
quadrature rule Q,. in (1.5) has degree of exactness d(Q,.) = n- 1 + k if and 
only if A" is given by (1.9) and the node polynomial w,. is orthogonal (with 
respect to dA) to all polynomials of degree < k - l. The last condition can be 
expressed equivalently in the form 

Wn(t)= 7T,.(t)-Cr7Tn-l(t)- ··· -c,.-k7Tk(t), 

where c, are arbitrary real constants. If k = n, we get uniquely w..(t) = 
1T,.(t; dA ), i.e. the nodes Tv of then-point Gauss-Chrisioffel formula are the zeros 
of the n-th degree orthogonal polynomial1T,.. They are all real, simple, contained 
in (a, b), and separated by the zeros of 7Tn-l (Christoffel (1877]). Equally 
interesting is the case k ::: n - 1, which leads to "quasi-orthogonal" polyno
mials w" = 1T,.- C7Tn-1 with c arbitrary reaL These were introduced by M. Riesz 
(1922/23) in connection with the moment problem, and were shown to have 
only real and simple zeros, at least n- 1 of which are in (a, b). Combining this 
with a remark of Stieltjes [1884a, pp. 384-85], it follows that 
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(1.14) A,=/(/~) >0, v = 1, 2, ... , n, 

whenever (1.5) has degree of exactness > 2n- 2. In particular, all Christoffel 
numbers are positive. The case k > n - 2 is studied in detail by Micchelli & 
Rivlin [ 1973a]. 

To generalize the approach of Gauss, it is convenient to introduce the 
three functions 

z g [a, b ], 

a,(z) = f 7T,.(z)-7T,.(t)dA(t), 
a Z- t 

which figure prominently in the work of Christoffel [1877], and have previously 
been used by Christoffel [1858] and Jacobi [1859] in special cases. Clearly, 

1r,.(z )L(z) = a,.(z) + p,(z ). 

Since a, is a polynomial of degree n - 1, it represents the "entire part" of 1r,L, 
while p,, containing only negative powers in its power series expansion, is the 
"remainder". We have, in fact, 

• 

which shows that p,.(z) = O(z - .. - 1), by virtue of 1T,. being the orthogonal 
polynomial of degree n. Therefore, 

(1.15) ( ) - a,.(z)-~- o(-1-) L Z ( ) - ( ) - 2n' I 1 
'TT, Z '1Tn Z Z 

Z ~oo. 

One now defines the weights A, and the nodes r, of Q,, as Gauss did 
previously in the case dA(t) = dt, by means of the partial fraction decomposi
tion of u,./1T,., 

a,(z)=i A, =·o(-1) 
7T,.(z) v=lz-r., ... z-·, 

which, incidentally, yields 

(1.16) 

It then follows that 

A = a,(r.,) 
" 7T~(r.,)' 

v = 1, 2, ... , n. 

L(z)- a,(z)= /(-1 )- o .. (-1 ) 
1r,(z) z- · z- · 

=R (-1 )= ~ R,(tk) 
n z-. ~ zk+l , 
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which, combined with (1.15), shows that R, (t k) = 0 for 0 < k < 2n - 1, i.e. (1.5) 
is the desired Gauss-Christoffel formula. At the same time we recognize 

f!&l_ {-. R,.(tk) 
( ) - LJ k+l 

7Tn Z k=2n Z 

to be the generating function of the monomial errors. 
Eq. (1.15) gives rise to another important observation. If both L and a-,/1r, 

are expanded in descending powers, the two expansions must agree through 
the first 2n terms. This identifies the rational function a-,/71",. as the n-th 
convergent of the continued fraction associated with the integral L, 

(1.17) 

The characterization of 7T,. as the denominator of this convergent indeed is the 
way orthogonal polynomials were generally viewed throughout the 19th 
century. (See, however, Murphy [1835].) The recurrence relation (1.13) (with 
t = z) is nothing but the recurrence relation that a-,. and 7T,., as numerators and 
denominators of the continued fraction (1.17), must satisfy. The coefficients ak, 

f3k in (1.13) are therefore the same as those in (1.17) (where f3o = f~ dA (t)), and 
we now recognize a-, as being a second solution of (1.13); its initial values are 
0"-t = -1, O"o =0. 

Our developments up to this point already yielded several explicit 
formulas for the Christoffel numbers A,; cf. (1.9), (1.14), (1.16). Among the 
many others that are known, we mention only the elegant formula 

A., = ""'" I [ * ( )]2 ' ..:.,k=O 7T k T, 

1 
v = 1, 2, ... , n, 

due to Shohat [1929], which expresses A, in· terms of the orthonormal 
polynomials 7T t = h ~-"2 7Tk, hk = J~ 1ri(t )dA (t ). In principle, as has recently 
been observed (Billauer [1974]), one could dispense with Christoffel numbers 
altogether if one writes the Gauss-Christoffel quadrature sum in the form 

Q,{f) = [TJ, Tt, ... , T,)(//7Tn+t) j dA(t), 
[TJ, T2, ... , T,](l/7Tn+t) a 

where [ Tt, T2, ..• , T,. ]g denotes the (n - 1)-st order divided difference of g, and 
1Tn+1 = 7Tn+i( ·; dA ). 

Still another approach to the Gauss-Christoffel formula, due to Markov 
[1885], is via Hermite interpolation. One replaces the integral over f by the 
integral over q2 .. _,(f; · ), the Hermite interpolation polynomial of degree 
< 2n - 1 interpolating both f and its derivative f' at the nodes T.,. By requiring 
the weights of the derivative terms /'(T,) in the quadrature sum to be all equal 
to zero, one again is led to choose T, as the zeros of the orthogonal polynomial 
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1r,( ·; dA ). Markov's derivation has the advantage of yielding, via the remain
der term of Hermite interpolation, an explicit expression for the remainder R" 
in (1.5), namely 

b 

R,(f) = f 1T~(t)[r~, r~, ... , T,, r,, t]fdA(t), 
a 

where [r.,r., ... ,T,,T",t]f denotes the 2n-th divided difference off formed 
with the nodes T, (each taken twice) and t. Iff E C 2" (a, b ], then, alternatively, 

(1.18) 

where i, E (a, b) is an (unknown) intermediate value. 
The remainder in (1.18) can be further expanded in the manner of 

Euler-Maclaurin, as is proposed by Bilharz [1951] for the Gauss-Legendre 
formula and discussed in Krylov [1959, Ch. 11, §3] for arbitrary quadrature 
rules. 

Another form of the remainder, valid for holomorphic functions f, 

(1.19) • R,(f) = -2
1 . # p .. ((z))f(z)dz, 
1Tl r 7Tn Z 

where r is a contour encircling the interval [a, b ], follows from a contour 
integral representation of the error in polynomial interpolation, given by 
Darboux [1878) and Heine [1881]. 

The development of Gauss-Christoffel formulae, as already mentioned, 
began with Mehler (1864], who considered dA(t) = (1- t)""(1 + t)13dt on [ -1, 1] 
with arbitrary a > - 1, {3 > - 1. The resulting quadrature formula is now 
named after Jacobi, who studied the corresponding orthogonal polynomials 
(Jacobi (1859]). Particularly noteworthy is the special case a = {3 = 1/2, 
already discussed by Mehler, which yields as orthogonal polynomials the 
Chebyshev polynomials of the first kind, 7Tn(cos 8) = 2'-" cos n8. Its zeros r .. are 
given explicitly by r .. = cos((2v -1)1T/2n), and all weights A .. turn out to be 
equal, A,= 7T/n. Posse [1875) indeed proves that this Gauss-Chebyshev 
formula is the only Gauss-Christoffel formula having equal weights. Other 
Gauss-Christoffel formulae for which the nodes and weights can be expressed 
explicitly in terms of trigonometric functions are those for dA (t) = (1- t 2) 112dt 
and dA(t) = [(1- t)/(1 + t)f'2dt on [ -1, 1], obtained independently by Posse 
(1875] and Stieltjes [1884b]. Gauss-Christoffel quadrature rules on infinite 
intervals appear first in Radau (1883], who considers dA(t)=e-'dt on (O,oo], 
and in Gourier (1883], who considers dA(t) = e-' 212dt on [ -oo,oo]. The former 
are named after Laguerre, who earlier discussed the relevant orthogonal 
polynomials (Laguerre [1879]), the latter after Hermite (1864), who studied the 
orthogonal polynomials for dA ( t) = e _,2 dt on [ - oo, oo]. (These attributions may 
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not be entirely justified, historically, as Laguerre polynomials were already 
used by Lagrange [1762-1765, pp. 534-539] andwere treated in unpublished 
work, dated 1826, by Abel [Oeuvres 2, p. 284] and again, later, by Murphy 
(1835, pp. 146-148] and Chebyshev [1859b]. Likewise, Hermite polynomials 
were used by Laplace [1810/11] in his work on probability and studied by 
Chebyshev [1859b].) The more general orthogonal polynomials relative to the 
measure dA (t) = tae -'dt on [0, oo] occur in the work of Sohockil (1873] and 
Sonin [1880, pp. 41-43), the corresponding Gauss-Christoffel formula in 
Deruyts [1886). 

We remark that Gauss-Christoffel quadrature formulae can also be 
interpreted as quadrature rules of given degree of exactness and minimal 
number of nodes (Chakalov (1930/31)). Indeed, given an integer d > 1, any 
quadrature rule (1.5) of degree of exactness d, having distinct (real or complex) 
nodes T., and (real or complex) weights A.,, must have more than d/2 nodes, i.e. 
n > d /2. If d is odd, the Gauss-Christoffel formula is the unique quadrature 
rule Q,. with d(Q,.) = d having the minimum number n = (d + 1)/2 of nodes. If 
d is even, there are infinitely many Q,. with d ( Q,.) = d that have the minimum 
number n = (d/2) + 1 of nodes. They all can be obtained by taking as node 
polynomial w, any polynomial7T,. - C7T,.-t having distinct zeros, and by defining 
A., in the usual manner by ( l. 9). 

2. Extensions of the Gauss-Christoffel Quadrature Formula 

2.1. Gaussian quadrature with preassigned nodes 
While in Gauss-Christoffel quadrature formulae there is no freedom in 

the choice of the nodes, all being uniquely determined by the measure dA, there 
may be situations in which employment of certain preassigned nodes is highly 
desirable. The question then arises as to how the remaining (free) nodes, and 
all weights (including those for the preassigned nodes), are to be chosen in 
order to maximize the degree of exactness. Christoffel (1858) was the first to 
consider this problem and, in the case dA (t) = dt on [- 1, 1), to give a complete 
solution under the assumption that all preassigned nodes are outside the open 
interval (- 1, 1). An interesting case of preassigned nodes inside the interval of 
integration is considered only recently by Kronrod [1964 a, b] in connection 
with a practical implementation of the Gaussian integration scheme. 

2.1.1. Christoffel's work and related developments. Although Christoffel, 
in his 1858 paper, considers only integrals with constant weight function and 
finite interval [- 1, 1], his work extends easily to general weighted integrals 
over a finite or half -infinite interval [a, b], 

b 

(2.1) I (f)= f f(t)dA(t), dA(t) >0. 
a 
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He proposes to approximate this integral by means of a quadrature formula of 
the form 

n I 

(2.2) I (f) = On (f)+ Rn (f), On (f) = L A..,f( T.,) + L #-LAf(uA ), 
v~l A =1 

where I> 1, and u~, Uz, .•. , u, are given real numbers not in the open interval 
(a, b). We call uA the fixed nodes of On, and T., the free nodes. All weights A.., 
and /LA are assumed real and freely variable. We continue to use the notation 
w.. for the node polynomial of the free nodes, and let u denote the one for the 
fixed nodes, 

n I 

Wn(t) = fl (t- T.,), u(t) = ± fl (t- uA). 
v=l A=! 

By assumption, u preserves its sign on [a, b], and the plus or minus sign is 
taken so as to render u(t)>O on [a,b]. 

Following the approach of Newton-Cotes (cf. Section 1.1), it is clearly 
possible to make (2.2) interpolatory, i.e. to achieve degree of exactness n - 1 + l. 
On the other hand, by Jacobi's argument with obvious changes (replace w" by 
uw" in Section 1.3), one finds that d (On) = n - 1 + I + k, 0 < k < n, if and only 
if 0" is interpolatory and I(uw..p) = 0 for all p E Pk-t- Thus, w" must be 
orthogonal to all polynomials of degree < k - 1 with respect to the measure 
du(t) = u(t)dA.(t). Since du is a positive measure, we are back to the situation 
discussed in Section 1.4. In particular, the quadrature formula (2.2) will have 
maximum degree of exactness d (On) = 2n - 1 + 1 precisely if w" = 7Tn ( • ; udA.) 
and the weights are obtained by interpolation, 

v = 1, 2, ... , n, A = 1, 2, ... , l. 

The formula (2.2), with T., the zeros of 7Tn ( • ; udA. ), and A.,, #LA given by (2.3), is 
called the Christoffel quadrature fonnula. Christoffel proceeds to express 
7Tn ( • ; udA) explicitly in terms of the polynomials p, ( · ; dA ) orthogonal with 
respect to dA, 

Pn(t) Pn+t(f) Pn+l(l) 
Pn(u,) Pn+t(u,) Pn+l (u,) 

(2.4) u(t)7r"(t; udA) = const · . . 
Pn(u,) Pn+t(Ut) Pn+l (ut) 

This is now commonly referred to as Christoffel's theorem. It shows that U7Tn is 
a linear combination of p", Pn+h Pn+t· The theorem is useful in many applica
tions, e.g. in the asymptotic theory of orthogonal polynomials (Shohat (1928]) 
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and in studying the qualitative behavior of the zeros and weights of '7Tn 

(Bezikovic [1937]). 
It is interesting to read how Christoffel motivates his formula (Christoffel 

[1858, p. 74)): " ... Gegenwartige Methode gewahrt demnach die Moglichkeit, 
bei der angenaherten Integration einer gegebenen Funktion aile Vortheile zu 
vereinigen, welche einerseits aus der Beriicksichtigung des numerischen Ver
laufs dieser Funktion, und andererseits aus der Anwendung der GauBischen 
Methode entspringen konnen. Man wird namlich jene n willkiirlichen Wurzeln 
so wahlen, daB fiir sie die Funktion F(x) besonders einfache, oder auch solche 
Werthe annimmt; von denen ein groBer EinfluB auf den Werth des gesuchten 
Integrals zu erwarten ist." (His "F" is our "f", and his "n" is our "I".] One of 
the " ... especially simple values" of f that Christoffel had in mind, undoub
tedly, was f ( uA ) = 0, in which case the corresponding term f-LAf ( uA) in the 
quadrature sum Q" (f) disappears, and the high degree of accuracy is retained 
with one fewer quadrature node. In the extreme case where all uA are zeros of 
f, one effectively gets an n-point formula with degree of exactness 2n - 1 + l. 

Christoffel's new quadrature formula, and the companion theorem of 
Christoffel, is but one of several important discoveries contained in Christof
fel's remarkable 1858 memoir. Among the others is the discrete orthogonality 
property for Legendre polynomials, obtained by Christoffel independently of 
Chebyshev, who introduced discrete orthogonal polynomials in his least
squares approximation method (Chebyshev [1855]). From the discrete or
thogonality relation Christoffel then derives the "Christoffel-Darboux" sum
mation formula for Legendre polynomials. Equally remarkable is the fact that 
Christoffel was already preoccupied with the question of convergence of 
Gaussian quadrature rules, and with the related question of convergence of 
series expansions in Legendre polynomials. Evidently convinced, but unable to 
prove, that his summation formula holds the key to convergence, he writes in a 
letter to Borchardt, dated December 3, 1857, that for convergence" ... scheint 
nun die Formel 44. (his summation formula] wie geschaffen ... ". 

Christoffel's quadrature formula (2.2), (2.3) allows an interesting alterna
tive interpretation, already pointed out by Christoffel [1858, p. 76] and recently 
rediscovered (Esser (1971a], (1972]) in a more general context (multiple fixed 
nodes). Observe, first of all, that 

n 

Q ~ (j) = 2: A,/ (Tv) 
J.J=l 

is a quadrature rule in its own right. It has the property that Q ~(up) = I (up) for 
all p E Pzn ,. Let P be the interpolation operator Pf = p,_,(j; ·),where Pt-t(f; ·) 
is the polynomial of degree < I - 1 interpolating f at the fixed nodes 
u~, uz, ... , u,. Then, with E denoting the identity operator, the quadrature sum 
in (2.2) can be written equivalently in the form 
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(2.5) On(J) = I(Pf)+ O:((E- P)f). 

Christoffel indeed interprets the interpolation term I(Pf) on the right as a "first 
approximation" to I (f), and the second term as "the correction to be applied in 
order to obtain a more accurate value". More importantly, (2.5) yields a new 
formula for the weights f..LA, 

(2.6) - * ( u(.) ] f..LA -(I-Q .. ) '( )( ) , u UA • - UA 
A = 1, 2, ... , I, 

which lends itself more easily for the study of convergence of Christoffel's 
quadrature rule (Esser [1971a], [1972]). The function on which I- 0: acts in 
(2.6) is just the elementary Lagrange polynomial LA for the nodes u., u2, ... , u, 
(cf. Section 1.1). 

Another interesting use of (2.5) is made by Krylov [1959, Ch. 9, §3], who 
considers dA ( t) = w( t )dt in (2.1 ), where w is a function that is positive at t = b, 
and changes sign exactly at the nodes u 11 u2, ... , u1, which are now assumed 
interior points of [a, b). Thus, I(j) is an integral with an oscillatory weight 
function. Since I(up) = f~p(t)u(t)w(t)dt, and u(t)w(t) ~0 on [a, b ], the nodes 
T.,. of the quadrature rule 0: are just the zeros of 7T-.( ·; uwdt), and u(T.,)A., the 
corresponding Christoffel numbers. Q .. (j) in (2.5) then approximates I (f) in 
(2.1) with degree of exactness 2n - 1 + l. The required function (E- P)f can be 
represented in terms of the divided difference of f as (E - P)f = 
u( · )[u., u2, ... , u,, ·]f. 

The special Christoffel formula for dA(t) = dt on [ -1, 1], with I= 2, 
u. = - uz = 1, has already been obtained by Lobatto [1852, §§207-210]. It is 
customary, therefore, to call (2.2), (2.3), when I = 2, u. = a, u2 = b (hence [a, b] 
is finite), a Gauss-Lobatto formula. The same formula, together with the 
simpler one with I= 1, u. =a or u. = b, was also discussed (for dA(t)= dt) by 
Radau [1880]; the latter is commonly referred to as the Gauss-Radau formula. 
All weights of a Gauss-Radau and a Gauss-Lobatto formula are necessarily 
positive. Shohat (1929] has a systematic study of the Gauss-Legendre-Lobatto 
formula. The two Gauss-Radau formulae for the Chebyshev measure dA ( t) = 
(1- t 2f 112dt on [- 1, 1), as well as the respective Gauss-Lobatto formula, can 
be expressed explicitly in terms of trigonometric functions (Markov [1885]). All 
three formulas have equal coefficients associated with all interior nodes. 
For the last one, this equicoefficient property. is proved by Gatteschi, 
Monegato & Vinardi [1976] to be characteristic among Gauss-Lobatto for
mulae with Jacobi weight function, even if multiple fixed nodes are admitted. 
Gauss-Radau and Gauss-Lobatto formulae .for some classical measures dA are 
reviewed extensively in Bouzitat [1952), where in particular one finds explicit 
constructions of these formulae for all measures with square root singularities 
at one or both endpoints. For other examples see Ljascenko & Oleinik [1974], 
[1975]. 
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There are various generalizations of Christoffel's theorem. It is a simple 
matter, e.g., to observe that the theorem remains valid for multiple nodes u", if 
the appropriate rows in the determinant of (2.4) are replaced by rows of 
derivatives (Szego [1921]). A more substantial generalization is due to Uvarov 
[1959], [1969], who considers dO"(t) = (u(t)/v(t)]dA(t), where 

I m 

u(t)= ±O(t-u"), v(t) = fl (t-v,._) 
A ~1 1L =I 

are such that the measure dO" they generate is a positive Stieltjes measure on 
(a, b ]. Assuming the roots u" pairwise distinct, and the same for the v,._, Uvarov 
establishes the generalized Christoffel's theorem 

U ( () 1T n ( ( ; ~ dA ) = 

Pn-m (t) Pn-m+t(l) Pn+r(t) 
Pn-m(Ut) Pn-m+t(Ut) Pn+t(Ut) 

(2.7) const · Pn-m (u,) Pn-m+t(u,) Pn+t(U,) m <n, 
rn-m(Vt) rn-m+t(Vt) fn+t(Vt) 

fn-m(Vm) rn-m+t(Vm) fn+!(Vm) 

and another similar theorem in the case m > n. Here, pk = pk ( · ; dA) are the 
orthogonal polynomials with respect to the measure dA, and 

b n. l(\ 
rk(z)=f~dA(t), 

a Z- 1 
k = 0, 1, 2, .... 

The case of confluent zeros u" or v,._ is handled similarly as in. the classical 
Christoffel theorem. Interestingly, Christoffel (1877) already has an example of 
(2.7), namely the case dA (t) = dt on [ -1, 1] and u(t) = 1, v(t) = t 2 + a 2 , but he 
refrains from giving any explanation. Kumar [1974a, b] and Price [1979), 
apparently unaware of Uvarov's result, discuss further examples. See also 
Szego (1922, Kap. II], Grinspun (1966]. 

2.1.2. Kronrod's extension of quadrature rules. Motivated by a desire to 
provide a practical means of estimating the error in numerical integration, 
Kronrod [1964a, b] initiates a study of pairs (Ot, 02) of quadrature rules, 

Qi(/) = ± Av.;/(Tv,i), i = 1, 2. 
v=l 

The intent here is to use the more accurate of the two, say 0 2, to estimate the 
error of the other, Q~, the integral to be approximated being the weighted 
integral in (2.1 ). One defines the degree of exactness of the pair ( Q 1, Oz) by 
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d(Q~, Oz) = min(d(Qt), d(Qz)) 

(cf. Section 1.1). The number of distinct points that are either nodes of Ot or 
nodes of Oz is denoted by n(Q~, Oz). Assuming Ot not identical with Oz, one 
has 

n(Q~,Qz)>d(Q~,Oz)+2, O~~Oz, 

since otherwise d(Q~, Oz) > n(Q~, Oz)- 2, hence d(Ot) > n(Ot, Oz)- 1 and 
d ( Oz) 2: n ( Q~, Oz)- 1, which would imply Ot = Oz, both Ot and Oz being 
interpolatory on the set of (distinct) nodes of Ot and Oz. 

Following Kronrod, we pose the following problem: Given an interpolat
ory quadrature rule Ot for the integral I in (2.1), find a quadrature rule 
Oz ~ Ot such that d ( Oz) is as large as possible, subject to 

(2.8) d(Oz)>d(Ot), n(Q~,Oz)=d(Ot,02)+2=d(Ot)+2. 

In other words, we wish to maximize the degree of exactness of Oz under the 
condition that the pair (Q~, Oz) have maximum degree of exactness [the first 
condition in (2.8)] and the minimum number of nodes [the second condition in 
(2.8)]. We consider this optimum Oz, if it exists, to have n( Q~, Oz) nodes, those 
in Ot or Oz, although some of the weights, conceivably, could be zero. We call 
Oz the minimum node Kronrod extension of Q •. The same problem can be 
posed with n(Q~, Oz) prescribed arbitrarily, n(Q., Oz) > d(Ot) + 2. We then 
call Oz simply a Kronrod extension of Ot. Since the quadrature rule Oz contains 
among its nodes all those of Q~, we may think of the Kronrod extension as a 
quadrature formula with preassigned nodes (those of Ot). What differs from 
Christoffel's theory (cf. Section 2.1.1) is the fact that the preassigned nodes are 
now located within the interval [a, b ], and the corresponding node polynomial 
is no longer of constant sign. 

Since Ot has n1 nodes, and is interpolatory, d(Ot) > n, -1, and therefore 
n(Q~, Oz) > n1 + 1. Let Wo1 denote the node polynomial (of degree nt) of Ot· 
Then the following can be shown (which generalizes slightly a result of Kronrod 
(1964b, Thms. 5 and 6]): If there exists a monic polynomial w of degree 
n (Q~, Oz)- n~, orthogonal with respect to w01 dA. to all polynomials of lower 
degree, 

b 

f w(t)tkwo,(t)dA.(t)=O, k = 0, 1, 2, ... , n ( Q., Oz)- n1- 1, 
a 

then there exists a unique Kronrod extension Oz of Ot, having degree of exactness 
d(Oz)>2n(Ot, Oz)- nt-1. The extension is the unique interpolatory quadra
ture rule that has as nodes the n1 nodes of Ot and the n(Q~, Oz)- n 1 zeros of w. 

[If one of the latter happens to coincide with a node of Q., the quadrature rule 
Oz(f) also involves the derivative of f at that node.) In general, there is no 
assurance that the nodes of Oz are real and contained in [a, b ]. 
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Perhaps the most interesting case is the one originally considered by 
Kronrod: Otis then-point Gauss-Christoffel quadrature rule. In this case the 
minimum node Kronrod extension Oz has degree of exactness d(Q2) > 
2(2n + 1)- n - 1 = 3n + 1, and the new nodes to be inserted in Ot are the zeros 
of the (monic) polynomial w,.+t of degree n + 1 satisfying 

h 

I Wn+t(l)fk7T,.(l)dA(l) = 0, k = 0, 1, 2, ... , n. 

Here 7T,. is the node polynomial of Q~, i.e. 7T,. = 7T,. ( ·; dA ). If dA (t) = 

(1- t 2)"" 112dt on [- 1, 1), 0 < 1-L < 2, the polynomial w,.+t exists uniquely and 
has n + 1 distinct zeros in [- 1, 1] which are separated by the zeros of 7T, (cf. 
Section 3.1.2). Rabinowitz [1980] in this case (and similarly for the Kronrod 
extension of Gauss-Lobatto formulae) proves that d(Q2) equals, but does not 
exceed, 2[(3n + 3)/2]- 1, except when 1-L = 0 or 1-L = 1, in which cases d(Q2) is 
larger (if n >4). Monegato [1978a] shows that all weights of Oz are positive if 
0< 1-L < 1. In the case 1-L = 1/2 (i.e., dA(t) = dt), tables of Oz, accurate to 16 
decimal digits, have been computed by Kronrod [1964b) for n = 1(1)40. 
Baratella [1979] has tables for Kronrod extensions of Gauss-Radau formulae. 

Nothing, in principle, prevents us from repeating the process of extension 
and generating a sequence Q~, Oz, o~, ... of successively extended quadrature 
rules. Whether indeed this is possible, and yields rules a with all nodes real, 
has not been proved, not even in the case dA (t) = dt. 

Kronrod extensions of Gauss-Lobatto formulae, as well as repeated 
extensions of a low-order Gauss-Legendre rule, have been computed by 
Patterson [1968]. The latter are used in an automatic integration routine of 
Cranley & Patterson [1971] and Patterson (1973]. Piessens [1973a) uses a 
Kronrod pair ( Q ~, Oz) for dA ( t) = dt, n = 10, for similar purposes. 

Particularly simple are the (minimum node) Kronrod extensions of the 
Gauss-Chebyshev rules, with dA(t) = (1- t 2f' 112dt and dA(t) = 
[(1 t)/(1 + t)r2 dt on [- 1, 1], which can be written down explicitly and 
extended infinitely often (Mysovskih [1964], Monegato [1976]). Weight dis
tributions dA (t) with infinite support, on the other hand, seem to resist 
satisfactory Kronrod extension. Kahaner & Monegato [1978), e.g., prove that 
minimum node extensions of the n-point (generalized) Gauss-Laguerre rule, 
with dA (t) = t''e -'dt on [0, oo], - 1 <a < 1, do not exist for n > 23 if one 
requires that all nodes be real and all coefficients positive. Moreover, 
the ordinary Gauss-Laguerre formula (a = 0) cannot be so extended if n > 1, 
nor can the Gauss-Hermite formula, unless n = 1, 2, or 4, confirming earlier 
empirical results of Ramskil (1974]. Further remarks on the difficulties of 
Kronrod extension can be found in Monegato (1979). 

Computational methods for generating Kronrod extensions of Gauss and 
Lobatto rules are discussed by Patterson [1968], Piessens & Branders [1974), 
and Monegato {1978b]. 
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2.2. Gaussian quadrature with multiple nodes 
Gauss' principle applied to quadrature sums involving derivative values in 

addition to function values not only uncovers new theoretical foundations, but 
also yields formulae of considerable practical value· in situations where 
derivatives are readily accessible. The breakthrough came in 1950, through the 
work of Tunin, and has led to intensive further developments, particularly in 
Romanian and Italian schools of numerical analysis. 

2.2.1. The quadrature rule of Turan. The quadrature rule for the integral I in 
(2.1), considered by Tunin [1950], has multiple nodes T.,, each having the same 
multiplicity r > 1, 

(2.9) 
n 

Q,.(j) = ~ (..\.,f(T.,) + ,\ ~/'(T.,) + ... + ,\ ~-l)pr-I)(T.,)]. 
v=l 

We continue to use Wn to denote the node polynomial Wn ( t) = n: =I ( t - T" ). The 
appropriate interpolation process for the Newton-Cotes approach is now 
Hermite interpolation, which, given any set of (distinct) nodes T.,, will yield a 
degree of exactness m - 1 for (2.9). We therefore call (2.9) interpolatory if 
d(Q,.) = m- l. Jacobi's theory is easily adapted (replace w,. by w~ in Section 
1.3) to show that (2.9) has degree of exactness d(Q,.) = m- 1 + k, 0 < k < n, if 
and only if (2.9) is interpolatory and l(w:p) = 0 for all p E Pk-1· Thus, it is now 
the r-th power of w,., not w,., which must be orthogonal to all polynomials of 
degree < k - 1. We call this new type of orthogonality power orthogonality or, 
specifically, r~th power orthogonality. Unless k = 0, the power r must be odd, 
since otherwise I(w~) > 0, and w~ could not be orthogonal to constants, let 
alone to P~c-~o We assume, therefore, that 

r = 2s + 1, s >0. 

We then have k :$ n, since otherwise p = w,. would yield I(w~+ 1 ) = 0, which is 
obviously impossible. We see, therefore, that (2. 9) has maximum degree of 
exactness d(Q,.) = (r + 1)n- 1 precisely if 

b 

(2.10) J [w,.(t)] 2s+tt"d..\(t) = 0, k = 0, 1, ... , n - 1. 
a 

In the special case s = 0 one recovers the Gauss-Christoffel formula. 
Tur.in [1950] proves that there exists a unique polynomial w,. = 1T,._,( ·;d..\) 

for which (2.10) is satisfied. Moreover, 1Tn.s has n distinct real zeros which are 
all contained in the open interval (a, b). The same is proved independently, and 
by entirely different methods, by Ossicini [1966). Turan furthermore identifies 
1Tn.s as the solution of the extremal problem 
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b 

(2.11) J [w(t)]2•+ 2dA(t) =min, 
a 

where the minimum is sought among all monic polynomials w of degree n. (The 
system (2.10) is formally obtained from (2.11) by differentiating the objective 
function in (2.11) with respect to all coefficients of w.) The special cases = 0 in 
(2.11) expresses a well-known extremal property of the orthogonal polynomial 
w = 7T., ( · ; dA ). Many essential features of the Gauss-Christoffel theory are 
thus seen to generalize naturally to quadrature rules (2. 9) with multiple nodes. 
One important feature, however, the positivity of the weights, does not 
completely carry over. For the case r = 3, Tunin observes that A ~2> > 0, while 
for general r, Ossicini & Rosati (1978) prove A<::> >0 whenever p >0 is even. 
Theweights A<::>, for p odd, may have either sign, in general. This is always true 
for symmetric integrals, but happens also in other cases, e.g., when dA (t) = 
e -•dt on (0, oo) and n > 3 (cf. the tables in Stroud & Stancu (1965)). 

The Chebyshev measure dA(t)=(l-t 2f 112dt, as always, provides for 
interesting examples. Bernstein [1930) indeed proves that for each s > 0 the 
extremal polynomial in (2.11) is precisely the Chebyshev polynomial w = 

2'-"T.,. Therefore, the Chebyshev points r., = cos((2v- 1)7T /2n ), v = 1, 2, ... , n, 
serve as nodes for all Turan formulas (2. 9) with r = 1, 3, 5, ... , i.e. there are 
weights A<::> such that 

(2.12) f1 f(t) d _ ~ ~ (p)/(Pl( ,(2v -1 )) 
_ 1 ( 1 - 1z)112 t - f='t ~A., cos 2n 1r + R .. (f), 

with R .. (f) = 0 for all f E P2(s+On-t (Turan {1950)). Equivalently, there exist 
weights p., <::> such that 

(2.12') 
rr " 2s (2 1 ) L g ( t )dt = ~ ~ JL <::) g (p) ;: 7r + R., (g), 

where R" (g) = 0 for all even trigonometric polynomials g of degree ~ 
2(s + 1)n - 1. The coefficients p., <::>in (2.12') admit simple explicit expressions, 
already obtained by Kis (1957], and rediscovered repeatedly (Rosati (1968], 
Riess [1976]). Micchelli & Rivlin (1972) generalize (2.12) to 

(2.13) 

where [ Ti", ... , r~"]f' denotes the divided difference off' formed with the nodes 
T.,, each taken with multiplicity 2o-, and f is holomorphic. Iff E Pzcs+t)n- 1 then 
(2.13) reduces to (2.12). The case s = l is easily worked out; for s = 2 the 
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formulas are given in Riess (1975]. Micchelli & Rivlin also obtain the "Lobatto 
analogue" of (2.13). 

The remainder R" in Turan's formula (2.9) is studied by Ionescu [1967] 
and Ossicini (1968), the remainder in (2.12) by Pavel [1967). It is shown, in 
particular, that the Peano kernel K<r+I)n (cf. Section 4.2) is positive, a fact that 
follows also from earlier work of Chakalov (1954] concerning more general 
quadrature rules (those of Section 2.2.2). For finite intervals [a, b ], and 
holomorphic functions f, Ossicini & Rosati (1975) find the contour integral 
representation 

R (f) _ 1 .+; Pn.s ( Z) /( )d 
" - 2--:-:r( ( ))2s+l Z Z, 

1Tt r 1Tn,s Z 
e~. < z) = J [ 1T ,.,. < 1 )f' +I dA < t ), 

z-. a 

where 1T,.,. = 1T,.,.( ·; dA) is the s-orthogonal polynomial for the measure dA (cf. 
Section 2.2.3). This reduces to a classical formula, when s = 0 (cf. Section 4.1.1, 
Eq. (4,1)). 

Convergence of Turan's quadrature formula, in the case of a finite interval 
[a, b] and f E C 2•[ a, b ], is established by Ossicini & Rosati (1978). Roghi (1978) 
estimat<;s the rate of convergence. 

2.2.2. Arbitrary multiplicities and preassigned nodes. Chakalov {1954], [1957] and Popoviciu 
[1955], independently, generalize Turan's work to quadrature rules having nodes with arbitrary 
multiplicities, hence quadrature sums of the form 

(2.14) O.(f) = ~ '!'A. <:')J<pl(r,,), 
v=l p=O 

It is important, now, to assume the nodes ordered, say 

(2.15) a ::S 7 1 < 7 2 < ··· < T. ::S b, 

so that r, refers to the multiplicity of the first node, r2 to that of the second, etc. (A permutation of 
the multiplicities '" r,, .•. , r., with the nodes held fixed, in general yields a new quadrature rule, a 
point emphasized only recently by Ghizzetti & Ossicini (1975).) 

The maximum possible degree of exactness can again be determined by a simple adaptation 
of Jacobi's theory (cf. Section 1.3). One finds 

(2.16) • [ + 1] maxd(0.)=2~ T -1, 

so that multiplicities r. that are even do not contribute toward an increase in the degree of 
exactness. For this reason one normally assumes all r. to be odd integers, 

r. = 2s. + L 

The maximum degree of exactness (2.16) is then attained if and only if 

(2.17) k = 0, 1, ... , n - 1. 
a v=J 

Interestingly enough, there again exists a unique set of ordered nodes r. for which (2.17) is 
satisfied; all nodes, moreover, are contained in the open interval (a, b). The existence is proved by 
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Chakalov { 1954), Popoviciu [ 1955], and Morelli & Verna [ 1969], existence and uniqueness (subject 
to (2.15)) by Ghizzetti & Ossicini [1975). Karlin & Pinkus (1976a] prove the latter also for Stancu's 
generalization of (2.14) [see (2.19) below). An extremal property analogous to (2.11) holds also for 
(2.14), 

(2.18) 
£.1 '-. 

Once the nodes T. are obtained, either from (2.17) or from (2.18), the quadrature rule (2.14) 
can be constructed in the usual way by Hermite interpolation. The weights A ~l, for which Chakalov 
[1954] and others have explicit expressions, normally vary in sign. Examples (with only one 
multiple node) in which all weights are positive, however, have been constructed; see Richert 
(1979]. 

The positivity of the Peano kernel Kd(O.l•• for the error functional R" is again secured, as is 
shown by Chakalov (1954]. See also Pavel fl968a]. 

In a series of papers, Stancu {1957a, b], {1959] generalizes the formula of Chakalov and 
Popoviciu in the same way as Christoffel generalized Gauss' formula. Thus, the quadrature sum is 
now 

(2.19) 
n -r 1 1 k -1 

Q" (f) = I ! A~) f")( T.) + 2: 2: 11. ~· )r· l(u, ), 
v=1 p=O A=l 0(=() 

where uA are preassigned nodes such that 
I 

u(t)= ±O(t-u,)'• 2:0 on{a,b]. 
A =I 

The theory of Chakalov and Popoviciu, including their discussion of the remainder term, extends 
readily to this more general situation, the results pertaining to (2.17) and (2.18) remaining in full 
'rrce if dA(t) is replaced by u(t)dA(t) throughout. (The remainder is also discussed by Pavel 
j 1 X1Rb].) Special cases of (2.19), in part supplemented by numerical tables, are further considered 
by Stancu & Stroud [1963], Stroud & Secrest {1966, Tables 13, 14], Ossicini {1968], Morelli 
{1967/68], and Rebolia [1973]. The case r 1 = r 2 = ·· · = r" = l, which (for I ::52) includes generalized 
Radau and Lobatto formulae, is of particular interest and is studied by lonescu {1951], Gatteschi 
{1%3/64], Ramskii[I968), Esser [1972), Maskell & Sack [1974), and Porath & Wenzlaff [1976]. 

Further generality can be introduced by imposing constraints on the weights, e.g., that some 
selected weights, either A's or p.. 's, be equal to zero. Maximizing the degree of exactness under such 
constraints is more difficult, the underlying interpolation process now being of the 
Birkhoff-Hermite type. The special case r, = r2 = ··· = '" = r, A~)= 0 for 0 ::5p < r -1, and l = 1, 
u, = 0, k, = 2[(r -1)/2] + 1, with dA(t) = dt on [ -1, I], is considered by Hammer & Wicke [1960) 
and leads to interesting nonclassical orthogonal polynomials, for which Struble [1960) has 
numerical tables. See also Patterson {1969) for a similar example. The case of simple nodes T., and 
zero constraints on some of the p..-weights, is treated by Micchelli & Rivlin (1973b, Thm. 4]. 
Lorentz & Riemenschneider [1978] and Dyn (1979] discuss the general Birkhoff-Hermite case. For 
generalizations to nonpolynomial quadrature rules, see Section 2.3.3. 

2.2.3. Power-orthogonal polynomials. The condition (2.10) gives rise to a sequence of (monic) 
polynomials rr""' ( ·; dA) of degree n, n = 0, 1, 2, ... , each having the property that its (2s + 1)-st 
power is orthogonal to all polynomials of lower degree. Thus, in particular, 

b 

f { 7Tn.s (t)J>'+ 11Tk_,(l )dA (I)= 0, all k < n. 

The polynomials 1T"·' are called s-orthogonal polynomials (Ghizzetti & Ossicini (1967], [1970, p. 
74f]); they reduce to ordinary orthogonal polynomials when s = 0. 
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More generally, given a sequence of arbitrary nonnegative integers, a= {s., s2, s,, ... }, s; ~0, 
the condition (2.17) defines a sequence of polynomials 

" 
1Tft.a(t) = n <t- T~·t n = 0, I, 2, ... , 

such that 

G 
all k < n. 

These are called a-orthogonal polyrwmials (Ghizzetti & Ossicini [1974/75)). The s-orthogonal 
polynomials correspond to the special sequence a= {s, s, s, ... }. 

Very little is known about such power-orthogonal polynomials. From Bernstein's observa
tion, leading to (2.12), one knows that the Chebyshev polynomials T" ares-orthogonal on [ 1, 1] 
for each s = 0, l, 2, ... , with respect to the Chebyshev measure dA(t) = (1- t 2t"2dt. Three other 
measures dA are presently known (they all depend on s) for which the s -orthogonal polynomials 
can be identified (Ossicini & Rosati (1975]). Except for Rodrigues' formula, which has an analogue 
for a-orthogonal polynomials (Ghizzetti & Ossicini (1974], {1974/75)), no general theory is 
currently available. 

2.2.4. Constructive aspects and applications. Quadrature rules such as (2.14) are usually 
computed in two steps: First, one generates the nodes T., either by solving directly the associated 
extremal problem (2.18), or by solving a system of nonlinear equations which derives from the 
orthogonality condition (2.17). Then, one determines the weights A~~ of the quadrature rule, 
usually by solving a linear system of equations expressing the interpolatory character of the rule. 

The first step is clearly the more critical one, computationally. In view of the many powerful 
optimization techniques currently available, however, it is reasonable to expect that the minimum 
problem (2.18) can be solved more or less routinely, provided the objective function and its 
gradient can be computed accurately and efficiently. In this connection, observe that an N-point 
Gauss-Christoffel quadrature rule, relative to the measure dA (or udA in the case of quadrature 
rules (2.19)), where N = n + 1 + ~~~~ s,, will evaluate the objective function and its gradient 
exactly, except for rounding errors. The required quadrature rules, on the other hand, may be 
obtained by the methods discussed in Section 5. 

When setting up the linear system for the weights A~~. some care must be exercised in the 
selection of the polynomial basis functions. One wants the system to be reasonably well
conditioned and sparse. A choice that offers some of these advantages is that of the Newton 
polynomials l,t -T,, ... ,(t- T,)'•,(t -T,)'•(t- r 2), ... ,(t- T,)'•(t- T2)'>···(t- r")'· ',which leads to a 
triangular system. Note that the right-hand vector of the linear system can again be computed by 
Gauss-Christoffel integration. 

Quadrature rules of the Tunin type have been applied by Micchelli & Rivlin (1972] to the 
calculation of Fourier coefficients, and by Kastlunger & Wanner [1972] to the construction of 
implicit Runge-Kutta formulas for integrating ordinary differential equations. These turn out to be 
"A -stable", if r = I and r = 3, hence are useful for stiff differential equations, but are only 
A(a)-stable, for some a< rr/2, when r 2:5. 

2.3. Further miscellaneous extensions 
2.3.1. Product -type quadrature rules. When integrating a product of two functions it may be 

desirable to sample the two functions independently on two different sets of points, "at their own 
speed" as it were. This leads naturally to product-type quadrature rules of the form 

(2.20) 
b m n 

J f(t )g(t )dA (t) = L L f( T.,_ )A.,_.g(a.) + Rm,n (f, g), 
a IL-l ~-t 
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first introduced and studied by Boland & Duris {1971). We assume that dA(t) is a positive measure, 
and {-r,...}, {aJ two sets of pairwise distinct real nodes. We denote the node polynomials by 

'" " 
w'"(t) = rr (t- T,._), X.(t) = rr (t-au). 

~-'=I ,_,,•=1 

One says that the quadrature rule Q(f, g)in (2.20) hasjointdegreeofexactnessd(Q) = (k, /)if 
R'"·" (f, g) = 0 whenever f E P • and g E P,. The formula (2.20) is called interpolatory if it has joint 
degree of exactness d( Q) = (m - 1, n- 1). Equivalently, (2.20) is interpolatory if the quadrature 
sum in (2.20) is the result of integ~ating the product of two interpolation polynomials, one of degree 
m l interpolating fat the nodes -r .. , the other of degree n- 1 interpolating gat the nodes u •. The 
quadrature weights are then given by 

A = f w'"(t) x.(t) dA(t) 
,.. aw.:.(-r,...)(t--r,...)x:(a.)(t-u.) ' 

Interpolatory product-type quadrature rules are the analogues of Newton-Cotes formulas for 
ordinary integrals. They are uniquely determined by the nodes -r,.. and a .. 

Given m and n, where for definiteness we assume m 2! n, it is of interest to determine the 
domain of all possible joint degrees of exactness. The most complete answer is due to Gribble 
[1977). Let C G, and G 2 be disjoint subsets of the Gaussian integers defined by C = {(k, /): 
O~k ~m -1, Q-<:;{-<:;n -1}, G, ={(k,/): k 2!0, [2!n, k +I ~2n -1}, G2 ={(k,/):O~/~n -1, 
k 2! m, k +I s 2m - l} (see Figure 2.1). Then a product-type quadrature rule Q can have joint 
degree of exactness d(Q) = (k, /) if and only if (k, I) E C U G, U G 2• Those rules Q with 

2m-! 

2n-l 

n-1 

c 

m-1 2m-l k 

Fig. 2. 1. Degrees of exactness for product-type quadrature rules 
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d ( Q) = ( m - 1, n - 1 ), hence also d ( Q) E C: are precisely the interpolatory quadrature rules, 
which, as already observed, can be constructed for arbitrary nodes T,., u,.. It is natural to consider 
the quadrature rules Q with d(Q)E G, U G 2 as being "of Gaussian type". They exist only if some 
of their nodes are suitably restricted. Indeed, for a quadrature rule Q to have d(Q)E G, it is 
necessary and sufficient that the nodes u¥ be such that 

b 

(2.21) f x .. (t)t'dA(t)=O for s = 0, 1, ... , k +l-n. 

The nodes T,._ can then be selected arbitrarily. Since k + 1- n $ n- 1 for (k, /) E G,, the condition 
(2.21) can always be satisfied with pairwise distinct real nodes u., and uniquely so, if k + 1 = 2n - 1. 
Similarly, a quadrature rule 0 with d(Q) E G 2 exists if and only if 

b 

J w.,.(l)t'd.A(t) =0 for r = 0, 1, ... , k + 1 - m, 

in which case the nodes u. can be chosen arbitrarily. In particular, if m = n, it follows (Boland 
(1973]) that the only quadrature rule Q for which simultaneously d(Q) = (n -1, n) and d(Q) = 
(n, n- 1) is the ordinary Gauss...:atristoffel quadrature rule, in which T. = u., v = 1, 2, ... , n, are the 
Gaussian nodes, A.. the Christoffel numbers, and A,.. = 0 for p. 7-' v. 

The error term R...,,.(f, g), and convergence results, are discussed in Boland & Duris (1971) 
and Boland {1972]. 

2.3..2. Gaussian quadrature involving interval functionals. All quadrature sums considered so 
far involve point evaluation functionals, i.e. the values of a function (and perhaps some of its 
derivatives) at certain well-determined points. In physical applications it is not uncommon that no 
such function values are accessible, but only certain averages 

k = 1, 2, ... , n, 

taken over small intervals ( u... v.), u.. < v.,. In such cases, it is meaningful to employ quadrature 
rules of the type. 

(2.22) ]/(t)dA(t)= f A,.J(u...v.;f)+R,.(f). 
.. ·-· 

Ordinary quadrature rules are contained in (2.22) as the limit case u, ----+ T"' v,. - r., k = 1, 2, ... , n. 
The study of quadrature rules (2.22) involvins interval functionals was initiated independently 

by Omladic, Pallor & Suhadolc (1975n6) and Pittnauer & Reimer [1976}. They showed, first of all, 
that the theory of interpolatory quadrature rules (Newton-Cotes formulae) carries over com
pletely: Given any n nonoverlapping intervals [u.., v,.) (some possibly degenerate), one can 
construct a unique quadrature rule (2.22) which is exact for all polynomials of degree s n - 1. In 
the special case dA(t) = dp.,. (I)= dl on [ -1,1}, Pittnauer & Reimer(1976], {1979a]also extend the 
theory of Gaussian quadrature. In particular, they establish the following interesting extremal 
characterization of Gauss-Legendre formulae. For given numbers u. > l, k = 1, 2, ... , n, consider 
the function 

G.,(u, v) = j !l..(t; u, v)dt- ± u,. f Jl..(t; u, v)dt, 
-1 k-1 wt 

where u E R", v E R" are points in the dosed polyhedron P: - 1 $ u, $ v 1 $ ··· $ u. s v,. $ 1, and 

" 
fl.,(t; u, v) = n (t- u.)(t- vk)-

lt-t 
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Then the minimum of G .. (u, v) on Pis necessarily attained at an interior point of P. If (u, v) is such 
an interior minimum point, and Ak = (vk - uk )ak, then (2.22) is a Gauss-Legendre quadrature 
formula, i.e. exact for all f E P, .. -•· Higher degree of exactness, when (u, v) is an interior point of P, 
is unattainable. 

Every choice of numbers uk > 1 will produce a Gauss-Legendre formula of the type (2.22). 
Uniqueness, therefore, no longer holds, but the positivity of the weights Ak is still guaranteed. 

We remark that the property just described, when subject to the constraint u = v, yields the 
classical characterization of the Legendre polynomial 7T., (t; dt) as the monic n-th degree 
polynomial of minimum L 2-norm. 

Peano estimates of the remainder (cf. Section 4.2), as well as a convergence theory for 
quadrature rules (2.22), are developed in Pittnauer & Reimer (1979b]. 

2.3.3. Nonpolynomial Gaussian quadrature. Gauss' principle can be extended in a natural 
way to nonpolynomial functions. Thus, given a system of linearly independent functions 

(2.23) u 1(t), u 2(t), u,(t), ... , 

usually chosen to be complete in some suitable function space, the quadrature rule 

(2.24) 
b n 

I f(t)dA(t) = 2: AJ(T.) + R..(f) 
a v-I 

is to be constructed in such a way as to integrate exactly as many successive functions in (2.23) as 
possible. If the first 2n functions are integrated exactly, one calls the rule (2.24) Gaussian with 
respect to the system (2.23). 

Gaussian formulae, indeed also Gauss-Radau formulae, for the system u,(t) = ta,, Osa, < 
a,< ···, on [0, 1] are already established by Stieltjes (1884c). Trigonometric functions u,(t) = 1, 
u,(t) =cost, u,(t) =sin t, u.(t) =cos 2t, ... yield quadrature rules exact for trigonometric polyno
mials up to a certain degree. Assuming dA(t) = dt on [0, 27T), and 0 s T 1 < T, < ··· < T .. < 27T, 
Schmidt [ 194 7] shows that the maximum possible degree is n - 1, and is attained precisely if 
T. = v(21T/n)- y, Osy <2TT/n, and A. =21T/n. This elevates the trapezoidal rule to a Gaussian 
formula for trigonometric functions. The case of an arbitrary finite interval [a, b ], in the context of 
trigonometric (and also exponential) systems, is discussed by Crout [1929/30, §16), Newbery (1969] 
and Knight & Newbery [1970]; integrals with arbitrary positive measures dA(t) on [0, 27T] by 
Tureekii {1959], [1960] and Keda (196la]. Keda (1961b] and Rosati (1968) obtain trigonometric 
Gauss formulae with multiple nodes. For Gauss formulae with respect to spline functions, see 
Schoenberg (1958] and Micchelli & Pinkus [1977]. Harris & Evans (1977/78] have Gauss formulae 
for systems (2.23) that include algebraic powers together with functions exhibiting endpoint 
singularities. 

Nonpolynomial Gaussian formulae can sometimes be obtained via ordinary Gaussian 
formulae through suitable transformations. Thus, for example, the n-point formula for dA(t) = 
tae -•dt on (0, oo], Gaussian with respect to the system u,.(t) = (t +It', r = 0, 1, 2, ... (Krylov, 
Korolev & Skoblja {1959], Pal'cev & Skoblja [1965]), is simply related to the n-point 
Gauss-Christoffel formula with measure (t + 1t2"dA (t) on [0, oo]. A similar example, involving 
Fourier transforms, is discussed in Kruglikova & Krylov [1%1]. See also Stroud & Secrest {1%6, 
§3.2]. 

Ghizzetti [ 1954/55), inspired by work of Radon on the remainder term (cf. Section 4.2), 
constructs a very general class of Gauss formulae (2.24) which are exact for all solutions of a linear 
homogeneous differential equation Lf = 0 of order 2n. The existence of such formulae depends on 
the homogeneous n-point boundary value problem 

(2.25) Ly = 0, y(T.) = 0, , = 1, 2, ... ' n. 
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If (2.25) has exactly q linearly independent eigensolutions y,(t), n :5, q :5, 2n- 1, Gauss formulae 
exist if and only if 

b 

(2.26) fy,(t)dA(t)=O, r = 1, 2, ... , q, 

and then, in fact, oc"~" many. The classical case corresponds to L = D 2", D = d/dt, where (2.25) has 
exactly n linearly independent solutions y,(t) = t'~' n:~, (t- T,.), r = J, 2, ... , n, and (2.26) expresses 
the usual orthogonality criterion for wn(t) = n:~, (I- Tv). Since q = n in this case, the formula is 
unique. 

Gauss formulae for harmonic functions have been proposed in connection with the Dirichlet 
problem for Laplace's equation (Stroud (1974]). If D is a bounded, simply connected two
dimensional open domain, with rectifiable boundary iJD, the solution of .1 2 u = 0 in D, with u 
prescribed on IJD, has the known representation u(P) = - f,.o (IJG/IJn)(P, O)u(Q)ds, where G is 
the Green's function of D and IJG /iJn its normal derivative (known to be nonpositive). Treating 
- iJG/iJn as a weight function it is natural to seek an· approximation of the form u(P) = 
2::~, g,.u(QV), where g,. E Rand Q,. E iJD depend on P, and try to make the formula exact for 
harmonic polynomials of as high a degree as possible. Since there are 2n free parameters and 
2n - 1 linearly independent harmonic polynomials of degree :5, n - 1, one expects that one 
parameter, say 0", can be selected arbitrarily on iJD and all others determined such that the 
formula has harmonic degree of exactness n -I. Barrow & Stroud (1976) indeed show that this is 
possible by proving the existence of at least one Gaussian formula of harmonic degree n - 1. Their 
proof is based on degree theory for mappings and homotopy arguments. Numerical procedures for 
computiRg such formulae are discussed in Stroud (1974). Johnson & Riess [1979) construct 
formulas for circular regions. Similar ideas are pursued in Barrow (1976), [1977] in connection with 
the heat equation and other parabolic equations. 

A generalization in another direction is due to Engels (1972], [1973), who extends Markov's 
derivation of Gaussian quadrature rules (cf. Section 1.4) in the sense that the underlying Hermite 
interpolation operator, though still linear, need no longer be polynomial. It turns out that a number 
of known quadrature rules, e.g. the optimal quadrature rule of Wilf (1964) and more general 
optimal quadrature rules (Engels {1977)), become Gaussian in this generalized sense. A further 
extension of this theory to quadrature rules with prescribed (simple or double) nodes is given in 
Engels [1974). 

The existence of a Gaussian quadrature rule (2.24) with respect to the system (2.23) is always 
guaranteed if the first 2n functions of this system form a Chebyshev system on [a, b). In the 
language of moment spaces, the Gauss formula corresponds to the unique lower principal 
representation of the measure dA(t) (see, e.g., Karlin & Studden {1966, §3]). Gaussian quadrature 
rules with multiple nodes, based on extended Chebyshev systems, are established in Karlin & 
Pinkus (1976a, b) and Barrow [1978) (cf. also Section 2.2.2). 

3. Extension of Integrals Accessible to Gauss-Christoffel Quadrature 

3.1. Nonpositive integrals 
The positivity dA. (t) > 0 of the measure of integration is a sufficient, but by 

no means a necessary, condition for the existence and uniqueness of the 
orthogonal polynomial 1r" ( • ; dA. ), and hence for the unique existence of the 
n-point Gauss-Christoffel quadrature formula (cf. Section 1.4). Viewing the 
orthogonality conditions J! 1r" (t )tkdA (t) = 0, k = 0, 1, ... , n -1, as a system of 
linear algebraic equations for the coefficients of 1Tn, one finds, indeed, that a 
necessary and sufficient condition is merely 
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(3.1) [

J.Lo 

J.Lt 
L1n = det . . 

J.Ln -I 

~:-1 l ;i 0, 

J.Lzn -2 

b 

J.Lr = f f r dA ( t ), r = 0, 1, 2, .... 
a 

If also L1n+1 ;i 0, then f~ 1r~(t)dA(t) ;i 0, and the degree of exactness of the 
Gauss-Christoffel formula cannot exceed 2n - 1. 

If dA ( t) > 0 then (3.1) is certainly true, even in the strengthened form 
Ll" > 0, all n 2: 1, as is known from the theory of the moment problem (Wall 
(1948, p. 325)). If dA is an arbitrary measure, the condition (3.1) may still be 
valid, but some of the familiar properties of orthogonal polynomials may cease 
to hold. Thus, the zeros of 1T" need no longer be real, let alone contained in 
(a, b), and the Christoffel numbers need no longer be positive. Concerning the 
latter, all one can say is that (for real-valued dA and real nodes) the number of 
positive [negative] Chiistoffel numbers equals the number of positive [nega
tive] eigenvalues of the Hankel matrix in (3.1) (Stroud [ 1963]). 

While there is some general theory concerning orthogonal polynomials 
with sign-variable weight functions (Struble [1963], Monegato [1980]), we will 
consider here only a few examples of nonpositive (including complex-valued) 
measures dA that are of interest in applications. 

3.1.1. Odd and even weight functions on symmetric interoals. Let w(t) be 
an odd function on a symmetric interval [-a, a), a >0, and dA(t) = w(t)dt. 
Assume further that n =2m is even. Then the determinant in (3.1) has a 
checkerboard pattern of zero and nonzero elements, from which it follows, by 
Laplace expansion, that 

r r· p,-, J.Ln -1 

(3.2) 
n J.LJ J.Ls J.Ln +1 

Lln = ( - 1) det . . 

/-Ln -1 JLn+l ~2n-·3 
There is, therefore, a unique n-point Gauss-Christoffel quadrature formula if 
n is even and the determinant in (3.2) is different from zero. The latter is 
certainly true if w is nonnegative on [0, a], since then 

a al 

J.L2r-1 = J t 2'- 1w(t)dt = J t'- 1w(Yt)dt, r = 1, 2, 3, ... , 
-a 0 

are moments of the nonnegative measure du(t) = w(vt)dt on [0, a 2]. The 
desired Gauss-Christoffel formula indeed can be constructed in terms of the 
m -point Gauss-Christoffel formula for du (Radau [1880, p. 317f], Piessens 
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[1970a]). For a similar construction in the case of multiple nodes see also Levin 
[1974). If n is odd, the Gauss-Christoffel formula does not exist, as is already 
observed by Christoffel [ 1877] in the special case dA ( t) = tdt on [ - 1, 1). 

Among examples of odd weight functions that have received attention are 
dA ( t) = t z. + 1 dt on [ - 1, 1] (Rothmann [ 1961]) and dA ( t) = sin t dt on [ - TT, 7T] 
(Piessens (1970a]). Another interesting example, dA (t) = ln((1 + t )/(1- t))dt on 
[- 1, 1), arises in the evaluation of a certain two-dimensional Cauchy principal 
value integral describing the aerodynamical load on a lifting body (Song 
(1969]). For this example, Piessens, Chawla & Jayarajan (1976] have numerical 
tables. 

If w(t) is even, but not necessarily of constant sign, and n =2m + 1 is odd, 
then a unique n-point Gauss-Christoffel formula exists if 

[ 

P,o P,z 

det ::: •. ::+. ~::: ]· det [~: 
P,2n-2 J.tn-1 JLn+l 

J.l-n-1 l 
. J.tn.+l • . ~ 0. 

J.tzn-4 

It can be constructed in terms of the m -point Gauss-Radau formula for the 
weigh~ function w(Yt)tv't on [0, a 2) or, equivalently, the m -point 
Gauss-Christoffel formula for da(t) = Ytw(Yt)dt on [0, a 2] (Piessens 
[1972a)). As always, in such cases, there is no assurance that all nodes are real. 
An example of interest in Fourier analysis is d>t ( t) = cos t dt on [ - 1r, 7T] 
(Piessens (1972a]). 

3.1.2. Oscillatory weight functions. An interesting example of an oscillat
ing weight function is dA (t) = 1Tm(t; da)da(t) for some positive measure da on 
[a, b]. Here, p,, = J:t'TTm(t)da(t) = 0 if r < m, and P,m >0, so that (3.1) cannot 
hold unless n > m + L The case n = m + 1, already considered by Stieltjes in 
his last letter to Hermite (Baillaud & Bourget [1905, VoL II, p. 439)), is of 
particular interest in connection with Kronrod's extension of Gauss-Christoffel 
quadrature rules (cf. Section 2. 1.2). In this case, 

.dn = det 

0 
0 

P,m+l 

~.=+:] = p, ::.> 0 (n = m + 1), 

P,2m -1 P,2m 

0 

showing that 7Tn( ·; dA) exists uniquely. Stieltjes conjectures that the zeros of 
1Tn ( • ; dA) are all real, simple, contained in (a, b), and separated by the zeros of 
7Tm( ·; du). Unfortunately, the conjecture is not true in this generality, but has 
been proved by Szego (1935] for ultraspherical polynomials, da(t) = 
(1- t 2Y- 112dt, with 0 < p, < 2. The special case p, = 0 (of the Chebyshev 
polynomial 7Tm(·;du)=21-mTm) yields 7Tn(t;dA)=21-m(t2 -1)Um-1(t), where 
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Um-t is the Chebyshev polynomial of the second kind. The corresponding 
Gauss-Christoffel quadrature formula, interestingly enough, has degree of 
exactness 3m - 1 if m > 1, not 2m + 1, as one might expect (Micchelli & Rivlin 
(1972), Riess & Johnson (1974)). 

3.1.3. Complex-valued weight functions. Gauss-Christoffel quadrature 
rules with a complex weight function were first introduced by Salzer (1955], 
(1961) in connection with the inversion of the Laplace transform. The integral 
of interest here is the Bromwich integral 

s >0, 

where f is assumed holomorphic in a half-plane containing the contour 
Re ( = c, and bounded as ( ~ oo in I arg ( I < 7r /2. Salzer [ 1955], in the case 
s = 1, and Skoblja (1961), Krylov & Skoblja (1961], Wellekens [1970], Piessens 
(197la,c], in the case of general s >0, approximate I(/) by a (complex) 
quadrature sum 

n 

(3.3) On(/)= L cJ((,) 
v=l 

which is Gaussian in the sense that 0" (f) = I (f) whenever f is a polynomial of 
degree < 2n- l in l/(. This calls for polynomials Tr, in the variable 1/( 
satisfying the orthogonality condition 

Such polynomials Tr, = Tr, .• (z) exist uniquely. Indeed, .1" ;£ 0 for all n > 1 
(Krylov & Skoblja [1974, p. 94ff]), where .1" is the determinant in (3.1) formed 
with the moments 

- l c+Jioc (; -s-r - l 
1-L· - 2---:- . e ( d( - T( + ) , 

7Tl c-•= s r 
r = 0, 1, 2, .... 

It turns out that Tr,.,,(z)=y"(z;s, -1), where Yn(z;a,b) is the generalized 
Bessel polynomial of Krall & Frink [1949). (Bessel polynomials have a long 
history, and many interesting applications; see Grosswald [1978] for a recent 
exposition.) The nodes (, in (3.3)- the reciprocals of the zeros of Tr,.,,(z)
are all contained in the right half-plane, when s > 1 (Wimp [1965]). Extensive 
numerical tables (Krylov & Skoblja [1968], Piessens (1969a]) in fact suggest 
that Re (, > 0 even for s > 0. This has been proved by Martinez (1977]. More 
precise results concerning the zeros of Tr,.,. can be found in de Bruin, Saff & 
Varga [to appear). 

The convergence On (f)~ I (f) as n ~ oo is discussed in Luke (1969, p. 254]. 
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The quadrature rule (3.3) may be constructed by the method of Golub & 
Welsch (cf. Section 5.1), since the three-term recurrence relation for Bessel 
polynomials is known explicitly. For a discussion of this, see Luvison (1974) and 
Piessens (1975]. Piessens (1973b] has a Fortran program for generating Q .. , 
which uses the Newton-Raphson method. 

Instead of applying (3.3) directly to f, Salzer [1976] proposes to apply Q,. to 
a Lagrange or Hermite interpolation polynomial of degree 2n - 1 based on 
interpolation points on the real line. This obviates the need of evaluating f in 
the complex plane and still often produces satisfactory results (Pexton (1976]). 

Kronrod extensions of Q" in (3.3) (cf. Section 2.1.2) are discussed by 
Piessens (1969b], [1971b], who also constructs Radau type formulas with the 
prescribed point at infinity. 

Gauss-Christoffel quadrature rules with other complex weight functions, 
in particular Jacobi weight functions (1 - t r (1 + t ) 13 with complex parameters 
a, {3, satisfying Rea > - 1, Re {3 > - 1, are used in atomic scattering theory by 
Nuttal & Wherry [1978], and in elasticity theory by Theocaris & Ioakimidis 
[1977). Jacobi measures in which a, {3 are no longer subject to the restriction 
Rea > - 1, Re {3 > - 1, and correspondingly the integral is to be interpreted 
as an· appropriate loop integral, are discussed by Maskell & Sack [1974]. 

3.2. Cauchy principal value integrals 
Quadrature rules can be adapted to deal with Cauchy-type singular 

integrals extended over segments of the real line, or over the circle, or over 
more general curves in the complex plane. We consider here only Cauchy 
principal value integrals of the form 

(3.4) 
b 1J!l 

I(f)(x) = f dA(t), 
a X- ( 

X E (a, b), 

where [a, b) is a finite or infinite interval and dA (t) = w(t )dt a measure of 
integration that admits Gauss-Christoffel quadrature formulae and is such that 
the integral in (3.4) is meaningful. (Holder continuity of f on [a, b) usually 
suffices.) Singular integrals over the circle, which give rise to principal value 
integrals f~" f(t )cot((x - t )!2)dt with Hilbert kernel (and 27T-periodic functions 
f) are best treated by trigonometric interpolation at equally spaced points. For 
this, see Gaier (1964, Ch. 2, §2], Komelcuk [1964], Gabdulhaev [1976). 
Rabinowitz [1978) has a survey of numerical methods for evaluating Cauchy 
principal value integrals. 

We distinguish between two types of quadrature rules for (3.4). In the first 
type, the parameter x enters as a node, 

n 

(3.5) On{f)(x)= Co(x)f(x)+ L c.(x)f(-r.); 
v=l 
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in the other, it does not, 

" (3.5*) Q!(f)(x) = L c~(x)f(rv). 
&-=1 

All nodes Tv are assumed independent of x. We will call (3.5*) a quadrature rule 
in the strict sense, and (3.5) a modified quadrature rule. The two quadrature rules 
have essentially different character: (3.5) can be made "Gaussian", i.e. of 
degree of exactness 2n, whereas (3.5*) cannot. The degree of exactness of 
(3.5*), indeed, cannot exceed n- 1 (Sanikidze [1970a)), since otherwise 
I(f)(x)=O when f(t)=~:~t(t-r.,), which contradicts well-known inversion 
formulas for Cauchy singular integrals (Gahov [1958, §42.3), Mushelisvili [1946, 
§86]). 

3.2.1. Modified Gauss-Christoffel quadrature formulae. Let {1rk} denote 
the (monic) orthogonal polynomials belonging to dA, and let 

n 

(3.6) G,.(f) = L A,J(rv) 
J~=l 

denote the n-point Gauss-Christoffel quadrature rule for the measure dA. In 
analogy to the Gauss-Christoffel theory (cf. Section 1.4) we define 

Clearly, 

L(x)=f ~A~?. b~ 
p,.(x)=f n d.A(t), 

aX-t 

u,.(x)= f 1T,.(x)-1Tn(t)dA(t). 
a X- ( 

1T,.(x)L(x) = u,.(x) + Pn(x), 

and, the integrand of u,. being a polynomial of degree < n - 1 in the variable t, 

Consequently, 

(3.7) 

u,.(x) =G .. [ 1r,.(x)- 1r,.(. >] = 1r,.(x )G .. (-1-]. 
x-· x-· 

L(x)- G .. [-1-] = Pn(x). 
x- · 1r,.(x) 

Now in order to approximate the integral I(f)(x) in (3.4), we write 

(3.8) I(f)(x) = f(x )f dA(t)- J f(x)- f(t) dA(t), 
ax-t a x-t . 

and observe that the second integral is integrated exactly by the rule G,. 
whenever f E P2,.. Therefore, 
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I(f)(x) = f(x){ L(x)- a .. [x ~.]}+G .. [!(~~]+ R,.(f), 

or, by virtue of (3. 7), 

(3.9) l(f)(x)=.eJ!lf(x)+! A., /(T,,) +R,.(f). 
1T,.(X) .,-l X- T., 

Here R,.(f) = 0 for all f E P2,.. We call (3.9)- a quadrature rule of the type 
(3.5) -· the modified Gauss-O&ristoffelquadrature formula for I(f)(x). 

We remark that (3.9) is valid for any interpolatory quadrature rule G,., if 1r,. 

is understood to be the node polynomial of G ... The degree of accuracy, of 
course, will be correspondingly smaller. In particular, we may construct 
modified . versions of the Gauss-Radau, GausS--Lobatto, etc., formulae for 
l(f)(x ). A simple limit argument will show that, for any quadrature rule G,., 

(3.10). ' = - p..(T,.) 1 2 "'" '( )' v=, , ... ,n. 
1T" T, 

If./ is holomorphic in a neighborhood of the interval [a, b ], the formula 
(3,9) can also be obtained by applying the residue theorem to the function 
f(()1r,.(t)/[(x- {)U- t)1r,.({)) and subsequent integration over the variable t. 
This yields the useful contour integral representation of the remainder, 

(3.11) 
__ 1 ,;. · p..(z) · 

_R,.(f)(x)- 2 .y( ) ( )/(z)dz, 
1'11 r X - Z 1T,. Z · 

where r is a contour encircling the interval [a, b]. 
Particularly noteworthy is the special case in which x is a root of p~ (x) = 0. 

Then (3. 9) becomes 

(3.g>) I(f)(x)=! A, /(T .. ) +R,.(f) (p,.(x)=O), 
v~l X- 'T., 

and we get a formula that looks like what would have been obtained had we 
simply applied G .. to the integral in (3.4), treating the principal value integral as 
if it were an ordinary integral. If G .. is a Gauss-Christoffel formula, then again 
R,.(f) = 0 for f E P2 ... Komelcuk (1964] appears to be the first who noted the 
simple and elegant formula (3.g>). He also observes th~t between any two zeros 
of. 1r,. there is at least one zero of p,., if all A .. > 0. (This was already noted by . 
Stieltjes [ 1883] through an examination of the behavior of p,. (x )/ 1r,. (x) on (a, b) 
and taking note of (3.10).) Inevitably, the formula (3.g>) has been rediscovered 
many times (see, e.g., Lebedev & Baburin·[1965), Delves (1967/68], Piessens 
[1970c], Stark (1971), Erdogan & Gupta (197tn2], Krenk [1975n6]). 

As X approaches a node 1".,, the quadrature sum in (3.9) tends to a finite 
value, even though one teim tends to + oo and another to - oo. The limit, in 
fact, is 
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where 
n 

a~(/)= L A"/(r"), 
1L =1 

I<"'" 

or, equivalently, 

(3.12') I(f)(r.,) = { Po(T.,)- a~[ T., ~. ]} /(r,) +a~[~(~).]- A,f'(-r.,) + R"(f). 

Although the limits (3.12), (3.12') are well-determined, the evaluation of 
I(f)(x) in (3.9), when x is close to one of the nodes r.,, is subject to severe 
cancellation errors.· To avoid them, one must reorganize the computation in a 
different way, as will be discussed in Section 3.2.3. 

When [a, b] is a finite interval, say [ -1, 1], and dA(t) = dt, the integral 
(3.4) can always be transformed into the form . · 

f li!ldt, 
-1 t 

with a new f, for example by a linear fractional transformation. Using as base 
rule (3.6) the Gauss-Legendre formula, for which p,. (x) = (1/2)0" (x) is the 
Legendre function of the second kind, one finds Pn (0) = 0 if n is even, so that 
(3.9") becomes applicable with x = 0. This gives (Price [1960], Lebedev & 
Baburin [1%5], Piessens [1970c]) 

fffi)_dt = ~ A"/(r,)+Rn(f), 
-1 ( v=1 T., 

n even, 

which is exact for f E P2n· An analogous formula holds if dA(t) = w(t)dt is an 
even measure on a symmetric interval. 

If n is odd, no such Gaussian formula exists (cf. Section 3.1.1). However, 
in this case 11' .. vanishes for T, = 0, so that (3.12) becomes applicable (Hunter 
[1972]), 

f /10_ dt = A.,f' (0)+ ~ ~ /( T") + R~ (f), 
-1 t ~<=1 T" 

n odd, r., =0. 

""'" 
This formula, too, is exact for f E P2,;. 

The quadrature rule (3.9) can be generalized to incorporate poles, either 
on or outside of [a, b ], in addition to, or in place of the pole at x, with an 
appropriate extension of the remainder formula in (3.11); see Hunter (1972), 
Chawla & Ramakrishnan (1974], Chawla & Jayarajan [1975), Ioakimidis & 
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Theocaris [l977b], Lether [1977]. Remainder expressions of the Markov type 
(see Section 1.4) have been obtained in the special case (3. <JO) by Zeleznova, 
Komelcuk & Markov[1965), and in the general case (3.9). [and (3.13) below] by 
Elliott & Paget [1979]. 

For the Jacobi measure dA(t) = (1- t)"(1 + ttdt, a> -1, f3 > -1, 
Tsamasphyros & Theocaris (1977) claim convergence of (3.9) for functions f 
which are Holder continuous with exponent p.,, 0 < p. < 1. Convergence in the 
case of an arbitrary weight function on a compact interval [a, b] is proved for 
functions f E C 1[ a, b] by Elliott & Paget [ 1979] and discussed for Holder 
continuous functions by Elliott [1979). 

3.2.2. Gauss-Christoffel quadrature formulae in the strict sense. An alter
native use of the quadrature formula (3.6) in (3.S) can be made as follows: Use 
(3.6) to approximate the ·second integral on the right of (3.8) and, at the same 
time, ~pproximate the factor f(x) multiplying the first integral by the interpola
tion polynomial of degree n- 1 based on the nodes T,. of the quadrature rule 
(3.6). The result is a quadrature formula for I (f)(x) of the type (3.5*), namely 

(3.13) 

or, equivalently, by virtue of (3.10), 

(3.13') 

As pointed out earlier, this formula has degree of exactness at most equal to 
n - 1, unless ·x is a zero of Pn (x ), in which case (3.13) reduces to (3. <JO) and has 
degree of exactness d ( G") + 1. The formula (3.13) can also be obtained more 
directly by replacing fin (3.4) by the polynomial of degree $ n- 1 interpolat
ing f at the nodes T,.. of (3.6). Komelcuk [1964], taking for G" the 
Gauss-Christoffel formula, appears to be the first to obtain (3.13). The special 
case of Jacobi weight functions is considered by Sanikidze [1970a] and Sesko 
[1976], and interpolatory quadrature rules based on Chebyshev points of the 
first and second kind, with dA(t)=dt, are used by Sanikidze [1968], (1970c], 
[1970d], Chawla & Jayarajan (1975], Sesko (1976] and .Chawla & Kumar [1978]. 
Sanikidze [l970b] also discusses interpolatory formulae based on the zeros of 

· two consecutive orthogonal polynomials. Many convergence criteria and error 
estimates can be found in the work of Sanikidze. Paget & Elliott (1972) also 
have error estimates based on contour integration. Perhaps the most remark
able convergence results are due to Elliott & Paget (1975), [1976a) and Se5ko 
[1976), who, independently, in the case of the Gauss-Jacobi formula for 
dA(t) = (1- t)"(l + t)13dt, a> -1, f3 > -1, proveconvergence of (3.13) for all 
functions f that are Holder continuous on [ -1, 1] with exponent p.,, 0 < p. < 1. 
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Sesko [ 1976) indeed proves uniform convergence if a > 0, f3 > 0, not 
only for the Gauss-Jacobi formula, but also for the interpolatory 
formula based on Chebyshev points. Analo~ous results for d.\ ( t) = 

(1- t)"(1 + t)13 ln((l- t)/(1 + t))dt can be found in Sdko & Jakimenko [1980). 
Sanikidze (1972) has similar convergence results forthe Kronrod extension (cf. 
Section 2.1.2) of (3.13) in the case of the Gauss-Chebyshev formula. See also 
Chawla & Kumar [1978], [1979]. 

Formulas of the type (3.13) for infinite intervals and Hermite measure 
dA. (t) = e ~' 2dt, including their convergence, are discussed by Kas'janov (1977). 
Velev, Semanov & Soliev (1977) use Hermite interpolation processes to derive 
quadrature rules with multiple nodes for the approximation of singular 
integrals (3.4) with dA(t) = (1- t 2r112dt. 

For the use of Gauss~type quadrature rules to approximate Cauchy 
-principal value integrals in higher dimensions, see Gabdulhaev [1975], Gab
dulhaev & Onegov (1976], Velev, Semenov & Soliev [1977), Sesko [1979], 
Tsamasphyros & Theocaris [1979] and Theocaris, Ioakimidis & Kazantzakis 
[1980]. 

3.2.3. C-Omputational considerations. Although the quadrature rules (3.9) and (3.13) are 
numerically unstable when xis near one of the nodes T", a device already used by Kornelcuk [1964] 
allows us to evaluate the quadrature sums in a stable manner for arbitrary x E (a, b). We describe 
the procedure for the formula (3. t3), assuming that the underlying quadrature formula is a 
Gauss-Christoffel formula. 

We represent the polynomial p" ,(f; ·) of degree ~ n - I interpolating f at the zeros T" of 
rr" ( · ; dA) in the form 

". f 

(3.14) 
k =il 

where, by virtue of the discrete orthogonality property of orthogonal polynomials, 
" 

(3.15) a,= h~' I A"rr,(Tv}/(T,,), k = 0, 1, ... , n ~- 1, 

with h, = f~rr~(t)dA(t). Integrating (3.14) yields (3.13) in the form 
" f 

(3.16) I(f)(x) = I a,pdx) + R" (f). 
k =0 

The polynomials { rrk (x )} and functions {p, (x )} required in (3.15) and (3.16) both satisfy the 
recurrence relation (cf. Section 1.4) 

(3.17) k = 0, 1,2, ...• 

the initial values being rr _ ,(x) = 0, rr 0(x) = 1 for { rr, (x )}, and 

_ _ fb dA(t) 
(3.18) P ,(x) -1, Po(X)- a X_ I' 

for {pk (x )}. (We assume that {30 = J: dA(t) in (3.17).) The computation of p"(x) by means of (3.17), 
(3.18) is quite stable if x is in the interior of [a, b ]. The only nontrivial computation, therefore, is 
that of po(x) in (3.18). For many of the standard measures dA, however, p0(x) can be expressed, and 
thus evaluated, in terms of known special functions. The sum in (3.16) is most effectively evaluated 
by Clenshaw's algorithm (Paget & Elliott (1972]). 
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A similar procedure applies to the quadrature rule (3.9) (Elliott & Paget {1979)). The 
approach, indeed, is capable of dealing with a much wider class of integrals, for example 

b 

I(f)(x) = f K(x, t)/(t)dA(t), 

where K(x, t) is a singular (or weakly singular) kernel, or a kernel that otherwise exhibits 
unpleasant behavior. For work along these lines see Bahvalov & Vasil'eva [1968], Piessens & 
Poleunis [1971], Branders & Piessens [1975), Patterson {1976/77], Elliot~ & Paget {1976b}, [1978}, 
Sloan {1978], and Smith & Sloan [1980). 

An adaptive automatic integration routine for singular integrals (3.4) (with dA (t) = dt) is 
developed in Piessens, VanRoy-Branders & Mertens (1976]. 

3.2.4. Applications to singular integral equations. The quadrature rules developed in Sections 
3.2.1 and 3.2.2 are widely used for the approximate solution of singular integral equations in 
problems of elasticity theory, fluid flow, aerodynamics and electromagnetic scattering. In one of its 
simpler forms, the problem consists in finding a solution y(t) of an integral equation of the first 
kind, 

(3.19) 'ill I f dt + J k(x,t)y(t)dt = f(x), 
-tX-t -I 

-1 <x < 1, 

where k and f are given, usually smooth, functions. Depending on whether or not one seeks a 
solution that is bounded at one or both of the endpoints, there may be no solution (unless a 
cornpatibility condition is fulfilled), a unique solution, or infinitely many solutions. When solutions 
exist, they will be of the form 

(3.20) y(t) = u(t)w(t) 

where w exhibits square root singularities at the endpoints, and u is smooth, if k and f are. The 
exact type of singularity of w is well-determined, once the boundedness characteristics of y have 
been defined. 

For the numerical solution of (3.19) one now substitutes (3.20) into (3.19), applies the 
quadrature rule (3.9) with the appropriate dA(t) = w(t)dt to the first integral in (3.19) and the 
parent quadrature rule G" in (3.6) to the second. If one further chooses for x the roots x, of 
p., (x) = 0, there results a system of linear equations 

(3.21) ~A,.[ x, ~ T, + k(x, -r.) ]u" = f(x,) 

for the unknowns u" which approximate u ( T" ). If there are fewer than n zeros of p" (x ), additional 
equations - usually physically meaningful ones - can be adjoined. 

Similarly one deals with integral equations of the second kind, 

a(x)y(x)+b(x)f y(t) dt + f k(x,t)y(t)dt = f(x), 
-l X- I -t 

-1 <x < 1, 

the solution of which again admits representations of the form (3.20), but with .w now a more 
general Jacobi type weight function. To again arrive at a linear system of the type (3.21), the 
"collocation points" x, must now be chosen as roots of the equation (Theocaris [1976], Ioakimidis 
& Theocaris [1978a}) 

a(x)w(x) + b(x) Pn(x) = 0. 
1T" (x) 

Best results (when u in (3.20) is smooth) can be expected from the employment of the 
appropriate Gauss-Jacobi quadrature rule (3.6). This indeed has been the choice in the work of 
Stark (1971), Erdogan & Gupta (1971/72), Krenk {1975/76), Theocaris & Ioakimidis {1978a] and 
others. In mariy applications the value of u at one or both endpoints is physically meaningful, and 
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indeed may be the only quantity of interest. In such cases the Gauss-Radau and Gauss-Lobatto 
rules are appropriate and are the preferred choice in the work of Ioakimidis & Theocaris [1977a], 
(1978a, b], Theocaris & loakimidis [1977/78], [1978b), Krenk (1978], and Theocaris & Tsamas
phyros [1979]. Occasionally, other types of singularity arise in singular integral equations and must 
be dealt with accordingly. Theocaris & Ioakimidis (1977), [1979a], for example, consider a problem 
with complex Jacobi-type singularities, Theocaris, Chrysakis & Ioakimidis (1979] one with a 
logarithmic singularity, while Cohen (1978] considers problems on an infinite interval. Interpola
tion schemes that allow u (I) to be obtained for arbitrary I I -r., with an accuracy comparable to the 
one of the approximations u., are discussed in Theocaris & Ioakimidis [1979b]. For convergence 
results, see Ioakimidis & Theocaris [ 1980]. 

Similar methods can also be applied to singular integro-differential equations; see loakimidis 
& Theocaris [1979]. · 

4. The Remainder Term and Convergence 

The analysis of the remainder of a quadrature rule has a long and 
extensive history and continues to be an active topic of research. There are 
three major areas of concern: The representation of the remainder in some 
form or another, the estimation of its magnitude, and conclusions concerning 
the convergence behavior of the quadrature rule. We only review work that 
relates specifically to Gauss-Christoffel quadrature rules. 

One of the early representations of the remainder, Markov's formula for 
R"(j) in terms of the 2n-th derivative of f (cf. Section 1.4), while widely 
quoted, is of limited practical value, as it stands. For one, high-order deriva
tives are usually difficult to estimate. Then the formula cannot be applied to 
functions of low-order continuity. And finally, it does not lend itself easily for a 
comparison with other quadrature rules which may have different degrees of 
exactness. For these reasons, other representations are being used, notably 
representations valid for functions that can be extended holomorphically into 
the complex plane, and others valid for real functions of a given continuity 
class. 

4.1. The remainder term for holomorphic functions 
There are several approaches for estimating the remainder R" (j) when f is 

holomorphic. Among the oldest is the method of contour integration. More 
recent approaches use tools of functional analysis and approximation theory. 
Whatever the approach, the results are often quite comparable. 

4.1.1. Estimates based on contour integration. For simplicity we assume 
that [a, b] is a finite interval, which . we standardize to [ - 1, 1 ]. The use of 
contour integration to represent the remainder R" (j) can be traced back at 
least to Heine [1881] whose work immediately yields (cf. Section 1.4) 

(4.1) 1 "Pn(Z) Rn(f)=-2 .y ( )f(z)dz. 
'TTl r 7Tn z 
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It is assumed in (4.1) that f is siflgle-valued holomorphic in a domain D which 
includes the interval [- 1, 1) in its interior, r is a contour in D surrounding 
[- 1, 1 ], 71'" the appropriate orthogonal polynomial, and 

1 7T, It\ 
Pn(Z) = J ~dA(t). 

-1 z- t 

Two choices of r are most frequently made: r = c,., the. circle I z I = r, r > 1, 
and r = 'IJP, the ellipse with foci at ± 1 and sum of its semiaxes equal to p, 
p > 1. The parameters r and p can be varied in certain intervals 1 < 1 < 1 *, 
1 < p s; p • determined by the domain of holomorphy of f Circles, of course, 
can only be used If D is sufficiently large so as to contain a circle C, for some 
r > 1. In this respect, ellipses 't:p have the advantage of shrinking to the interval 
[- 1, 1) when p ~1. which makes them suitable to deal with functions which 
are analytic on the segment [- 1, 1). Having families of contours rat disposal 
provides for flexibility and gives an opportunity for optimization in the 
estimates of IRn(f)l to be made. These estimates follow directly from (4.1), and 
have the form 

(4.2) • IR"(f)l<-2
1 y"l(r)maxjj(z)j, 
71' zEf' 

where l(r) is the length of r and y" either a strict upper bound for 
I p,.(z )/7rn(z )I on r, or an asymptotic estimate valid for n -H:o. In the latter 
case, (4.2) is only an approximate relation. Strict error bounds are obtained in 
this manner, for some of the classical Gauss-'Christoffel formulae, by 
McNamee (1964], Chawla[1967], [1968], Kambo [1970], (1970/71], Donaldson 
(1973], Kumar (1974a, b], Porath & Wenzlaff (1976], asymptotic estimates by 
Fock (1932], Barrett (1960/61), Chawla & Jain [1968a, b], Donaldson & Elliott 
(1972], Ramakrishnan [1973] and Smith (1977]. As pointed out in some of these 
references, the method can be extended to infinite intervals, and is easily 
adapted to incorporate poles and other singularities of f. 

An equivalent form of (4.1) is (cf. Section 1.4) 

(4.1') Rn(f) = 21 . P Rn(-1-)f(z)dz. mr z-· 

In this form the remainder is studied extensively by Takahasi & Mori (1970], 
(1971], who display many revealing contour maps of I Rn(1/(z- · ))j for 
Gauss-Legendre and other quadrature rules. Lether [1980] expands (z- · f 1 in 
(4.1') in a series of Chebyshev polynomials of the second kind and obtains an 
estimate of R" (f) for arbitrary measure dA ( t) on a finite· interval. 

Freud [1973], [1975a, b] establishes the new representation 

(4.3) 
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valid for arbitrary measures dA(t), where 1r._ are the (monic) orthogonal 
polynomials, h., = f~ 1r!(t)dA (t), and r., are contours enclosing all zeros of 1r., 

and 1T,+l· In the first paper, Freud combines (4.3) with asymptotic results for 
orthogonal polynomials to derive asymptotic estimates for I R, (f) I under the 
assumption that dA (t) has support in [- 1, 1] and is such that In A '(cos 8) is 
Lebesgue integrable on [- 1T, 1T ]. In the subsequent papers these estimates are 
further developed into strict upper bounds. (0. also Section 4.1.3, in particular 
v. Sydow [1977/78].) 

Assuming dA(t) = w(t)dt on [ -1, 1), where w is even, positive, and 
Lebesgue integrable, and assuming f holomorphic in I z I < 1 and continuous on 
I z I= 1, Stenger [1966] uses (4.1) to derive the expansion 

00 

(4.4) R,(f) = L a2n+2J,, ... , 
.,~o . 

where a2k are the coefficients in the Maclaurin series of f. The quantities 
'"'" = R,(t 2"+ 2") are shown to be positive, and to satisfy r..,.,+!- r,+l .... > 0, for all 
n 2: 1, v > 0. This has the interesting consequence that R,(f) > R,+l(f) > 0 for 
all n > no, whenever a2._ ~ 0 for all k >no. (See also Section 4.3, in particular 
Brass (1978].) Upper bounds for I R,(f)j can be obtained from (4.4) by applying 
Schwarz's or Holder's inequality (if {r.., ... }:=oElp, 1<p<oo), and by using 
Cauchy's inequality to estimate I a2._ 1. 

Representations of R .. (f), similar to the one in (4.4), in terms of other 
expansions are obtained for various special Gauss-Christoffel formulae by 
Chawla (1970a), [1971a], Kambo [1971] and Jayarajan {1974], who use expan
sions in Chebyshev or Legendre polynomials. This again yields error bounds if 
one suitably estimates the expansion coefficients. Luke [1975], for arbitrary 
measure dA (t ), expands f in orthogonal polynomials 1T._ (t; dA) and works out 
the corresponding expansion for R, (f). This is extended in Luke, Ting & Kemp 
(1975) to the case of Christoffel quadratures (with preassigned nodes). 

4.1.2. Hilbert space norm estimates. The idea of using Hilbert space 
methods to estimate linear functionals that are important in approximation 
(such as the error functional R" (f) in a quadrature rule) was first introduced by 
Davis (1953). Here the scenario calls for a Hilbert space 'Je = 'Je(D) of 
functions which are single-valued holomorphic in a domain D that contains the 
interval [- 1, 1]. If, then, R, is a bounded linear functional in 'Je, one gets 
immediately 

(4.5) 

where u, = II R, II is the norm of the error functional R" and 11 f II the norm off in 
the Hilbert space 'Je. The former depends. only on the quadrature rule in 
question, the latter only on the function to which the rule is applied. ]ndeed, if 
{pd is a complete orthonormal system in :Je, then 
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oc 

(4.6) u~ = L 1 R .. (pk)r 
k=O 

Davis [1953] originally, and Stetter [1968], Riess [1971}, Haber [1971], 
[1971/72), Kofron [1972), Hammerlin [1972) subsequently, use circular 
domains bounded by C, r > 1, and equip 1e with the inner product (j, g)= 
f c.f(z )g(z )ds. The orthonormal system then consists of powers, pk (z) = 
(2TrTf112(z/rt The norm off in (4.5) can be further estimated to yield 

I R .. (f)j $ r .. sup 1/(z )j, 
zECr 

For reasons already indicated in the previous section, domains bounded by 
an ellipse 'lp, p > 1 (with semimajor axis a and semirninor axis b, a + b = p) are 
the preferred choice of many authors. They are used, e.g., by Davis & 
Rabinowitz (1954], Davis (1962], Barnhill (1968], Chawla [1969], Riess & 
Johnson (1969), Haber (1971/72], in conjunction with the double integral inner 
product (/,g)= f fint<'llpd(z )g(z )dxdy. This yields estimates of the form 

(4.7) 

where a .. can be computed (or estimated) from (4.6), the pk being essentially 
Chebyshev polynomials of the second kind. For a number of quadrature rules, 
including Gaussian mles, the quantities u .. are tabulated for selected values of 
a (or p) in Lo, Lee & Sun [1965) and Stroud & Secrest [1966]. (Earlier tables in 
Davis & Rabinowitz· (1954) and Davis (1962] contain a systematic error.) 
Somewhat sharper bounds result through the use of the line integral inner 
product (f,g-)=J~J(z)g(z)j1-z 2 j- 112ds, as is shown in Chawla [1968/69], 
[1969] and Rabinowitz & Richter (1970], or through the use of (/,g)= 
f-,;J(z)g(z)lw(z)!ds, where dA(t)=w(t)dt (Chawla [1970b]). The m:thonor
mal functions in the former case are Chebyshev polynomials of the first kind. 
Nearly identical results are derived by other means in Chawla (197lb). Knauff 
(1976/77] uses Banach space methods to obtain estimates of the type (4.7) for 
Gauss-Chebyshev quadratures. Indeed, there are many· other ways- such 
estimates can be derived; Rabinowitz (1969] compares five of them in the case 
of Gauss-Legendre formulae. 

. Nicholson, Rabinowitz, Richter & Zeilberger [1971), and Curtis & 
Rabinowitz (1972) study the error of Gauss-Legendre, Radau and Lobatto 
formulae when applied to Chebyshev polynomials. In view of ( 4.6), this yields 
information on the error norms u .. in the respective Hilbert spaces 1e(~p ). 

4.1.3. Estimates via approximation theory. If [a, b] is a: finite interval, f 
continuous on [a, b), and if pi .. - 1 achieves the best uniform ·approximation 
Ez .. -I(f) off by polynomials of degree $ 2n -1, 
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E2n-t{f) = inf max 1/(t)- p(t )I= II/- p !n-dloo, 
pEP2r,-l aSt-=5b 

then it is a simple matter to observe that for any Gauss-Christoffel formula, 
I Rn (j)J = J R" (f- p in-1 )J < 2p.oll/- p in-llloo, hence 

b 

(4.8) I Rn (f) J < 2p.oE2n -t{f), j.Lu = J d.A (! ). 
(l 

This was already noted by Bernstein [1918), who combines (4.8) with his own 
estimates of E2" _,(j) for holomorphic functions. The same observation, simi
larly applied to holomorphic functions, is made by Stenger [1966) and Locher 
& Zeller [1968). The strongest result is due to v. Sydow [1977/78], who proves 

(4.9) 

for arbitrary measure d.A (t) and functions f that are holomorphic in the interior 
of ~p and continuous on the boundary. The formula (4.9) is typical for many 
results obtained previously in special cases by the methods of Sections 4.1.1 and 
4.1.2. Locher {1974) makes a somewhat different use of (4.8). 

4.2. The Peano representation of the remainder 
Kronecker's stern dictum " ... ohne Restglied ist es keine Formel!" 

(Kronecker [1894]) has lost much of its punch since Peano [1913], (1914] 
showed that essentially every linear functional that annihilates polynomials up 
to a certain degree automatically generates its own remainder term. Thus, for a 
quadrature rule over a finite interval [a, b], if the error functional R" satisfies 
R" (p) = 0 for all p E Ps-I and f has a piecewise continuous derivative of orders 
on [a, b] (or, less restrictively, f' -o is absolutely continuous on [a, b ]), then 

00 

(4.10) R"(f) = f K,(t)j<')(t)dt, 

where 

(4.11) - [ (. - t): -I ] 

K,(t)- R" (s _ 1)! . 

Here the plus sign on the right is the "cutoff" symbol, indicating that the 
function on which it acts is to be set equal to zero if the argument is negative. Ks 
in (4.11) is called the s-th PeatW kernel of R"; it is a spline function of degree 
s - 1, with knots at the quadrature nodes and compact support [a, b ]. (The 
integral in (4.10) could therefore be extended over (a, b).) The formula (4.10) 
simplifies if K, has constant sign on [a, b), in which case 

(4.10') 

where t is some (unknown) intermediate value in {a, b]. 

354



A Survey 115 

A quadrature rule which has degree of exactness d (but not d + 1) thus 
generates exactly d + 1 Peano kernels K~, K2, ... , Kd•t· We have d = 2n- 1 for 
then-point Gauss-Christoffel formula, d = 2n- 2 for the Radau formula, etc. 

Peano's representation (4.10) can be used in different ways to estimate the 
remainder. For example, 

(4.12) 

where 
= 

(4.13) es = I J K,(t)j dt, s = 1' 2, ... ' d + 1. 

The numbers es are often referred to as the Peano constants of R". (Their 
dependence on n is suppressed in the notation). Equality in (4.12) can be 
attained for special f. Note also that for Gauss-Christoffel formulae, according 
to Markov (cf. Section 1.4), e2n = ((2n)lr 1 I~ 7T~(t)dA(t). Alternatively, if rs) is 
of bounded variation, I Rn(f)l < Var (f<s)max, I Ks+t(t)j. Still another use of the 
Peano representation is made by Cosma Cagnazzi (1970] who for quadrature 
rules with positive coefficients derives estimates of the form J R" (f) I < e ~ o., 
where 0, =maXa,;t5bj<'>(t)-minas'""d(s)(t) is the oscillation of rs) on (a,b], 
and e~ = (s!f' I~(t- a)'d.A(t) are certain constants depending only on s, but 
not on the specific quadrature rule under consideration. 

Once the first few Peano constants are known, (4.12) is especially useful 
for estimating the quadrature error in cases where only low-order derivatives of 
f exist, or are accessible. The importance of this point was already stressed by 
v. Mises (1933], who in fact, apparently unaware of Peario's work, constructs 
the Peano kernels by repeated integration (v. Mises [1936]). v. Mises also 
observes that the Peano kernel Ks of then-point Gauss-Legendre formula has 
exactly 2n - s sign changes in [- 1, 1] (hence none if s = 2n ), a fact noted later 
again by Roghi {1967]. Similar statements hold for Gauss-Radau and 
Gauss-Lobatto formulae (cf., e.g., Brass [1977, Satz 82]). 

Stroud [1966) makes the point that the Peano estimate (4.12), for functions 
of low-order continuity, often compares favorably with other estimates of the 
same form obtained by approximation-theoretic means. See Rabinowitz [1%8], 
Riess & Johnson (1969], Chui [1972], for estimates of the latter kind. 

The Peano constants provide a convenient means of measuring the 
quadrature error for functions of a given continuity class. This allows compari
sons of different quadrature rules on a common basis. It is remarkable, in this 
respect, that the Gauss-Legendre formula, even for functions of low con
tinuity, compares favorably with other common integration rules, such as 
Romberg integration, which use the same number of points (Stroud [1965]). 
According to Stroud & Secrest (1966], the first two Peano constants indeed are 
only marginally larger than the corresponding constants for the best quadrature 
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rules (which minimize the integral in (4.13)). It appears therefore, contrary to 
widespread belief, that Gauss-Christoffel formulae are not only effective for 
highly regular functions, but also handle functions of low-order continuity at 
least as well as other common quadrature rules. . 

Selected Peano constants e., s = 1, 2, 4, 8, ... , including e2n, are tabulated in 
Stroud & Secrest [1966] for many Gauss-Christoffel and related quadrature 
rules. Their computation, particularly for large s, is quite difficult because of 
severe cancellation problems. 

Peano-type error estimates in the case of infinite intervals [a, b ], particu
larly for Gauss-Laguerre formulae, are obtained by Stroud & Chen [1972). 

Radon [1935], Remes (194D] and Milne (1949] generalize Peano's theory to 
functionals R that do not annihilate polynomials, but instead annihilate all 
solutions of a linear homogeneous differential equation of order s. If L is the 
associated linear differential operator, and g(r, t) the Green's function of the 
initial value problem, then 

00 

Rf = f K(t)(Lf)(t)dt, 

where the Peano kernel is now given by 

K(t) = R(g+( ·, t)]. 

Here, g+(r, t) = g(r, t) if r < t, and g+(r, t) = 0 otherwise. For Peano kernels of 
constant sign, 

Rf = (Lf)(i) · Rw, a< t < b, 

where w is any solution of Lw = 1. Still further generalizations are due to Sard 
[1948}, who also makes precise the class of functionals R to which Peano's 
theory applies. 

4.3. Convergence 
The convergence theory for quadrature rules of the form 

b n 

J f(t)dA(t) = L A~")/(r~">)+ Rn(/), n = 1, 2, 3, ... , 
(4.14) 

a v=l 

is particularly simple if [a, b] is a finite intervaL By a theorem of Steklov (1916] 
and P61ya [1933) the quadrature rule in (4.14) converges for every continuous 
function, 

lim Rn(/) = 0, 
"~ 

f E C[a, b), 

precisely if 
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(4.15) { 
lim Rn (p) = 0 for every polynomial p 

~~ i I A~"'!< K for all n = 1, 2, 3, ... , 
v=l 

where K >0 is a constant not depending on n. If (4.14) are Gauss-Christoffel 
quadrature formulae then the first condition in (4.15) is trivially true, Rn (p) 
being zero if 2n exceeds the degree of p, and the second follows from the 
positivity of the Christoffel numbers, 

n n b 

2: IAS")l= L AS")=J dA(t). 
v=l v=l a 

Thus, Gauss-Christoffel quadrature rules on a finite inteliral always converge 
for every continuous function. We can see this also directly from (4.8) and 
Weierstrass's approximation theorem. Stieltjes [1884a], in a beautiful memoir, 
indeed proves convergence for every function that is Riemann-Stieltjes 
integrable. 

Mindful, however, of the fact (Lipow & Stenger. (1972]) that for every 
quadrature rule which converges on C[ a, b] there is an f E C[ a, b] for which 
convergence is arbitrarily slow, one ought to be less concerned with con
vergence as such, and more with the quality of convergence. In this regard the 
estimates discussed in Sections 4.1.1-4.1.3 provide useful insights. Bernstein's 
estimate (4.8), e.g.,_ when used in conjunction with results of Jackson and 
Bernstein, yields Rn(f)=o(n-s) if fECs[a,b], limsupjRn(fW'"<1 if/ is 
analytic on [a, b ], and j R" (f)j 11" = o(1) if f is entire. Similarly, the bound in 
(4.9) assures us of geometric convergence in the case of holomorphic functions 
and tells us how the convergence rate increases with the size of the domain of 
holomorphy. For results on convergence rates in terms of the r-th modulus of 
continuity see Butzer, Scherer & Westphal (1973] and Butzer (1979/80]. -

The convergence of Gauss-Christoffel formulae on infinite intervals is a 
more subtle question. It is intimately related to the determinacy of the moment 
problem for dA ( t ). That such a connection exists, in the case of a half-infinite 
interval [0, oo], is suggested by a result of Stieltjes according to which the 
moment problem is determined if and only if the continued fraction corres
ponding to the integral f'; dA(t)/(z- t) converges. The determinacy of the 
moment problem therefore implies convergence of the Gauss-Christoffel rule 
for f(t) = (z- tr\ z ~ [0, oo] (d. Section 5, Eq. (5.7)). For more general 
functions f the theory gradually evolved through the work of Uspensky (1916), 
[1928], Shohat [1927], Jouravsky (1928] and Shohat & Tamarkin (1943). 
Assuming that f:,.,f(t )d>.. (t) exists as an (improper) Riemann-Stieltjes integral 
and that the moment problem on [- oo, oo] is determined for dA (t), the 
Gauss-Christoffel quadrature rule converges if lf(t)j :SA+ Bt 2 s for all real t, 
where A, B are positive constants and s > 1 an integer (Freud [1971, Ch. 3, 

357



118 II Gauss-Christoffel Quadrature Formulae 

Thm. 1.1]). In fact, this is true for every sequence of positive quadrature rules 
(i.e., A Sn) >0 in (4.14)) which converge on polynomials. For the determinacy of 
the moment problem one has well-known criteria due to Carleman, M. Riesz 
and others (see, e.g., Shohat & Tamarkin [1943, p. 19f]). More general 
theorems of this type, for arbitrary intervals [a, b], are known in which the 
condition on f is replaced by the condition that for suitable functions Ga, Gb 
the limits lim, 1a[(t)/Ga(t), lim, p.f(t)/Gb (t) be zero (Ivanova [1955], Freud 
(1971, Ch. 3, Thms. 1.6, 1.6a, 1.6b]), or at least finite (Esser [1971b]). If [a, b] is 
compact, these conditions allow f to become singular at one or both endpoints. 
Concrete theorems of this kind for classical Gauss-Christoffel formulae are 
summarized in Freud [1971, p. 96]. 

The Steklov-P6lya criterion (4.15) can be extended tC' quadrature rules 
that· have multiple nodes with arbitrary multiplicities, so Lmg as the multi
plicities do not exceed a fixed integer s for all n. If the criterion is fulfilled one 
gets convergence for all f E cs[a, b) (Bandemer [1966], (1967]). In particular, 
all Christoffel-Stancu quadrature rules on finite intervals converge in this sense 
(Filippi & Esser [1970], Esser [1971a], [1972]). Convergence theorems for 
Gauss-Radau formulae on infinite intervals are included in Freud [1971, Ch. 3, 
Thm. 1.4); for the Gauss-Laguerre measure, see also Krylov & Fedenko 
[1962]. 

Another aspect of convergence is monotonicity. While monotone con
vergence cannot hold for all f E C[ a, b] (Filippi & Esser [ 1970, Satz 9]), Brass 
(1978], for the quadrature rule On(/) in (4.14), shows On(/)< Om (f) for all 
m > n, if f 2") is continuous on [a, b] and nonnegative. If this condition holds 
for each n, convergence is monotone. For an alternative proof, see Locher 
(1980). . 

Finally, attempts may be made to speed up the convergence of quadrature 
rules through appropriate acceleration techniques. The use of the e -algorithm 
for this purpose is studied empirically by Chisholm, Genz & Rowlands [1972]. 

5. Computation of Gauss-Christoffel ·Quadrature Formulae; 
Numerical Tables 

Generating Gauss-Christoffel quadrature rules is closely related to the 
problem of generating orthogonal polynomials (see Section 1.4). In principle, 
this problem was already solved by Chebyshev (1859a] for discrete measures, 
and by Stieltjes (1884a] for general measures. If the measure in question is 
dA ( t ), and (f, g) = J! f ( t )g ( t )dA ( t) denotes the inner product of f and g, then 
the (monic) orthogonal polynomials { 7Td satisfy the three-term recurrence 
relation 

(5.1) 
1Tk+I(t)=(t-ak)1Tk{t)-/3k1Tk-I(t), k =0, 1,2, ... , 

17'-I(t) = 0, 7To(t) = 1, 
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where the coefficients ak, {3k are given by 

. - ( t?Tk, ?Tk) 
ak

( ?Tk, ?Tk) ' 
(5.2) k = 0, 1, 2, ... ' 

(5.3) k = 1, 2, 3, ... 

(Darboux (1878), Stieltjes [1884a]). If dA (t) > 0, as we shall assume, then (5.3) 
shows that {3k > 0 for k > 1. Since ?To is known, and {3 0 is arbitrary, we obtain a 0 
from (5.2), whence 7Tt from (5.1). Knowing 7To and ?T,, we now compute a1 and 
{31 from (5.2) and (5.3), and then again ?Tz from (5.1). Continuing in this manner, 
we can generate as many polynomials, and therefore as many of the coefficients 
ak, {3k, as are desired. This is the procedure of Stieltjes. 

While Stieltjes' pro~edure is very elegant, it leaves an important point 
unanswered: How are we to compute the inner products in (5.2), (5.3)? The 
manner in which the recursion coefficients ak, {3k are determined, indeed, turns 
out to be rather critical for the numerical stability of the procedure. We find it 
convenient, therefore, to first assume that all coefficients ak, {3k are explicitly 
knowp.. (This is true for "classical" orthogonal polynomials.) An efficient 
algorithm for computing Gauss-Christoffel formulae can then be based on the 
associated Jacobi matrix. This is discussed in Section 5.1. The more difficult 
situation in which the coefficients ak, {3k must be generated along with the 
polynomials 7Tk is deferred to Sections 5.2 and 5.3. In Section 5.4 we review 
numerical tables available for Gauss-type formulae. 

5.1. Methods based on the Jacobi matrix 
Suppose we wish to generate the n -point Gauss-Christoffel quadrature 

rule 

(5.4) 
b n 

f f(t)dA(t)= L Av/(r")+ R .. (f). 
a v=l 

We associate with the measure dA (t) the symmetric tridiagonal matrix of order 
n, 

ao Vji; 0 

Vji; at v13z 
(5.5) J .. = v13z 

. . v'IC: 
0 v'IC:. an-I 
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where a~c., P~c. are the recursion coefficients in (5.1). We refer to],. as the n-th 
Jacobi matrix of dA ( t ). The polynomial Tr", then, is precisely the characteristic 
polynomial of J,.. The nodes T.,, being the zeros of Tr,., are therefore the 
eigenvalues of J,.. Denoting by vv the (normalized) eigenvector corresponding 
to T.,, 

v = 1, 2, ... , n, 

Wilf [1962, Ch. 2, Exercise 9] (and Goertzel around 1954 before him (Wilf 
(1980])) observes that the Christoffel numbers A" are expressible in terms of tht! 
first components v.,,t of v" by means of 

v = 1,2, ... ,n, f.Lo=J dA(t). 
a 

Obtaining the n-point Gauss-Christoffel formula (5.4), therefore, amounts to 
calculating the eigenvalues and first components of the corresponding eigen
vectors of the symmetric tridiagonal matrix J,. (a fact noted also by Gordon 
[1968]). 

This is accomplished most effectively by Francis' QR algorithm (Golub & 
Welsch (1969], Wilkinson & Reinsch [1971, p. 24lff], Sack & Donovan 
[1971/72], Gautschj (1979b]), or by Rutishauser's LR algorithm (Sack & 
Donovan (1971/72], Capovani, Ghelardoni & Lombardi (1976a, b]), both 
executed with appropriate shift strategies. These methods are indeed extremely 
fast. According to Capovani et al. (1976b], e.g . ., it takes only 7.24 seconds of 
machine time on an IBM 370/168 to generate a 1000-point Gauss-Hermite 
formula! Alternative procedures based on the Newton-Raphson method, or 
other rootfinding methods, which compute Tv as zeros of Tr,., not only require 
considerable care in the selection of initial approximations (Stroud & Secrest 
(1966], Laurie [1977], Laurie & Rolfes [1979]), but also tend to be slower 
(Gautschi (1979b]). 

For special measures, such as the Legendre measure dA ( t) = dt, faster 
methods can be obtained by combining high-order rootfinding procedures with 
a judicious choice of initial approximations; see, e.g., Lether [1978), Gatteschi 
(1979], Gautschi (1979b). 

The eigenvalue method described for Gauss-Christoffel formulae can be 
modified to produce Gauss-Radau and Gauss-Lobatto formulae; for this, see 
Golub [1973]. 

In the case of measures supported on the non-negative real axis an 
ingenious algorithm is due to Rutishauser [1962a, b]. It departs from Stieltjes' 
integral and its corresponding continued fraction (" S-fraction"), 

(5.6) J dA (t) ~ ~ -.9..!_ ~ _!h._ _!:.3._ 
aZ-t z- 1- z- 1- z-
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(This continued fraction is not to be confused with the associated continued 
fraction, the "]-fraction", already used by Gauss, which is a contraction of the 
S-fraction. Accordingly, (5.6) is valid only for 0:::::;; a < b < oo; see Perron (1957, 
Satz 4.1].) The coefficients qk, ek are all positive, and are readily obtained from 
the recursion coefficients ak, f3k in (5.1 ), by virtue of 

k = 1, 2, 3, .... 

The connection between the S -fraction in (5.6) and Gauss-Christoffel formulae 
is expressed by the relation 

(5.7) i ·A., =~.!h._~ _!h_ ..• en-t ~ 
v~l Z- 'Tv Z- 1- Z - 1- Z- 1 ' 

i.e.,. the Gauss-Christoffel nodes r., are the poles, and the Christoffel numbers 
A., the corresponding residues, of the 2n-th convergent of the continued 
fraction in (5.6). Rutishauser now computes the poles of this convergent in a 
Graeffe-like manner, generating a sequence of finite continued fractions, all of 
the same form as in (5.7), each having as !JOles the squares of the poles of the 
preceding continued fraction. The process converges quadratically, and yields 
the poles T., and residues A" simultaneously. 

(5.8) 

5.2. Generation of the Jacobi matrix 
Given the first 2n moments 

k = 0, 1, 2, ... , 2n - 1, 

it is possible to generate the Jacobi matrix (i.e., the coefficients ak, {3k, 
k = 0, 1, ... , n - 1) by means of Stieltjes' procedure. It suffices to represent 
each polynomial 7Tk(t) explicitly in terms of powers oft and to compute the 
inner products in (5.2), (5.3) by "multiplying out" term by term. In this manner 
each ak, f3k is obtained as a ratio of two quadratic forms in the coefficients of 7Tk 
and 1Tk-t. the matrices involved being Hankel matrices in the moments (5.8). 

In terms of modern digital computation, however, the procedure is subject 
to two major criticisms: In the first place, the algorithm is highly unstable, 
especially for finite intervals [a, b). This is ultimately a manifestation of the fact 
that the Gauss-Christoffel nodes r., and weights A.,, considered as functions of 
the moments JLk, become progressively more ill-conditioned (i.e., more sensi
tive to small perturbations in the moments) as n increases (Gautschi (1968a], 
[1978]). Secondly, the procedure is unnecessarily expensive, requiring, as it 
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does, of the order 0 ( n 3) arithmetic operations. Both these deficiencies can be 
alleviated. 

The numerical stability is greatly enhanced (Sack & Donovan (1971/72)) if 
instead of the moments /-Lk one employs the "modified moments" 

b 

(5.9) Vk = J pk(t)dA(t), k = 0, 1, ... , 2n - 1, 
a 

where {pk} is a suitable system of polynomials (usually orthogonal on [a, b] with 
respect to some other, classical, measure ds(t)). The resulting improvement in 
the numerical condition is analyzed in Gautschi (1970a]. 

To arrive at an efficient algorithm, assume that {pd satisfies a three-term 
recurrence relation analogous to the one in (5.1), 

Pk+t(t) = (t- ak)pk(t)- bkpk-t(t), k = 0, 1, ... , 2n- 1, 

P-t(t) = 0, Po(t) = 1, 

with coefficients ak, bk that are known explicitly. (If they are all zero, then 
pk(t) = t\ and the modified moments reduce to ordinary moments.) The 
desired recursion coefficients ak, {3k can then be obtained via the "mixed 
moments'' 

b 

a-k., = f 1Tk(t)p,(t)dA(t), k, l > -1, 
a 

in the following manner. One initializes 

CT-t.l =0, l = 1, 2, ... , 2n - 2, 

CTo,t = v,, l = 0, 1, ... , 2n - 1, 

Vt ao = ao+-, 
Vo 

f3o =0, 

and then continues, for k = 1, 2, ... , n - 1, with 

(5.10k) 

The algorithm (5.10) not only furnishes the coefficients ak, {3k, k < n - 1, hence 
the orthogonal polynomials { 11"k }~ =o, but also, at the same time, the normaliza
tion factors o-k.k = J: 1T~(t )dA (t), k < n - 1. The number of arithmetic opera
tions is clearly of the order O(n 2), one order less than what is required in 
Stieltjes' procedure. 

In the special case of ordinary moments (ak = bk = 0), and discrete 
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measures dA(t), the algorithm (5.10) reduces to one of Chebyshev (1859a]. The 
general case is due to Sack & Donovan (1971/72) who obtained an algorithm 
equivalent to (5.10). In the form (5.10) it was given, independently, by Wheeler 
(1974). A derivation can also be found in Gautschi [1978]. Earlier algorithms of 
Golub & Welsch {1969) and Gautschi [1970a] are not competitive, as they too 
require O(n 3) operations. 

The pedormance of (5.10) appears to be most satisfactory if the interval 
[a, b] is finite and {pk} are orthogonal on [a, b] with respect to some (standard) 
weight function. For infinite intervals, a certain degree of ill-conditioning 
unfortunately persists (Gautschi [1970a]). The success of the algorithm, 
moreover, depends critically on the ability to compute the modified moments 
(5.9) accurately. This is often possible through· a judicious use of recurrence 
relations, as for example in the case of Chebyshev and Gegenbauer moments 
(Piessens & Branders [1973], Branders (1976], Luke [1977], Lewanowicz 
(1979]). In other cases, closed form expressions can be obtained (Gautschi 
(19703, examples (i), (iii)], Wheeler & Blumstein [1972), Blue (1979], Gautschi 
(1979a], Gatteschi [1980]). 

As an application of the algorithm (5.10) we show how Christoffel's 
theorem (cf. Section 2.1.1) can be implemented in algorithmic form. Thus, we 
seek polynomials { 1Tk} orthogonal on [a, b] with respect to the measure 
dA(t) = u(t)ds(t), where u is a polynomial of some fixed degree m. Assuming 
that ds(t) has a set of known orthogonal polynomials, we use these as the 
polynomials pk in the modified moments (5.9). Writing u in the form 

m 

(5.11) u(t) = L ckpk(t), 
k=O 

we find 

b 

"" = { ck [ pZ(t)ds(t), k < m 

0, otherwise. 

Applying now the algorithm (5.10) immediately yields the recursion coeffi
cients ak, {3k for the desired polynomials 1Tk. Note that algorithm (5.10) requires 
only O(n) operations in this case, since vk = 0 for all k > m. 

In some applications, e.g. to Christoffel quadrature rules with preassigned 
nodes (cf. Section 2.1.1), one is not given the coefficients ck in (5.11), but rather 
the zeros of u. An algorithmic implementation of Christoffel's theorem for this 
situation is given in Galant (1971). 

Branders [1976], Laurie [1977], and Laurie & Rolfes (1979) implement 
Stieltjes' algorithm by expanding 'TTk in Chebyshev polynomials and by taking 
advantage of special properties, notably formulae for the product of two 
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Chebyshev polynomials, to carry out the computations. This approach relies on 
the Chebyshev moments of dA(t) and therefore represents but another 
realization of algorithm (5.10). 

5.3. A discretization method 
An approximative method for computing Gauss-Christoffel formulae, 

based on discrete orthogonal polynomials, is proposed by Gautschi [ 1968a). It 
is applicable whenever the weight function w(t) in dA(t) = w(t)dt can be 
evaluated for arbitrary t. We now describe a variant of this method which 
incorporates algorithm (5.10) and the method of Golub & Welsch. 

Assuming first (a, b] a finite interval, let {dAN(t)};,=• be a sequence of 
discrete N -point measures on [a, b ], approximating dA ( t) in the sense that 

b b 

(5.12) lim f p(t )dAN(t) = f p(t )dA (t) 
N----.a3 a a 

for every polynomial p. The Jacobi matrix ln.N of order n, belonging to dAN(t), 
then converges to 1", the desired Jacobi matrix in (5.5), as N-+ oo, 

The following procedure, therefore, suggests itself: Select a suitable system of 
classical orthogonal polynomials {pk} and compute the corresponding modified 
moments 

b 

(5.13) Vk.N =I pk (t )dAN(t ), k = 0, 1, ... , 2n - L 
a 

(These are easily obtained, since the integral in (5.13) is now a finite sum.) 
Apply algorithm (5.10) to generate the elements ak.N, {3k,N of 1 ... ,.. Increase N 
until ln.N sufficiently approximates J". Then obtain the desired Gauss-Christof
fel formula from ln.N = J", using the method described in Section 5. L 

The quality of this procedure depends crucially on the choice of the 
discretization dAN(t) of dA(t). If, as in many applications, dA(t) = w(t)dt, 
where w is continuous and positive in the open interval (a, b), and integrable at 
both endpoints (although possibly singular there), then a discrete measure 
dAN(t) may be obtained by applying a suitable N-point quadrature rule QN to 
the integral on the right of (5.12), 

b 

f p(t)d.\N(t) = QN(pw). 
a 

The condition (5.12) requires that QN be convergent when applied to pw, i.e. 
convergent even in the possible presence of endpoint singularities. Fortunately, 
most quadrature rules have this property, at least if the singularity is monotone, 
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or can be majorized by a monotone singularity (Bezikovic {1939], Rabinowitz 
(1967], [1970], (1977], (1979], Gautschi (1967], Feldstein & Miller [1971], Miller 
[1971), el-Tom (1971}; see also Freud [1971, Ch. 3, Thm. 1.6(b)], Miklosko 
[1970b}, Esser (1971b]). A specific quadrature rule recommended by Gautschi 
(1968a] is the Fejer quadrature formula, i.e. the interpol~tory quadrature rule 
based on the Chebyshev points on [a, b]. This often yields satisfactory 
convergence rates. 

If the interval [a, b] is infinite, it can be reduced to a finite interval by 
means of a suitable transformation of variables, whereupon the procedure 
described again applies (Gautschi (1968a]). For reasons of numerical stability, 
however, it is now advisable to compute the approximate Jacobi matrix J,.N by 
Stieltjes' _procedure. 

5 .. 4. Numerical tables 
A large number of numerical tables of Gauss-type quadrature rules have 

been prepared to assist the occasional user. They are summarized below in 
Tables 1-6. Early tables, later superseded by more extensive and more accurate 
ones,· are not included in this summary. For convenience we divide the 
Gauss-Christoffel formulae into four groups (Tables 1-4), in accordance with 
the type of weight function involved. Gauss.:...Radau and Gauss-Lobatto 
formulae are collected in Table 5, where "R" in column 1 stands for "Radau", 
and "L" for "Lobatto". The letter "n" in the heading denotes the number of 
free nodes. Tunin formulae are listed in Table 6. Here "n" means the number 
of distinct nodes, while "r" refers to the multiplicity of each. Throughout these 
tables we use the notation "a(h)b" to indicate the sequence of numbers 
a, a+ h, a + 2h, ... , b. If the step h is not constant, we write "var" in place of 
"h ". The accuracy of the tables is indicated in terms of the number of 
significant digits (S) or the number of decimal digits after the decimal point 
(D), as appropriate. 

Gauss-Christoffel formulae for Jacobi measures dA(t) = (1- t)"(1 + t)13dt 
with a = ± 1/2, f3 = ± 1/2 are . explicitly known in terms of trigonometric 
functions, hence need not be tabulated (cf. Section 1.4). The same is true for 
Gauss-Radau and Gauss-Lobatto formulae with Chebyshev measure dA (t) = 
(1- t 2f 112dt; see, e.g. Bouzitat (1952]. 

Tables of Gauss-Lobatto formulae having double nodes at the endpoints 
are given for dA(t)= dt in Gatteschi (1963/64]. 

Extensive tabulations for weight functions.depending on a parameter can 
sometimes be avoided by expanding the nodes and weights in suitable series in 
that parameter, or by using other curve fitting procedures. It then suffices to 
tabulate the coefficients in the respective expansions or approximations. King 
& Dupuis (1976] adopt this approach for the measure dA(t) = e-x' 2dt on 
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[- 1, 1], which is of interest in quantum mechanics, while Lambin & Vigneron 
(1979) provide series in Chebyshev polynomials for the Laguerre measure 
dA(t)=t"e-'dt on (O,oo], -l<a <1. 

Ultimately, however, it is more productive to have high-quality computer 
software available for generating arbitrary Gauss-type formulae. Although, at 
the present time, this is still an elusive goal, computer programs with various 
degrees of generality and efficacy have been published; see, e.g., Rutishauser 
(1962b), Stroud & Secrest [1966], Gautschi [1968b], Golub & Welsch [1969), 
Davis & Rabinowitz [1975] and Laurie & Rolfes [1979]. A computer algorithm 
for the complex weight function e'{-• on (c- ioo, c + ioo] (cf. Section 3.1.3) is 
given in Piessens [1973b]. 

·Acknowledgment. 
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TABLE 1. Gauss-Jacobi formulae. 

Weight Function [a, b) " Accu- Reference 
racy 

[- 1, 1} 2( 1 )64( 4 )96( 8) 168 30S Stroud & Secrest {1966] 
256, 384, 512 

(I- t 2t (- 1, 1) 2(1)20 30S 
a= - 1/2(1/2)3/2 (a~ 0) 

(1 + tf, 13 = 1 {- 1, 1] 2(1)30 30S II 

13 = 2(1)4 ( -1, 1) 2(1)20 30S 
I tl"', a = 1(1)4 [- 1, 1) 2(1)20 30S 
t"' and t"'(l- tt (0, 1) 1(1)15 20S Krylov & Vorob'eva 

a= - .9(.1)3. (1971] 
a = - 2/3(1/3)8/3 (a~ 0, 1, 2) 
a = - 3/4(1/2)11/4 

t'~- 1(1- t'y-'1 [0, 1] 2(1)15 15-16S Glonti (1971] 
q = .1(.1)1. 
p = (2q - 1)(.1)(q + 1) 

12 (0, 1] 1(1)20 15D Sprung & Hughes [1965) 
, .. -1(1- tf-1 [0, 1) 2(1)12 12S Boujot & Maroni 

a, {3 = l/2(var. )3/2 (1968] 
t"', a= 0(1)5 (0, 1] 1(1)8 12D Fishman [1957) 
113 (1-t)"' {0, 1) 1(1)8 8S Krylov et al. (1963) 

a, {3 = - .9(.1)3., {3 :Sa 
It j"', a = - 3/4(var.)- 1/4 [- 1, 1) 1(1)8 BS Bertova et al. (1953) 
t', s = 0(2)10 [- 1, 1) 2(1)4 7S Rathmann [1961] 

s = 1(2)11 [- 1, 1) 2,4 7S 
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Table 2. Gauss-Laguerre and Gauss-Hermite formulae. 

Weight Function [a, b] n 

e-• (0, oc] 2(1)32(4)68 
e-• [0, oc] 100, 150, 200, 300 
e-• [0, oc] 400( 100)'X)O 
e-•' [- oc, oo] 2(1)64(4)96(8)136 
e-•' ') { -oc,oo] 300 
ltlae -•', a = 1, 2, 3 [- oc, oc] 2(1)20 
t"'e-•, a = - .5(.5)10 .. [0, ooJ 4(4)16(8)32(16) 

64(32)128 . 
lti2Ae-•', A =0(1)10 ( -oc,ooJ 8(8)32(16)64(32) 

128(64)256 
t"'e-•, a= - .5(1)3.5 (0, oc) 4, 8, 16, 32 
I t12Ae-•', A = 0(1)4 { -oc,oo] 8, 16, 32, 64 
t•e-•, s = 1(1)5 [0, oc] 4(4)16 

tae-•, a =0(-.01)-.99 [0, oo] 2(1)16 
a= -.15, -.5, -.25 {0, oo] 1(1)15 
a= ~ 1/3, -2/3 (0, oo] 1(1)15 

t'e-• (0, oc] 1(1)15 
s = - .9(.02)0(.05)3. 
s = - . 75, - .25 
s = - 2/3(1/3)8/3 

(s ;i 0, 1, 2) 

Accu- Reference 
racy 

30S Stroud & Secrest {1966) 

127 

24S Berger & Danson [1968] 
23-24S Berger et al. [1969] 
.30S Stroud & Secrest [ 1966] 
15S Afshar et al. (1973) 
.30S Stroud & Secrest (1966) 
25S Shao et al. [1964b) 

25S 

25S Shao et al. [ l964aJ 
25S 
18S Rabinowitz & Weiss 

[1959] 
ISS Dekanosidze [1966] 
15-17S Concus et al. (1963) 
15-17S Concus (1964] 
8S Ai'zenstat et al. [1962) 

')This table gives the modified Christoffel numbers, i.e. the Christoffel numbers divided by 
the weight function evaluated at the respective node. 

Table 3. Gauss-Christoffel formulae for power and logarithmic singularities. 

Weight Function [a, b) n Accu- Reference 
racy 

ln(1/t) [0, 1] 2(1)16 .30S Stroud & Secrest 
[1966) 

t .. (In(l/t))'", a = 0, - .5, {0, 1) 2(1)20 .30S Kutt (1976) 
m = 1,2,3 

Ia ln(1/t) [0, 1) 3(var.)50 25S Piessens & Branders 
a = -1/2, - 1/3, - l/4, {1975] 

- l/5, 1/3, 1/2 
a= 0, -1/2 [0, 1) 5, 10(10)100 20S Branders & Piessens 

[1971) 
(1- t)"'t 11 1n(l/t) (0, 1] 3(var.)50 25S Piessens & Branders 

a, {3 = - 1/2, - 1/3, - 1/4, (1975) 
- 1/5, 1/3, 1/2 
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ln(l/(1- t 2)) [- 1, 1] . 1(1)30 
ln[(1 + t)/(1- t)] {- 1, 1] 2(2)18 
ta ln(e/t), a= - .9(.01)0(.1)5. (0, 1] 1(1)10 

Ia ln(e/t)ln(e/(1- t)), (0, 1) 
a =0(1)5 

tae -• ln(1 + 1/t ), a = 0(1)5 (0, oo] 
ta-t[ln(1/t))13 -t [0, 1) 

a = 1/2(112)5/2, 
p = 1/2(var.)2 

r'(1-t)I3-'/(TT 2 +1n2(t 1 -1)) (0,1] 
p =0, 1 

1(1)10 

1(1)10 
2(1)12 

2(1)12 

TABLE 4. Miscellaneous Gauss-Otristoffel formulae. 

Weight function [a,b] n 

(t-at [- 1, 1) 3(var.)50 
a = - 1.1, -1.01, - 1.001, 
a = - .5, - 1, - 2 

(t2 + azt [ -1, 1) 3(var.)50 
a = 1, .1, .01, .001, 
a = - .5, - 1, - 2 

("(1-la)l' [0, I] 2(2)8(4)16, 24 
a = 3, 4, 6, 8, p = ± 1/2, 

'Y =0, ±1/2 
a = 2, {3 = - 3/4, - 2/3, 

'Y =0 
(1 + t2tk-~, k = 3(1)10 2) [ -oc,oc] 4 

k = 5(1)10 [- oc, oo) 6 
(1 + t2tl { -1, 1] 2(1)7 
(1- t2tli2(1 + t>t• (- 1, 1) 1(1)4 
t(1 +ttl:\ 3) (0, oo] 1(1)5 

1-Vt [0, 1] 1(1)10 

(1-Vtf/2vt (0, 1) 1(1)10 
cost (-7T,7T] 3(var.)50 
sin t 

sin t (- 1T, 7T] 2(2)18 
cost (- TT/2, TT/2) 1(1)4 

cos 
[0, 1) 6,8, 11,13 1 + . (21Tkt), k = 1,2,3,5 

sm 

~( 1 + c~ mm ). m = 1(1)12 
Stn · 

[- 1,.1] 1(1)8, 16, 32 

cos 
[0, 27T J 1(1)4 1 - . kt, k = 1, 1024 

sm 

25S 
20S 
15S 

15S 

15S 
12S 

12S 

Accu-
racy 

25S 

25S 

25S 

lOD 
lOD 
7S 
8D 
8S 

5-15S 

5-15S 

25S 

16S 
12D 

Laurie & Rolfes [1m) 
Piessens et aJ. (1976] 
Krylov & Pal' cev 

(1967] 
II 

Boujot & Maroni (1968) 

Reference 

Piessens & Branders 
[1975) 

, 

Byrd & Galant [1970) 

Harper [1962] 

Reiz [1950b] 
Kumar [1974a] 
Kumar & Jain (1974) 

Struble {1960) 

Piessens & Branders · 
[1975) 

Piessens [1970b] 
Piessens {1970a] 

10-15D Miklosko [1970a] 

12D Gautschi (1970b] 

6-7S Zamfirescu (1963] 
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TABLE 4. (continued) 

Weight Function [a, b) " Accu- Reference 
racy 

( 1 + c~ t )(l + t)-(2n-l+s) {0, ao] 1(1)10 lOS Kiylov & Kruglikova Stn 

s = 1.05(.05)4. [1968) 

ltlae-1' 1, a= 1,2,3 ( -ao,aoJ 2(1)20 30S Stroud & Secrest 
[1966] 

t"e -at, a = 1, 2, 5, {0, 1] 3(var.)50 25S Piessens & Branders 
a= - .5,0, .5 (1975) 

e-"' 2, a= 1,2,5, 10 p -1, 1] 3(var.)50 25S 
(0, 1) 3(var.)50 · 25S 

-kt { k = 2, 7 [ -1, 1) 2, 7 15S Cecchi [1967] 
e k = 2(1)16 (.-1, 1] 2(1)10 15S Cecchi (no date] 
27r-1rze _,z (0, ao] 1(1)20 20S Gal11nt (1969] 

e-•' {(O,ao] 2(1)15 15S Steen et al. (1969) 
[0, 1] 2(1)10 15S 

e -.v2, X =0,.5, 10 [ -1, 1] 10 20S King & Dupuis (1976) 
r~e-•, m = 0(1)10 (1, aoJ 2(1)10 16S Olson (1969] 
l"(t + lt2"e-·, a = - .5(.5)5 (0, ao) 1(1)10 lOS Pal'cev & Skoblja 

[1965) 
E,(t) (exponential integral) (0, aoJ 10,20 12S Danloy (1973] 
E...(t), m = 1(1)5 (0, ao] 2,3 6-8S Reiz (1950a) 

m = 1(1)3 (0, oo] 4 7-8S , 
E...(t), m = 1,2 {O,r) 3,4 4-6S Kegel (1962] 

T = .1(var.)oc 
erfc t [0, ooJ 2(1)12 12-16S Vigneron & Lambin (1980) 
( -1)'Jm(t) (Bessel function) lina.s-hjlf&.~J 2(2)8 14D Piessens {1972b) 

m = 0(1)2, s = 1(1)20 
const · r 213e-'Ai((3t!2F) [0, ex:] 1, 2,4, 6 17S Schulten et al. [1979) 
N(i,k;t), k =2,4, i = 1(1)k [- 1, 1} 1(1)17 14S Phillips & Hanson 

(normalized B-spline of [1974) 
degree k -1) 

(2mt•p-'eP (c- ioo, c + ioo) 2(1)24 30S Stroud & Secrest [1966] 
(27fi)-'p-•eP, s = 1(1)5 {c - ;oo, c + ioo] 1(1)15 20S Kiylov & Skoblja {1968) 
s = .01(.01)3.(s ;i 1, 2, 3) [c- ioo, c + ioo] 1(1)10 7-8S , 
s = .l(var.)4 (c- ioo, c + iao) 6(1)12 l6S Piessens [1969a] 

2) The orthogonal polynomial system is finite in this case. The Gauss-Ouistoffel nodes and 
weights are expressible in terms of Jacobi nodes and weights; see Haber [1964). 

3) The orthogonal polynomial system is finite in this case. 
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TABLE 5. Gauss-Radau and Gauss-l.obatto formulae. 

Weight Function [a, b] n Accu- Reference 
racy 

1 (R) [- 1, l) 2(1)19(4)47 30S Stroud & Secrest 
[1966) 

e-• (R) [0, oo] 3(1)5 20S Stancu & Stroud 
{1963) 

t'e -•, s = 0, - 1/3, [0, oo] 1(1)15 16S Cassity { 1965] 
- 1/2, - 2/3 (R) 

s = - .99(var.)10 (R) · (0, oo) 1(1)15 16S Cassity & Hopper 
(1964) 

1 (L) [- 1, 1) 2(1)32(4)96 . 30S Stroud & Secrest 
(1966) 

1 (L) [ -1, 1) 1(1)14(8)46(16)94 20D Michels [ 1963) 
1 (L) [ -1, 1) 3(4)23(8)47, 63 19D Rabinowitz (1960) 

Vt(R) [0, 1] 1(1)5 BD Akkerman (1959] 
t and t 2 (L) [0, 1] 1(1)4 BD 

TABLE 6. Turan formulae. 

Weight Function [a, b) n r Accuracy Reference 

1 [- 1, 1) 2(1)7 3,5 20S Stroud & Stancu [1965) 
1 4) [ -1, 1) 2(1)9 3 ns Lo Cascio [1973) 

2(1)7 5 
2(1)5 7 

1 (L) {- t 1) 4(1)7 3,5 12-165 Rebolia (1973) 
e-• [0, oo) 1(1)3 3,5 205 Stroud & Stancu [1965] 
e-• [0, oo] 1 3(2)23 12S Vema [1969) 
e _,2 [ -oc,oo) 2(1)7 3,5 205 Stroud & Stancu (1965) 
e_,l [- oo, ooJ 2(1)3 3(2)7 125 Vema [1969) 

4 ) Only the nodes are tabulated. Some of the tabular entries are inaccurate. 
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In memoriam YUDELL L. LUKE June 26, 1918-May 6, 1983 

Yudell Luke was born in Kansas City, Mo., on June 26, 1918, the son of David 
and Sarah Luke. The household was very traditionally Jewish; in fact, his father 
served as a sexton in a synagogue. In 1937 Yudell graduated from Kansas City 
Missouri Junior College and two years later received a B.S. degree with honors from 
the University of Illinois, followed by an M. S. degree in 1940. While there, he met 
Laverne Podoll from Chicago who was to become his wife. He taught briefly at the 
University of Illinois, then served as a full lieutenant in the U.S. Navy from 1942 to 
1946, stationed in Hawaii. Upon being discharged, he returned to Kansas City and 
was immediately hired as the head of the Mathematical Analysis Section of the 
newly formed Midwest Research Institute. There, Yudell was able to attract and 
keep togetl1er a group of young mathematicians, some of whom later on became 
researchers in their own right. He advanced to Senior Advisor for Mathematics in 
1961, and to Principal Advisor in 1967. After the mathematics group at MRI was 
dissolved abruptly in 1971, he was appointed to a professorship at the University of 
Missouri in Kansas City and, in 1978, was given the distinction of Curator's 
Professor, a position he held until his untimely death. 

At the beginning of his career, Yudell was heavily involved in problems of applied 
mechanics: stress, beam vibrations, aerodynamic lag, supersonic flutter. Il was 
during this early preoccupation with applied problems that Yudell saw the potential 
usefulness of special function theory and the pressing need to make advanced special 
functions - integrals of Bessel functions at that time- accessible to the practicing 
scientist. He began to study these functions in the framework of generalized 
hypergeometric functions , and his involvement with the latter soon turned into a 
love affair that was to last throughout his life. 

Yude\l's main concern was approximation. Foremost in his mind were rational 
approximations, and he developed a great number of them, not only for specific 
functions, such as the gamma and incomplete gamma function , elliptic integrals, and 
elementary functions, but also for general hypergeometric and confluent hypergeo
metric functions. He used a variety of techniques, most notably his own extension of 
Lanczos' T-method, where as forcing term in the differential equation he took not 
only a multiple of a Chebyshev polynomial, as did Lanczos, but also mulliples of 
more general Jacobi polynomials. He was able to show that in many cases there 
result approximations of Pade type, specifically those on the main diagonal of the 
Pade table. A distinguished feature of Yudell 's work in this area is his persistent 
effort of providing detailed information about the error term, either in the form of 

analytic representations or asymptotic estimates for large degrees. He did not 

hesitate to develop the necessary asymptotics himself if it was not avallable in the 
literature. His results permitted him not only to give unusually sharp a priori error 
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estimates, valid in large domains of the complex plane, but also, on several 
occasions, to obtain important convergence statements for Pade approximants along 
all columns, rows, and diagonals of the Pade table. More recently, his work assumed 
a computer-oriented flavor, for example, when he developed FORTRAN routines 
for generating [n, n]-type rational approximations to hypergeometric and confluent 
hypergeometric functions. These either furnish approximations at fixed (complex) 
argument z and for n = 1, 2, 3, ... (until the error is sufficiently small), or yield for 
given n the coefficients of the desired numerator and denominator polynomials. In a 
similar vein, he looked at various approximation schemes that have the same 
complexity (defined by Yudell in his own pragmatic way) and compared them with 
regard to accuracy attained. Is it better, for example, to apply Pade approximation 
to convergence factors, rather than to the whole series? Are there any advantages to 
be gained from using Kummer's transformation for hypergeometric functions prior 
to the application of the approximation process? These and other questions are 
answered by meticulous analysis. 

Having developed a great deal of expertise in practical rational approximation, it 
was only natural for Yudell to look around for interesting applications. He was led, 
in this way, to contribute to questions of univalence for Gauss' error function, to the 
accurate computation of a technical constant in the theory of trigonometric series, to 
rational predictor-corrector formulae for nonlinear ordinary differential equations, 
and eventually was able to interpret many of his rational approximations in terms of 
summability processes. More importantly, perhaps, he got involved in Pade ap
proximation of the exponential function, a problem of considerable interest in the 
numerical solution of differential equations, both ordinary and partial. Yudell's 
contribution, characteristically, consists in providing representations of the error in 
the approximants on the main and first two subdiagonals in terms of modified 
Bessel functions as well as related asymptotics. Earlier, already, he obtained asymp
totic error bounds for Pade approximants to exp( A), where A is a bounded linear 
operator in Banach space. In joint work with G. P. Barker this eventually led to 
interesting remarks on asymptotic series for matrix functions, in particular, to an 
extension of Watson's lemma from functions of a complex variable to functions in a 
matrix argument. By studying the sign of the error term in Pade approximants, and 
by a variety of other techniques, Yudell also enriched the field of analytic inequali
ties, deriving a large number of rational inequalities on various intervals of the real 
line for many of the important special functions. As he rightly points out, such 
inequalities appear infrequently in the literature. 

Series expansion is another important source of approximations in which Yudell 
took an active interest. One owes to him expansions of the confluent hypergeometric 
function, and of many of its special cases, in series of Bessel functions, and more 
generally expansions of hypergeometric functions in other hypergeometric functions. 
Still more general are the expansions of Meijer's G-function in other G-functions 
which he developed together with Jet Wimp. These contain, among others, expan
sions of hypergeometric functions in Jacobi, Laguerre and Hermite polynomials and 
expansions of the sine and cosine integrals in squares of Bessel functions. Of 
considerable practical interest are expansions in Chebyshev polynomials, for which 
he gave many examples, both numerically and in analytic form. There are peculiar 
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computational difficulties associated with the generation of the desired expansion 
coefficients, owing to the fact that they often represent solutions of second and 
higher order linear difference equations possessing minimum or intermediate growth 
properties. The development of stable algorithms for computing such solutions is an 
interesting branch of computational mathematics, to which Yudell contributed a 
useful variant of J_ C. P. Miller's backward recurrence algorithm, partly in collabora
tion with Jet Wimp. Functions of several variables can be expanded in multiple 
Chebyshev series. Yudell was one of the first to provide numerical tables of 
associated coefficients in the case of Bessel functions of a real argument and real 
order between 0 and L 

In addition to rational approximation and series expansion, there is a third large 
area-numerical quadrature-that has attracted Yudell's interest. Already in the 
early 50's he was developing interpolatory quadrature rules with equally spaced 
nodes for integrals and iterated integrals exhibiting singular or oscillatory weight 
functions. He provided not only relevant numerical data, but also discussed the error 
terms, in particular their Peano kernels, in his characteristically pragmatic, but 
effective way. The work on Filon-type formulae for oscillatory integrals is perhaps 
his best-known contribution from that period. Furthermore, following Poisson, 
Turing, Goodwin and others, he helped popularizing the exceptional qualities of the 
composite trapezoidal and midpoint rules as a means of evaluating many special 
functions, such as Bessel functions, complete elliptic integrals, the error function, 
and others. More recently, he turned to general quadrature rules of Gaussian type 
and related interpolation processes. Among other things, he discovered a novel 
expansion of the error term, in which intervene the coefficients in the expansion of 
the integrand (or, rather, the smooth factor multiplying the weight function in the 
integrand) in the appropriate system of orthogonal polynomials and certain quanti
ties depending only on these orthogonal polynomials. He applied this to Stieltjes-type 
integrals and generalizations thereof, and in particular to integral representations of 
the hypergeometric function, thereby opening up yet another approach for its 
numerical evaluation. 

Yudell's early work on special functions is summarized in his book "Integrals of 
Bessel Functions", published in 1962 by McGraw-HilL Rather modestly titled, this is 
actually a comprehensive compendium not only of the functions in the title, but also 
of Bessel functions themselves and of generalized hypergeometric functions, of 
which Bessel functions and their integrals are, or can be expressed in terms of, 
special cases. Yudell also contributed a chapter of the same title to the famous 
"Handbook of Mathematical Functions" edited by M. Abramowitz and L A. 
Stegun. His life work, however, culminated in the two volumes of "The Special 
Functions and their Approximations", published in 1969 by Academic Press, and 
the follow-up volumes "Mathematical Functions and their Approximations" of 1975 
and "Algorithms for the Computation of Mathematical Functions" of 1977, both 
also with Academic Press. These works contain an amazing wealth of information, 
theoretical as well as practical, pertaining to special functions, summarizing and 
systematizing to a large extent Yudell's own research and that of his collaborators, 
without neglecting, however, relevant work of others. The "Mathematical Functions" 
is currently being translated into Russian_ 
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His intellectual interests were never limited to mathematics alone. He loved opera, 
philosophy, baseball, among other things. While at MRI he gave an extensive series 
of lectures on the history of philosophy, focusing especially on Spinoza, whose work, 
he believed, contains the most meaningful elements of those ethical and intellectual 
ideals which alone can provide a personal bedrock in an uncertain, frenetically 
changing world. He ended the last lecture with a quotation from Spinoza's book of 
Ethics, "That which is noble is as difficult as it is rare". It had the force of a 
personal credo. 

Yudell's 1975 book was dedicated to his daughters Molly, Janis, Linda, and Debra 
and their husbands, and his book of 1977 to his present and future grandchildren. 
Undoubtedly, the loving support of his family greatly fostered his mathematical 
growth, and it is natural and indicative of Yudell's personality that he wished the 
fruits of his life-long research dedicated to them. In his surviving family, and in his 
grateful students and colleagues, his values will endure. 

wALTER GAUTSCHl & JET WIMP 
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Reminiscences of My Involvement 
in de Branges's Proof of the Bieberbach Conjecture 

WALTER GAUTSCHI 

Around February 3, 1984 {I can't remember the exact date), Louis de Branges 
came to my office and asked whether he could talk to me for a minute about 
some work he was doing; perhaps I could be of help. I distinctly remember the 
first thought that ran through my mind: "Me? Helping de Branges?'' We hardly 
knew each other, never engaged in any mathematical conversation in all the 20 
or so years we were at Purdue, and-so I believed-had interests diametrically . 
apart. He sat down and told me that he had a way of proving the Bieberbach 
conjecture, but needed to establish certain inequalities involving hypergeometric 
functions. He felt it would be worthwhile, as a first step, to check as many of 
these inequalities as possible on the computer. Could I do this for him? 

Now this was a time when I happened to be under all sorts of pressures. 
I was expected (and very much wanted) to write a paper for BIT to honor 
Germund Dahlquist on his 60th birthday. Through some mix-up the invitation 
had reached me just a few days earlier (on February 1 )-way past the deadline of 
December 31, 1983-but I was graciously given an extension through February 
29. So I had less than four weeks in which to produce worthwhile results and a 
publishable paper. At the same time I was in the midst of rewriting a chapter 
of a survey article for the MAA Studies in Numerical Analysis in order to be 
ready to incorporate the new version on the galley proofs that were to arrive 
at any time. Also, I was scheduled to leave for Europe on March 7 for lectures 
in Italy, Yugoslavia, and Germany. As if this were not enough, I had, as the 
newly appointed managing editor of Mathematics of Computation, to deal with 
a constant stream of manuscripts for this journal. And classes had to be taught 
also, department committee meetings attended to, etc., etc. 

I didn't, of course, tell Louis all these things, but they weighed heavily on my 
mind when I replied that I would probably not have the time to do anything 
for him right away. He then told me that he was soon going to give a seminar 

The work described in this article was supported, in part, by the National Science Founda
tion under grant DCR-8320561. 
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on the subject and asked me to at least attend the seminar and in that way get 
some more concrete ideas of what was involved. 

The seminar took place on February 7, and I managed to attend. I was 
immediately struck by the clarity, freshness, and elegance of Louis' talk and 
began to appreciate how those inequalities came about. To my delight, they 
could be written in terms of orthogonal polynomials-currently a subject very 
much on my mind. What was needed was to show that for any positive integer 
n the set of n inequalities 

(1) Fn,k(x) := 11 tn-k- 1/ 2 ppn-2k, 1)(1- 2tx) dt > 0, 

0 < x < 1, k = 0, 1,2, ... ,n- 1 

is valid, where P1a,f3) is the Jacobi polynomial of degree k with parameters a, (3. 
(For k = 0, the inequality is trivially true.) Louis' theory in fact states that the 
validity of ( 1) for some n implies the Bieber bach conjecture for the ( n + 1 )st 
coefficient (but not vice versa). Louis concluded the lecture by showing how he 
evaluated Fn,k-a polynomial of degree k-explicitly for the first few values of n 
(for n ::; 4, I believe) and how he could verify the correctness of ( 1) in these cases. 
Unfortunately, they did not include the largest value of n for which Bieberbach's 
conjecture had already been proven. 

I saw right away how (l) could be verified computationally using Gauss-Jacobi 
quadrature (with weight function t- 112 on [0, 1]; but see (2) below), and I pointed 
this out during the discussion, claiming, with zest, that it would be easy for me 
to go as far up with n as n = 100, if that should be necessary. I was clearly 
fired up by now and was determined to carry out the computations immediately, 
no matter what. Having developed reliable software for orthogonal polynomials 
and Gaussian quadrature during the past few years, I knew that it shouldn't 
take too much time for me to write the necessary programs. 

To begin with, I noted by a simple symmetry argument that one needed only 
the classical Gauss-Legendre quadrature rule on [ -1, 1). If r ~2m), ..\~2m), v = 

l, 2, ... , 2m, are the nodes and weights, respectively, of the 2m-point Gaussian 
quadrature rule, with 1 > rf2m) > rJ2m) > · · · > rJ~m) > -1, then in fact 

11 t-l/2p(t) dt = 2 f ..\S2m)p([r~2m)J2) 
0 v=l 

(2) 

for any pE P2m-t, m = 1,2,3, .... Since the integral in (1) is of the form (2), 
with p a polynomial of degree n, it suffices to take 2m -1 ~ n in ( 2), for example, 
m = [n/2] + 1. The Gauss formula involved in (2) can easily be generated for 
any value of m (this indeed is done by one of the easier parts of my software 
package), and the polynomial P1a,f3) in (1) is readily and accurately generated 
by the well-known three-term recurrence relation. I actually found it slightly 
more convenient to compute 

(3) fn,k(x) = fol tn-k-l/21rk2n-2k,l\1- 2tx) dt, 

395



MY INVOLVEMENT IN DE BRANGES'S PROOF 207 

for 0 S x S 1, k = 1, 2, ... , n- 1, where nt1:,1J) is the monic Jacobi polynomial. 
My first program ran the next day, on February 8, and "verified" ( 1) for all n S 

18. It cost me $3.69 in computer time on the CDC 6500. The program, of course, 
was still fairly primitive; I simply evaluated f n,k for up to 400 equally spaced 
points on the interval [0, lj and printed the minimum value and corresponding 
x-value to see whether the minimum was positive (or a "machine zero" when 
x = 1 and k is odd). I took this simple-minded approach because I was fairly 
sure that I was going to hit a negative minimum for some early value of n, which 
would render Louis' argument inconclusive for that value of n, and I could quit 
and go on with my own work. It didn't work out that way! 

After this first piece of positive evidence, I began to improve the program, 
incorporated error-monitoring devices, compared double precision with single 
precision results, determined all minima and maxima of fn,k on [0, 1] to full 
machine precision using Newton's method, and checked between any two extrema 
for possible additional oscillations that I may have missed. I then pushed this 
improv~ version of the program up to n = 30 and found the validity of (1) 
confirmed in every case. The most expensive run (for 27 S n S 30) still cost me 
only $10.84. 

At this point I was convinced that (1) is true for all n. I began to play with 
the idea of writing up this work in a short note entitled, tentatively, "Numerical 
evidence in support of a conjecture of L. de Branges." (I didn't dare yet to 
bring Bieberbach into the title!) I even prepared neat photoready printout on 
our Diablo printer that could be reproduced, together with the program listing, 
in the microfiche or supplements section of the journal. {I had in mind my own 
Mathematics of Computation.) A brief excerpt from these tables is shown on the 
next page. 

Happy about this encouraging development, I called on February 13 my good 
friend Luigi Gatteschi at the University of Turin and asked him whether I could 
possibly give a second lecture in Turin (one had already been scheduled); the 
title: "La congettura di Bieberbach e (probabilmente) vera." He readily agreed 
(though I seemed to detect a skeptical tone .in his voice) and subsequently ar
ranged the first lecture to be given at the University and the second at the 
Polytechnic. 

Still not completely satisfied with the strictly computational nature of my 
work, I began to develop complicated analytic criteria that would insure, math
ematically, that f n,k could not have any zeros on any given sufficiently small 
subinterval of [0, 1]. By applying these criteria in a judicious manner, one could 
then in principle prove (again with the help of the computer) that the whole in
terval (0, 1) is free of zeros. I spent about a week on efforts along these lines, but 
did not get very far, since the program I wrote turned out to be extremely slow. 
About this time, on February 20, Professor Jack Schwartz from the Courant 
Institute at NYU visited our Computer Sciences Department. I requested be
forehand ten minutes of his time to talk to him briefly about this computational 
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n k X f(x) df(x) ddf(x) 

25 23 0 2.992383247e-04 -2.85e-02 2.439457320e+00 
3.205597026e-01 2. 34198J715e-08 -7.58e-20 7.210458286e-06 
3.417860015e-Ol 2.391757633e-08 9.68e-20 -5.828107204e-06 
4.340919006e-Ol l.072194076e-'08 -l.27e-20 3.934615048e-06 
4.662672l33e-Ol 1.136217104e-08 2.70e-20 -3.184816919e-06 
5.522705925e-01 5.785863359e-09 2.36e-20 2. 45 7239610e-06 
5.912254258e-Ol 6.401691048e-09 -l.98e-20 -2.091412963e-06 
6.679768905e-Ol 3.54549l509e-09 l.l7e-20 1. 891163i95e-06 
7.096583223e-Ol 4.124040146e-09 -2.57e-2l -l.744348249e-06 
7.744958058e-Ol 2.406779734e-09 -3.54e-21 l.841974435e-06 
8.146887759e-Ol 2.974169399e-09 -l.lle-20 -1.903521612e-06 
8.656751077e-Ol l. 775935986e-09 -l.Ole-20 2.376104557e-06 
9.002022063e-Ol 2.37535126le-09 8.5le-21 -2.907485610e-06 
9.362182846e-Ol 1. 395724928e-09 -7.17e-21 4. 540772788e-06 
9.612703112e-Ol 2.103525418e-09 -1.40e-20 -7.509062965e-06 
9.819556336e-Ol l.ll2J64664e-09 -3.14e-20 1.838703966e-05 
9.944763566e-01 2.166255736e-09 l.27e-19 -7 .519729386e-05 
l.OOOOOOOOOe+OO 4. 784809710e-19 -l.02e-06 -3.376022124e-04 

25 24 0 1.583271559e-05 -2.13e-03 2. 534501112e-Ol 
8.821620539e-02 8.890073589e-08 6.86e-19 9.5l9682273e-05 
1.007789679e-Ol 9.102976075e-08 1.47e-18 -6. 626872232e-05 
1.654376237e-Ol 3.432305315e-08 -4.90e-20 2.621243315e-05 
l. 89583 770le-Ol 3.655406944e-08 4.55e-19 -l.841404435e-05 
2.62l430762e-01 1.72165896le-08 -6.88e-21 9.824593756e-06 
2.961071425e-Ol l. 896011080e-08 s.a8e-21 -7.33896876le-06 
3.726369664e-Ol l.Ol5730680e-08 -9.74e-21 4.9l6658213e-06 
4.142485505e-Ol 1.154094862e-08 -6.56e-21 -3.940854645e-06 
4.905874739e-01 6.707130829e-09 -4.35e-20 3.131842409e-06 
5.370536552e-01 7.86970983Qe-09 1.27e-21 -2.707663255e-06 
6.092538964e-Ol 4. 81792415le-09 -2. 9le-21 2.47536l689e-06 
6. 572727170e-Ol 5.859388113e-09 -2.44e-21 -2.3284907 7le-06 
7.218483349e-Ol 3.696588620e-09 -2.38e-21 2.4l8952894e-06 
7.678171738e-Ol 4.693289289e-09 -1. 50e-20 -2.5l6816547e-06 
8.219130l95e-Ol 2.988555425e-09 -4.24e-22 2.987795528e-06 
8.621912336e-Ol 4.012828437e-09 2.54e-21 -3.552522979e-06 
9.03681427Se-Ol 2.511845675e-09 l. 49e-20 4.988334162e-06 
9.34884621Se-Ol 3.660165547e-09 2.5le-20 -7.304448233e-06 
9.624003854e-Ol 2.141929923e-09 -4.80e-20 l.36006l023e-05 
9.8l7059823e-Ol 3.622132535e-09 1.46e-19 -3.126465152e-05 
9.94589842/e-01 1. 627629589e-09 -4.94e-19 1.385542984e-04 
l.OOOOOOOOOe+OO 5.41289421Be-09 1. 82e-06 6.092753732e-04 

Extrema of fn,k(x) on [0, lJ, with first and second derivatives, 
for n = 25 and k = 23,24. (The computer printout is in float-
ing-point E-format, so that e- XX is to be read as w-xx. Note 
also that the derivatives at the interior extrema are not exactly 
zero, but approximately c · fn,k(O), where c = 3.55 X w-ts lS 

the machine precision of the CDC computer.) 

work on the Bieberbach conjecture. He showed polite interest in the matter, 
but didn't say much. Only at the end of our brief meeting he casually asked 
why not use Sturm sequences. I remember how this question caught me by sur
prise and how I wondered why I hadn't thought of it myself. After all, I used 
Sturm sequences in a similar setting some eight years ago in connection with 
Chebyshev-type quadrature rules. On second thought, however, I could under
stand why Sturm didn't enter my mind: The polynomial Fn,k in {1) is given 
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in the form of an integral, and it was not immediately obvious how to generate 
Sturm sequences in rational form. 

It soon occurred to me, however, that the explicit power representation of Fn,k 
can be obtained (in rational form) rather easily by substituting the representation 

k 
<4) p,<a.fJ><u)= r(a+k+l) 2:: (k)r(o:+.B+k+m+1)(u- 1)m 

k k!f(o:+.B+k+1)m=O m · 2mf(a+m+1) 

into (1). Indeed, with u = 1- 2tx, one gets u- 1 = -2tx, and the integral in 
(1}, using (4), is easily evaluated, yielding a polynomial with coefficients in the 
form of ratios of factorials (in fact, a 3F2). So the work to be done from now on 
was clearly mapped out for me: Apply the Sturm sequence algorithm to ( 1) [or 
alternatively, to (3)J on the interval [0, 11 in rational arithmetic-for example, 
using the MACSYMA system-and in this way show compellingly, once and for 
all, and for as many n as desired, that Fn,k cannot vanish on [0, 1) and therefore, 
since Fn,k(O) > 0, that it remains positive on (0, 1). Time, however, was getting 
short, and I decided to postpone this work until after my return from Europe. 
In the meantime, I programmed the Sturm sequence algorithm for (1) in double 
preeision FORTRAN in order to check out the algorithmic details and to make 
it easier for me, upon my return, to transcribe the program into the MACSYMA 
language (a system I still had to get better acquainted with). By February 26 
(a Sunday) I had the program running satisfactorily on the CDC computer and 
producing results as expected. 

A week earlier, incidentally, I managed to complete my paper for Dahlquist 
and sent it off to the editors. 

My departure for Europe was becoming imminent. Since my verification work 
seemed well under way, and in good shape now, I let it rest for a while and turned 
my attention to the lectures I was to give in Europe. Just to set my mind at 
ease, I wanted to make sure, however, that the inequality {1) was not by chance 
already known in the literature. Actually, looking at the rather delicate behavior 
of !n,k(x) for x near 1 and k near n, as exemplified in the short table above, I 
rather doubted that analytical techniques could be sharp enough to provide a 
proof of (1). But it didn't hurt to check. I knew there was only a handful of 
mathematicians in the world who could possibly be familiar with a result of the 
type (1) and even come up with a proof of it, among them Dick Askey at the 
University of Wisconsin, whom I knew best. So I called him on February 29 
and told him of the inequality (1) and what it implied according to de Branges. 
He immediately interrupted me with an emphatic: "I don't believe it!" and 
recounted some rather outrageous claims that had been made in the past by a 
number of people. I countered that de Branges was a serious mathematician 
and that we were dealing here with first-rate work. Even if Louis' implication 
should not hold tight, I said, the inequalities ( 1) were quite interesting in their 
own right and ought to be scrutinized further. Besides, I was fully convinced of 
their validity. Dick now agreed to look it. 
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I was working late at home on my lectures, that same night, when the phone 
rang and I heard Dick Askey's triumphant voice on the other end of the line: 
"The inequality is not a conjecture-it's a theorem!" He then pointed out a result 
in a joint 1976 paper with George Gasper that contains ( 1) as a special case. 
I was, of course, delighted to hear this incredible news, but also disappointed, 
realizing that all my hectic work had been in vain. After I checked and confirmed 
the result myself, I saw Louis the next morning and told him the good news. He 
replied, rather matter-of-factly: "Well, that proves Bieberbach's conjecture." 

Immediately after I talked to Louis, I called Luigi Gatteschi in Turin and 
asked him to change the title of my second lecture. There was no point anymore 
to talk about numerical evidence for a conjecture that had turned into a theorem, 
and I proposed, instead, to talk about the work I did in the paper for Dahlquist. 
I told him that I would explain everything when I was in Turin. He agreed to 
send out a change of title notice, and he scheduled this second lecture to be held 
also at the University on March 13. 

It was during the first ten minutes of this lecture that I first apologized for 
the change of subject and then briefly announced the validity of the Bieberbach 
conjecture subject to verification of de Branges's work. This was probably the 
first time that the word got out in Europe, but it was a small audience, con
sisting largely of graduate students and only a few faculty members. A week 
later, I attended a conference in Munich celebrating the 25th anniversary of the 
journal Numerische Mathematik. There I saw another good friend of mine, Dick 
Varga, and told him informally of de Branges's proof of the Bieberbach conjec
ture. I knew he was going to give a talk himself about a number of conjectures, 
including the Riemann hypothesis. At the end of the discussion period he turned 
towards me and put me on the spot with: "Speaking of conjectures, how about 
Bieberbach's conjecture, Professor Gautschi?" So I went to the blackboard and 
announced again de Branges's proof of the conjecture and the role played by the 
inequality of Askey and Gasper. But this time, it was before a large international 
audience of experts, and I felt the enormous impact of my brief presentation. The 
word now spread to different parts of Europe. 

Looking back at this episode, I cannot help concluding with a few philosophical 
remarks. l. The computer is an important aid in theorem proving. In our 
case, the computer could have been used to prove Bieberbach's conjecture (using 
Sturm sequences in MACSYMA) if not for all n, then at least for as many n as 
desirable and practicable. Equally importantly, my computer results gave Louis 
confidence in his overall proof strategy; his approach indeed seemed capable of 
proving the complete Bieberbach conjecture. 2. The availability of high-quality 
mathematical software is of the utmost importance in scientific research. While 
this statement is undisputed among computer scientists, it deserves to be better 
understood and appreciated by the mathematical community. Had I not had 
available my own software package on orthogonal polynomials, I would probably 
not have undertaken these the severe time constraints under 
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which I was operating. 3. One should never underestimate the usefulness of 
a result in pure mathematics. No one in his wildest dreams, least of all the 
authors, could have imagined that the Askey /Gasper nonnegativity result would 
provide a critical link in the proof of the Bieberbach conjecture. Inequalities, 
in particular, are always potentially useful. I am fortunate to have inherited 
a love for inequalities from my teacher, Professor Alexander Ostrowski, who 
was a master at them, and from Professor Mauro Picone, who openly confessed 
to me his fondness for inequalities. Perhaps it is an auspicious omen that the 
Bieberbach conjecture itself-now de Branges's theorem-consists of a set of 
inequalities. 
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A summary is given of Philip Rabinowitz's contributions to numerical analysis with 
emphasis on his work on integration. 
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1. The age of SEAC 

The span of Rabinowitz's active professional life roughly coincides with the age 
of modern electronic comptJters. His early work was done at the National Bureau 
of Standards (NBS) where be had access to the SEAC (Standards Eastern Auto
matic Computer), a machine that averaged 2500 additions and 200 multiplications 
per second and had a high-speed memory of 1024 words of 44 binary digits each. 
This period at NBS also marks the beginning of a close and long-standing 
collaboration with P.J. Davis. 

Although SEAC was extremely slow and limited, by today's standards, the 
machine was put to good use, and Rabinowitz became involved in some path
breaking applications. One was the first automatic computation of nerve exci
tation along and across a nerve fiber [4], which required the solution of a system 
of four nonlinear ordinary differential equations - the Hodgkin-Huxley 
equations - by the Runge-Kutta method. (I myself was later involved with a 
two-dimensional model of this problem, described by a partial differential 
equation which, as I recall, caused a great deal of difficulties on account of insta
bility.) Another first was the automatic computation of high-order Gauss
Legendre quadrature rules (with up to 96 points) [11,14] using Newton's method, 
and later of Gauss-Laguerre [91] and Gauss-Lobatto rules [49]. The closest ever 

"' Lecture presented at the conference "Constructive Approximation and Its Applications" held on 
May 17-20, 1994, in Tel Aviv honoring Professor P. Rabinowitz on the occasion of his retirement. 
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done before, by laborious hand computation, was a table of Gauss formulae up to 
16 points, with an accuracy of 15 digits, compiled during the Depression under the 
Work Projects Administration for New York City [36]. Still other work involved 
interesting experiments with the Monte Carlo method [12], which came into 
vogue just a few years earlier, in which the use of pseudorandom numbers was com
pared with the use of number-theoretic (equidistributed) sequences when comput
ing the volume of the n-dimensional hypercube for n = 2, 3, ... , 12. 

Rabinowitz's most significant project, however, was the development, jointly 
with P. Davis, of a general-purpose code of orthogonalization [9] and its appli
cation to a vast array of applied problems. The task at hand, basically, was to 
generate an orthogonal sequence of elements in an inner product space by apply
ing the Gram-Schmidt procedure to a given sequence of linearly independent 
elements and to provide quantities of interest such as residual errors and various 
expansion coefficients. Applications originally envisaged, and eventually carried 
out [13,15,43,50,51], involved not only the standard applications to least squares 
approximation and curve fitting, but also the approximate solution of ordinary 
and partial differential equations by L2 approximations over the boundary or 
over the domain, and orthogonal polynomials relative to a simply connected 
domain in the complex plane and their application to conformal mapping. Here 
the inner product could be either a line integral over the boundary of the 
domain, giving rise to Szego kernel functions, or a double integral over the 
domain, giving rise to Bergman kernel functions. In practice, all integrals need to 
be discretized by appropriate quadrature and cubature formulae, which may 
explain in part Rabinowitz's lifelong interest in numerical integration. There is 
also a substantial ingredient of approximation theory in these applications, invol
ving the L2 norm, and it was only natural for Rabinowitz to take an interest in 
approximation problems in other norms such as the L00 and L1 norms [53,25]. 
The techniques, of course, are then rather different, resting as they do on linear 
and nonlinear programming [56]. Finally, there is a small step from the ideas of 
orthogonalization to other Hilbert space applications in numerical analysis, such 
as the estimation of linear functionals - especially error functionals - by means 
of appropriate norms. This idea in fact was pioneered by P. Davis [8] as early as 
1953, and its further development by Rabinowitz and his collaborators will be 
the topic of the next section. 

2. Error estimates for analytic functions 

Remainder terms in numerical analysis are usually expressed in terms of a 
derivative of some appropriate order. P. Davis [8] was the first to propose interpret
ing the remainder as a bounded linear functional in a Hilbert space of analytic func
tions and then to estimate it in terms of the norm of the functional and the norm of 
the function to which it is applied. This yields a derivative-free error bound but 
requires values of the function in the complex plane. 
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Thus, if E is the functional in question, acting on functions/ in the Hilbert space 
.Te, then 

IE(f)l $ 11£1111!11,., f E .te. (2.1) 

If { 1r,} :::0 is a complete orthonormal system in .te, then Hilbert space theory tells us 
that 

00 

!lEW= L IE(7r,)j2• (2.2) 
r=O 

In connection with quadrature rules on a finite interval, say [ -1,1 ], and functions 
analytic on [-1,1], and hence on a sufficiently small closed domain containing 
[-1,1] in its interior, there are two Hilbert spaces .te that are particularly pertinent 
in which to construct estimates of the type (2.1 ). Both involve functions analytic on 
an ellipse 8, bounded by 

88, = {z E C: z = !(pe111 + p-1e-it\O $ t? $ 27r}, p > 1, (2.3) 

having foci at± 1 and semiaxes a=~ (p + p-1), b = !(p- p-1). (If p ll, the ellipse 
SP shrinks to the interval [-1,1], while for p-+ oo it inflates to larger and larger 
circle-like regions.) The first space, K = L2(8,), adopted for example in [10], con
sists of those functions f satisfying 

j 1p lf(z)l2dxdy < oo, (2.4) 

and the other, .te = L2(8tf,;), used in [84], of those satisfying 

r lf(z)l2ll - ?!-112 ldzl < 00. Jo1, 
The respective inner products are 

(u, v) = j lp u(z)v(z)dxdy, u, v E L 2(tf,;), 

and 

(2.5) 

(2.6) 

. (u, v) = { u(z)v(z)jl- z2r 112 ldzl, u, v E L2(8~). (2.7) Jo1p 
A complete orthonormal system relative to the inner product (2.6) is given by 

Chebyshev polynomials of the second kind, 

2 ( r + 1 ) 112 • 2 ·n'"r(z) = '- 2 +2 -2r-2 U,(z), r = 0, 1, 2, ... (m L (~)), 
y?r p r - p 

(2.8) 

while Chebyshev polynomials of the first kind form a complete orthonormal system 
relative to the inner product (2. 7), 

( 1 ) 1/2 . 2 
1r,(z) = 2 2r T,(z), r = 0, I, 2, ... (m L (8~)). p'+p-

(2.9) 
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So, if we are interested, for example, in the quadrature error 
n 

Qn(f) = L Wvf(xv), (2.10) 
v=l 

(2.11) 

(2.12) 

where in (2.12) the first term between braces is zero when r = 1. If the rule Qn has 
polynomial degree of exactness d, then it suffices to start the summation in (2.11) 
and (2.12) with r = d + 1, although in practice, to account for rounding errors, it 
may be better to use (2.11), (2.12) as written [54]. 

There are various ways the norm 11/IIJf in (2.1) may be estimated for the two 
Hilbert spaces £' considered, the simplest being to replace lf(z)l in (2.4) and 
(2.5) by its maximum value on &!!P (hence, on Sp), 

IIJIIL2(8p) ~ v:;abMp(J), IIJIIL2(iU'p) ~ v'fifMp(J), (2.13) 

where 

(2.14) 

It turns out that the second bound in (2.13) used in conjunction with (2.12) often 
gives sharper estimates than the first in conjunction with (2.11), at least asympto
tically asp--+ oo (cf. [84, p. 565]). 

The bound (2.1) for£'= L2(8p) and £' = L2(81p) holds for all 1 < p < p*, 
where p* is determined by the location ofthe singularities off. There is room, there
fore, for optimization with respect to p on the interval (1, p*). 

For specific quadrature rules Qn one has the practical problem of evaluating, or 
estimating, the errors En(U,) and En(T,) in (2.11), (2.12). For the composite 
trapezoidal and Simpson's rules, this has been done in [84], for Gauss-type rules 
in [42,7], and for Gauss-Legendre rules more recently by K. Petras in [47]. 

It is natural to try to optimize the quadrature rule (2.1 0), either for fixed nodes xv 
or otherwise, in the sense of minimizing the error norms (2.11) or (2.12) for given p. 
In the case of (2.11 ), this has been done by Barnhill and Wixom [3], and for (2.12) 
by Rabinowitz and Richter [84]. From (2.11) and (2.12) it is plausible that as 
p--+ oo the optimal rule will be the one that annihilates as many of the initial 
terms in the infinite series as possible, that is, the Gauss rule. For finite values of 
p, the optimal rules have to be computed numerically. Their behavior asp 11 is 
rather more complicated and is discussed in [85]. A similar study has been made 
in [86] for Chebyshev-type quadrature rules, where the limiting case p--+ oo is 
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particularly interesting, as the optimal rules (the same for both norms (2.11) and 
(2.12)) can be characterized (and computed) algebraically. For these rules, and 
extensions thereof, see also [32,2,31]. 

The ideas introduced by Davis and Rabinowitz in the area of Hilbert space 
methods applied to numerical analysis have generated a considerable amount of 
interest, and an extensive literature evolved pursuing various ramifications of 
them, including the idea of contour integral representations of quadrature errors 
for analytic functions. For a recent survey, see [30], and for important new 
developments, [93]. 

3. Ignoring or avoiding the singularity 

If there is a proverbial red thread running through Rabinowitz's work, then it is 
his persistent study of integration in the presence of a singularity. He started this 
line of inquiry in 1965 jointly with P.J. Davis, but came back to it repeatedly
alone or with others - throughout his career, the last time as recently as 1992. 
The question here is how quadrature rules behave when applied to functions that 
have a monotonic and integrable singularity~. either at one of the endpoints or 
in the interior of the interval of integration, but are otherwise continuous. One 
can either ignore the singularity, i.e., proceed as if there were none, replacing the 
value at ~ by zero (or any other finite number) should the quadrature rule call 
for one; or one can avoid it, i.e., remove one or several terms of the quadrature 
sum in the neigborhood of the singularity. One reason for considering not only end
point singularities, but also interior ones, is to be able to deal with the case where 
the location ofthe singularity may not be known or too difficult to compute, so that 
the simple expedient of breaking up the integral into two pieces may not be feasible. 
A good reason for ignoring or avoiding the singularity, apart from the appealing 
simplicity of the procedure, is that not only the location, but also the nature of 
the singularity, may be unknown. 

The groundwork of this theory is laid in two papers, one by Davis and Rabino
witz [17], and the other by Rabinowitz [52]. The former deals with integrals 

I(f) = 11
/(x)dx (3.1) 

and considers composite quadrature rules Qn over a partition of [0,1] into n sub
intervals of equal length, whereby a fixed elementary, positive, quadrature rule, 
suitably transformed, is applied to each subinterval. The interest is in conver
gence, or lack thereof, as n - oo, and it is assumed that the singularity is 
ignored. If 0 < ~ ~ 1, then a necessary and sufficient condition for convergence is 
found to be 

lim! f(~(n)) = 0, 
n-+oon 

(3.2) 
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where e(n) is the largest abscissa in Qn which is less than e. The condition (3.2) is 
always satisfied if e = 1 is an endpoint; it is also true if e < 1 is an interior rational 
point, provided all abscissae of Qn are rational or, as subsequently observed [52], 
irrational but algebraic of bounded degree. However, if e is irrational, convergence 
may no longer hold, as is shown by the rectangular rule applied tof(x) = le- xl-a, 
1/2 ~a< I. It is interesting how number theory - in particular, Diophantine 
approximation - enters into the analysis of this example. Equally interesting 
is the fact that convergence is restored if 0 < a < I /2 and e is irrational but 
algebraic. 

In the second paper [52], mostly endpoint singularities, say ate= 1, are con
sidered, but more general sequences of (positive) quadrature rules are allowed, as 
well as weighted integrals, 

n 

Qn(f) = L w~lf(x~>), (3.3) 
11=! 

where w is a positive integrable weight function and 

0 < x(n) < X(n) < · · · < x(n) < 1 w(n) > 0. 
- n n-1 I ' 11 

If Qn(g)-+ J~ gwdx for every g E C[O, 1], then a sufficient condition for conver
gence is 

(n) 

w11 < c(x(n) - x(n)) (3.4) 
( (n)) - 11-l 11 

W X11 

for all n sufficiently large and all v such that x~> is in some neighborhood of e = 1. 
This is true, for example, for Gauss-Jacobi quadratures with parameters Ia I ~ I/2, 
I.BI < 1/2. I myself [26] verified (3.4) for Fejer quadratures, i.e., interpolatory rules 
(3.3) with w(x)- 1 and x~> the Chebyshev points in [0,1], and used the result to 
justify the discretized Stieltjes procedure for generating Gaussian quadrature 
rules and orthogonal polynomials [27], [28,§2.2]. The criterion (3.4), under mild 
additional conditions on the growth of the integrand, applies also to weighted inte
grals over a half-infinite interval with the singularity located at the finite endpoint. 
It thus covers, for example, generalized Gauss-Laguerre quadratures. 

Later, in [59], some of the assumptions are relaxed; for example, the positivity 
of the quadrature rules is dropped, and it suffices to assume (3.4) with w~n) replaced 
by lw~n)l· Also, similar results hold if the singularity is avoided instead of 
ignored. There is an interesting discussion, again using number theory, of the 
behavior of composite quadrature rules when applied to functions such as 
lx - {1-a log Pix - {I with { irrational in (0, I). Further extensions are discussed in 
[62], where partitions in nonequal subintervals are allowed, or uniform partitions 
but elementary quadrature rules differing from one subinterval to the next; and 
in [87] to product rules of integration, i.e., rules of the form (3.3) where w need 
not be a positive weight function, but can be any function w = k with 
k E L1 [0, 1]. For Gauss-Jacobi and related rules, see also [69] and [89,90]. 
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While convergence may be reassuring, it would be more informative to have 
rates of convergence. These are discussed at great length in [37] for singularities~ 
in [-1,1] and Gaussian rules on [-1,1] relative to smooth bounded weight func
tions. It is shown, for example, that n-point rules applied to f(x) = lx- ~~-a 
yield, as n-+ oo, an error of O(n-2+2cr) if~= ±1 and of O(n-1+1:t) if -1 < ~ < 1 
when the singularity is avoided. Ignoring it gives an error of O(n-l+2cr(1ognt 
(loglogn)a(l+E)) for almost all e. where f > 0 can be chosen arbitrarily small. Gen
eralized Markov-Stieltjes inequalities are the required tools in this analysis. Similar 
results are obtained in [64] for Gauss-Lobatto and Gauss-Radau formulae with 
Jacobi weight function, and, in the case of endpoint singularities, for generalized 
Jacobi weight functions (cf. (4.6)). The above, of course, are very slow rates of 
convergence, but this is the price one has to pay if one chooses, or is forced, to dis
regard singularities. 

4. Product rules of integration 

Product integration rules employing orthogonal polynomials, and their conver
gence, have been studied extensively in the late 1970s and early 1980s by Elliott and 
Paget [22,23], Smith and Sloan [95], Sloan and Smith [94], and others. Starting in 
1986, and ever since, Rabinowitz pursued this subject as well. The concern is 
with integrals of the form 

I(kf) = 1: k(x)f(x)dx, (4.1) 

where f is smooth and k is absolutely integrable but not necessarily of constant 
sign. Indeed, k may exhibit difficult ·behavior, for example, be highly oscillatory, 
and may also depend on additional parameters, as for example in the numerical 
solution of linear integral equations, where k would be the kernel of the integral 
operator. One can distinguish between two approaches, one interpolatory and 
the other noninterpolatory. 

4.1. Interpolatory product integration rules 

Given n distinct points x~n) in [-1,1], one approximates/ by its Lagrange inter
polation polynomial Lnf of degree n - 1 relative to the points x~n), so that 

I(kf) = Qn(f,k) + En(f,k), Qn(f,k) = 1: k(x)(Lnf)(x)dx. (4.2) 

Usually, the xin> are chosen to be zeros of an orthogonal polynomial with respect to 
some positive weight function won [-1, 1], possibly adjoined with one or both end
points ± 1. Questions of interest are: convenient algorithms for evaluating Qn(f, k ), 
and the convergence to zero of En(f,k) as n-+ oo. 
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With regard to algorithms, assume for simplicity that x~n) are the zeros of the 
nth-degree orthonormal polynomial 7rn(·; w) relative to the weight function w. 
(Including + 1 or -1, or both, among the points requires only minor modifi
cations.) A first expression for Qn is obtained immediately by integrating the 
Lagrange polynomial, 

n 

Qn(/, k) = L W~n) f(x~nl), 
v=l 

w~n) = 11 k(x)l11(x; w)dx, 
-1 

(4.3) 

where /11 are the elementary Lagrange polynomials associated with the points x1n). 
This expresses the quadrature rule directly in terms of the function values, which 
may be useful for analytical purposes. For computation, it is often more conveni
ent to proceed as follows. Expand k/w in the given orthonormal polynomials, 

k(x) ~ 11 -( ) = L..Jm,?r,(x; w), m, = m,(k) = _1 k(x)1r,(x; w)dx. (4.4) 
W X r=O 

Here, m,(k) are "modified moments" of k, which we assume can be computed 
accurately. {There are many important instances where this is the case; for refer
ences up to 1984, see [29, p. 169]; also see [48].) Then clearly, 

wSn) = 11 k(x) 111(x; w)w(x)dx 
-1 w(x} 

= 1: t,m,,-,(x; w)l,(x; w)w(x)dx 

n-1 11 
= ~m, _1 1r,(x; w)lv(x; w)w(x)dx, 

where orthogonality has been used in the last equation. The last integral, 1r, lv being 
a polynomial of degree at most 2n - 2, can be evaluated exactly by the n-point 
Gauss formula. If c~> are the respective Christoffel numbers, one gets 

n-1 n 

w(n) = ""'m ""'c(n)?r (x(n). w)l (x(n). w) v L..J r.L..Jp. r p.l v P.' 
r=O p=l 

n-l 

= c(n) ""'m 7r (x(n) • w) v.L..J rr Vl' 

r=O 

that is, 

w<n) = c(n) s (x(n). k/w) 
v v n-l 11 ' ' 

(4.5) 

where Sn_1 ( ·; k/w) is the nth partial sum of the Fourier expansion of k/w in the 
orthonormal polynomials 1r,. This can be computed conveniently by Clenshaw's 
algorithm based on the recurrence relation for the orthogonal polynomials 1r,. 

409



W. Gautschi I The work of Philip Rabinowitz 207 

In [65] the weight function w is chosen to be a generalized smooth Jacobi weight 
function, 

J 

w(x) = 1/l(x)(l - x)a(l + x)IJ IT lx- tJYJ, (4.6) 
j==l 

where -I < t 1 < t 1 _ 1 < · · · < t 1 < 1, the exponents a, f3 and 'Y.i are all larger than 
-1, and ¢ E C[ -1, IJ is positive and of Dini type, i.e., its modulus of continuity w,p 
on [ -1, 1] satisfies 

l 2w,p(t)d 
-- t< 00. 

t 
(4.7) 

By using a result of Nevai [41] on mean convergence of Lagrange interpolation, 
Rabinowitz shows that Iimn-+ooEn(f,k) = 0 for all/ E C[-1, 1], if k vanishes at 
most on a set of measure zero and f2llk(x)jlog+ lk(x)l dx < oo, and provided w 
in (4.6) is such that (1- ~) 114w I and k(x)(l - ~r114w- 1 12 are both in 
L 1 [-1, 1]. It is assumed here that x~n) are then Gauss points for the weight function 
w. Similar results hold for Gauss-Radau and Gauss-Lobatto points. This gener
alizes and unifies earlier results of Sloan and Smith and others. 

Convergence for all/ E R[-1, 1], the Riemann integrable functions, and at the 
same time the convergence IQnl(/,k)---+ I(lklf) as n-+ oo, where IQnl(f,k) = 
E~=I jw~n)lf(x~n>), is shown in [66,88] under appropriately strengthened assump
tions. In particular, this implies convergence of the "stability constant", 
E~==I jw~n)j-+ I(jkl). 

While the use of Lagrange interpolation in ( 4.2) appears most natural and 
leads to simple algorithms, other interpolation processes could be used instead. 
Hermite-Fejer-type interpolation, for example, is studied in [72]. The increased 
complexity in the resulting algorithms and inherent limitations in convergence 
rates, however, suggest that their use will be advantageous only in exceptional 
circumstances. For convergence results of Hermite and Hermite-Fejer inter
polation on infinite intervals and their implications for product integration on 
the real line, see [38,80]. 

4.2. Noninterpolatory product integration rules 

Instead of interpolating/ on the whole interval, one can do local interpolation 
on n subintervals (not necessarily equal) of a partition of[-1,1]. To still obtain con
vergence for all/ E R[ -1, I] as n ---+ oo and as the partition is made infinitely fine, it 
is necessary to impose some restrictions on the local interpolation points: First of 
all, there should be no more than a finite number of them in each subinterval, 
where this number is independent of n. More importantly, in each subinterval 
the separation of the interpolation points should be larger than a fixed fraction 
(independent of n) of the length of the subinterval. Under these conditions, 
Rabinowitz shows in [70] that the desired convergence indeed takes place, but 
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has a counterexample if the last condition is not met. Fewer restrictions are needed 
to obtain the same kind of convergence if one uses noninterpolatory spline approxi
mants as in [74]. 

Another type ofnoninterpolatory approach relies on the Fourier expansion of/ 
(not of kfw, as in section 4.1), 

f(x) = t,.r..-,(x; w), f. = L f(x)tr,(x; w)w(x)dx, (4.8) 

which yields 
00 

I(kf) = L /,.m,(k), (4.9) 
r=O 

where again mr(k) are the modified moments of k (cf. (4.4)). To implement this, one 
needs, on the one hand, to truncate the infinite series in (4.9), and on the other 
hand, approximate the integral defining J,. by a finite sum, say, the Gauss quad
rature sum. Thus, 

N 

I(kf) ~ Q:(f), Q:(f) = Lf~nlmr(k), (4.10) 
r=O 

where 
n 

f~n} = L C~nlf(x~n))7rr(x~>; w). (4.11) 
11=1 

One can now study two limiting processes: either n and N tend to infinity indepen
dently, or one first lets n---+- oo for fixed N, and then lets N---+- oo. Both are analyzed 
in [70), but the latter is easier. Thus, if/~n) - J,. as n __.. oo for all[ E §"[-1, 1} (some 
appropriate class of functions which could also be singular), then 

lim lim Q: (f) = I(kf), 
N-+oon-+oo 

provided k/w E ~.w[-1, 1) and f E L2,w[-l, 1] n§[-1, 1]. More specialized 
results, under weaker conditions on k, hold for generalized smooth Jacobi weight 
functions (cf. (4.6)). 

The procedure described is not restricted to finite intervals [ -1,1) but applies 
equally well, at least formally, to infinite intervals. 

5. Embedded quadrature rules 

The idea of "embedding" a quadrature rule is to adjoin to the points of the 
given rule a set of new points and assign new weights to all points to produce an 
extended quadrature rule, usually in such a way as to attain maximum polynomial 
degree of exactness. The motivation for this is entirely practical: obtain a better 
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approximation (perhaps for the purpose of estimating the error of the given one) by 
making maximum use of information (function values) already on hand. "Reverse 
embedding" (first proposed by Patterson [45]) consists of deleting points from a 
quadrature rule and redefining in a suitable way the weights of the surviving 
points. The best-known example of an embedded quadrature rule is the Gauss
Kronrod rule. 

5.1. Gauss-Kronrod quadrature rules 

The history behind these rules is rather curious. Kronrod [35] in 1964 had the 
idea of embedding the n-point Gauss-Legendre rule into a (2n + 1 )-point extended 
formula by adding n + 1 new points and redefining the weights to achieve 
maximum degree of exactness 3n + 1 (at least). He found that the n + 1 points 
to be inserted must be the zeros of the polynomial ?T:+I of degree n + 1 which 
satisfies 

(5.1) 

where ?Tn is the Legendre polynomial of degree n. In other words, ?T:+I must be 
orthogonal to all lower-degree polynomials relative to the oscillating measure 
1rn(x)dx. Kronrod in fact computes these polynomials and their zeros for n up to 
40 along with the weights of the extended quadrature formula. It so happens 
that Stieltjes already in 1894 (in his last letter to Hermite), apparently out of 
pure curiosity and certainly not motivated by quadrature concerns, arrived at the 
same polynomial 1r:+t via manipulations involving the Legendre function of the 
second kind. He conjectured that all zeros of 1r:+1 are real, simple, contained in 
[-1,1], and interlace with the zeros of 1rn. It was Szego [97] who in 1935 took 
up Stieltjes's conjecture and proved it, not only for Legendre polynomials, but 
also for Gegenbauer polynomials 1rn(-) = 1rn(·; w-r) with 0 < 1 ~ 2 (orthogonal 
with respect to the weight function w-r(x) = (1 - r)'Y-1/ 2). Here, (5.1) becomes 

1: 1r:+l (x; w'Y)p(x)1rn(x; w'Y)w'Y(x)dx = 0, p E IPn. (5.2) 

Szego's analysis, like Stieltjes's, relies heavily on the Gegenbauer function of the 
second kind and, in addition, on higher monotonicity properties of expansion coef
ficients associated with it. The existence of Szego's work (and hence of Stieltjes's) 
and its relevance to Kronrod extended quadrature rules was pointed out by 
Mysovskih in 1964 and, independently, by Barrucand in 1970. 

Rabinowitz's contributions to Gauss-Kronrod quadrature are theoretical as 
well as empirical. In [61] he proves that for Gegenbauer weight functions w'Y, 
0 < 1 ::::; 2, the extended quadrature rule has polynomial degree of exactness pre
cisely equal to 3n + 1 if n is even, and 3n + 2 if n is odd, unless 1 = I, in which 
case it was known that the degree is 4n + 1. The basic idea of the proof rests on 
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the Fourier expansion 
n 

1rn(x; w"Y)1r~+l (x; w"Y) = L c,11"n+l+r(x; w"Y). (5.3) 
r=O 

One notes indeed that the extended quadrature sum, applied to 

J,(x) = 11"n(x; w"Y)1r~+l(x; w"Y)1rn+l+r(x; w"Y), r = 0, 1,2, ... , (5.4) 

is always zero, so that the error En of the extended rule is given by 

En(fr) = 1: j,(x)w"Y(x)dx. 

Therefore, by (5.3), if 0 ~ r ~ n, one gets 

En(fr) = c,ll7rn+l+rll 2· (5.5) 

It then follows easily that the precise degree of exactness is dn = 3n + 1 + r0, where 
r0 is the smallest index r for which c, =I= 0. Rabinowitz then shows, on the basis of 
Szego's analysis, that r0 = 0 if n is even, and r0 = 1 otherwise. 

The other two theoretical contributions of Rabinowitz are of a negative type. 
The first [67] concerns the definiteness character of Gegenbauer-type Gauss
Kronrod quadrature rules, i.e., whether or not they admit error terms of the form 
const ·f(d,+l)(e). He answers this in the negative for 0 < 'Y < 1 and n 2:: 2. In fact, it 
is known from work of Akrivis and Forster (1] that an open quadrature rule of pre
cise degree dis nondefinite if there exists a function IE cd+l[-1, 1] for which 
/(d+Il 2:: 0, f :f= 0 on [-1,1] and En(!) < 0. Now again, based on Szego's theory, 
Rabinowitz is able to show that, in the notation above, c,0 < 0, so that 
En(fr0 ) < 0 by (5.5) and obviously !~:·+I) > 0. Moreover, the Gauss
Kronrod formula is open if 0 < 'Y < 1. Therefore, the Akrivis-Forster result 
applies with/= j,0 • For 1 < 'Y ~ 2, the question is still open, even though numer
ical evidence in [33] (with regard to the Kronrod nodes lying in ( -1,1)) would sug
gest nondefiniteness also in this case, at least for n ~ 40. The other negative result 
[63, p. 75] is that the n-point Gauss-Jacobi formula does not admit a Kronrod 
extension with all nodes in [-1,1] when n is even and the Jacobi parameters are 
o: = -1/2, -1/2 < {3 < 1/2, or when n is odd and a= -1/2, 1/2 < {3 ~ 3/2. 

The empirical work, done jointly with Elhay and Kautsky [79], seeks to deter
mine numerically the feasibility of extending a Gauss-Kronrod formula once 
more in the manner of Patterson [44, §3.2]. In particular, this is examined for 
Gegenbauer weight functions w"Y, following the approach of [33]. 

5.2. Reverse embedding of quadrature rules 

For deleting one quadrature point at a time, one has the following elegant result 
[81]: Let 

n 

Qn(f) = L Wvf(xv), Wv > 0, 
v=i 
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be a positive interpolatory quadrature rule for I(kf) = fa k(x)f(x)dx, k E L1 [a, b], 
-oo ~ a < b ~ oo, 

f(kf) = Qn(f) +En(/), EnoPn-1) = 0. 

Then there exists a J.L E { 1, 2, ... , n} and a rule 
n 

Q~-t(f) = Lw~f(x~~), w~ ~ 0, 
v=l 
v,;p. 

(5.6) 

which is exact for/ E Pn-l· Here is the proof: Let Dnf denote the (n- l)st divided 
difference off with respect to the points x 1, x2, ••• , Xm 

n 

Dnf := [x,,x2, ·. · ,xn]f = L6~~f(x~~). 
11=! 

Clearly, 

DnPn-2 = 0 (5.7) 

and, in particular, Dn 1 = 0, i.e., 

(5.8) 
v=l 

Since none of the 611 vanishes, there must be positive as well as negative ones. Define 
(one is reminded of the simplex method in linear programming!) 

(5.9) 

Then 

(5.10) 

is the desired rule. Indeed, 
n n 

Q~-1 (f) = L wvf(x~~) - m L 6vf(xv) 
v=l 11=l 

n 

= L(W11 - m6v)f(xv) 

n 

= L:w~f(x~~), 
11=! 

and Wp. -mOP. = 0 While W11 - m011 ~ 0 trivially if 611 ~ 0, and by (5.9) otherwise. 
Further, 

Q~-t (/) - l(kf) = [Qn(f) - l(kf)] - mDnf, 

which vanishes for any f E Pn_2, the first (bracketed) term by assumption (cf. (5.6)), 
and the other by (5.7). 
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The result can be used to generate finitely many positive embedded quadrature 
rules Qn :) Qn1 :) Qn2 :::) • • ·, where n > n 1 > n2 > · · ·, the precision decreasing by 1 
(at least) each time. 

A similar result holds for multidimensional integration rules which integrate 
exactly the first N polynomials of a given sequence; cf. [81, §3]. 

The only thing that matters for reverse embedding is the first N (linearly indepen
dent) polynomials for which a given N-point rule is exact. Hence, if one starts with 
an efficient integration rule (one that does more than a plain interpolating rule, e.g., 
a Gauss rule), one can expect to obtain a sequence with a large gap between the 
degrees of the first and second rule in the sequence. By choosing the high-degree 
rule judiciously, one can even obtain in this way an optimal pair of embedded 
rules, at least in two dimensions. 

6. Cauchy principal value integrals 

There is a dazzling array of papers in which the techniques described in the 
preceding sections are applied to Cauchy principal value integrals 

I(kf; ,\) = 1: k(x) :~~ dx, -1 < ,\ < I, (6.1) 

where k and/ are suitable functions such that (6.1) exists. In some of the papers, 
k = w is a nonnegative weight function, in others a more general, sign-variable, 
function. The latter choice is of interest in connection with singular integral 
equations. The question of existence is discussed in several of these papers. It 
suffices, e.g., that k and f are locally (near ,\) of Dini type and k E L 1 [-1, 1], 
f E R[-1,.1] (bounded Riemann integrable) [73]. 

Many methods for evaluating I(kf; ,\) involve product integration rules 
(cf. section 4), either interpolatory or noninterpolatory, and Gauss-type points as 
interpolation abscissas. Thus, [73] analyzes the convergence of interpolatory 
rules based on Gauss-Radau and Gauss-Lobatto points relative to a generalized 
smooth Jacobi weight w; cf. (4.6). (This generalizes earlier work fork = wand for 
straight Gauss points.) One advantage of using Radau and Lobatto points accrues 
in Nystrom's method for solving integral equations, where they yield directly 
approximations of the solution at one or both endpoints. These are often the 
values of most physical interest. 

The noninterpolatory product integration technique of (4.8)-(4.10) is adapted 
to Cauchy principal value integrals (6.1) in (82] and [76]. In the first of these 
papers, k = w is assumed a weight function and f is expanded in orthogonal poly
nomials with respect to this weight function. This yields in place of ( 4.1 0) the 
approximation 

N 

I(wf; A)~ Q: (J; -\), Q: (J; -\) = L f~nlq,(,\; w), (6.2) 
r=O 
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where q, are the functions of the second kind, 

11 11"r{x;w) 
q,(.A; w) = J_1 x _ ..\ w(x)dx, r = 0, 1,2, ... , 
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(6.3) 

and/!"> some quadrature approximations of the Fourier coefficients. These need 
not necessarily be the Gauss formulae, as in (4.11), but could, e.g., be Gauss
K.ronrod formulae as in [68], providing higher accuracy. The functions q, in (6.3) 
satisfy the same recurrence relation as the orthogonal polynomials 1r, but with 
different starting values, q_1 = -1, q0 = q0(..\; w). The convergence of Q~ for 
f E R[-1, 1] as n and N tend to infinity is studied in [82] via appropriate 
Christoffel-Darboux formulae for 1r, and q,. 

In the second paper [76] the same expansion off (in orthogonal polynomials 
1r,(·; w)) is used, but in the more general integral (6.1) with k i w. This now 
requires integrals 

i 1 1r,(x; w) 
q,(,\; k, w) = _1 k(x) x _ ,\ dx, r = 0, 1,2, ... , (6.4) 

which happen to satisfy the same three-term recurrence relation as before, but with 
inhomogeneous terms involving the modified moments m,(k) = J2 1 k(x)1r,(x; w)dx. 
Yet another interesting use of modified moments! The convergence theory fork can 
be reduced to the previous one for w, following ideas of Criscuolo and Mastroianni 
[6]. 

Piecewise linear approximation off in (6.1), or of [f(x)- f(,\)]/(x- ..\)in the 
usual decomposition 

l(kf; ..\) = 1: k(x)f(x~ =~(,\) dx + f(,\)I(k; ..\), 

is studied in [71], and more general spline approximation {in the case k = w) in 
[77]. 

Kronrod extensions of Gauss and Gauss-Lobatto rules for (6.1) {with k = w) 
have also been derived [63], but they are not without numerical difficulties. 

7 ~ Multidimensional integration 

There are two papers of Rabinowitz (one jointly with N. Richter [83], the other 
with F. Mantel [39]) which deal with integration over two- and three-dimensional 
domains. In applications, such as integral equations or inner product evaluations in 
Gram-Schmidt orthogonalization procedures, where the ultimate goal is much 
larger than just computing integrals, it is important to keep the number of inte
gration points as low as possible while still maintaining a sufficient degree of 
accuracy. The construction of such minimum-point cubature rules is greatly 
simplified (but still a formidable task!) if the domain of integration is fully 
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symmetric, i.e., closed under sign changes and permutations of the coordinates and 
the search is restricted to cubature rules exhibiting the same symmetry. Typical 
examples of fully symmetric domains are the cube, the sphere, and the entire 
space. In the latter case, there is usually a spherically symmetric, positive weight 
function involved. These are also the domains of most importance in practice. 

For fully symmetric domains, it is natural to employ fully symmetric cubature 
rules. These are rules whose points consist of the union of fully symmetric sets, 
each set having a single weight associated with it. That is, 

j k f(x, y)dxdy = t. w, ~ f(g,) + R(f), (7.1) 

where the points gn are called the "generators" and the inner sum is extended over 
the fully symmetric set generated by gn. For a "good" formula (7.1) one wants 
gn E int(D), and Wn > 0, for all n. 

Fully symmetric formulae for the square with a minimum number of points, 
which are exact up to degree 7, have already been given by Hammer and Stroud 
[34] in 1958. In [83] fully symmetric, odd-degree formulae are constructed which 
are exact up to degree 15, not only for the square, but also for the circle and for 
the entire plane with weight functions exp ( -r2) and exp (-r), where 
r = ..jx2 + y2• For those formulae that are not good in the above sense, additional 
generators are judiciously added to make them so. The determination of the struc
ture of formulae (7 .1) having the minimum number of points for a given degree of 
exactness is an intricate problem, not to speak of the actual solution of the moment 
equations that it entails. 

The procedure of constructing fully symmetric cubature formulae of arbitrary 
(odd) degree, with a low number of points, in two and three dimensions is placed 
on a firm foundation in the important paper [39]. The construction involves several 
phases: First, one needs to determine the structure of the formula, i.e., the type of 
generators and the number of generators of each type, before one can set up the 
nonlinear (moment) equations expressing the exactness condition. Therefore, con
ditions need to be worked out insuring the consistency of the equations, which take 
on the form of inequality constraints. At this point one is ready to attack the main 
problem: minimizing the number of evaluation points subject to the consistency 
constraints. This is formulated and solved by an integer programming problem. 
Having thus determined all consistent structures of fully symmetric cubature 
rules with the same minimum number of points, one then faces the arduous task 
of numerically solving, whenever possible, the nonlinear moment equations. 
Finally, if one insists on good rules, one has to reexamine those that turn out 
not to be so by the above procedure. All this has been carried out for the three 
prototype domains described above, now both in two and three dimensions, and 
has helped in bringing new order and classification into the multitude of fully 
symmetric cubature formulae. Many old ones have been thus recovered, and new 
ones discovered, such as 9th-degree 3-dimensional formulae for the three domains 
considered. 
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8. For the connoisseur 

Any extensive body of work, such as Rabinowitz's, is bound to contain some 
precious pearls. One such was already mentioned in section 5.2; I now describe 
two more. 

In [19] the question is raised as to whether there exists a quadrature formula of 
the type 

100 f(x)dx = ~ wvf(xv) + cf(k)(e), 0 < e < oo, (8.1) 

valid for all f E Lt[O, oo) n Ck(O, oo), where cis some constant and k a suitable 
integer. It is shown that the answer is "no", even if one allowed 'the error term 
to consist of a finite number of terms cd<k1>(e;). Here is the proof: One has 

loo f(x)dx = r looo f(rx)dx, r > 0. (8.2) 

If (8.1) were true, then (8.1), (8.2) would imply 

100 f(x)dx = r ~ Wvf(rX11 ) + crk+lf(k)(fJ, 0 < e < 00. 

Choose any f which together with f(k) is bounded on [0, oo) (for example, 
f(x) = (1 + rt1) and let r l 0 to get a contradiction! Note that the integral in 
(8.1) is a simple integral with weight function w =I. For weighted integrals over 
(0, oo), the result clearly does not hold, as the Gauss-Laguerre formula shows. 

The second example of delightful work concerns geometric properties of Gauss 
quadrature rules [16]. Classical asymptotics for Jacobi and Laguerre polynomials 
can be applied to the respective Gaussian nodes and weights and the results reinter
preted in geometric terms. Thus, in the case of Jacobi weight functions 
w<cr,/1)(x) = (1 - xt(l + x).B, a> -1, {3 > -1, the following asymptotic equiva
lence is shown for the nodes x~n) and weights w~> of the n-point Gauss-Jacobi 
quadrature formula, as n -t oo: 

(n) V nwv l ( (n))2 
1TW(a,{J) (x~")) "" - Xv ' v = 1,2, ... ,n. (8.3) 

In other words, suitably normalized Christoffel numbers, if plotted over the respec
tive Gauss nodes, lie on a circle, asYI_j'totically as n -t oo. This is illustrated in 
figure I, where I plotted the points ( 1 - ~. nw11/(1Tw(o,8)(x11 ))), v = 1, 2, ... , n, 
for a, {3 = -0.75(0.25)1.0, {3 ~a, on the left for n = 20(5)40, and on the right 
for n = 50(15)80. The same circle theorem holds for Gauss-Jacobi-Lobatto quad
rature, and it is conjectured, "with meager numerical evidence at hand", that it also 
holds for the Radau formula. Plots analogous to those in figure I indeed confirm 
that. I was also intrigued by the authors' suggestion that a circle theorem may 
hold for a much wider class of weight functions on [-1,1]. This is indeed the case 
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/ 
( 
-l () 

Figure 1. The circle theorem for Gauss-Jacobi quadrature. 

and follows from more recent asymptotic results of Nevai [40, theorem 6]. (I am 
indebted to Professor Nevai for this remark.) For example, (8.3) will hold for fnen
eralized smooth Jacobi weight functions (cf. (4.6)) for allv and n such that x;l is 
contained in a compact subset of the punctured interval [-1,1] (with the singular 
points removed). Before I knew about Nevai's result, I was experimenting with 
another set of Gauss formulae, namely those belonging to the numerator poly
nomials of order 1 associated with the Jacobi weight function. (The respective 
orthogonal polynomials are easily obtained from the three-term recurrence 
relation of the Jacobi polynomials by shifting down the indices of the coefficients 
by l.) I prepared plots analogous to those of figure 1, but made the mistake of 
dividing on the left of (8.3) not by the true weight function w (which would be dif
ficult to compute), but simply by the Jacobi weight function w<a • .Bl. What I got was 
the picture in figure 2. True, the picture is erroneous, but pretty nevertheless! The 
correct picture would actually be similar to the one in figure l, as follows from 
Nevai's result mentioned above. 

For weight functions on the half-infinite interval, specifically the generalized 

Figure 2. A butterfly "theorem" for associated Jacobi weights. 
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Laguerre weight w<a>(x) = xae-x on [O,oo), there holds a "parabola theorem" [16, 
equation (15)], in the sense that 

vnwi"> !(,;) ----=-...::...,.-.=- ,..., Y x~·, 
nw<a)(x~")) v ' 

v = 1, 2, ... , n; n -+ oo. (8.4) 

Here again, it is likely that this result extends to a more general class of weight 
functions. 

Another theorem in [16], called the "trapezoid theorem", states for the same 
weight functions as before that, asymptotically as n -+ oo, 

w~"> 1 1 <n> <n> I 
w(x~n}) f"V 2 xv-l - xv+l ' (8.5} 

as long as the nodes involved remain in the interior of the basic interval in question. 
For improvements of (8.5), see [24, equation (2.31)], [46, §4]. 

9. Expository writings 

The work that stands out among all expository writings of Rabinowitz is the 
monograph on numerical integration, written jointly with P.J. Davis. This 
first appeared in 1967 as a modest text of some 230 pages [18], but immediately 
gained wide appeal. It was thoroughly overhauled in 1975, when it appeared, 
doubled in size, under a new title [20]. A second enlarged edition [21] came out 
in 1984. The book has taken its place among the leading reference works on 
numerical integration, both one- and multidimensional. To describe its qualities, 
I can do no better than quote from my review of the 1975 edition in Mathematical 
Reviews (MR 56 #7119): "Its outstanding features continue to be the thorough 
coverage of the research literature, the balanced treatment of many diverse 
points of view, both theoretical and practical, the excellent choice of illustrative 
numerical examples, the strong orientation toward computer implementation, 
and the inimitable delightful prose of the authors, which, although informal at 
times, is always informative and enlightening." If anything, the second 1984 
edition reinforces these qualities, and with its extensive bibliography of over 
1500 items has become indispensable as a reference work to students and 
researchers alike. 

Among the text books one must mention the second edition of Ralston's book 
on Numerical Analysis [92], which was written jointly with Rabinowitz. It has 
become one of the standard introductory texts in Numerical Analysis. There is 
also a book on Nonlinear Equations [57] edited by Rabinowitz, to which he con
tributed a useful bibliography [58]. A number of survey articles were written or 
coauthored by Rabinowitz; some of the early ones on orthogonalization [15], 
linear programming [53] and approximation [56] have already been mentioned. 
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Others are [60] on Cauchy principal value integrals and [78] on recent progress in 
extrapolation methods. Finally, there is an extremely useful and scholarly com
pilation of cubature formulae [5] for cubes, spheres, simplices, and the entire 
space, which updates and complements the listings in the 1971 book of Stroud 
[96]. 
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A summary is given of Luigi Gatteschi's contributions to iterative algorithms generalizing 
the arithmetic-geometric mean algorithm, and to Chebyshev- and Gauss-type quadrature 
formulae. 

1. It is customary at honorary meetings such as this to give a talk on one's recent 
research accomplishments. I have decided not to follow this practice and, instead, 
use this auspicious occasion to reflect on the work of the honoree, Luigi Gatteschi. 
After all, it is him that we honor, and it seemed appropriate to me to let his accom
plishments take center stage. 

It is hardly possible, of course, for anyone to be completely familiar with some
one else's lifetime achievements, especially if they are as varied at Gatteschi's, and 
even less possible to summarize these in the short span of one hour. I will therefore 
concentrate on Gatteschi's work on Special Functions and Numerical Analysis, 
with which I am more familiar, and regretfully have to leave aside his voluminous 
work on asymptotics and estimation of zeros of special functions. 1 This is not to say 
that Gatteschi's work on these latter topics is completely unrelated to his work in 
numerical analysis. On the contrary, there is a close bond between these two topics, 
each supporting, and being motivated by, the other. 

2. When one looks at a mathematician's life-time work, one cannot ignore the 
roots where he is coming from: What was the academic environment in which he 
grew up and in which his views on, and attitudes about, mathematics were 
shaped? Who were the major mathematical figures who had a direct and lasting 
influence on him, be it in the acquisition of the mathematical craft, in the forma
tion of mathematical taste, or in the development of research areas? I think it is 
relatively easy to answer these questions in the case of Gatteschi. He was definitely 
a product of the famous Tuscan school of mathematics, of its strong tradition in 
analysis fostered in Pisa by such great masters as Luigi Bianchi and Ulisse Dini, 
and continued in Florence by Giovanni Sansone. It was here in Florence, where 

1 Some of this work, however, is being reviewed by R. Wong [52]. 

© J.C. Baltzer AG, Science Publishers 
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Gatteschi acquired a solid foundation in classical analysis and a deep appreciation 
for clarity of thought and simplicity of exposition, which were to become the trade
marks of his writing. It is here also, where he eventually fell under the spell of 
Sansone, who was to guide him in his first research activities. These happen to con
cern some problems in number theory, in which Sansone was interested at the time. 
Much later, in 1982, when Gatteschi wrote a commemorative account of Sansone 
[26], he commented with modesty that he was able to make only little progress on 
the problems Sansone suggested to him. No wonder, because one of them was to 
prove the irreducibility over the rationals of Legendre polynomials (excepting the 
trivial cases of odd-degree polynomials), a problem which, to the best of my know
ledge, is still open today! 

After a brief stay at Stanford, where he encountered Gabor Szego and followed a 
seminar of Johannes Vander Corput, and after three more years in Bari, Gatteschi 
moved to Turin, where he entered another renowned school of analysis, one that 
was founded by Lagrange and at the time had Francesco Tricomi as one of its pro
minent exponents. Tricomi, an analyst of unusual versatility, that included a strong 
interest in special functions, had just returned from a stint in the United States, 
where he collaborated on the Bateman project. He must have brought back with 
him a sense of the utility of special functions and of the importance of actually 
being able to compute them, with rigorous and realistic bounds for the error. I 
think it was Tricorni who instilled in Gatteschi an awareness of the constructive, 
algorithmic, and utilitarian side of mathematics. The desire to produce mathe
matics that is at the same time rigorous and applicable has certainly been one of 
the driving forces behind Gatteschi's work. 

I will concentrate on two general areas in which Gatteschi has been active: 
Iteration and Numerical Quadrature. Special functions, as we will see, are inti
mately tied to both these areas, a feature that may well have attracted Gatteschi 
to these problem areas in the first place. 

3. Iterations, say of the form 

(1) 

have exerted a great deal of fascination among mathematicians and scientists alike, 
not only because of their importance in dynamical systems, but also because of 
their constructive, computational qualities. What is especially intriguing is the 
enormous diversity of phenomena they are able to describe: from completely 
chaotic behavior and patterns exhibiting fractal-like structures, to extremely 
regular behavior characterized by rapid convergence. 

Among iterations (1) in which/ and g are both homogeneous of degree l, the 
best known is Gauss's algorithm of the arithmetic-geometric mean, 

Xn+l = ~ (xn + Yn), Yn+l = JXYn, Xo > 0, Yo > 0 (2) 

(actually already studied by Lagrange in 1784). Special functions -indeed elliptic 
functions - make their appearance when one tries to study the convergence of the 
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iteration. Assuming 0 < y0 < x0 = 1, which by symmetry and homogeneity does 
not restrict generality, Gauss in fact has shown that 

l. l" 7r 1 
1m Xn = lffi Yn = - r:--::2. ' 

n->oo n->oo 2 K( V 1 - Y5) 
(3) 

where 

0 < w < 1, (4) 

is the complete elliptic integral of the first kind. A beautiful connection, indeed, 
between iteration and special functions! The algorithm is also of considerable 
interest to numerical analysts, as it converges quadratically and hence provides a 
fast and powerful algorithm to compute elliptic integrals. 

What is remarkable about this algorithm is the fact that very minor changes in 
(2) may produce significant changes in the behavior of the iteration, echoing 
perhaps its propensity to chaotic behavior. One such minor change is to replace 
Xn in the geometric mean of (2) by Xn+l· This gives rise to what is now called 
Borchardt's algorithm, 

Xn+l =! (xn + Yn), Yn+l = )xn+lYn, Xo 2 0, Yo 2 0, (5) 

which, incidentally, was discussed by Borchardt in a letter of 1880 addressed to the 
Italian geometer Cremona to honor another Italian geometer, Chelini. (Interest
ingly, as was pointed out by Gatteschi in an article describing Fubini's juvenile 
mathematical work [25], Gauss in 1800 was already aware of this possible modifi
cation and wrote to Pfaff about it in a letter that has not been preserved. Pfaff's 
reply, however, eventually became widely known after publication of Volume 10 
of Gauss's works in 1917, that is, 37 years after Borchardt's letter.) The iteration 
(5) still has a common limit, which now, however, involves elementary functions, 
for example, if 0 ::; x0 < Yo, 

. . vro-x5 
hm Xn = hm Yn = 1 , 

n->oo n->oo cos- (xo/Yo) 
(6) 

and a similar limit involving the inverse hyperbolic cosine if 0 ::; y0 < x0 . More
over, convergence is no longer quadratic, but only linear. 

The algorithm (5) has a nice geometric illustration in terms of regular polygons. 
(Borchardt already mentioned this connection.) Let r be the radius of the polygon 
and a its apothem, i.e., the length of the perpendicular dropped from the center to 
any one of the sides (see figure 1 ), and let r', a' be the analogous quantities for the 
polygon with twice as many sides but the same perimeter. Then 

a' =!(a+ r), r' = #r, 
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Figure 1. Geometric illustration of Borchardt's algorithm. 

as can be verified by elementary geometry. These are exactly the relations under
lying (5). If we take the common perimeter to be equal to 2 and start with the 
2-gon, for which a= 0, r = !, we arrive at the algorithm (5) with x0 = 0, y0 = !, 
hence with the common limit equal to !I !1r = lj1r. (Although this sequence con
verges to 1r-l only linearly, there are other iterations which are known to converge 
quadratically to 1r; see, e.g., [8]. Euler's constant/, in contrast, seems to be a more 
difficult constant [46] in that no iterations are known that would converge quad
ratically to 1; indeed, it is not even known whether 1 is irrational [2].) 

4. In [16], Gatteschi asks what would happen if in Gauss's arithmetic-geometric 
mean algorithm one were to replace the arithmetic mean by a more general 
weighted mean: 

1 
Xn+l=k(xn+(k-l)yn), Yn+t=JXYn, n=0,1,2, ... ,k~l. (7) 

This seems to be an intractable problem, and even today, not much is known about 
the limit, if k i= 2. Gatteschi, on the other hand, discovers that a slight modification 
"a la Borchardt", which was suggested to him by Tricomi, namely 

1 
Xn+l = k (xn + (k- 1 )Yn), Yn+l = Jxn+IYn, n = 0, 1, 2, · · ·, (8) 

becomes indeed manageable. But not without effort! What is required are entirely 
new transcendental functions that generalize the trigonometric functions cosine 
and sine. 

We saw in §3, equation (6), that the cosine function governs Borchardt's algo
rithm, which is (8) fork = 2. Now cos ..fix is a solution of the functional equation 

¢(2x) = 2¢2(x)- 1, (9) 

indeed the unique solution that is analytic and even, and satisfies 

¢(x) = 1 - x2 + · · · . (10) 

The transcendental function that Gatteschi needs, to deal with (8) fork i= 2, is like
wise a solution of a functional equation, namely 

¢( ..fikx) = k¢2(x) + 1- k, k ~ 1, (11) 
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~r+------+--------r-------r------~----------~ 

0 10 l$ 20 

Figure 2. Gatteschi's function <I>b k = 1.5, k = k0 , k = 1.8. 

and again the unique solution that is analytic, even, and satisfies (10). He denotes 
this solution by <I>k(x) and proves that it is an entire function, just like 
<I>2(x) =cos ../2x. He also introduces the companion function 
\llk(x) = -<I>k:(x)J../2, which fork= 2 becomes \ll2(x) =sin V2x. Because of the 
importance of these functions in connection with (8), Gatteschi in [16] prepares 
tables for them and graphs, one of which is reproduced in figure 2. Subse
quently, in [17], he gave a detailed analysis of their properties for real x and real 
k > !· (Note that k =!yields the trivial solution¢= 1 of (11).) If!< k :s; 1, the 
function <I>k(x) decreases monotonically for x > 0, but remains positive. If k > 1, 
the function becomes eventually oscillatory in a rather complicated way, the 
character of oscillation depending on whether 1 < k < k0 , k = k0 , k0 < k < 2, or 
k > 2; here, ko = ( 1 + v5) /2 - yet another unexpected appearance of the golden 
ratio! 

5. Returning to the iteration (8), Gatteschi assumes that 

Yo> 0, xo > (1-k)Yo· (12) 

It is clear from (10) that <I>k(x) initially decreases, and Gatteschi in fact proves that 
fork> 1 there is a p > 0 such that <I>k(x) decreases on 0 < x < p and has a local 
minimum at x = p, where <I>k(JL) = 1 - k. 

Now suppose first thatx0 < y0 . Then, by (12), one has 1- k < x0Jy0 < 1. There
fore, from what was just said about <I>k> we can write 

xo 
- = <I>k(a0), 0 < a::0 < p, 
Yo 

(13) 
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where a0 in the interval shown is uniquely determined. Gatteschi then shows that 
(8) has the common limit 

l. 1" wk(ao) ( ) 1m Xn = 1m Yn =Yo ;;:;, Xo < Yo · 
n-+ oo n-+oo y 2a0 

( 14) 

If, on the other hand, y0 < x0, then cflk and wk in (13), (14) have to be replaced by 
the "hyperbolic" functions cflk:(x) = cflk(ix) and wZ(x) = (1/i)wk(ix), respectively. 

A further natural generalization of (8) is to introduce "weights" also in the geo
metric mean, that is, to consider 

- p 1-p 
Yn+i - xn+tYn , n = 0, 1, 2, ... , (15) 

where k > 1 and 0 < p < 1. Gatteschi observes that this iteration can be treated 
analogously as above, the appropriate functional equation now being 

1{ C: p)P x) = kcj}/(i-p)(x) + 1- k, ( 16) 

defining a function cflk,p(x) of two parameters. 
One cannot help wondering how these new transcendental functions fit into the 

framework of classical special function theory. Are they subsumable to hyper
geometric functions or generalized hypergeometric functions? My guess is that 
they are not. Do they satisfy an algebraic differential equation or are they like 
the gamma function, deprived of any such equation? I don't know. 

6. An interesting application of iterations of the kind described is given by 
Gatteschi in [18], where he proposes to use them for computing infinite products 

00 

IT (I - aqn), jqj < 1 ( 17) 
n=O 

(where, for convergence, it is assumed that 1 - aqn =/= 0 for all n 2:: 0). These pro
ducts are fundamental in the theory of generalized hypergeometric functions, just 
like the gamma function is fundamental in the theory of hypergeometric functions. 

By an ingenious modification of the elementary arithmetic-harmonic mean 
algorithm 

2 
n = 0, 1,2, ... (18) Yn+l = 1 1 ' 

-+-
Xn Yn 

(which is known to converge for any x0 > 0, y 0 > 0 to the geometric mean Jx0 y0 ), 

Gatteschi arrives at a family of iterations depending on an arbitrary parameter 
~ =/= 1: take x0 , Yo such that 

xo- l a -- ---

Yo l- ~ 
( 19) 
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and iterate according to 

Xn+I = Xn eYn + (1 - Oxn } 
Yn n = 0, 1, 2, ... , 

Yn 
(20) 

Yn+I = Xn+l QXn +(I _ q)yn 

where a and q are the parameters in (17). It turns out that both sequences again 
have a common limit, 

= 
X= lim Xn = lim Yn = x0 IJ(l - aqn). 

n-+oo n-+oo 
n=O 

(21) 

Thus, if x 0 =f. 0, the infinite product (17) can be computed as X/ x0 . 

But how should the parameter e be chosen? Gatteschi's answer is one that one 
would expect of a numerical analyst: Arrange things so that the limit X in (21) is 
about halfway between Xn and Ym at least for n sufficiently large. That led 
Gatteschi to investigate the ratio (X- xn)/(Yn- X), and he was able to prove, 
using a theorem of Cesaro on the equivalence of two limits, that 

1. X- Xn ~- 1 
lm =---

n-> oo Yn - X 2 - q - ~ 

Putting this equal to 1 yields the desired value of e, 
3-q 

e=-2-. 

The initialization (19) then becomes 

Xo 1 + 2a- q 
Yo 1- q 

(22) 

(23) 

and x0 =f. 0 requires that 1 + 2a- q =f. 0. This, however, is no serious restriction, 
since, if 1 + 2a- q = 0, then a*= aq satisfies 1 + 2a*- q = (1 - q)2 =f. 0, and 
one simply uses 

00 00 00 

IJ(l-aqn) = IT(l-a*qn-1) = (1-a) IJ(l-a*qn). 
n=O n=O n=O 

By design, the average ln =! (xn + Yn) is a better approximation to X than either Xn 
or Yn· 

When both a and q are real, say in the interval ( -1, 1) (which is no essential 
restriction, since aqn E ( -1, 1) for n sufficiently large), then Gatteschi shows that 
the sequences { xn}, {Yn} defined by (20)-(23) enjoy simple monotonicity proper
ties, asymptotically for large n, provided the signs of x0 and y0 are chosen 
appropriately. 

Gatteschi's iteration (20) has been used by Allasia and Bonardo [1] in 1980 to 
produce extensive 20-digit tables of the infinite product (17) and related products. 
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7. Gauss, with his arithmetic-geometric mean algorithm, provided the primary 
motivation for Gatteschi's work on iteration, although there were stimuli coming 
from other mathematicians such as Borchardt and, above all, Tricomi, that 
helped him along. It so happens that Gauss is also the prime inspirer of Gatteschi's 
work on quadrature, with two other eminent mathematicians - Chebyshev and 
Bernstein close behind. I am referring, of course, to Gaussian quadrature rules 
and Chebyshev quadrature formulae. As I see it, Gatteschi's work on the latter 
is more substantial and important, and I therefore start with it. 

8. The concern here is with quadrature formulae of the form 

(24) 

on a finite or infinite interval (a, b) involving a nonnegative weight function wand 
having, as shown, all weights equal to en. It is furthermore required that all nodes 
xSn) be simple and real, and contained in [a, b], say 

a < X(n) < x(n) < · · · < x(n) < x(n) < b· 
- n n-1 2 I - ' 

one usually assumes that the degree of exactness is n, i.e., 

R;((J) = 0 whenever/ E lPn-

(25) 

(26) 

(Here, lPn denotes the class of polynomials of degree ::; n.) Occasionally, other 
degrees d of exactness - both d < n and d > n - are also considered. When 
(a, b) is infinite, one must assume, of course, that the integral on the left of (24) 
exists, e.g., that w has finite moments of all orders. 

Note that if (24) has degree of exactness d ~ 0, in particular if (26) holds, then 
taking/= 1 in (24) immediately gives 

c -flo fLo = lb w(x)dx. (27) 
n- n' 

Chebyshev's work [9] in 1874 was inspired by what is today known as the Gauss
Chebyshev formula- the Gaussian quadrature on [-1, 1] with weight function 
w(x) = (1- ~r'/2 - which Chebyshev ascribed to Hermite and which indeed is 
a formula of the type (24) with en= 1rjn, having degree of exactness d = 2n- 1. 
Can something similar be done in the case w( x) = 1 on [ -1, 1 ], hence en = 2/ n? 
Chebyshev found that this is indeed the case when n = l, 2, ... , 7, constructing a 
formula (24) for which (25), (26) is satisfied. He even computed the nodes xsn) to 
six digits, but did not say why he stopped at n = 7. His motivation for being inter
ested in equal weights was one of numerical stability: The influence of random 
errors in the function values upon the quadrature sum is minimized when all 
weights are equal. It is probably more accurate to say that this is a good excuse 
for studying such formulae! Indeed, nearly equal weights would do as well, for 
all practical purposes, but would deprive the theory of Chebyshev quadrature 
from much of its mathematical charm. Today, these formulae, particularly also 
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their analogues in higher dimensions, are more important in combinatorics because 
of their relevance to spherical designs [50,41]. They also play a role in electrostatics 
[40]. 

I mentioned that Chebyshev stopped at n = 7 without explanation. It was Radau 
[51] who six years later showed that when n = 8 the relations (24) (with w(x) = l on 
[ -1, l]) and (25), (26) are incompatible, in that some of the nodes are necessarily 
complex. He did discover, however, a valid formula for n = 9. It took some fifty 
years until Bernstein [6] in 1937 proved that the formulae found by Chebyshev 
and Radau are in fact the only ones possible. 

A large part of the theory of Chebyshev quadrature, therefore, is concerned with 
questions of existence and nonexistence, for one weight function w or another. It is 
easier to prove nonexistence, since it suffices to derive necessary conditions for 
(24)-(26) to hold; violation of a necessary condition implies nonexistence. 

One such necessary condition was put forward by Bernstein, who compares the 
n-point Chebyshev formula (24) with the m-point Gauss formula for the same 
weight function w, 

l f(x)w(x)dx ~ t. ?£ml/(e£ml) + R~(f), (28) 

Here the nodes ~~m), ordered again decreasingly as 

a < c(m) < c(m) < ... < c(m) < c(m) < b 
<,m "'m-l "'2 '-,[ ' (29) 

are the zeros of the mth-degree orthogonal polynomial relative to w, and ~~m) the 
corresponding Christoffel numbers (known to be all positive). Then Bernstein's 
necessary condition is the following: If (24) has degree of exactness d =2m- 1, 
m < n, then 

Cn ~ ~~m). (30) 

(Actually, Bernstein derived this condition only in the case w(x) = 1 on [-1, 1], but 
his method extends trivially to arbitrary nonnegative weight functions, yielding the 
more accurate condition en ~min (r~m), ~~ml).) 

It is readily understood why a condition such as (30) would interest Gatteschi: it 
calls for a deep study of Christoffel numbers, and hence indirectly of zeros of ortho
gonal polynomials. In particular, one needs sharp inequalities for these quantities if 
one wants to refute (30) and arrive at realistic nonexistence results. Gatteschi's 
expertise on such matters thus finds here a wide-open field of application! He 
indeed has made profound use of the inequality (30) and also extended it to deal 
with more general quadrature formulae, as we will see shortly. 

9. To begin with, it is natural to expect that something similar to what Bernstein 
proved for w(x) = 1 should hold also for ultraspherical weight functions 
w(x) = w"(x) = (1- x2)"-112 on [-1, 1]. Gatteschi in [13] indeed uses Bernstein's 
inequality (30), in combination with delicate monotonicity and limit results of 
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0. Szasz and M.T. Vacca concerning local extrema of ultraspherical polynomials, 
to show that, at least for A > 0 (for A < 0, see [lO, 11]), there is for every A an integer 
n0 (>.) such that for all n > n0 (>.) the Chebyshev quadrature formula (24)-(26) for 
w = w>. does not exist. Actually, he proves something rather more precise: For 
the Chebyshev formula to exist, it must be true that 

(31) 

where C >. is the constant 

(32) 

with h+t;2 being the first positive zero of the Bessel function JA+I£2· Since 
the ratio of the r-functions in (31), as n---+ oo, behaves like l(n + 2)/2J >-+I, and 
A> 0, it is clear that (31) cannot hold for n sufficiently large. It would be easy, 
from (31), (32) to determine the above n0 (>.) explicitly for any given A> 0. 
Gatteschi in fact does this for A= l/2 (i.e., w>.::::::: 1) and obtains n0(1/2) = 13 
instead of the sharp n0 (1/2) = 9 proved by Bernstein. 

Fifteen years later, Gatteschi in [34], together with Vinardi, returns to this prob
lem and in the case 0 < A< 1 brings into play extremely sharp inequalities for zeros 
of ultraspherical polynomials, which are obtained by an imaginative use of the 
Sturm comparison theorem. Together with corresponding, equally sharp, inequal
ities for Christoffel numbers, Gatteschi and Vinardi obtain new necessary con
ditions for the n-point Chebyshev formula to have degree of extactness d. In the 
classical case A= 1/2, the condition becomes 

4n 
(d + 1)(d + 3) < z-(.) = 14.8415227 ... n, (33) 

J 1 Jo 

where J 1 is the Bessel function of order 1 andj0 the first positive zero of J0 • If one 
takes, as in (26), by symmetry, 

{ 
n if n is odd, 

d= 
n + l if n is even, 

(34) 

then (33) is false for n = 8 and for n 2:: 10, which precisely recovers Bernstein's 
result. For more general A and d, in place of (33), they also obtain the necessary 
condition 

d + l < p(>.)n11(2A+1), 0 < >. < l, (35) 

where p(>.) is computable in terms of gamma functions, Bessel functions of order 
). + 1/2, and the first positive zero of the Bessel function J>-_ 112 • This, too, in 
case >. = 1/2, reduces to - in fact, sharpens - Bernstein's well-known inequality 
d < 4n112, replacing the factor 4 by 2/J1 (j0 ) = 3.852469 .... 
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Nonexistence results for Jacobi weight functions wa,,a(x) = (1 - xt(l + x),a 
on [-1, 1], have been proven, a few years after Gatteschi's 1963/64 paper, by 
A. Ossicini [47] for all parameters o: > -1, f3 > -1 outside the square 
-1 < o: ::; -1/2, -1 < f3 ::; -1/2. For Laguerre and Hermite weights, Gatteschi 
[14] already in 1964 proves nonexistence for all n 2': 3 and n 2': 4, respectively. 
(He has been preceded, however, by Krylov [42], who proved the same in 1958, 
also using Bernstein's method.) 

10. The Chebyshev quadratures so far considered are typically open quadrature 
rules, in that all nodes are contained in the interior of the interval of integration. 
When, in the mid 1970s, Gatteschi asked what happens when one imposes nodes 
at the endpoints, perhaps even multiple nodes, and requires that only the interior 
nodes have constant weights associated with them, he entered completely 
uncharted territory. While analogous results were to be expected, the technical 
tools to derive them did not exist and had to be developed from scratch. In parti
cular, the method of Bernstein had to be appropriately generalized. 

This was done, in the general case of multiple endpoints, in Gatteschi's paper [21] 
and applied there to Jacobi weight functions with the expected nonexistence for n 
large enough proved also for closed Chebyshev quadrature formulae. Simple end
points and the case of ultraspherical weight functions were treated jointly with 
Monegato and Vinardi in [36], and more definitively, in joint work with Vinardi 
[34]. There, one finds a particularly elegant extension of Bernstein's inequality, 
which I would like to briefly describe. 

11. The formula to be considered in place of (24) is now 

(36) 

_ l < _x(n) < _x(n) < ... < _x(n) < _x(n) < 1 
n n~i 2 I ' 

where, for the sake of definiteness, the interval is taken to be [-1, 1] and w(x) 
assumed a nonnegative even weight function. In analogy to Bernstein's method, 
one now associates with (36) the (m + 2)-point Gauss-Lobatto formula 

L f(x)w(x)<b: = <>mlf( -I) +/{I)] + ~ -rLm) /(~m)) + R~L(f), 
(37) 

- 1 < c(m) < c(m) < ... < c(m) < c(m) < 1 
<,m <,m-I <,z <,J ' 

for which 

RGmL(J) = 0, 11 f 1l1l a E lL2m+l· (38) 

It is well known that the nodes ~1m) in (37) are the zeros of the polynomial of degree 
m which is orthogonal relative to the weight function w(x)(1- x2), and the weights 
'Y1m) are expressible in terms of the corresponding Christoffel numbers divided by 
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1 - [~1m)f It is much less obvious how Bernstein's necessary condition (30) has to 
be adapted to (36) and (37). Gatteschi and Vinardi (34], however, using interesting 
techniques (among which a result of Erdos and Tun1n on interpolation), succeed in 
establishing the simple and elegant necessary condition 

2an +cn(l +~~m)) < 2am +i~m)(l +~im)), 

assuming that (36) has degree of exactness d =2m+ 1, m < n, 

R~(.f) = 0, all f E 1P2m+l' m < n. 

For (36) to be a closed Chebyshev formula requires, by symmetry, 

R~(f) = 0 if{/ E 1Pn+2• n odd, 
f E 1Pn+3• n even. 

(39) 

(40) 

(41) 

Thus, in (40), one takes m = (n + l)/2 ifn is odd, and m = (n + 2)/2 ifn is even, to 
arrive at a necessary condition for the existence of a closed Chebyshev formula. 
This is carried out by Gatteschi and Vinardi in the case of ultraspherical weight 
functions w~ with 0 < A< 1. The same very sharp inequalities for zeros and 
Christoffel numbers that led to the condition (33) are again brought to bear on 
this new problem. They produce results which, while not simple, nevertheless 
allow the conclusion that, in the classical case A = 1/2, the condition (39) is 
violated if n = 24 and n ?_ 26. Combined with numerical tests, this then implies 
that the formula (36) for w(x) = l, satisfying (41), can only exist if 1 .::; n.::; 11. 
The respective formulae, indeed, have previously been calculated in joint work 
with Monegato and Vinardi [36]. 

Half-open Chebyshev quadratures with, say, one node at -1 and n nodes interior 
to [-1, 1], have been considered in [22] for constant weight function w(x) = l. 
Here, Gatteschi shows that, if one stipulates a nonnegative boundary weight and 
a positive common weight at the interior points, then a formula having degree of 
exactness d = n + 1 cannot exist if n = 10 and n ?_ 12. Baratella [3], shortly there
after, actually shows that one has existence only for 1 .::; n.::; 6, and that n = 2, 4, 6 
give the classical Chebyshev formulae (i.e., with zero boundary weight) and n = 1 
the Gauss-Radau formula. The two remaining ones she calculates to 10 decimals. 

Bernstein's technique and the various extensions of it due to Gatteschi and his 
collaborators establish a strong link between Chebyshev quadrature rules and 
Gaussian rules, although not relative to the same number of nodes. One can ask, 
on the other hand, whether a Gaussian quadrature formula can at the same time 
be a Chebyshev formula, i.e., have all weights equal. An answer to this was already 
given in 1875 - one year after Chebyshev's original work - by the Russian 
mathematician K.A. Posse [49], who proved that the Gauss-Chebyshev formula, 
which served as inspiration for Chebyshev's work, is the only one (up to a linear 
transformation) which has this equal-weight property for all n. In 1984, however, 
I pointed out [38] that if this property is required only for even n, then there are 
other weight functions that fit the bill, e.g., weight functions supported on two 
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separate intervals. Peherstorfer [48], indeed, showed that given any proper subse
quence of the positive integers, one can find explicitly all weight functions which 
admit equally-weighed n-point Gauss formulae for all n of that subsequence. 

Analogous questions for closed Chebyshev formulae of the type (36), but allow
ing for endpoints with multiplicity r;::: 1, have been partially answered in [36], 
where it is shown by a tour-de-force argument that the analogue of Posse's result 
holds within the class of Jacobi weight functions. There is room here for further 
research along the lines of [38] and [48]. 

12. Straight Gauss-type quadrature formulae, i.e., formulae with maximum 
degree of exactness, on the interval [-1, 1], that have endpoints of multiplicity 2, 
have been considered by Gatteschi [12] already in 1963 in the case of a constant 
weight function w(x) = I. The motivation given by Gatteschi for studying such 
formulae is typically of a practical nature: If one composes them over m sub
intervals of some given interval [a, b], then ordinary Gauss, Gauss-Lobatto 
(simple endpoints), and his generalized Gauss-Lobatto rule, all adjusted to have 
the same degree of exactness 2n- l, require respectively nm, nm + l, and 
nm + 3 - m function evaluations, although the last requires, in addition, two deri
vative values, at the endpoints of [a, b]. Thus, form> 3, Gatteschi's generalized 
rule is the most efficient one in terms of function evaluations. Such formulae, 
more recently, have found use in spectral methods [5]. 

The principal merit of Gatteschi's work on this particular generalization is the 
derivation of explicit formulae for the quadrature weights: those associated with 
the endpoints are given as rational functions of n, the number of interior nodes, 
while those associated with the interior nodes are expressed in terms of the ultra
spherical polynomial P~~t) evaluated at the zeros of P~5/2). Explicit formulae 
and bounds for the remainder term are also given. Finally, Gatteschi provides 
12-digit tables of nodes and weights for n = 1(1)16, which he computes by 
Newton's method, taking as initial approximations (for the interior nodes) -
what else? - asymptotic approximations. 

Analogous formulae for all four Chebyshev weight functions are given by Li and 
myself in [39], and by Bernardi and Maday in [4] for ultraspherical weights and end
points of arbitrary multiplicity. 

13. The development of sharp asymptotic approximations and inequalities for 
zeros of orthogonal polynomials and Christoffel numbers indeed has preoccupied 
Gatteschi ever since. Thus, in the case of ultraspherical polynomials, the approxi
mations given in [23] are so sharp that they allow one to compute the respective 
Gauss nodes to 20 correct decimals in just one iteration, if one applies a high
order iterative method of Lether [43]. Equally sharp approximations, by a resource
ful use of the Sturm comparison theorem, are developed in [27] for zeros of 
Jacobi polynomials with parameters !al ::::; 1/2, I,BI :S 1/2, in [29,30] for zeros of 
generalized Laguerre polynomials, and in [31]- just three years ago - for zeros 
of confluent hypergeometric functions. Gatteschi indeed shows that many of 
these approximations, when the 0-term is removed, turn into sharp inequalities 
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for the zeros in question. Similar techniques, incidentally, were also applied by 
Gatteschi and Laforgia [32] to obtain interesting estimates for the first positive 
zero and the abscissa of the first maximum of the Bessel function Jv of order v > 0. 

Sharp asymptotic approximations for Christoffel numbers in the case of 
arbitrary Jacobi weight functions are derived in [28]. 

Curiously, in one of Gatteschi's early work [15], asymptotic formulae for 
Legendre polynomials, and more generally, for ultraspherical polynomials, that 
involve Bessel functions, are turned around to approximate, and hence compute, 
Bessel functions in terms of Legendre and ultraspherical polynomials. A neat 
idea, not entirely ineffective, but one that is unlikely to be found in modern soft
ware for computing Bessel functions! 

14. There is more recent work of Gatteschi, however, that is highly relevant to 
modern software for computing Gaussian quadrature formulae with nonstandard 
weight functions won some interval (a, b). This often requires the computation of 
"modified moments" vn = J: 1rn(x)w(x)dx, n = 0, 1, 2, ... , ofw relative to a system 
of classical orthogonal polynomials { ?rn}. Gatteschi takes up this problem in 
[24], where he looks at two particular weight functions. The first is 
w(x) = xP(1- xt"ln(1/x) on (0, 1), where p > -1, a> -1. Taking for ?rn the 
shifted Jacobi polynomial with parameters a, f3 (the same a as in the weight func
tion), he succeeds in computing vn explicitly in terms of the gamma function and its 
logarithmic derivative. This continues a line of research started by Blue [7] and 
myself [37] a year earlier. The second weight function is w(x) = e-xxp ln Px on 
( 0, oo ), with p > -1 and p = 1 and 2. The choice of generalized Laguerre poly
nomials with parameter a for {1rn} then yields results similar to those for the 
first weight function. A special case gives modified Hermite moments for 

) 

w(x) =e-x ln Px on (0, oo). 

15. Gauss quadrature rules have found many applications, both inside and 
outside of numerical analysis. In joint work with Lyness, Gatteschi makes two 
such applications. The first, in [33], is to weighted integrals J_:7r w(B)f(O)dB of 
21r-periodic functions/ extended over a full period. The standard approach for con
structing quadrature formulae having maximum trigonometric degree of exactness 
is to use orthogonal trigonometric polynomials. Lyness and Gatteschi, instead, use 
transformations of variables to reduce the problem to an ordinary ("algebraic") 
Gauss quadrature problem, albeit for a rather tricky weight function on 
(-oo,oo) given by w(2tan-1 t)/(1 + t 2)d+I, where w(·) is the weight function in 
the given integral, and d the optimal trigonometric degree. In [44,45], they apply 
Gauss and Gauss-Radau formulae to construct optimal (d + 1)-point quadrature 
rules that are exact for all functions t>.( JI+t2)1' with nonnegative integers >., 11 
satisfying >. + 11 ::; d. Such integration problems arise in cubature over a triangle 
when the functions to be integrated exhibit certain singular behavior at a vertex 
or along the sides of the triangle. 

16. Any account of Gatteschi's work on special functions and numerical analysis 
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would be incomplete without mentioning his books on the subject. The one on 
special functions {20] is an impressive treatise covering the gamma function, hyper
geometric and confluent hypergeometric functions, orthogonal polynomials, 
Legendre and Bessel functions and other assorted functions, not including, how
ever, elliptic functions and integrals. This is a most lucid and beautiful account 
of special function theory, and it is a pity that the book - written in Italian -
has never been translated into English and made accessible to a larger audience. 

There are two books by Gatteschi on Numerical Analysis, {35] and [19], the first 
written jointly with T. Zeuli. While both texts reflect the state of the subject at the 
time they were written, they still make for useful reading because of the richness in 
numerical examples and the close attention given to rigorous error estimates. 
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Abstract. Much of the work of Golub and his collaborators uses techniques of linear algebra to deal with 
problems in analysis, or employs tools from analysis to solve problems arising in linear algebra. Instances are 
described of such interdisciplinary work, taken from quadrature theory, orthogonal polynomials, and least squares 
problems on the one hand, and error analysis for linear algebraic systems, element-wise bounds for the inverse of 
matrices, and eigenvalue estimates on the other hand. 
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1. Introduction. It has been a privilege for me to have known Gene Golub for so many 
years and to have been able to see his very extensive work unfold. What intrigues me most 
about his work- at least the part I am familiar with- is the imaginative use made of linear 
algebra in problems originating elsewhere. Much of Golub's work, indeed, can be thought of 
as lying on the interface between classical analysis and linear algebra. The interface, to be 
sure, is directional: a problem posed in analysis may be solved with the help oflinear algebra, 
or else, a linear algebra problem solved with tools from analysis. Instances of the former type 
occur in quadrature problems, orthogonal polynomials, and least squares problems, while 
examples of the latter type arise in error estimates for the solution oflinear algebraic systems, 
element-wise bounds for the inverse of a matrix, and in eigenvalue estimates of interest in 
iterative methods. 

It will not be possible here to pursue all the ramifications of this interesting interplay 
between different disciplines, but we try to bring across some of the main ideas and will refer 
to the literature for variations and extensions. 

2. Quadrature. Integration with respect to some given measure dA on the real line IR 
is certainly a topic that belongs to analysis, and so is the evaluation or approximation of 
integrals Jn~. f(t)dA(t). If one follows Gauss, one is led to orthogonal polynomials relative 
to the measure dA, which is another vast area of classical analysis. How does linear algebra 
enter in all of this? It was in 1969 when the connection between Gauss quadrature rules and 
the algebraic eigenvalue problem was, if not discovered, then certainly exploited in the now 
classical and widely cited paper [33]. We begin with giving a brief account of this work, and 
then discuss various extensions thereof made subsequently. 
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2.1. Gauss quadrature. Assume d.A is a positive measure on lR, all (or sufficiently 
many) of whose moments 

(2.1) f.tr = L trd.A(t), r = o, 1, 2, ... , 

exist with Jto > 0. The n-point Gauss quadrature rule for d,\ is 

(2.2) 1 f(t)d..\(t) = f Av/(Tv) + Rr,(f), 
lR v=l 

where.Av = A~n), Tv= T~n) depend on nand d..\, andRn(f) = Owhenever f is a polynomial 
of degree :::; 2n - 1, 

(2.3) Rn(f) = 0, f E 1P'2n-l· 

This is the maximum degree possible. If f( 2n) is continuous on the support of d.A and has 
constant sign, then 

(2.4) Rn(f)>O ifsgnj(2n)=1, 

with the inequality reversed if sgn j(2n) = -1. 
The connection between Gauss quadrature and orthogonal polynomials is well known. If 

1r k ( • ) = 1r k ( • ; d.A), k = 0, 1, 2, ... , denotes the system of (monic) polynomials orthogonal 
with respect to the measure d.A, 

(2.5) r { = 0 if k =I= e, 
jlR 7rk(t)7re(t)d..\(t) > 0 if k = f, 

then T1, T2, ... , Tn are the zeros of 1r n ( · ; d.A), and the Av can be expressed in terms of the 
orthogonal polynomials as well. The former are all distinct and contained in the interior of 
the support interval of d.A, the latter all positive. What is important here is the well-known 
fact that the orthogonal polynomials satisfy a three-term recurrence relation, 

(2.6) 
'lfk+l(t) = (t- o:k)1rk(t)- f3k1fk-1(t), k = 0, 1, 2, ... ' 

'lf-l(t) = 0, 1r0 (t) = 1, 

with well-determined real coefficients O:k = o:k(d.A) and f3k = f3k(d.A) > 0. In terms of 
these, one defines the Jacobi matrix 

0 

(2.7) J(d.A) = 

0 

in general an infinite symmetric tridiagonal matrix. Its leading principal minor matrix of 
order n will be denoted by 

(2.8) Jn(d..\) = [J(d.A)][l:n,l:n]· 
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Here, then, is the connection between the Gauss quadrature formula (2.2) and the algebraic 
eigenvalue problem: the Gauss nodes Tv are the eigenvalues of J n(d>.), whereas the Gauss 
weights Av are 

(2.9) 

where Vv,l is the first component of the normalized eigenvector Vv corresponding to the 
eigenvalue Tv. The eigenvalue charaterization of the nodes Tv is an easy consequence of 
the recurrence relation (2.6) and has been known for some time prior to the 1960s. The 
characterization (2.9) of the weights Av is more intricate and seems to have first been observed 
in 1962 by Wilf [45, Ch.2, Exercise 9], or even previously, around 1954, by Goertzel [ 46]; it 
has also been used by the physicist Gordon in [34, p. 658]. The merit of Golub's work in [33] 
is to have clearly realized the great computational potential of this result and in fact to have 
developed a stable and efficient computational procedure based on the QL algorithm. 

It is useful to note that the quadrature sum in (2.2) for smooth functions f can be written 
in terms of J n = J n(d>.) as 

n 

(2.10) L Avf(Tv) = t-toe[ f(J n)el, e[ = [1, 0, ... , OJ E lR.n. 
v=l 

This follows readily from the spectral decomposition of J n and (2.9). Also, for the remainder 
Rn(f) in (2.2) one has (cf. [21, p. 291, (vii)]) 

(2.11) I D(f)l < llf(2n)lloo r 2(t)d>.(t) = llf(2n)lloo R R ••• R 
Hn - (2n)! J.R 1fn (2n)! ,vO,vl ,vn, 

provided JC2n) is continuous on the support supp( d>.) of d>.. The oo-norm of f( 2n) is the 
maximum of lf(2n)l on supp(d>.), and (2.11) holds regardless of whether or not f( 2n) has 
constant sign. 

The Jacobi matrix J n ( d>.), and with it the Gauss quadrature rule, is uniquely de
termined by the first 2n moments t-to, p 1 , ... , f-t2n-l of the measure d>.. The Cheby
shev algorithm (cf. [21, §2.3]) is a vehicle for passing directly from these 2n mo
ments to the 2n recursion coefficients ak, f3k, k = 0, 1, ... , n - 1. Although nu
merically unstable, the procedure can be carried out in symbolic computation to arbi
trary precision. (A Maple 5 script named cheb. mws can be found on the internet at 
http: I /www. cs .purdue. edu/archives/2001/wxg/codes.) 

2.2. Gauss-Radau and Gauss-Lobatto quadrature. If the support of d>. is a finite 
interval [a, b], the Gauss quadrature formula can be modified by requiring that one or both 
of the endpoints of [a, b] be quadrature nodes. This gives rise to Gauss-Radau resp. Gauss
Lobatto formulae. Interestingly, both these formulae allow again a characterization in terms 
of eigenvalue problems; this was shown by Golub in [23]. 

2.2.1. Gauss-Radau quadrature. If To = a is the prescribed node, the (n + 1)-point 
Gauss-Radau formula is 

(2.12) 1b f(t)d>.(t) = >.0f(a) + f >.~j(T:) + R~(f), 
a v=l 

where the remainder now vanishes for polynomials of degree ::; 2n, 

(2.13) R~(f) = 0, f E 1P'2n· 
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Define a modified Jacobi matrix of order n + 1 by 

(2.14) 

where Jn(d,\) is the same matrix as in (2.8), f3n = f3n(d,\) as in (2.6), 

R _ _ f3 11"n-da) 
an -a n ( ) , 11"n a 

(2.15) 

with 1r m ( ·) = 1r m ( • ; d,\), and e;; = [0, 0, ... , 1] the nth canonical basis vector oflRn. Then, 
the nodes in (2.12) (including r0 = a) are the eigenvalues of J~:;1 ( d,\), and the weights,\~, 
v = 0, 1, ... , n, are again given by (2.9) in terms of the respective normalized eigenvectors. 
An analogous result holds for the Gauss-Radau formula with prescribed node r n+l = b, 

(2.16) lb f(t)d,\(t) = t ,\~f(ri) + ,\~+d(b) + R~(f). 
a v=l 

The only change is replacing a in (2.15) by b, giving rise to a modified Jacobi matrix 
J~;1 (d,\). Both quadrature sums in (2.12) and (2.16) allow a matrix representation anal

ogous to (2.1 0), with J n replaced by J~:;1 resp. J~;1 and the dimension of e1 increased by 
1. 

The remainders R~, R~ of the two Gauss-Radau formulae have the useful property 

(2.17) R~(f) > 0, R~(f) < 0 if sgnj(2n+l) = 1 on [a,b], 

with the inequalities reversed if sgn j(2n+l) = -1. This means that one of the two Gauss
Radau approximations is a lower bound, and the other an upper bound for the exact value of 
the integral. 

It now takes 2n + 1 moments JLo, JLt, ... , JLzn to obtain J~:;1 ( d,\), J~;t ( d,\) and the 
(n +I)-point Gauss-Radau formulae. Chebyshev's algorithm will provide the recursion co
efficients needed to generate J n ( d,\) in (2.14), f3n, and the ratio of orthogonal polynomials 
in (2.15). 

The case of a discrete measure d,\N supported on N points tk with a :::.; tt < t2 < · · · < 
tN :::.; b, and having positive jumps w~ at tk, 

(2.18) 

is of some interest in applications. For one thing, the Gauss-Radau formulae (2.12), (2.16) 
(and, for that matter, the Gauss formula (2.2) as well), provide "compressions" of the sum 
S = L~=t wZJ(tk), i.e., approximations of S by a sum with fewer terms if n < N- 1. 
When f is a polynomial of degree :::.; 2n, the compressed sums in fact have the same value 
as the original sum. More importantly, the formula (2.12) with n < N together with the 
companion formula (2.16) furnish upper and lower bounds of S if j(Zn+l) < 0 on [a, b]. 
Applications of this will be made in §§5.2-5.4. Chebyshev's algorithm can again be used 
to generate (2.12) and (2.16) from the moments of d,\N. There is also a numerically stable 
alternative to Lanczos's algorithm (cf. §5.1), due to Gragg and Harrod [35], generating the 
Jacobi matrix J n ( d,\N) directly from the quantities Wk and tk in (2.18). 
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2.2.2. Gauss-Lobatto quadrature. Written as an (n + 2)-point formula, the Gauss
Lobatto quadrature rule is 

(2.19) ~b f(t)d)..(t) = Aof(a) + t Avf(Tv) + An+If(b) + R~·b(f), 
a v=1 

and has the exactness property 

(2.20) R~,b (f) = 0, f E 1P'2n+1, 

and the sign property 

(2.21) R~·b(f) < 0 if sgn j< 2n+2 ) = 1 on [a, b], 

with the inequality reversed if sgn j{2n+2l = -1. The appropriate modification of the Jacobi 
matrix is 

(2.22) 

with notations similar as in (2.14). Here, a~+1 , /3*+1 are defined as the solution of the 2x2 
linear system 

(2.23) 

Then the nodes of(2.19) (including To =a and Tn+1 =b) are the eigenvalues of J~+2 (d)..) 
and the weights Av, v = 0, 1, ... , n, n + 1, once again are given by (2.9) in terms of the 
respective normalized eigenvectors. Hence, (2.1 0) again holds, with J n replaced by J~+2 
and e 1 having dimension n + 2. 

2.3. Gauss quadrature with multiple nodes. The Gauss-Radau and Gauss-Lobatto 
formulae may be generalized by allowing an arbitrary number of prescribed nodes, even of 
arbitrary multiplicities, outside, or on the boundary, of the support interval of d>.. (Those of 
even multiplicities may also be inside the support interval.) The remaining "free" nodes are 
either simple or of odd multiplicity. The quadrature rule in question, therefore, has the form 

n 2sv m rl'-1 

(2.24) 1 j(t)d>.(t) = L L >.So-l j<o-l(Tv) + L L 1\:}:l j<Pl(u~-') + Rn,mU), 
lR v=1 o-=0 1-'=1 p=O 

where Tv are the free nodes and u!L the prescribed ones, and the formula is required to have 
maximum degree of exactness 2 (n + L:v sv) +I:~-' r~-'- 1. This has a long history, going 
back to Christoffel (all Sv = 0 and r~-' = 1) and including among its contributors Tunin 
(m = 0, Sv = s for all v), Chakalov, Popoviciu, and Stancu (cf. [19, §2.2]). 

The prescribed nodes u!L give rise to the polynomial 

m 

u(t) = w n (t- u!Lr"' 
1-'=1 
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where w = ±1 is chosen such that u(t) ~ 0 fort on the support of d.>.. For the formula (2.24) 
to have maximum algebraic degree of exactness, the free nodes Tv ("Gauss nodes") must be 
chosen to satisfy 

r ii: (t- Tv ?•v+ltku(t)d).(t) = 0, k = 0, 1, ... , n- 1. 
}Rv=l 

By far the simplest scenario is the one in which Sv = 0 for allv. In this case, Tv are 
the zeros of the polynomial1f n ( · ; ud>.) of degree n orthogonal with respect to the (positive) 
measure ud>.. This gives rise to the problem of modification: given the Jacobi matrix of the 
measure d>., find the Jacobi matrix of the modified measure ud>.. An elegant solution of 
this problem involves genuine techniques from linear algebra; this will be described in §3. 

The weights >.v = >.S0) are computable similarly as in (2.9) for ordinary Gauss quadrature, 
namely [27, §6] 

Av=fJ-oV~, 1 /u(Tv), v=1,2, ... ,n, 

where p0 = JR u(t)d>.(t) and Vv,l is the first component of the normalized eigenvector of 
J n(ud>.) corresponding to the eigenvalue Tv. For the computation of the remaining weights 

~~;}:') in (2.24), see [37]. 
The case of multiple Gauss nodes ( s v > 0) is a good deal more complicated, requiring 

the iterative solution of a system of nonlinear equations for the Tv and the solution of linear 
algebraic systems for the weights >.Su), ~~;}:');see, e.g., [27, §5] and [22]. 

2.4. Gauss-Kronrod quadrature. The quadrature rules discussed so far are products 
of the 19th century (except for the multiple-node Gauss rules). Let us tum now to a truly 
20th-century product- the Gauss-Kronrodformula 

(2.25) 
n n+l 1 f(t)d>.(t) = :E >.{! j(T~) + :E >.~K j(T{!) + R{; (f), 

R v=l ~t=l 

where T;? are the nodes of then-point Gauss formula ford>., and then+ 1 remaining nodes, 
called Kronrod nodes, as well as all 2n + 1 weights >.{!, >.~K are determined by requiring 
maximum degree of exactness 3n + 1, i.e., 

(2.26) R{; (f) = 0, f E JID3n+l· 

This was proposed by Kronrod [39] in the 1960s in the special case d>.(t) = dt on [-1, 1] 
as an economical way of estimating the error of then-point Gauss-Legendre quadrature rule. 
The formula (2.25) nowadays is widely used in automatic and adaptive quadrature routines 
([43], [17]). 

Remarkably enough, there is an eigenvalue/vector characterization similar to those in 
§§2.1, 2.2 also for Gauss-Kronrod quadrature rules. This was discovered in 1997 by Laurie 
[40]. He assumes that there exists a positive Gauss-Kronrod formula (i.e.,>.{! > 0, >.~K > 0, 
and T{f E IR), which need not be the case in general. (Indeed, the Kronrod nodes and all 
weights may well be complex.) The modified Jacobi matrix is now a symmetric tridiagonal 
matrix of order 2n + 1 and has the form 

(2.27) 

0 ~e1 

0 

~ef 

J* n 
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with notation similar as before and J~ a symmetric tridiagonal matrix. The structure of J~ 
differs according as n is even or odd. For definiteness, suppose that n is even. Then 

(2.28) J7ff.en/2 ] 

Jff3n+2)/2:2n] 

(n even), 

where J[p:qj(d.X) denotes the principal minor matrix of J(d>.) that has diagonal elements 
ap, ap+l, ... , aq, and similarly for J~:q]· Thus, the upper left square block of J~ (of order 
n/2) may be assumed known, and the rest, including the constant /3~, is to be determined. 
Laurie devised an algorithm that determines the unknown elements of J* in such a way 
that the Gauss nodes T[! and Kronrod nodes T{f are the eigenvalues of J!,'.+l (d>.) and the 
weights are given by 

(2.29) 
J-t = 1, ... , n, n + 1, 

where uf, uf, ... , u~+l are the normalized eigenvectors of J~+l ( d>.) corresponding to 
th · / G G. K K d K K K h · fi e ezgenva ues T1 , .•. , Tn , T1 , .•• , Tn+l• an u 1,u u 2,1 , ••. , u 2n+l,l t ezr rst compo-
nents. Moreover, J~ in (2.27) has the same eigenvalues as J n(d>.), i.e., the Gauss nodes 
Tf, · .. ,T;:. 

If the Gauss nodes T[! are already known, as is often the case, there is some redundancy in 
Laurie's algorithm, inasmuch as it regenerates them all. In a joint paper with Calvetti, Gragg, 
and Reichel [8], Golub removes this redundancy by focusing directly on the Kronrod nodes. 
The basic idea is to observe that the trailing matrix J~ in (2.27) as well as the leading matrix 
J[n+l:3n;2J(d>.) in (2.28) (again with n assumed even) have their own sets of orthogonal 
polynomials and respective Gauss quadrature rules, the measures of which, however, are 
unknown. Since the eigenvalues of J~ are the same as those of J n(d>.), the former Gauss 
rule has nodes T[!, v = 1, 2, ... , n, and positive weights>.~, say, while the latter has certain 
nodes:;"' and weights 5. 110 ,"' = 1, 2, ... , n/2. Let the matrices of normalized eigenvectors of 
Jn(d>.) and J~ be v = [v1 ,v2, ... ,vn] and v* = [vr,v;, ... ,v~], respectively. The new 
algorithm will make use of the last components V!,n, v 2,n, ... , Vn,n of the eigenvectors in 
v (assumed known) and the first components vr u v2 u ... , v~ 1 of those in v*. The latter, 
according to (2.9), are related to the Gauss weights >.~'through ' 

[v~,d2 = >.~, v = 1, 2, ... , n, 

where the underlying measure is assumed normalized to have total mass 1, and one computes 

n/2 
>.~ = L:tv(i110 )A 110 , v = 1,2, ... ,n, 

1<=1 

in terms of the second Gauss rule (for J[n+1:3n;2J(d.X)) and the elementary Lagrange inter
polation polynomials £., associated with the nodes Tf, Ti}, ... , T;!. Therefore, 

(2.30) v = 1,2, ... ,n. 

Now let 

(2.31) Jn* = v*Dv*T, D d1'ag ( G G G) = Tl 'T2 ' ••. 'T n 
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be the spectral decomposition of J~, and define 

(2.32) 
0 
1 
0 

0 l oT , 
v* 

a matrix of order 2n + 1. From (2.27), one gets 

D-)..1 0 

~e[v* 

0 ~v•Te1 D-)..1 

where the matrix on the right is a diagonal matrix plus a Swiss cross containing the known 
elements e'f:v and the elements e[v* that were computed in (2.30). A further (cosmetic) 
orthogonal similarity transformation involving a permutation and a sequence of Givens rota
tions can be applied to yield 

D-)..1 0 0 

(2.33) 
- T K -

V (J2n+l(d>.)- U)V = 0 D-)..1 c 

where V is the transformed matrix V and c a vector containing the entries in positions n + 1 
to 2n of the transformed vector [ffne'f: v, ~e[ v"', an]· Eq. (2.33) now reveals that 
one set of eigenvalues of Jf,.+l (d>.) is { Tf, Tfj, ... , 7~}, while the remaining eigenvalues 
are those of the trailing block in (2.33). From 

[ 
D-)..1 Un~A l [ cT(D ~AI)-' : l [ D-)..1 _;,J = 

CT oT 

where 

n c2 
(2.34) f(>.) = >.-an + L 70 ~ ).. , cT = [c1,c2, ... ,en], 

v=l v 

it follows that the remaining eigenvalues, i.e., the Kronrod nodes, are the zeros off(>.). It is 
evident from (2.34) that they interlace with the Gauss nodes T[f. The normalized eigenvectors 
uf, u!J, ... , u~+l required to compute the weights >.{f, >.~K via (2.29) can be computed 
from the columns ofV by keeping track of the orthogonal transformations. 

3. Orthogonal polynomials. The connection between orthogonal polynomials and Ja
cobi matrices ( cf. §2.1) gives rise to several interesting problems: 

(a) Given the Jacobi matrix for the measure d>., find the Jacobi matrix for the modified 
measure d>.mod = rd>., where r is either a polynomial or a rational function. 

(b) Given the Jacobi matrices for two measures d>.1 and d>.2 , find the Jacobi matrix for 
d)..= d)..l + d)..2· 
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(c) Let [cj,dj] be a finite set of intervals, disjoint or not, and d.>.j a positive measure on 
[cj, dj]. Let d.>.(t) = Lj X[cj,d,] (t)d.>.j (t), where X[ci ,dj] is the characteristic func
tion of the interval [cj, dj], 

(t) = { 1 ift E [ci> dj], 
X[cj,dj] 0 otherwise. 

Knowing the Jacobi matrices JW for d.>.j, find the Jacobi matrix for d.>.. 
The problem in (b) is discussed in [ 13], where three algorithms are developed for its solu
tion. We do not attempt to describe them here, since they are rather technical and not easily 
summarized. Suffice it to say that linear algebra figures prominently in all three of these algo
rithms. A special case of Problem (a)- modification of the measure by a polynomial factor 
-a problem discussed in [27] and [38], is considered in §§3.2, 3.3. It is related to a classical 
theorem of Christoffel ( cf., e.g., [ 19, p. 85]), which expresses the orthogonal polynomials for 
the modified measure in determinantal form in terms of the orthogonal polynomials of the 
original measure. For algorithmic and computational purposes, however, the use of Jacobi 
matrices is vastly superior. The case of rational r, in particular r ( t) = ( t - x) -l with real 
x outside the support of d.>., and r( t) = [ ( t - x) 2 + y2]-1, y > 0, is treated in [ 15], where 
algorithms are developed that are similar to those in [20] but are derived in a different manner. 
Problem (c) is dealt with in §3.4. Note that Problem (b) is a special case of Problem (c). 

We begin with an integral representation of Jacobi matrices and then in tum describe 
modification of the measure by a linear, quadratic, and higher-degree polynomial, and solu
tion procedures for Problem (c). 

3.1. Integral representation ofthe Jacobi matrix. Let ir0 , ir1, ir2 , •.. be the system of 
orthonormal polynomials with respect to to the measure d.>., that is, 

(3.1) 

with 7rk as in (2.5), (2.6). They satisfy the recurrence relation 

(3.2) 
~irk+l(t) = (t- ak)irk(t)- v'7Jkirk-i(t), k = 0, 1, 2, ... ' 

ir-1(t) = 0, ir0 (t) = 1/v'lJO, 

with recursion coefficients ctk. fJk as in (2.6) and (30 = JJR d.>.( t) ( = J.Lo). From (3.2) and the 
orthonormality of the polynomials irk one easily checks that 

(3.3) { 
0 if lk- £1 > 1, 1 tirk(t)ire(t)d.>.(t) = ~ if lk- £1 = 1, 

lR ak if k =e. 
This allows us to represent the Jacobi matrix J = J n(d.>.) of order n (cf. (2.8)) in integral 
form as 

(3.4) J = L tp(t)pT(t)d.>.(t), 

where 

(3.5) 
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Orthogonality, on the other hand, is expressible as 

(3.6) 

where I = In is the unit matrix of order n, and the first n recurrence relations in (3.2) can 
be given the form 

(3.7) 

where en= [0,0, ... , ljT E !Rn. 

3.2. Modification by a linear factor. The problem to be studied is the effect on the 
Jacobi matrix J of modifying the (positive) measure d.>. into a measure d.Amod defined by 

(3.8) d.Amoct(t) = w(t- c)d.A(t), 

where c is a real constant outside, or on the boundary, of the support interval of d.>. and 
w = ±1 chosen such that the measure d.Amod is again positive. A solution of this problem 
has been given already by Galant [16] and was taken up again, and simplified, in [27]. 

The symmetric matrix w(J - ci) is positive definite since by the assumtions made re
garding (3.8) all its eigenvalues are positive. It thus admits a Cholesky decomposition 

(3.9) w(J- ci) = LLT, 

where Lis lower triangular and bidiagonal. By (3.4), (3.6), and (3.8) one has 

w(J- ci) = w h (t- c)p(t)pT(t)d.>.(t) = h p(t)pT(t)dAmod(t). 

This may be written as 

w(J- ci) = L h L- 1p(t)pT(t)L-T dAmod(t)LT, 

which, since L - 1w(J- ci)L -T =I by (3.9), implies 

(3.1 0) h Pmod(t)p~od(t)dAmoct(t) =I, 

where 

(3.11) 

This means that Pmod are the orthonormal polynomials with respect to the measure d.Amod· 
What is the corresponding Jacobi matrix J mod? 

First observe that from (3. 7) one has 

(3.12) (t- c)p(t) = (J- ci)p(t) + .Jjf;.irn(t)en-

Using the analogues of(3.4), (3.6), one has, by (3.11) and (3.8), 

(3.13) 
Jmoct- ci = h (t- c)Pmoct(t)P~od(t)d.Amoct(t) 

= wL-1 h (t- c?p(t)pT(t)d.>.(t)L-T. 
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Multiplying (3.12) with its transpose, one gets 

and observing that by (3.6) 

L (J- cl)p(t)pT(t)(J- ci)d,\(t) = (J- ci) 2 

and by orthonormality 

one finds 

Thus, by (3.13), 

Substituting from (3.9) yields for the desired Jacobi matrix 

(3.14) 
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Equations (3.9) and (3.14) allow the following interpretation: The matrix J 1 := Jmod

'Yen e?: is the result of one step of the symmetric LR algorithm with shift c, 

(3.15) 1 T J -cl= -LL , 
w 

1 T J1 = -L L+cl. 
w 

Note that J 1 differs from J mod only by one element in the lower right-hand comer. We 
could get rid of it by deleting the last row and last column of J 1 . This would yield the desired 
Jacobi matrix of order n- 1. If we are interested in the Jacobi matrix J n,mod of order n, we 
can apply the symmetric LR algorithm (with shift c) to J n+l ( d,\) and then obtain J n,mod by 
discarding the last row and last column in the resulting matrix. 

3.3. Modification by a quadratic and higher-degree factor. Modification by a 
quadratic factor (t- ct)(t- c2 ) essentially amounts to two applications of(3.15), 

(3.16) 

followed by 

(3.17) 
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From the second and third of these equations one gets 

L2Lf = w2 (:1 Lf L1 + (c1- c2)I). 

In particular, if c1 = c2 = c and w2/w1 = 1, then 

(3.18) 

Let 

(3.19) 

Then, using (3 .18), one computes 

QTQ = LfLi1LiTL2 = Lf(LfL1)-1L2 

= Lf (L2Lf}-l L2 = Lf L2T L21 L2 = I, 

so that Q is orthogonal. As a product of two upper triangular matrices, R is upper triangular. 
Since, again by (3.18), QR =LiT L2Lf Lf =LiT Lf L1Lf = L1Lf, the first equation 
of(3.16) can be written as 

(3.20) J-cl= QR 

and the second of (3 .1 7) similarly as 

(3.21) J2 = RQ+cl. 

Thus, J 2 is obtained by one step of the Q R algorithm with shift c. It is now clear how the 
modification 

(3.22) dAmoct(t) = (t- c?d>.(t) 

is to be handled: apply one step of the QR algorithm with shift c to the Jacobi matrix 
J n+2 ( d>.) of order n + 2 and discard the last two rows and columns of the resulting ma
trix to obtain J n,mod. 

More generally, a modification dAmoct(t) = (t- c)2md>.(t) with an even power can be 
handled by m steps of the QR algorithm with shift c, discarding the appropriate number of 
rows and columns, and a modification dAmoct(t) = (t- c)2m+1d>.(t) by an odd power by 
means of m shifted QR steps followed by one step of the symmetric LR algorithm as in 
§3.2. In this way it is possible to accomplish the modification dAmod ( t) = r( t)d>.( t) for any 
polynomial r with real roots and r(t) 2: 0 fort on the support of d>.. Alternative methods, 
not necessarily requiring knowledge of the roots, are developed in [38]. 

3.4. Polynomials orthogonal on several intervals. Here we describe two solution pro
cedures for Problem (c) based respectively on Stieltjes's procedure (cf. [21, §2.1]) and mod
ified moments. 

3.4.1. Solution by Stieltjes's procedure. Suppose we are interested in generating 
the Jacobi matrix J = Jn(d>.) of order n for the measure d>.(t) = l:jX[cJ,dJJ(t) 
d>.j(t). It is well known that the recursion coefficients ak = ak(d>.), f3k = f3k(d>.) sat
isfY 

(3.23) 
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(3.24) k = 1, 2, ... , n- 1, 

where 

(3.25) (u,v)dA = L u(t)v(t)d.\(t) 

is the inner product associated with d.\. We also recall the basic recurrence relation ( cf. (2.6)) 

(3.26) 
1fk+l (t) = (t- ak)1rk(t)- fh1rk-l (t), k = 0, 1, ... , n- 1, 

1r-1(t) = 0, 1ro(t) = 1, 

satisfied by the (monic) orthogonal polynomials 1fk ( ·) = 1fk ( · ; d.\). For convenience, we 
let, as before, 

(3.27) f3o = k d.\(t). 

Stieltjes 's procedure consists in the following: Compute a 0 from (3.23) with k = 0 and (30 
from (3.27). Then use (3.26) with k = 0 to generate 1r1. Go back to Eqs. (3.23), (3.24) and 
use them fork = 1 to obtain a 1 , (31 . Then (3.26) is reapplied with k = 1 to get 1r2, etc. This 
procedure, alternating between (3.23), (3.24) and (3.26), is continued until an-1. f3n-l are 
obtained. 

The principal issue in this procedure is the computation of the inner products in (3.23), 
(3.24). Since they require integrating polynomials of degrees at most 2n - 1, one can use 
n-point Gauss quadrature 

(3.28) !dj p(t)dAj(t) = :t .\&lp(7,Yl), p E lP'2n-1> 
Cj v=l 

for the measure dAj on each constituent interval [cj, dj] of d.\. It has been observed in [ 14] 
that the explicit calculation of the Gauss nodes and weights is not required, but only matrix 
manipulations involving the Jacobi matrices JUl (of order n) for dAj (cf. (2.1 0)). 

We illustrate this for the inner product 

(3.29) 

Denote (3~j) = fcdi dAj ( t) and let 
' 

(3.30) 

Then, using (3.29), (3.28), and (2.10), one has 

( t?rk' 1fk )ctA = L _\~) T~j) 1f~ ( T~j)) 
j 

= L (3~j)ef JU) [7rk(JUl)]2el = L (3~ilef 7rk(JCil)JCil7rk(JUl)eb 
j j 
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that is, 

(3.31) 

The Interplay between Classical Analysis and (Numerical) Linear Algebra 

(t1rk, 1rk)d>.. = L ,B~j),~)T J(j),~). 
j 

Similarly (in fact a bit simpler), one finds 

(3.32) (7rk, 7rk)d>.. = L ,B~j) '~)T '~). 
j 

The updating of the (~) required in Stieltjes's procedure follows immediately from 
(3.26), 

(3.33) 

where I is the unit matrix of order n and(~~ = 0. 

3.4.2. Solution by the modified Chebyshev algorithm. The desired recursion coeffi
cients ak(d>.), .Bk(d>.), k = 0, 1, ... , n- 1, can also be produced from the first 2n modified 
moments 

(3.34) mk = L Pk(t)d>.(t), k = 0, 1, ... , 2n- 1, 

where {Pk} is a system of polynomials satisfYing a three-term recurrence relation 

(3.35) 
Pk+l(t) = (t- ak)Pk(t)- bkPk-1(t), k = 0, 1, ... ,n -1, 

P-l(t) = 0, Po(t) = 1 

with known coefficients ak, bk. A procedure accomplishing this is the modified Chebyshev 
algorithm (cf. [21, §2.4]); this works also if the polynomials {Pk} satisfY an extended recur

rence relation Pk+l(t) = tpk(t)- L:~=O CkjPj(t), and even if the measure d.>. is indefinite 
(see, e.g., [26]). The computation of the modified moments (3.34) by Gauss quadrature is 
entirely analogous to the computation of inner products in §3.4.1. Letting now 

(3.36) 

one finds 

(3.37) m - "'R(j)z(i)Te 
k- ~PO k 1· 

j 

Updating the vectors z~l can again be done via the recurrence relation (3.35), 

(3.38) z(j) - (J(j) -a I)z(j) - b z(j) z<_i1) = 0. 
k+l - k k k k-1' 

There is yet a third algorithm proposed in [14], which is based on a fast Cholesky de
composition. For this, we refer to the original source. 

We remark that the modified Chebyshev algorithm provides an alternative way of solving 
Problem (a) for polynomial modifications dAmod(t) = r(t)d>.(t) (cf. [19, p. 123], [15]). 
Indeed, ifr E lP'm, then r can be expressed in terms ofthe polynomialspk as 

m 

(3.39) r(t) = LCiPi(t). 
j=O 
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If one assumes that {pk} are orthogonal relative to the measure d)., then the modified mo
ments mk = Jn~Pk(t)d>.mod (t) are simply 

(3.40) 
mk = { Ck fn~p~(t)d>.(t) ifk:::; m, 

0 ifk > m. 

The modified Chebyshev algorithm, if m < k, in fact simplifies, owing to the k - m + 1 zero 
modified moments in (3.40). 

4. The least squares problem. The polynomial least squares problem PN is as follows: 
Given N data points (tk,Yk), k = 1,2, ... ,N, where t1,h, ... ,tN are mutually distinct 
points on the real line, and N positive weights w~, find a polynomial q0 E lP'n_ 1, n :::; N, 
such that 

N N 

PN: L w~ (Yk- q0 (tk)) 2 :::; L w~ (Yk- q(tk))2 for all q E lP'n-1· 

k=1 k=1 

With Problem PN one associates the discrete inner product 

(4.1) 
N 

(u, V)ct>.N = r u(t)v(t)dAN := 2:: wzu(tk)v(tk), 
jR k=1 

and the norm lluii~>.N = (u,u)d>.N, in terms ofwhich PN can be written as 

It is well known that the problem allows an elegant solution by means of the orthonor
mal polynomials irk(·) = irk(·; dAN). Recall that there are exactly N such polynomials, 
ifo,if1, ... ,ifN_1; we define 

(4.2) 

where 'lrN-1 is the monic orthogonal polynomial. 

4.1. Matrix formulation of the least squares problem and its solution. Let J = 
J N(d>.N) be the Jacobi matrix of order N for the measure dAN (cf. (2.8)) and pT = 
[ifo, if1, ... , if N _ 1] the vector of the N discrete orthonormal polynomials. Then, similarly 
as in (3.7), 

(4.3) tp(t) = Jp(t) + ifN(t)eN, 

where ifN(t) is defined as in (4.2). Note by (4.3) and (4.2) that the eigenvalues of J are the 
knots h, t2 , ••. , tN. Thus, if P = [p(l!),p(t2), ... ,p(tN)], then 

(4.4) 

As a consequence of dual orthogonality ( cf. [ 41, §2.4.6]), one has 

pT (tk)p(tk) = w-;;2, k = 1, 2, ... , N, 

so that wkp(tk) are the normalized eigenvectors of J. Thus, if 

(4.5) 
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the matrix P D is orthogonal, and one has 

(4.6) 

Finally, 

(4.7) 

Now lett [t1, t2, ... , tN]r, y = [y1, y2, ... , YN]r, and let q(t) = pT(t)c be any 
polynomial of degree N - 1 with coefficients c = [c0 , c11 ... , CN _I]T in the basis of the 
orthonormal polynomials. One checks that q(t) = pT c. In terms of the Euclidean vector 
norm II · II = II · IIJRN, the squared error in Problem PN for the polynomial q, in view of 
(4.5), can be written as 

IIY- qii~AN =liD (y- q(t)) 11 2 

(4.8) = IID(y- pT c)ll2 = IIPD · D(y- pT c)ll 2 

= IIPD2y- cll 2 , 

where the orthogonality of P D and the second relation in ( 4.6) have been used in the last 
two equations. Choosing c = P D 2 y drives the error to zero and yields the interpolation 
polynomial of degree N - 1. The solution of the least squares problem PN, on the other 

hand, requires c = [ c; ] , where Cn =[co, c1 , ..• , Cn-1f, and by (4.8) is equal to 

(4.9) q0 (t) = pT(t) [ ~ ] , Cn = P[1:n]D2 y. 

Here, P[1:n] is the matrix formed with the first n rows of P. 

4.2. Updating and downdating the least squares solution. Suppose we adjoin to the 
N data points considered in §4.1 an additional point (tN+l,YN+d and give it the weight 
WJv +1 . How can the solution of the least squares problem PN for the original N data points 
be used to obtain the solution of the least squares problem for the augmented set of N + 1 
data points? This is the problem of updating the least squares solution. There is an analogous 
problem of downdating whereby a single data point is deleted. An interesting treatment of 
these problems by matrix methods is given in [12]. 

We discuss here updating techniques only and refer to the cited reference for similar 
downdating techniques. In essence, the problem of updating can be considered as solved 
once we have constructed the Jacobi matrix J up = J N +1 (dAN +1) of order N + 1 for the 
augmented measure dAN+1 from the Jacobi matrix J = J N( dAN) for the original measure 
dAN, the inner product for dAN +1 being 

(4.10) 
N+1 

(u, v)d-'N+t = 1 u(t)v(t)dAN+l (t) := L w~u(tk)v(tk)· 
lR k=1 

Let (cf. (3.27)) 

(4.11) 

so that 

(4.12) no= 1/$o, no,up = 1/~. 
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There is a unique orthogonal matrix Q N +1 of order N + 1 whose first row is prescribed to be 

( 4.13) 

and which accomplishes a similarity transformation of the matrix [ ;{r 
onal form, 

(4.14) 

(cf. [42, p. 113, (7-2-2)]). We claim that 

(4.15) 

0 ] to tridiag
fN+1 

To see this, recall that, with Q = P D (orthogonal), Eq. ( 4.4) implies J = P AP-1 = 
QD-1 ADQ-1, hence 

(4.16) 

By (4.7), in view of the first relation in (4.12), there holds 

(4.17) 

The analogous relations for the augmented problem are 

Jup = QupAupQ~P' Aup = [ :r t:+l 

and 

(4.18) 

where e1 now has dimension N + 1. Define 

Then 

Q* [ ;{r 0 
] Q*T = Qup [ ~; ~][tr 0 ] [ $ 0 ] T 

fN+1 fN+1 1 Qup 

[ QTJQ = Qup QT 0 ] T f QUP' 
N+1 

hence, by ( 4.16), 

Q* [ ;{r 0 
] Q*T = Qup [ :r 0 

] Q~P = QupAupQ~P = Jup· 
fN+1 fN+l 

Furthermore, using ( 4.18), 

e[Q* = efQup [ ~; ~] = JJk [w1, ... ,WN,WNH] [ ~; ~], 
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which by (4.7) and the first of(4.12) becomes 

e[Q* = ~ [Jj3oe[Q WN+d [ ~; ~ ] 

= ~1 [Jj3oe[ WN+d = ~1 [$oei + WN+le~+d· 
V PO, up V PO,up 

Thus, Q* satisfies exactly the properties defining Q N +to showing that indeed J up = TN +1· 
Theanalogueof(4.3), · 

tpup(t) = JupPup(t) + 1i'N+1,up(t)eN+l> 

in combination with the second relation of(4.l2) can now be used to generate the new discrete 
orthonormal polynomials, and with them the updated least squares solution by the analogue 
of(4.9). 

Algorithmically, the transformation ( 4.14) can be implemented by a sequence of appro
priate Givens rotations (cf. [12, Eq. (4.7)]). The updating technique described here is not the 
only possible one; for others, see [ibid., §§4.3-4.7]. 

Since the solution for the one-point least squares problem P1 is trivially 1i'o = 1/lw11, 
J = [t1], c = [lw1lyt], one can use the updating technique to build up the least squares 
solutions of PN successively for N = 2, 3, ... without necessarily having to store the entire 
data set. 

5. Linear algebraic systems. Many linear algebra problems that involve a symmetric 
positive definite matrix A E JR.NxN can be related to discrete orthogonal polynomials sup
ported on the spectrum of A. This provides the link between linear algebra and analysis. 
It may be appropriate, at this point, to recall that the use of discrete (and other) orthogonal 
polynomials in the context of linear algebra has been pioneered by Stiefel [ 44]; see also [36, 
§14]. 

For simplicity assume that A has distinct1 eigenvalues An, 

(5.1) 0 < >w < AN -1 < · · · < A1, 

and denote the respective (orthonormal) eigenvectors by Vn, 

(5.2) 

(There should be no danger of confusing these A's with the weights of the Gauss quadrature 
rule in (2.2).) Thus, with V = [v1, v2, ... , VN], A= diag(A1, A2, ... , AN), there holds 

(5.3) AV = VA, A= yT AV. 

Now consider a discrete measure dpN defined by 

(5.4) 
N 1 f(t)dpN(t) := L p%f(Ak), 

R+ k=1 

where P% are positive weights, and assume, temporarily, that the measure dp N is normalized, 

(5.5) 

10therwise, some terms in (5.4) below consolidate, so that N becomes smaller. 
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It is possible to generate the orthonormal polynomials irk ( · ; dp N ), k = 0, 1, ... , N - 1, 
resp. the associated Jacobi matrix J N = J N ( dp N), entirely by matrix-vector multiplications 
involving the matrix A and by an initial vector 

N 

(5.6) ho = LPkVk, llholl = 1, 
k=1 

whose components in the basis of the normalized eigenvectors are the (positive or negative) 
square roots of the weights P%· (Here and in the following, II · II denotes the Euclidean vector 
norm.) A method accomplishing this is the Lanczos algorithm, which is briefly described 
in § 5 .I. The subsequent sections give applications of this algorithm when combined with 
quadrature methods. 

5.1. The Lanczos algorithm. Let ho be given as in (5.6), and define h_1 = 0. The 
Lanczos algorithm is defined as follows: 

(5.7) 

for j = 0, 1, ... , N- 1 do 

a-j = hJ Ahi 

hi+1 = (A- aii)hj - /jhj-1 

IH1 = llhj+tll 
hi+1 = hi+1 hi+1 

Note that ')'o can be arbitrary, but is often defined, in accordance with ( 5.5), by /o = 1, or, in 
accordance with ( 5.1 0) below, by /o = (30 . 

The vectors hj so generated are orthonormal, as one checks by induction, and it is evident 
from (5.7) that {hj }}=o• n < N, forms an orthonormal basis for the Krylov space 

Kn(A, ho) = span(ho, Aho, ... , Anho). 

One also verifies by induction that 

(5.8) 

where Pj is a polynomial of degree j satisfying the three-term recurrence relation 

/i+1Pi+1(>.) = (>.- aj)pj(>.)- /jPj-1(>.), 

(5.9) j = 0, 1, ... , N- 1, 

P-1(>.) = 0, Po(>.)= 1. 

We claim thatpk( ·)=irk( ·;dpN). Indeed, fromthesecondrelation in (5.3) one has 

Pn(A) = VT Pn(A)V, 

hence, by (5.8), 

Orthonormality h~hm = 6nm ofthe Lanczos vectors hj then yields 
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which, since VTho = Ef=l Pkek by (5.6), implies 

N 

L Pkef diag (pn(Al)Pm (,\1), · · · ,pn(AN )Pm (AN)) Pi€£ 
k,f=l 

N N 

= L PkPtefpn(At)Pm(Ae)ee = L P%Pn(Ak)Pm(Ak) = 8nm, 
k,l=l k=l 

as claimed. 
The recurrence relation (5.9), therefore, must be identical with the one in (3.2), i.e., 

"/j = .J73j. 
If the measure dpN is not normalized and, as in (3.27), one puts 

(5.10) 

then the recurrence relation still holds, except that one must define p0 (>.) = 1/ V/IO. 
5.2. Bounds for matrix functionals. Given A E JRNxN positive definite and f a func

tion analytic on an interval containing the spectrum of A, the problem to be considered is 
finding lower and upper bounds for the bilinear form 

(5.11) UT f(A)v, 

where u, v E JRN are given vectors. The solution of this problem has many applications; 
some will be discussed in subsequent sections. For applications to constrained least squares 
problems for matrices, see [29], and [7] for applications to the evaluation of suitable regu
larization parameters in Tikhonov regularization. The case f(t) = (,\ - t) -l with,\ outside 
the spectrum of A is important in physical chemistry and solid state physics applications; for 
references, see [32, § 1]. 

Let first u = v. With V = [v1 , v2 , .•• , VN] and A as defined in (5.2), (5.3), we let 

(5.12) 

and for simplicity assume Pk =I= 0 for all k. Then u = V p, p = [p1 , p2 , .. • , PN ]T, and 
f(A) = V f(A)VT. Therefore, 

N 

uT f(A)u = pTVTV f(A)VTV p = PT f(A)p = L P%f(,\k), 
k=l 

that is, 

(5.13) 

where dpN is the discrete measure defined in (5.4). The desired bounds can be obtained by 
applying Gauss, Gauss-Radau, or Gauss-Lobatto quadrature to the integral in (5.13), pro
vided the appropriate derivative off has constant sign ( cf. § §2.1 ,2.2). The Lanczos algorithm 
(cf. §5.1) applied with h0 = u/llull furnishes the necessary (discrete) orthogonal polynomi
als, resp. their recursion coefficients. For Gauss formulae, the quality of the bounds, even 
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when no specific information is known about the sign of derivatives off, can be estimated in 
terms of the absolute values of these derivatives and the quantities ''ti = fJi generated during 
the Lanczos process ( cf. [ 6]). One simply makes use of (2.11 ). 

The case u "1- v can be handled by using the polarization identity uT f(A)v = 
:l(PT f(A)p- qT f(A)q) where p = u + v, q = u- v (cf. [2, §3.1.2], [3, p. 426], or, 
for a similar identity, [32, Eq. (3)]) and applying appropriate bounds to the first and sec
ond term of the identity. Alternatively, a "nonsymmetric" Lanczos process can be applied in 
conjunction with Gauss-Radau quadrature [30]. 

For the important function f(t) = t-1 (see, e.g., (5.19) or (5.22) below), the case of an 
arbitrary nonsingular matrix A can be reduced to the case of a symmetric positive definite 
matrix by noting that 

(5.14) 

(cf. [2, §3.2], [3, p. 427]). 

5.3. Error bounds. We consider now the system of linear algebraic equations 

(5.15) Ax=b 

with A E JR.NxN symmetric and positive definite. Given any approximation x* to the exact 
solution x = A-1b, the object is to estimate the error x- x* in some norm. We begin with 
using the Euclidean vector norm II · 11-

Let r be the residual of x*, 

(5.16) r = b- Ax*. 

Since x - x* = A -lr, we have 

(5.17) 

which is (5.11) with u = v = r and f(t) = t-2 . Here the derivatives are f( 2nl(t) = 
(2n + 1)! r(2n+2), f(2n+l) (t) = -(2n + 2)! r(2n+3 )' so that 

(5.18) j(2nl(t) > 0, j(2n+1)(t) < 0 fortE~-

The n-point Gauss formula (with n < N) applied to the integral in (5.13) (with f(t) = 
r 2) thus produces a lower bound for the squared error (5.17). If the spectrum of A can 
be enclosed in an interval [a, b], 0 < a < b, then the "left-sided" (n + I)-point Gauss
Radau formula yields an upper bound, and the "right-sided" formula a lower bound for ( 5.17). 
The Lanczos algorithm applied with ho = r /llrll yields the recursion coefficients for the 
orthogonal polynomials required for generating these quadrature rules. 

If instead of the Euclidean norm one takes the A-norm !lull~= uT Au (cf. [31]), then 

(5.19) 

which is (5.11) with u = v = rand f(t) = t-1 . Since this function satisfies the same 
inequalities as in (5.18), the Gauss and Gauss-Radau formulae applied to the integral in 
(5.13) (with f(t) = r 1) produce the same kind of bounds as in the case of the Euclidean 
norm. The difference between the N-point and n-point Gauss quadrature approximation 
equals llx- xnll~/llrll2 , where Xn is the nth iterate of the conjugate gradient method started 
with r (cf. [32, Eq. (50)]). The conjugate gradient method, in fact, can be used not only as an 
alternative to the Lanczos algorithm to generate the recursion coefficients of the orthogonal 
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polynomials, but also to improve the approximation x*. The A-norm of the improved ap
proximation can then be estimated from below and above (see [11, §5]). For analogous error 
estimates in the Euclidean norm, see [9]. 

The idea of using Gauss-Radau quadratures in combination with ( 5 .18) to get error 
bounds for linear systems goes back to Dahlquist, Eisenstat, and Golub [ 1 0]. They also 
suggest a procedure based on linear programming when all eigenvalues are known (cf. [10, 
§2]). This requires knowledge of the moments Jtm of dpN, which by (5.13) are given by 

Thus, computing the first 2n + 1 moments Jto, tt1 , ... , /t2n amounts to generating the Krylov 
sequencer, Ar, ... , A 2nr and computing the inner products of its members with r. In view 
of 

an upper bound can be found by solving the linear programming problem 

(5.20) 

subject to the constraints 

(5.21) 

N 

N 

max! L/kA/;2 

k=1 

L/kA'k=ttm, m=0,1, ... ,2n, 
k=1 

/k ?: 0, k = 1, 2, ... , N. 

Here, n can be any integer < N. A lower bound can similarly be obtained by replacing 
"max" in (5.20) by "min". The same procedure, with >.;2 in (5.20) replaced by >.;1 , works 
for the A-norm. 

The ideas outlined above, and still other ideas from the theory of moments, are applied 
in [1 0] to obtain upper and lower bounds for the errors in the Jacobi iterative method. Bounds 
for matrix moments Jtm = r TAm r are similarly obtained in [24]. 

5.4. The diagonal elements of A - 1• Given A E ffi.NxN positive definite, the problem 
is to find bounds for the diagonal elements (A - 1 )ii of A - 1 , i = 1, 2, ... , N. Here, 

(5.22) 

where e; is the ith canonical basis vector. This is (5.11) with u = v = e; and f(t) = t-1 . 

As before, f satisfies the inequalities (5.18). 

5.4.1. Lower bound from Gauss quadrature. By virtue of(2.4) and the first of(5.l8), 
the n-point Gauss quadrature sum ( cf. (2.1 0), where Jto = 1) yields a lower bound for the 
integral, i.e., 

(5.23) 

466



Walter Gautschi 

ETNA 
Kent State University 
etna@mcs.kent.edu 

141 

where J n = J n(dpN ). Consider n = 2; we apply two steps of the Lanczos algorithm with 
ho = ei to generate 

According to ( 5. 7) we have 

(5.24) 

Since 

one has 

(5.25) 

and therefore, by (5.23) and (5.24), 

(5.26) 

It should be noted that this bound, in contrast to those given below in §§5.4.2-5.4.3, does not 
require any information about the spectrum of A. 

5.4.2. Upper and lower bounds from Gauss-Radau quadrature. If the spectrum of 
A can be enclosed in the interval [a, b], 0 < a < b, then by the second of (5.18) and the first 
of (2.17) (with the inequality reversed) the "left-sided" ( n + 1) -point Gauss-Radau quadrature 
sum in (2.12) yields an upper bound, and similarly the "right-sided" quadrature sum in (2.16) 
a lower bound for the integral. Taking n = 1 in (2.14), (2.15), one gets 

/'1 ] 
a{l ' 

where a 0 = aii, /'l = si from (5.24). Replacing here a by b yields J~'b(dpN ). From (5.25), 
where a 1 is replaced by a{l, a simple computation then gives 

(5.27) aii-b+sTfb (A-1) .. aii-a+sTfa 
2 2 < .. < 2 2' aii - aiib + si aii - aiia + si 
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5.4.3. Upper bound from Gauss-Lobatto quadrature. The (n + 2)-point Gauss
Lobatto quadrature sum in (2.19), on account of(2.21) and the first of (5.18) (with n replaced 
by n + 1), yields an upper bound for the integral. Taking n = 0 in (2.22), one gets 

J2L(dpN) = [ 0 2 1{ ] , 
l1 a1 

where by (2.23) the quantities af and 1f solve the 2 x 2 system 

[ a- ao 
b- ao 

1 ] [ af ] [ a( a- ao) ] 
1 (/f) 2 = b(b- ao) ' 

Carrying out the solution and using ( 5.25) with a1, 11 replaced by af, 1f, yields 

(5.28) (A -1 )ii < a+~; aii . 

The results in §§5.4.1-5.4.3 are from [30, Thm. 5.1]. When n > 2, the quadrature sum 
efJ;;;,1e1 can be computed for all three quadrature rules in terms of quantities generated 
during the course of the Lanczos algorithm; see [30, Thm. 5.3]. For an application to Vicsek 
fractal Hamiltonian matrices, see [25]. 

5.4.4. The trace of A - 1 and the determinant of A. In principle, each method de
scribed in §§5.4.1-5.4.3 can be used to estimate the trace 

N 

(5.29) tr(A-1) = ~)A-1 )ii 
i=1 

of A - 1 by applying the method to each term in the sum of (5.29), hence N times. For large 
sparse matrices there are, however, more efficient estimation procedures based on sampling 
and a Monte Carlo approach (cf. [2, §4]). 

Alternatively, we may note that ( cf. [ 1]) 

(5.30) 

where dpN is the discrete measure (5.4) with Pk = 1, k = 1, 2, ... , N. As in §5.4.2, we may 
then apply Gauss-Radau quadratures on an interval [a, b] containing all eigenvalues >.k to get 
lower and upper bounds. The only difference is that now dp N is no longer normalized, in fact 

(5.31) Po = { dpN(t) = N, 
JIR+ 

and the Lanczos algorithm, in accordance with (5.6), is to be started with 

Observing that 

(5.32) 

N N 

P,1 = 1 tdpN(t) = L Ak = L aii = tr (A), 
IR+ k=1 i=1 

N N 

1-t2 = 1 t2dpN(t) = L >.k = L a;j = II All}, 
IR+ k=1 i,j=1 
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that is, 

(5.33) 

and 

An elementary calculation yields 

(5.34) 
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The rest of the calculation is the same as in §5.4.2, except that, by (5.31), one has to include 
the factor t-to = N in (5.25). The result is 

1 ( 1 -}: t-tt + Nb2 ) 1 (A-l) 1 (5.35) - - < - tr < -
b t-t2- bt-t1 N a 

with /-tl. t-t2 given by (5.32). The same inequalities, in a different form, are derived in [ 1, 
Eq. (9)] by means of difference equations. 

As far as the determinant det A is concerned, we note that the trace is invariant to simi
larity transformations, so that by (5.3) 

N N 

tr (In A)= tr (VlnAVT) = tr (InA)= LIn .Ak =In IJ Ak· 
k=l k=l 

Since det A = ITk Ak. this yields 

(5.36) det A= exp(tr (In A)). 

Here, the trace ofln A can be estimated as described for A -1, with the function f(t) = C 1 

replaced by f(t) = Int. This latter function has derivatives whose signs are opposite to 
those in (5.18), which gives rise to bounds whose types are opposite to those obtained in 
§§5.4.1-5.4.3. 

Note that in place of J21 in the quadrature sum (5.25), we now require In J 2 . This 
can be defined by linear interpolation at the eigenvalues 0 < K 2 < K 1 of J 2 (see, e.g., [18, 
Ch. 5]), 

In particular, therefore, 

(5.37) 

where a0 is given by the first of(5.24) resp. by (5.33). 
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5.5. Iterative methods. Consider again the system (5.15) with A E IRNxN symmetric 
and positive definite. Based on the splitting A = M- N, where M and N are symmetric 
and M positive definite, a large class of iterative methods for solving ( 5 .15) is given by 

(5.38) Xk+l = Xk-1 + Wk+l (§zk + Xk - X~~;_t), k = 0, 1, 2, ... , X-1 = 0, 

where 

(5.39) 

In practice, M is chosen such that linear systems with this matrix as coefficient matrix can be 
easily solved. Depending on the choice of parameters, the iteration (5.38) includes such meth
ods as the conjugate gradient, the Richardson second-order, and the Chebyshev semi-iterative 
method. For optimizing the speed of convergence of the two latter methods, it is important to 
have good estimates of the smallest and largest eigenvalues of M-1 N. Such estimates can 
be found via certain discrete orthogonal polynomials and the modified Chebyshev algorithm 
(cf. §3.4.2) generating them; see [28). 

To analyze the speed of convergence of the iteration, there is no loss of generality in 
assuming, as we do, that b = 0, and thus considering convergence of X~~; resp. z~~; to the zero 
vector. 

Substituting xk = -A-1M zk obtained from (5.39) into (5.38) yields 

(5.40) 

where 

(5.41) B =I- §M- 1 A. 

Since B = I- 6M-1(M- N) = (1- 6)I + 6M- 1 N, the eigenvalues Vn of M-1 N 
are related to the eigenvalues An of B by 

(5.42) 
1 

Vn = 1 + 6 (An -1), n = 1,2, ... ,N. 

We may therefore focus attention on the eigenvalues of B. Note that the eigenvalue problem 
Bv = ,\v forB is equivalent to the generalized eigenvalue problem 

1-,\ 
/'i,=-6-. AV=ti,MV, (5.43) 

Since M is positive definite, the Cholesky decomposition M = LLT will transform (5.43) 
into an ordinary eigenvalue problem for the symmetric matrix L - 1 AL-T. It follows that 
(5.43), and therefore B, has real eigenvalues and a complete set ofM-orthogonal eigenvectors 

(5.44) 

From (5.40), one obtains by induction that 

(5.45) Zk = Pk(B)zo, k = 0, 1, 2, ... , 

where Pk are polynomials of degree k satisfying 

(5.46) 
Pk+1(,\) = Wk+1APk(,\) + (1- wk+dPk-1(.\), 

P-1 (.\) = 0, Po(.\) = 1. 
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With V = (v1 , v2, ... , v N] denoting the set of eigenvectors of B, one has BV = VA, 
where A= diag(At, A2 , ••• , AN), hence VT BV =A, yT Pk(B)V = Pk(A), and thus 

(5.47) 

The speed of convergence Zk --+ 0 in (5.45), therefore, is determined by the absolutely largest 
of the quantities Pk(An), n = 1, 2, ... , N. 

If we expand z 0 in the eigenvectors of B, 

(5.48) 
N 

zo = ~a;v;, 
i=l 

then from (5.45) we get 

N 

Zk = ~ a;pk(A;)Vi· 
i=l 

By the M-orthonormality (5.44) of the eigenvectors, the M-inner products of the iterates Zk 
become 

that is, 

(5.49) 

N N 

(zn,Zm)M := z~Mzm = ~aiPn(A;)vfM~ajPm(Aj)Vj 
i=l j=l 

N 

= ~ a;ajPn(A;)Pm(Aj)vfMvj 
i,j=l 
N 

= ~ a7Pn(A;)Pm(Ai), 
i=l 

Here, daN is a discrete measure supported on the eigenvalues Ai of Band having jumps a~ 
at A;. 

Along with the measure daN there come discrete orthogonal polynomials { 1rk}, 

(5.50) n, m = 0, 1, ... , N- 1 

and Jacobi matrices Jk = Jk(daN), k = 1, 2, ... ,N. The extreme eigenvalues of J k, i.e., 
the extreme zeros of 7Tk, with increasing k, in general provide good approximations to the 
extreme eigenvalues of B, hence by (5.42), to those of M-1 N. 

In order to generate the matrices J k. one can use the modified Chebyshev algorithm 
( cf. §3.4.2), defining modified moments in terms of the polynomials Pk by 

(5.51) 

The polynomials Pk indeed satisfY a three-term recurrence relation with known coefficients 
( cf. ( 5 .46) ). The first relation in ( 5.51) is used to compute the modified moments. 
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While the procedure described requires 2m modified moments to obtain J m. that is, 2m 
iterations of (5.38), there are special iterative methods, such as the Chebyshev semi-iterative 
method, where the same can be accomplished already after m iteration (cf. [28, §3]). 

A similar method is developed in [4] to determine a few of the largest singular values of 
a large sparse matrix and the corresponding left and right singular vectors, and is extended 
in [5] to estimate complex eigenvalues of a large sparse nonsymmetric matrix in connection 
with an adaptive Chebyshev iterative method. 

Acknowledgments. The author is indebted to Professors L. Reichel and Z. Strakos for 
helpful comments on a draft version of this paper. 
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I Elemente der Mathematik 

Leonhard Eulers Umgang mit langsam 
konvergenten Reihen 

Walter Gautschi 

1 Das Basler Problem 

Bines der brennendsten mathematischen Probleme Anfang des 18. Jahrhunderts, das zwar 
schon im 17. Jahrhundert von Pietro Mengoli, und auch von John Wallis erwahnt, aber erst 
durch die fieberhaften, jedoch erfolglosen Anstrengungen der hervorragendsten Gelehrten 
wie Leibniz, Stirling, de Moivre und allen Bernoullis aktuell geworden ist, bestand darin, 
die Summe der unendlichen Reihe 

1 1 1 1 
1+-+-+-+-+ ... 

4 9 16 25 
(1) 

durch bekannte Grossen auszudriicken. Bin frustrierter Jakob Bernoulli, damals wohl der 
getibteste Mathematiker im Umgang mit unendlichen Reihen, stellte das Anliegen [2]: 
,, ... sollte jemand das, was unseren Anstrengungen bis jetzt entgangen ist, finden und uns 
mitteilen, so werden wir ihm sehr dankbar sein". Wohl infolge der grossen diesbeziiglichen 
Bemiihungen von Jakob und Johann Bernoulli ist das Problem als ,,Basler Problem" in die 
Geschichte der Mathematik eingegangen. 

Es ist bekannt, dass Euler schon 1735 das Problem gelOst, und fiir die fragliche Summe 
den Wert :rr2 /6 angegeben hat (was ihn fast von einem Tag auf den anderen weltberiihmt 
gemacht hat), doch waren dieser Entdeckung - was fiir Euler typisch ist - numerische 
Rechnungen vorausgegangen. Diese sind durchaus nicht trivial, da es sich in (1) um eine 
sehr langsam konvergente Reihe handelt: Ffu eine Genauigkeit von 10-d braucht man 
ungefahr lOd Glieder der Reihe, also fiir sechs Dezimalstellen eine Million Glieder! Es 
ist daher interessant zu sehen, wie sich Euler mit dieser Schwierigkeit auseinandergesetzt 
hat. Wie so oft bei Euler sind aus diesem speziellen Problem Resultate hervorgegangen, die 
einen sehr allgemeinen und weittragenden Charakter haben. Als Beispiel hat er selbst seine 
Ideen auf die damals ebenso schwierige Aufgabe angewandt, die sogenannte Eulersche 
Konstante genau zu berechnen. 
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2 Eine erste Approximation zur Losung des Basler Problems 

Wir schreiben 
00 1 

s=.L>2· 
v=l V 

(2) 

In §22 von De summatione innumerabilium progressionum (Die Summierung einer un
endlichen Reihe, E20; OI,14, S. 25-41 1; eingereicht 1731, veroffentlicht 1738) beginnt 
Euler mit der Integraldarstellung 

_ lo1 ln(l - t) 
s - - dt, 

0 t 

die man leicht <lurch Taylor Entwicklung von ln(l - t) und nachfolgende gliedweise Inte
gration bestiitigen kann. Mittels der Substitution t 1-+ 1 - t kann man auch 

lo
1 Int s=- --dt 

0 1 - t 

schreiben. Nun zerlegt Euler das letzte Integral in zwei Teile, ein Integral von 0 bis x 
(mit 0 < x < 1) und ein Integral von x bis 1, wobei er im letzteren wieder t 1-+ 1 - t 
substituiert. Das gibt 

S=- --dt- dt, ix Int iy ln(l - t) 

0 l-t 0 t 
y = l -x. 

Partielle Integration im ersten Integral und Taylor Entwicklung von ln(l - t) liefert dann2 

oo xv+yv 
s = lnx ln(l - x) + L 2 v 

v=l 

Um die Konvergenzgeschwindigkeit der letzten Reihe zu maximieren, nimmt Euler x = 
1/2, also y = 1/2, und erhalt 

00 1 
s = (ln2)2 +'""" -1-2 . L., 2v- V 

v=l 

(3) 

Wie man sieht, gelang es Euler, einen Faktor 2-v in die Basler Reihe einzuschmuggeln. 
Die Reihe in (3) konvergiert daher erheblich schneller als die urspriingliche Reihe in (2). In 
der Tat, nimmt man n Glieder der Reihe und bezeichnet die resultierende Approximation 
von s mit s(n), so hat man das in Tabelle 1 gezeigte Konvergenzverhalten: 

1 Wir fiigen den Arbeiten von Euler deren Enestrom-Index Zahlen (E-Zahlen) bei, sowie den Band der Ope
ra omnia, in dem sie zu linden sind, wo OI,14, z.B. Opera omnia, Serie I, Vol. 14 bedeutet. Siehe die Web 
Seite http: I /www. math. dartmouth. edu;-euler des U.S. Euler Archlvs fiir eine nach den E-Zahlen 
geordnete kommentierte Liste siimtlicher Werke von Euler. 

2Hier folgen wir Eulers Vorgehen in §196 der Institutiones calculi integralis, Vol. 1, E342, OI,11, und nicht 
der etwas umstandlicheren Herleitung in der zitierten Abhandlung. 
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n s(n) Fehl er 

5 1.643543291695979 l.39x 10-03 

10 1.644920051673697 l.40x10-05 

20 1.644934062865116 3.98xl0-09 

40 1.644934066848226 8.88x 10-16 

Tabelle 1: Konvergenzverhalten der Reihe in (3) 

Euler benutzt die Formel (3), um s auf sechs Dezimalstellen zu berechnen. 

3 Eine zweite Approximation 

Der Aus gangspunkt hier ist die bekannte Trapezregel flir die Integration einer Funktion f, 

! n+l 1 1 
f(x)dx ~ - f (1) + /(2) + · · · + f(n) + - f (n + 1), 

1 2 2 

die Euler, wie vor ihm schon Gregory, verfeinert, indem er auf der linken Seite die Kor
rekturglieder 

1 1 
12 

[f(n + 2) - f (n + 1)] -
12 

[/(2) - f (1)] 

hinzufiigt. Man erhalt so, nach einfacher Umordnung, 

n+l r+l 1 1 L f(v) ~ }
1 

f (x)dx + 
12 

[Sf (n + 1) + f(n + 2)] + 
12 

[7 f (1) - /(2)]. 
v=l 

Nimmt man an, dass f im Unendlichen verschwindet und ins Unendliche summiert und 
integriert werden kann, so bekommt man, wenn n ---+ oo, 

00 Joo 1 L f(v) ~ f (x)dx + -[7 f (1) - f (2)]. 
1 12 

v=l 

(4) 

Mit Bezug auf das Basler Problem hat Euler in §14 von Methodus universalis serierum 
convergentium summas quam proxime inveniendi (Eine allgemeine Methode, Approxima
tionen zu Summen konvergenter Reihen zu finden, E46; OI,14, S. 101-107; eingereicht 
1735, veroffentlicht 17 41) nun die sehr niitzliche Idee, fiir ein bestimmtes vo > 1 die 
ersten vo Glieder der Reihe direkt zu summieren, 

vo 1 
L: 2 =so, 

v 
v=l 

und dann (4) auf f(x) = (vo + x)-2 anzuwenden. Das gibt 

1 1 [ 7 1 ] 
s ~ so + v0 + 1 + 12 (vo + 1)2 - (vo + 2)2 · 

(5) 

(6) 
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Die Resultate fiir verschiedene Wahlen von vo sind in Tabelle 2 zusammengestellt: 

VO s Rj Pehler 

10 1.644919055011046 l.50x 10-05 

20 1.644932866546282 l.20x10-06 

40 1.644933981455983 8.54x10-08 

80 1.644934061144287 5.70x10-09 

160 1.6449340664 79512 3.69x10-10 

Tabelle 2: Die Approximation (6) in Abhangigkeit von vo 

Euler wahlte vo = 10 und erhielt s Rj 1.644920, wo aber die zwei letzten Ziffern 19 statt 
20 heissen sollten. Im Vergleich mit der ersten Approximation s(n) von (3) konvergiert 
diese zweite bedeutend langsamer, enthalt aber den Keim einer wesentlich allgemeineren 
und wirksameren Methode, die im nachsten Abschnitt beschrieben werden soll. 

4 Die Euler-Maclaurin Summationsforrnel 
Offensichtlich ging es Euler nicht nur um die Summe aller reziproken Quadrate, son
dern viel allgemeiner um irgendeine Funktion f summiert i.iber alle nati.irlichen Zahlen, 
L~l f (v). Dies fi.ihrte zu einer seiner fri.ihen Glanzleistungen- heute Euler-Maclaurin 
Formel genannt, weil auch Maclaurin sie sechs Jahre spater, unabhangig von Euler, gefun
den hat. Euler gibt sie zuerst ohne Beweis in Methodus genera/is summandi progressiones 
(Eine allgemeine Methode zur Summierung von Reihen, E25; OI,14, S. 42-72; einge
reicht 1732, veroffentlicht 1738) an, und leitet sie in Inventio summae cuiusque seriei ex 
data termino generali (Bestimmung der Summe einer beliebigen Reihe aus ihrem allge
meinen Term, E47; OI,14, S. 108-123; eingereicht 1735, veroffentlicht 1741) vollstandig 
her. In moderner Schreibweise hat sie die Gestalt 

1 1 
2 f(O) + f(l) + · · · + f(n - 1) + 2 f (n) 

= r f(x)dx + t B2µ,, [f(2µ,-l)(n) - !(2µ,-1)(0)] +RM, 
lo µ,=I (2µ,). 

(7) 

wo B2, B4, B6, ... die Bernoullischen Zahlen bezeichnen, die Jakob Bernoulli in seiner 
Ars conjectandi eingefi.ihrt hat und durch die Entwicklung 

z 1 ~ B2µ, 2µ, 
ez - 1 = 1 - 2z + ~ (2µ,)! z , 

µ,=l 

lzl < 2n, 

definiert sind. Euler gibt nie ein Restglied an, aber es kann bier auf verschiedene Art 
geschrieben werden, z.B. in der Form (vgl. Stoer und Bulirsch [6, §3.3]) 

n-l 

R = B2M+2 ~ f(2M+2)(t) k < tk < k + 1. 
M (2M + 2) ! 2o <;k ' " 

(8) 

Die Konstanten B2µ, hat Euler rekursiv berechnet und damals noch nicht als Bernoullische 
Zahlen erkannt. 
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In (7), (8) wird vorausgesetzt, dass die (2M + 2)-te Ableitung von f auf JR.+ = [O, oo] 
stetig ist. Nimmt man weiterhin an, dass alle Ableitungen von f ungerader Ordnung bis 
zur Ordnung 2M - 1, und f selbst im Unendlichen verschwinden, und fins Unendliche 
integrierbar ist, so folgt aus (7), (8), wenn n --* oo, 

oo loo 1 M B L f(v) = f(x)dx - - f(O) - L ~ f(2µ-l)(O) +RM, 
v=l 0 2 µ=l (2,u)! 

(9) 

B oo 
R = 2M+2 '""!(2M+2)(1:k) k < tk < k + 1. 

M (2M + 2)! ~ " ' " 
k=O 

(10) 

Die unendliche Reihe in (10) konvergiert unter der Voraussetzung, dass JC2M+2l auf lR.+ 
positiv und monoton abnehmendist, und auch f(2M+l) im Unendlichen verschwindet, 

!(2M+2)(x) > 0, !(2M+3)(x) < 0, x E lR.+; !(2M+ll(oo) = 0. 

Dann gilt namlich 

n-l n-l n-l 

0 <L1c2M+2l(gk) < L 1c2M+2i(k) = 1c2M+2i(o) + L 1c2M+2i(k) 

k=O k=O k=l 

< f(2M+2)(0) +Ion-I f(2M+2)(x)dx = jC2M+2)(0) + f(2M+l)(n _ l) _ f(2M+l)(O), 

und, weil f (2M + 1 l monoton nach 0 wachst, fiir alle n: 

n-l 
0 < L !(2M+2)(gk) < !(2M+2)(0) - !(2M+l)(O). 

k=O 

Insbesondere muss auch jC2M+2l im Unendlichen verschwinden, und man zeigt wie oben, 
dass die fragliche Reihe das Cauchy-Balzano Konvergenzkriterium erfiillt. 

Es folgt 

(11) 

5 Anwendungen 
In §§31-32 von E47 wendetEuler die Formel (9) (ohne Restglied) auf das Basler Problem 
an, und in §§25-26 auch auf die Berechnung der Eulerschen Konstanten. 

5.1 Anwendung auf das Basler Problem 

Wie schon in (5) summiert Euler die ersten vo (= 10) Glieder der Basler Reihe direkt, 

00 1 00 1 

s = L v2 = so + L ( vo + v )2 
v=l v=l 

(12) 
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und berechnet die Sulllllle der iibrigen Glieder durch Anwendung von (9) auf die Funktion 

1 
f(x) = (vo + x)2 . (13) 

Diese erfiillt wegen JC111)(x) = (-1)111(m + l)!(vo + x)-C111+2) alle in §4 gemachten Vor
aussetzungen, so dass (9), (11), auf (13) angewandt, Folgendes liefert: 

00 1 1 1 1 M B2µ, 

L (vo+v)2 = vo -2 v2 + L 2µ,+l +RM, 
v=l 0 µ=l Vo 

(14) 

IB2M+2I ( 2M + 3) 
IRMI < 2M+3 1 + . 

v
0 

vo 
(15) 

Man sieht, dass das Restglied im Absolutbetrag, bis auf den Faktor (1 + (2M + 3)/vo), 
kleiner ist als das erste vemachHissigte Glied der Reihe auf der rechten Seite von (14). 
Letztes ist ja fiir altemierende (konvergente) Reihen bekannt; hier allerdings haben wir es 
mit einer divergenten (asymptotischen) Reihe zu tun. Wegen (vgl. z.B. [1, eq 23.1.15]) 

2(2M + 2)! 2(2M + 2)! 1 
(2n)2M+2 < IB2M+2I < (2n)2M+2 · 1 _ 2-(2M+l) 

gilt auch 

IRMI < 2(2M + 2)! (1+2~:3)/ (1 - rc2M+il), 
(2nvo)2M+2 vo (16) 

was fiir grosse M mit (15) praktisch identisch ist. 

Beste Genauigkeit erhalt man, wenn M = Mopt so gewahlt wird, dass die obere Schranke 
in (16) am kleinsten ist. Mit Eulers Wahl vo = 10 findet man 

Mopt = 30, IRMoptl < 1.4966 X 10-26 . (17) 

Die Euler-Maclaurin Formel (14), zusallllllen mit (12) fiir vo = 10, ermoglicht es also, die 
Basler Reihe s mindestens auf 26 Dezimalstellen genau zu berechnen. In der Tat findet 
man (mit 50-stelliger Arithmetik) die Approximation 

s ~ 1.64493 406684822643647 241516562, 

mit einem Pehler von 1.030 x 10-21 . Euler hat vermutlich mit M = 12 gerechnet (ob
wohl er (14) nur fiir M = 7 explizit ausschreibt) und so s zu 20 Dezimalstellen genau 
erhalten. Sehr wahrscheinlich hat dieses genaue Resultat ihm die Identifikation mit n 2 /6 
nahegelegt. 

5.2 Berechnung der Eulerschen Konstanten 

Die Eulersche Konstante ist durch den Grenzwert 

y = lim (~~-Inn) 
n-+oo ~ v 

v=l 
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definiert. Wie zuvor sumrniert man zunachst die ersten vo ( < n) Glieder der Reihe direkt, 

und schreibt dann 

VQ 
1 

so= :L-, 
v 

v=l 

n 1 
:L- =so+s, 
v=l V 

n-vo I 

s=:Lvo+v· 
v=l 

Auf s kann die Euler-Maclaurin Formel (7) angewandt werden, won durch n - vo zu 
ersetzen ist, und f durch 

Man erhalt 

1 
f(x) = --. 

vo +x 

M ( ) 
1 1 B2µ, 1 1 

s=lnn-Invo--+-+"- --+-+RM, 
2vo 2n ~ 2µ, n2J.L v2µ, 

µ,=1 0 

und ftir den Rest, iihnlich wie in § 5 .1, 

IRMI < 2(2M + 2)! [1 + vo (1 - (vo)2M+2)]/ (1 -T(2M+l)). 
(2nvo) 2M+2vo 2M + 2 n 

(18) 

Addiert man so - Inn auf beiden Seiten von (18), und liisst n ~ oo, sowohl in (18) als 
auch in der Abschiitzung des Restglieds, so bekommt man 

M 
1 '°' B2µ, 1 y =so-Invo- -+~--+RM, 

2vo 
1 

2µ, v2µ, 
µ,= 0 

(19) 

WO 

IRMI < 2(2M + 2)! (1+u::2)/ (1 -T(2M+l)). (20) 
(2nvo)2M+2vo 

Fur den optimalen Wert von M erhalt man wieder Mopt = 30, und 

(21) 

Euler berechnete y auf diese Weise, rnit vo = 10, zu 16 korrekten Dezimalstellen, wahr
scheinlich mit der Wahl M = 7, hiitte aber rnit M = 30 mehr als zehn weitere Dezimal
zahlen erhalten konnen, namlich 

y = .5772156649 01532 86060 65120 89914, 

rnit einem Pehler von 1.688 x 10-28 . 
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6 Die Eulersche Reihentransformation 

In dem Werk Institutiones calculi dif.ferentialis cum eius usu in analysi finitorum ac doctri
na serierum (Grundlagen des Differentialkalkiils mit Anwendungen auf die endliche Ana
lysis und die Lehre der Reihen, E212; OI,10; veroffentlicht 1755) leitet Euler in Part II, 
Ch. 1: De transformatione serierum (Uber Reihentransformationen), §3, unter anderem 
folgende Transformation her, 

wo f;.. den Differenzenoperator f;..av = av+ I - av bedeutet. Fur x = -1 geht sie iiber in 

(22) 

was heute als Eulersche Reihentransformation bekannt ist3 . Dafiir gibt er viele Beispie
le, unter anderem auch solche, die divergente Reihen betreffen, z.B. die relativ harmlose 
Reihe 

fiir die av 

Reihe ist 

s=l-1+1-1+1-1± ... , 

1, also f;..ao = f;..2ao = · · · = 0, und daher s 

00 

S = L(-l)v(JJ + 1)!, 
v=O 

! ist. Eine waghalsigere 

fiir die Euler durch geistreiche Manipulationen s = .4036524077 findet. Den exakten Wert 
kann man durch das Exponentialintegral Er (x) = fx00 

e-t dt / t ausdriicken4, 

s = 1 - eE1 (1) = .4036526376768 ... , 

woraus man sieht, dass Euler sich in den letzten vier Ziffern seines Resultats geirrt hat. 

Bin klassisches Beispiel (bei Euler in op. cit., § 11.I) ist die sehr langsam konvergente 
Reihe 

oo (-l)v 
s= I:-- =ln2, 

1J + 1 
v=O 

fiir welche Eulers Transformation die wesentlich schneller konvergierende Reihe 

00 1 

s = I: (n + 1)211+1 
· n=O 

3Laut Otto Spiess [5, §5, Fussnote l] benutzte Euler diese Transformation bereits 1743 in einem Brief an 
Goldbach. 

4Siehe Fussnote 2 des Herausgebers (G. Kowalewski) in op. cit., S. 226. 
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liefert. Etwas interessanter ist die Leibnizsche Reihe (ibid., § 11.II) 

s = ~ (-l)v = 7!__ 
~2v+ 1 4' 
v=O 

fur die av= 1/(2v + 1) und b.11 ao = c-1r2211n!2 /(2n + 1)! ist, also 

oo 2n-ln!2 

s = I: c2n + 1)1 · 
n=O 

Das allgemeine Glied ist nach der Formel von Sterling fur n ~ oo liquivalent mit 

.j""f 2-Cn+l), so dass die Konvergenzbeschleunigung hier etwa gleich gross ist wie im 

vorherigen Beispiel. 

Allgemein kann man sagen, dass (22) gtiltig ist, falls die Reihe auf der linken Seite (die 
nicht notwendigerweise alternierend, also av > 0, sein muss) konvergiert. Dann konver
giert auch die Reihe auf der rechten Seite, und zwar zum selben Grenzwert, aber nicht not
wendigerweise schneller. Man hat Konvergenzbeschleunigung dann, wenn alle av > 0, die 
Folge {av} ~o vollstlindig monoton, d.h. ( -1 )11 b.11 ak > 0 ist fur alle n, k = 0, 1, 2,. . ., 

und av+i/ av ::::_ a > ! gilt. Die Konvergenzbeschleunigung ist in der Tat um so be
trlichtlicher, je grosser a ist (Knopp [ 4, Satz 155]; der Operator b. ist bei Knopp als 
riickwlirtiger Differenzenoperator definiert, also ist er das Negative unseres Operators). 

7 Die Lambertsche Reihe 

Zurn Schluss noch eine kleine Perle aus Eulers Werkzeugkasten fur unendliche Reihen, 
die zwar nichts mit dem Vorhergehenden zu tun hat, aber dennoch einen Einblick in Eulers 
Einfallsreichtum gestattet. Es handelt sich um die Lambertsche Reihe 

00 1 
s(x) = '""'--, x > 1, ~XV-l 

v=l 

(23) 

speziell fur den Fall, dass x = 10, dem Euler im Zusammenhang mit einem missglilckten 
Interpolationsversuch begegnet ist (vgl. [3], wo s(lO) = -S(O)). Die Reihe tritt an ver
schiedenen Stellen der Arbeit Consideratio quarumdam serierum, quae singularibus pro
prietatibus sunt praeditae (Betrachtung einiger Reihen, die sich durch spezielle Eigen
schaften auszeichnen, E190; OI,14, S. 516-541; eingereicht 1750, veroffentlicht 1753) 
auf, z.B. in §§28-29. Dort entwickelt Euler jedes Glied der Reihe (23) in eine geometri
sche Reihe in Potenzen von 1 / x, sammelt dann alle Glieder mit gleicher Potenz und erhlilt 
so 

1 2 2 3 2 4 2 4 3 
s(x) = ~ + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + .... 

Als Meister im Aufspilren von versteckten regelmlissigen Mustem bemerkt Euler nun, dass 
der Zahler in jedem Bruch genau gleich der Anzahl der Teiler der entsprechenden Potenz 
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von 1/x ist, also z.B. in 4/x6 ist 4 gleich der Anzahl der Teiler 1, 2, 3, 6 von 6. Wenn 
x = 10, kann das Resultat miihelos in Dezimalform hingeschrieben werden, was Euler bis 
auf 30 Stellen tut: 

s (10) = .12232 42434 26244 52626 44283 44628 .... 

Hier ist die Anzahl der Teiler stets kleiner als 10; wenn sie grosser oder gleich 10 ist, 
miissen kleine Anpassungen vorgenommen werden. Das ist zum ersten Mal an der 49-ten 
Dezimalstelle der Fall. 

Dank. Fur den Vorschlag in Fussnote 2 danke ich dem anonymen Begutachter der Arbeit. 
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COMMENTARY, BY WALTER GAUTSCHI 

This group of five papers, especially the first and third, has a distinctly "inter
disciplinary" character in the sense that classical analysis problems are recast in 
terms of, and successfully solved by, techniques of linear algebra and, vice versa, 
problems that have a linear algebra flavor are approached and solved using tools 
of classical analysis. A similar intriguing mix of analysis and algebra permeates 
the remaining three papers. 

Calculation of Gauss quadrature rules, by Golub and Welsch [53] 

The concern here is with the calculation of the n-point Gaussian quadrature rule 

1b w(t)f(t)dt = t Wv/(Tv) + Rn(/) 
a v=l 

for the nonnegative weight function w(t) on [a, b], i.e., the calculation of the nodes 
Tv and weights Wv· The connection of this problem with orthogonal polynomials 
is classical, thanks to work of Gauss [35], Jacobi [61], Christoffel [22], Stieltjes 
[86], and others: The Gaussian nodes Tv are the zeros of 7rn, the nth-degree 
polynomial orthogonal with respect to the weight function w, and the Gauss 
weights Wv are also expressible, in different ,ways, in terms of these orthogonal 
polynomials. 

An alternative characterization of the Gauss nodes Tv can be derived from 
the classical fact that the orthonormal polynomials {irk} satisfy a three-term 
recurrence relation 

with certain real, resp. positive coefficients ak, f3k which depend on the weight 

function w, and /-to = J: w(t)dt. If 7r(t) = [ir0 (t), 7i\(t), ... , ifn_ 1(t)]T, then 
indeed, 

where J = J n is the Jacobi matrix of order n for the weight function w, i.e., the 
symmetric, tridiagonal matrix having the ak, k = 0, 1, ... , n-1, on the diagonal, 
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and the Jlik, k = 1, ... , n-1, on the two side diagonals. There follows, fort = Tv, 
since Kn(Tv) = 0, 

Jif'(Tv) = Tvif'(Tv), V = 1, 2, ... 1 n, 

so that Tv are the eigenvalues of J and ir( Tv) corresponding eigenvectors. This 
is the first important mathematical ingredient of the present paper. The other 
is an expression for the Gaussian weights, 

1 
w - v = 1, 2, ... , n, 
v- if'T(Tv)if'(Tv) 1 

(22.1) 

for which the authors refer to Wilf (apparently to [93, Section 2.9, eqn (69) or 
Ch. 2, Exercise 9]). The formula, however, is older; see Szego [89, eqn (3.4.8)J, 
where it is attributed to Shohat (85]. The authors re-express this formula in 
terms of the eigenvectors qv normalized by qJ qv = 1, i.e., in terms of 

by noting that the first component of ir( Tv) is f..L~ 112 , hence 

'Wv=J..toq~, 1 , v=1,2, ... ,n, 

where qv,l is the first component of qv. 
There is a detailed discussion in the paper of how Francis's QR algorithm with 

appropriate shifts can be adapted to compute the eigenvalues of a symmetric, 
tridiagonal matrix (the matrix J) and the first components of the normalized 
eigenvectors. Related software in Algol is provided in the microfiche supplement 
of the paper. 

Interestingly, the same eigenvalue/vector characterization of Gauss rules, and 
even the same numerical method (QR algorithm), have been suggested a year 
earlier in the physics literature by Gordon [54, eqn (26) and p. 660]. This work 
has had considerable impact in the physical sciences and engineering, whereas the 
work of Golub and Welsch has had a wider impact in the areas of computational 
mathematics and information science. Both works have actually been submitted 
for publication less than a month apart, the former on October 20, the latter 
on November 13 of 1967. Rarely have two important and overlapping works, like 
these, popped up simultaneously in two entirely different venues! 

Similar ideas have since been developed for other quadrature rules of Gaus
sian type. Indeed, Golub himself [45] was the first to derive eigenvalue/vector 
algorithms for Gauss-Radau and Gauss-Lobatto formulae. Laurie [65] did it 
for his anti-Gaussian formulae, and Calvetti and Reichel [19] for a symmetric 
modification thereof. Quadrature rules i!lvolving derivative terms of arbitrary 
orders on the boundary or outside the interval of integration require first the 
generation of the appropriate Jacobi matrix before the (simple) internal nodes 
can be calculated from its eigenvalues and the corresponding weights from the 
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associated eigenvectors; see Golub and Kautsky [47, Section 6] and also Ezzirani 
and Guessab [32[. This has led to important work on the stable calculation of 
general interpolatory quadratures (Kautsky and Elhay [63), Elhay and Kautsky 
(311). A rather substantial eXtension is the one to Gau.ss-Kronrod quadratures 
due to Laurie [66] (see also the commentary to the last paper). For other types of 
extended quadrature formulae, see Gout and Guessab [55j. Golub~ Welsch type 
algorithms have been developed also for quadrature rules in the complex plane, 
for example Gauss~Szego type formulae on the unit circle (Gragg [57, abstract], 
f56[, Watkins [91, pp. 465-466}, Jagels and Reichel [62]), Gauss quadrature on 
the semicircle (Gautschi and Milovanovic [43]), Gauss formulae for the Jacobi 
weight function with complex parameters (NuttaJ and Wherry [78]), or those 
used to approximate the Bromwich integral in the theory of Lapl.a.ce transform 
inversion (Luvison f68], Piessens [79]), and complex Gauss formulae for weighted 
line integrals in the complex plane (Saylor and Smolarski )84, Section 6]). 

There are instances in the area of orthogonal polynomials and quadrature 
where eigenvalues of more general matrices are of interest, for example banded 
lower Hessenberg matrices in the case of multiple orthog~nal polynomials and 
related quadrature rules (C6ussement and Van Assche [24j, Borges [11]), or full
blown upper Hessenberg matrices for zeros of Sobolev orthogonal polynomials 
(Gautschi and Zhang f44,p. 161]) and also for the Gauss-Szeg6 quadrature rules 
mentioned above. 

Any advances in improving the QR algorithm for computing eigenvalues and 
eigenvectors of a symmetric tridiagonal matrix give rise immediately to improved 
Golub-Welsch algorithms. Some possibilities in this regard are discussed by Lau
rie (67, Section 2); for positive definite Jacobi matrices, see also Laurie [67, Sec
tion 5] and the references therein. 

There still remains, of course, the problem of computing the recurrence coeffi
cients ak, f3k, if not known expucitly, given the;~yeight function w. This problem 
is addressed in Section 4 of the paper, where an algorithm of V.I. Mysovskih 
is described, wh.ich computes these coefficients by a Cholesky decomposition of 

the Hankel matrix in the moments /1-r = J: trw(t)dt of the .weight function. Any 
method based on moments, however, is notoriously WlStable, owing to severe ill
conditioning (for large n) of the underlying moment map. This was first shown 
in 1968 by the writer {361; see also [42, Sections 2.1.4, 2.1.6]. Shortly thereafter, 
Sack and Donovan, in a technical report [82), introduced the idea of "general-

ized moments" mr "'=- J: Pr(t)w(t)dt, where Pr is a polynomial of exact degree 
r, which, at the suggestion of this writer, they renamed "'modified moments" in 
their formal publication [83j. Under the assumption that the polynomials Pr also 
satisfy a three-term recurrence relation, but with known coefficients, Sack and · 
Donovan developed an algorithm, later given a more definitive form by Wheeler 
[92], which computes the desired recurrence coefficients ak, (A directly from the 
modified moments. Wheeler suspected that Chebyshev might already have done 
something of th.is nature, which was confirmed by the writer and? pinpointed to 
Chebyshev's 1859 merooir [21], where Wheeler's algorithm indeed appears at the 

347 488



Commentary, by Walter Gautschi 

end of Section 3 in the special case of ordinary moments (Pr(t) = tr) and discrete 
orthogonal polynomials. The algorithm for ordinary, resp. modified moments was 
therefore named in [37] the Chebyshev, resp. modified Chebyshev algorithm. The 
latter is not only more efficient than Mysovskih's algorithm, having complexity 
O(n2 ) instead of O(n3), but is often also more stable. The condition of the un
derlying modified moment map has been studied in [37, Section 3.3] and [38]; 
see also [42, Sections 2.1.5, 2.1.6]. For alternative techniques of computing Ctk, 

f3k, based on discretization, see [42, Section 2.2]. 

Updating and downdating of orthogonal polynomials with data 
fitting applications, by Elhay, Golub, and Kautsky [30] 

The use, in data fitting applications, of (what today are called) discrete or
thogonal polynomials can be traced back to a 1859 memoir of Chebyshev [21]. 
Forsythe [34], a hundred years later and independently, discussed the same pro
cedure and developed it into a viable computer algorithm. The present paper 
introduces new ideas of updating and downdating in this context, although sim
ilar ideas have previously been applied in connection with the related problem 
of QR factorization of matrices. Mertens [69] reviews downdating algorithms in 
statistical applications and in the least squares context attributes the concept of 
downdating to Legendre and Gauss, the originators of least squares theory. 

The problem of data fitting is here understood to be the following weighted 
least squares problem: Given a set SN = {xj, yj, w]}f= 1 of N data points {xj, Yj} 
and positive weights { w}}, find the polynomial lin E IP' n of degree :::; n ( < N) 
such that 

N N 

L wJ[yj- lf.n(xjW:::; L wJ[yj- q(x1 )] 2 for all q E IP'n· 
j=l j=l 

The inner product and norm naturally associated with this problem are 

N 

[u,v]N = L:wJu(xj)v(xj), //u//N = J[u,u]N, 
j=l 

in terms of which the least squares problem is simply 1/y- qi/Jv :::; 1/y- q//Jv, all 
q E IP'n. The solution is most conveniently expressed in terms of the polynomials 
{1rk}f=c/ orthonormal with respect to the inner product [ ·, ·]N (the "discrete 
orthogonal polynomials"), namely as the nth-degree "Fourier polynomial" of y, 

n 

<ln(x) = LCj1rj(x), Cj = [1rj,y]N. 
j=O 

With regard to the least squares problem, updating means the following: 
Determine the solution <ln corresponding to the enlarged set S N + 1 = S N U 
{xN+l, YN+l, WJv+l} in terms of the solution <In corresponding to the original 
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set S N. Downdating, conversely, means the determination of fin for S N in terms 
of Qn for SN+l· 

There is a similar problem of up- and downdating for the orthogonal poly
nomials, more precisely for their Jacobi matrices J n ( cf. the commentary to the 
first paper): Knowing Jn for SN, find Jn for SN+l, and vice versa. An algorithm 
of Gragg and Harrod [58, Section 3] using a sequence of Givens similarity trans
formations, attributed essentially to Rutishauser [81], can be thought of as an 
updating procedure in this sense, since it introduces one data point and weight 
at a time. 

As one would expect from the authors, both problems of up- and downdating 
are solved (in several different ways) by reformulating them in terms of matrices 
and then applying appropriate techniques of numerical linear algebra. 

An application of the updating procedure for Jacobi matrices is made in [29] 
to generate Jacobi matrices for sums of weight functions. 

Up- and downdating algorithms have subsequently been developed for least 
squares problems in the complex plane, for general complex nodes, for example, 
in [12, Section 4], and for nodes on the unit circle in [80, Section 3], [2]. For 
an updating procedure in connection with orthogonal rational functions, and 
function vectors, having prescribed poles, see [90, Section 3] and [27, Section 5]. 

Matrices, moments and quadrature, by Golub and Meurant [48] 

One of the central themes here is the estimation of matrix functionals 'P( A) = 

uT f(A)v, where A is a symmetric (usually positive definite) matrix, fa smooth 
function for which f(A) is meaningful, and u, v are column vectors. A prototype 
example, and one given the most attention in this work, is estimating the ( i, j)
entry of the inverse matrix A - 1 , in which case f(t) = C 1 and u = ei, v = ej 
are coordinate vectors. The problem has been treated previously by physicists in 
connection with the estimation of resolve~ts, where A= zl- H, z is an energy, 
and H a Hamiltonian, thus A- 1 is the resolvent of H. Much related work can 
also be found in the quantum chemistry literature; see, e.g., [51, Introduction] 
and the examples and references given therein. -

There are three basic steps in solving the problem: (i) The functional is 

written as an integral, 'P(A) = J: f(-\)do:(-\), where do: is a discrete measure 
supported on the spectrum o-(A) of A and [a, b] an interval containing o-(A). This 
is done by a spectral resolution of A, and in the important case u = v yields a 
positive measure do:. (ii) The integral is estimated by quadrature rules, typically 
Gauss, Galiss-Radau, or Gauss-Lobatto rules. These, with an increasing number 
of nodes, are capable of providing increasingly sharper upper and lower bounds 
for the integral, provided the derivatives off have constant sign on [a, b] (as is 
the case, for example, when f(t) = C 1, a > 0) and the measure do: is positive. 
Otherwise, they may still yield estimates of increasing quality. (iii) Generating 
the quadrature rules requires the discrete orthogonal polynomials for do:, in 
particular the Jacobi matrix J = J(do:) of the measure do: (cf. the commentary 
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to the first paper), which can be obtained by the Lanc~os or the conjugate 
gradient algorithm. An interesting technical detail is the way the quadrature 
sums are expressed in terms of the (1, I)-element of f(J0 ), where J 0 is closely 
related (equal, in the case of Gauss formulae) to the Jacobi matrix J or a leading 
principal minor matrix thereof. 

It is possible to generalize these ideas to the "block" case, where u and v 
are replaced by an n x m matrix W (typically with m = 2), in which case 
da becomes a matrix-valued measure and one has to deal with matrix-valued 
orthogonal polynomials and quadrature rules, as is done in Sections 3.3 and 4.3 
of the present work. 

When f(t) = t8 is any power, not necessarily s = -1, and u = v, the pro
cedure has previously been described by Golub in [46], and in the case s = -2, 
of interest in € 2 error bounds for systems of linear equations, even before by 
Dahlquist et al. in [25] and also in [26, Section 3]. In the latter work, improved 
approximations are obtained by the conjugate gradient method and the respec
tive errors estimated as described. In a sequel [49] to the present work, and 
already in [51, Section 4], the case s = -1 is further applied to obtain er
ror bounds and stopping criteria in iterative methods for solving linear sys
tems, notably the conjugate gradient method; see also [70], [33], and for the 
preconditioned conjugate gradient method, [71], [9]. Applications to construct
ing preconditioners can be found in [10]. Similar ideas have been pursued by 
M. Arioli and coworkers in a variety of application areas involving partial dif
ferential equations and their discretizations ([4], [8] , [6], [7], [3], [5]). A valuable 
exposition of error estimates in the conjugate gradient method is [88], where 
some of the recent results are traced back to the original work of Hestenes and 
Stiefel [59], and the influence of rounding errors is given serious attention. For 
the latter, see also [51, Section 5], [87, Section 4], and [94]. For a recent com
prehensive review of these and related matters, see [72], especially Sections 3.3 
and 5.3. 

Altogether different applications of the work of Golub and Meur:ant are to 
highly ill-conditioned linear algebraic systems, specifically to the determination 
of the Tikhonov regularization parameter [14], (15], [20], or to the determination 
of upper and lower bounds for the Lagrange multipliers in constrained least 
squares and quadratic problems [52]. The blur identification problem in image 
processing [76, Section 6] contains yet another application. 

The work of Golub and Meurant has inspired other researchers to develop 
variants of their techniques for estimating matrix functionals. We mention, for 
example, Calvetti et al. [17], [18], where next to Gauss and Gauss-Radau quadra
tures also anti-Gauss formulae are used (see the commentary to the first paper) 
and Calvetti et al. [16], where functionals uT[f(A)JTg(A)u are estimated for 
matrices A that are no longer necessarily symmetric, and the quadrature and 
antiquadrature rules are therefore based on the Arnoldi rather than the Lanczos 
process. 
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A stable numerical method for inverting shape from moments, by 
Golub, Milanfar, and Varah [50] 

The basic problem here is the determination of an n-sided polygon P in the 
complex plane, having vertices Zj, j = 1, 2, ... , n, given its first 2n-2 "harmonic" 
moments Ck = J fp zkdxdy, k = 0, 1, ... , 2n- 3. If the associated "complex" 
moments are defined by To= T1 = 0, Tk = k(k- 1)ck_2 , k = 2, 3, ... , 2n- 1, the 
vertex reconstruction amounts to solving the system of 2n nonlinear equations 

n I:>i zj = Tk, k = 0, 1, ... , 2n - 1. 
j=l 

These are formally identical with the equations for a Gaussian quadrature for
mula (with nodes Zj, weights ai, and moments Tk of the underlying weight func
tion), except that all these quantities are now complex and, moreover, the first 
two moments vanish. While the classical Prony's method is still applicable (it 
determines the coefficients of the monic polynomial of degree n having the Zj 

as its zeros), it is notoriously unstable. The object of this work is to develop a 
solution procedure which, though not necessarily perfectly stable, is more stable 
than Prony's method. 

This is done essentially by reformulating the problem, implicit already in [89, 
eqn (2.2.9)], as a generalized eigenvalue problem involving two Hankel matrices 
in the moments, or better, in transformed moments obtained by appropriate 
scaling and shifting. 

In practice, the number n of vertices is usually not known a priori and must 
be estimated from the given sequence of moments, which, to complicate matters, 
may be corrupted by noise. 

There are a number of potential app}ication areas for procedures as here 
described, one, discussed previously, to tomographic reconstruction, and another, 
described in the present work, to the problem of geophysical inversion from 
gravimetric measurements. 

The theoretical results of sensitivity analysis are nicely corroborated by 
numerical examples. There remain, however, a number of issues for further study, 
for example, a sound statistical analysis of procedures for estimating the number 
of vertices, especially in the presence of noise, and the incorporation of a priori 
geometrical constraints. Some of these issues have been taken up in the more 
recent work [28]. 

Computation of Gauss-Kronrod quadrature rules, by Calvetti, 
Golub, Gragg, and Reichel [13] 

In order to economically estimate the error Rn(f) of then-point Gauss quadra
ture rule (cf. the commentary to the first paper), Kronrod [64] in 1964 con
structed (for the weight function w = 1 on [ -1, 1]) an extended Gauss formula 
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rb n n+l 

fn w(t)j(t)dt =LA~ j(Tv) + L A~K j(T/:) + R~ (f), 
• a v=l J.L=l 

now called the Gauss-Kronrod quadrature formula, by adjoining to the n Gauss 
nodes Tv additional n + 1 nodes T!f - the Kronrod nodes - and selecting them, 
and all weights >.{:, >.~K, such as to achieve maximum degree of exactness 3n + 1 
(at least). The same idea, in a germinal form, can be traced back to the late 
19th century (cf. [40]). It turns out that the Kronrod nodes must be the zeros of 
the polynomial Tf;;+ 1 of degree n + 1 orthogonal to all lower-degree polynomials 
with respect to the (sign-changing) weight function w(t)7rn(t; w) on (a, b), where 
1fn is the orthogonal polynomial of degree n relative to the weight function w. 
While the polynomial Tf;;+l (considered for w = 1 already by Stieltjes in 1894 
without reference to quadrature) always exists uniquely, its zeros may or may not 
all be real and contained in [a, b]. An extensive literature thus evolved dealing 
precisely with this question of reality, and also with the question of positivity of 
all weights >.{:, >-;K. (For surveys on this and other aspects of Gauss-Kronrod 
formulae, see Monegato [74], [75], Gautschi [39], and Notaris [77].) In comparison, 
the question of actually computing the Gauss-Kronrod formula, when it exists, 
i.e., computing its nodes and weights, has received less attention; see, however, 
the recent survey by Monegato [73]. 

Among the most remarkable computational advances in this area is the 
algorithm of Laurie [66] for computing positive Gauss-Kronrod formulae. Laurie 
recognizes the equivalence of this problem with an inverse eigenvalue problem 
for a symmetric tridiagonal matrix with prescribed entries on the side diagonal; 
see also [23, pp. 15-16]. His algorithm much resembles the Golub-Welsch algo
rithm (cf. the commentary to the first paper) for ordinary Gauss formulae. In 
the present work by Calvetti et al., this algorithm is modified and simplified in 
the sense that the Gauss nodes Tv need not be recomputed (as they are in Lau
rie's algorithm) in cases where they are already known. Indeed, not even the full 
tridiagonal Jacobi-Kronrod matrix of order 2n + 1 needs to be generated. The 
resulting new algorithm is then used by the authors to compute also Kronrod 
extensions of Gauss-Radau and Gauss-Lobatto formulae. 

Modifications required to deal with nonpositive Gauss-Kronrod rules are 
developed in [1]. 

The work is too recent to have had a major impact, but it can be expected 
to find many applications, most likely in the area of adaptive quadrature. One 
such application (to the motion of droplets) is already briefly mentioned in [60, 
p. 63]. 

Summary 

Golub's work described here is characterized, on the one hand, by the imaginative 
use of linear algebra techniques in problems originating elsewhere, and on the 
other hand, by bringing tools outside of linear algebra to bear on problems 
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involving matrices. Both these features of Golub's work are elaborated in greater 
detail in the recent essay [41]. 

Acknowledgment. The writer is grateful for comments by D.P. Laurie, L. 
Reichel, and Z. Strakos on an earlier draft of these commentaries. 
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Abstract

In the letter to Daniel Bernoulli, Euler reports on his attempt to compute the common logarithm log x by interpolation at the
successive powers of 10. He notes that for x =9 the procedure, though converging fast, yields an incorrect answer. The interpolation
procedure is analyzed mathematically, and the discrepancy explained on the basis of modern function theory. It turns out that Euler’s
procedure converges to a q-analogue Sq(x) of the logarithm, where q = 1

10 . In the case of the logarithm log� x to base � > 1
(considered by Euler almost twenty years later), the limit of the analogous procedure (interpolating at the successive powers of �)
is Sq(x) with q = 1/�. It is shown that by taking � > 1 sufficiently close to 1 and interpolating at sufficiently many points, the
logarithm log x can indeed be approximated arbitrarily closely, although, if x, 1 < x < 10, is relatively large, extremely high-precision
arithmetic is required to overcome severe numerical cancellation. An alternative procedure for computing log x by interpolation
at points in [1, 10�], � > 0, accumulating at the lower end point, is shown to converge to the desired limit, but also not without
numerical complications.
© 2006 Elsevier B.V. All rights reserved.

MSC: 01A50; 65−03

Keywords: Euler’s correspondence with Daniel Bernoulli; Interpolation series for the logarithm; q-analogue of the logarithm

1. The handwritten original of the letter1 in question is kept at the University Library of Basel under the signature Ms.
L Ia 689 fol. 145–146v and has been published by G. Eneström in [2]. Fig. 1 shows the passage relevant to us, including
the rather formal closing phrases “Womit/verbleibe mit schuldigster Hochachtung/Eurer Hochedelgebohrnen/Meines
Hochgeehrtesten Herren Professors/gehorsamster und verbundenster/Leonhard Euler”. [Author’s translation: Herewith
I remain in most obliged respect your Honorable’s and my most highly esteemed Professor’s most obedient and indebted
Leonhard Euler.]

The mathematical passage reads as follows: “Ich vermeinte neulich, daß nachfolgende Series
m − 1

9
− (m − 1)(m − 10)

990
+ (m − 1)(m − 10)(m − 100)

999 000

− (m − 1)(m − 10)(m − 100)(m − 1000)

9 999 000 000
+ etc.

E-mail address: wxg@cs.purdue.edu.
1 The letter is dated in the old style (Julian), since Euler wrote from Petersburg; the corresponding date in the new style (Gregorian) is February

27, 1734.

0377-0427/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2006.11.027
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Fig. 1. Excerpt from Euler’s letter to D. Bernoulli.

(alwo die Anzahl der nullen im Numeratore und Denominatore einander gleich sind, im übrigen ist die Lex klar) den
Logarithmum communem ipsius m exprimiere, dann ist m = 1, so ist die gantze Series = 0, ist m = 10 so kommt 1,
ist m = 100, kommt 2, und so fortan. Als ich nun daraus den Log[arithmum] 9 finden wollte, bekam ich eine Zahl
welche weit zu klein war, ohngeacht diese Series sehr stark convergirte”. [Author’s translation: I recently thought that
the following series

m − 1

9
− (m − 1)(m − 10)

990
+ (m − 1)(m − 10)(m − 100)

999 000

− (m − 1)(m − 10)(m − 100)(m − 1000)

9 999 000 000
+ etc.

(where the number of zeros in the numerator and in the denominator is the same—the law, after all, is clear) would
represent the common logarithm of m, for, when m = 1, the whole series is =0, if m = 10, it becomes 1, if m = 100 it
is 2, and so on. Now when I wanted to find from it the logarithm of 9, I obtained a number which is much too small,
even though the series converged very strongly.]

2. Euler’s intention, in modern terminology, is to compute the common logarithm by interpolating a certain number
(ideally infinitely many) of known values of the logarithm. Fearless (even reckless) as so often was the case, Euler
takes the simplest values, log 10k = k, k = 0, 1, 2, 3, . . . , and for log x, x > 0, writes down the infinite series

S(x) =
∞∑

k=1

ak(x − 1)(x − 10) · · · (x − 10k−1), (1)

whose nth partial sum is Newton’s interpolation polynomial of degree n, hence

ak = [x0, x1, . . . , xk]f
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the divided difference of order k for the function f (x) = log x and abscissae xr = 10r , r = 0, 1, . . . , k. This may have
been the way in which Euler determined the first four coefficients

a1 = 1

9
, a2 = − 1

990
, a3 = 1

999 000
, a4 = − 1

9 999 000 000
.

The “law”, which he alludes to, apparently is

an = (−1)n−1

10n(n−1)/2(10n − 1)
, n = 1, 2, 3, . . . . (2)

We assert, somewhat more generally, that for arbitrary integer valued r�0,

[xr , xr+1, . . . , xr+n]f = (−1)n−1

10rn+n(n−1)/2(10n − 1)
. (3)

One proves (3) by mathematical induction on n. For n = 1, the assertion is evidently true. The validity of (3) for
some n and arbitrary r�0, and a well-known property of divided differences (see, e.g., [4, (2.64)]), then imply

[xr , xr+1, . . . , xr+n, xr+n+1]f
= [xr+1, xr+2, . . . , xr+n+1]f − [xr , xr+1, . . . , xr+n]f

xr+n+1 − xr

= (−1)n−1

10rn+n(n−1)/2(10n − 1)

1 − 10n

10n(10r+n+1 − 10r )

= (−1)n

10rn+n(n−1)/210n+r (10n+1 − 1)

= (−1)n

10r(n+1)+n(n+1)/2(10n+1 − 1)
,

which is precisely (3) with n replaced by n + 1. This proves (3), and therefore also (2).
3. It suffices, of course, to assume 1�x < 10, since every other positive number x′ can be written in the form

x′ = x × 10p with some integer p �= 0, and log x′ = p + log x. The series (1) then converges uniformly on [1, 10] and,
as Euler remarks, very fast. The nth term tn(x) of (1), when an is given by (2), in fact computes to

tn(x) = −
∏n−1

k=0(1 − x/10k)

10n − 1
= − qn

1 − qn
(x; q)n, q = 1

10
, (4)

where

(x; q)n =
n−1∏
k=0

(1 − xqk) (5)

is the q-shifted factorial (cf. [1, Section 10.2]). There holds, for 1�x < 10 and n�2,

|tn(x)| < 9

10n − 1

(
1 − 1

10n−1

)
<

9

10n , (6)

so that the nth partial sum of the series

S(x) =
∞∑

k=1

tk(x) (7)

approximates its limit up to an error less than 9 × 10−(n+1)(1 + 10−1 + 10−2 + · · ·) = 10−n. For Euler’s special value
x = 9 one so obtains

S(9) = 0.897778586588 . . . ,

a value which is significantly smaller than log 9 = 0.954242509439 . . .; the relative error is 5.92%.
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One can speculate what prompted Euler to communicate his computation for the special value x = 9. Very likely, he
also tried other (integer valued) x < 9, but had to observe that the results are then even worse. As a matter of fact, the
relative deviation of the limit value from the true value of the logarithm increases monotonically as x decreases over
the natural numbers from 9 to 2, and at x = 2 is about 10 times as large as at x = 9, and at x = 0 even 100%.

4. From today’s perspective it is not surprising that the series (7) does not converge to the expected value. The nth
term of the series, after all, is a polynomial of degree n, thus an analytic function of the complex variable x, and the
series itself converges uniformly on each disk |x|�R. In fact,∣∣∣∣∣

n−1∏
k=1

(1 − x/10k)

∣∣∣∣∣ �
n−1∏
k=1

(1 + R/10k),

and the product on the right converges absolutely when n → ∞. Therefore, C × ∑∞
n=1 1/(10n − 1), where C = (R +

1)
∏∞

k=1(1+R/10k), is a convergent majorant of the series. By Weierstraß’s double-series theorem, S(x) thus represents
a function which is analytic in every domain |x|�R, hence an entire function. Consider now d(z) = S(z) − log z in
the domain D = {z ∈ C : | arg z| < �}, where log denotes the principal branch of the logarithm. If we had d(z) = 0 at
infinitely many points which have a point of accumulation in D\{∞} (for example, in an arbitrarily small interval of
the real line), it would follow that d(z) ≡ 0 for all z ∈ D. This evidently is impossible since d(x) → ∞ when x ↓ 0.
Consequently, S(x) cannot be identically equal to log x on any interval, however small.

Interestingly, however, the function S(x) may be interpreted as a q-analogue of the logarithm, where q = 1
10 ; cf.

Section 5.
5. The motivation for Euler’s bold choice xr = 10r of the abscissae of interpolation is of course clear: not a single

logarithm needs to be computed in order to generate the interpolation data. Almost equally simple would be the choice
xr = �r , � > 0, which requires only one single logarithm, log �. It is natural, then, to consider interpolation to the
logarithm to base �, that is, to log� x = log x/ log �. What is the interpolation series2 in this case and how does it
behave?

To analyze the function S(x; �) represented by the interpolation series, it is useful to introduce a q-analogue of the
logarithm as defined by E. Koelink and W. Van Assche (see [5], where in Section 6 other definitions of the q-logarithm,
used in the physics literature, are also discussed),

Sq(x) = −
∞∑

n=1

qn

1 − qn
(x; q)n, (8)

where (x; q)n is the q-shifted factorial (5). One verifies, at least formally, that

lim
q→1

(1 − q)Sq(x) = −
∞∑

n=1

(1 − x)n

n
= ln x, 0 < x < 2 (9)

and

Sq(q−n) = n, n = 0, 1, 2, . . . , (10)

which motivates the name “q-analogue of the logarithm”. On the other hand, in analogy to (4) one obtains

S(x; �) =
∞∑

n=1

tn(x; �), tn(x; �) = − qn

1 − qn
(x; q)n, q = 1

�
, (11)

2 Euler returns to this series almost twenty years later in his memoir [3] (where a is written in place of �). He derives very elegantly the
logarithmic nature (10), (12) of S(x; �), emphasizing repeatedly that it holds only for positive integer values of n, and he computes (in Section 10)
Sq(q−n) also for negative n, explicitly for n� − 5. He missed, however, the close connection of log � · S(x; �) to log x when � ↓ 1 (cf. (13) and
(16) below), which in view of the strange numerical behavior of log � · S(x; �) as � ↓ 1 (cf. Section 6) is easy to understand. Instead, he used the
series S(x; �) as a springboard to derive all sorts of identities for it, among others two special cases (in Sections 17 and 26) of what today is known
as the “q-binomial theorem”. He also finds the expansion of S(x; �) in powers of x and from known infinite products deduces new infinite series. At
the end of the memoir Euler calculates Lambert’s series −S(0; �) = ∑∞

n=1 1/(�n − 1) for � = 10 to 30 decimal places, but not before developing
a convergence acceleration scheme for the more general series

∑∞
n=1 1/(�n − z).
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so that

S(x; �) = S1/�(x). (12)

Note that (10) with q = 1/� are precisely the interpolation conditions which produced the interpolation series S(x; �)

in the first place. It is evident from (11) and (5) that when � < 1, hence q > 1, the terms tn(x; �) converge to 1 if x = 0,
or to infinity in absolute value if x �= 0, so that the series in (11) diverges. This definitely rules out the temptation of
choosing xr = 10−r .

Assume, therefore, that � > 1. By an argument analogous to the one in Section 4 the series S(x; �), and hence also
S1/�(x), is seen to be an entire function (now depending on the parameter �). It is true that larger values of � yield
faster convergence of the series in (11), but (9) and (12) suggest that better approximations to the logarithm can be
expected for values of � > 1 closer to 1. We now show indeed that log x can be approximated by Euler’s interpolation
process as accurately as we wish by taking � > 1 sufficiently close to 1 and taking sufficiently many terms in the series
of (11). We prove this for 0 < x < 2, and provide numerical evidence for it when x�2.

Since log x = log � · log� x, the nth-degree interpolation approximation to the common logarithm log x is

sn = log � · Sn(x; �), (13)

where Sn(x; �) is the nth partial sum of S(x; �). Now

ln(1/q)

ln 10
Sq(x) = ln(1/q)

(1 − q) ln 10
· (1 − q)Sq(x),

so that as q → 1, since ln q−1/(1 − q) → 1, it follows from (9) that

lim
q→1

ln(1/q)

ln 10
Sq(x) = ln x

ln 10
= log x, 0 < x < 2.

Therefore, since q = 1/� and using (12), lim�↓1 log � · S(x; �)= log x, so that, given any � > 0, we can choose � > 1
sufficiently close to 1 to have

| log � · S(x; �) − log x|� �

2
. (14)

On the other hand, n can be taken large enough so that

| log � · Sn(x; �) − log � · S(x; �)|� �

2
. (15)

Combining (14) and (15) yields

|sn − log x| = | log � · Sn(x; �) − log � · S(x; �) + log � · S(x; �) − log x|
� | log � · Sn(x; �) − log � · S(x; �)| + | log � · S(x; �) − log x|
� �

2
+ �

2
= �, (16)

as was to be shown.
6. We have seen that the interpolation procedure converges for 0 < x < 2 (to the correct value log x) as � ↓ 1 and

n → ∞. Interestingly, the same seems to persist also for x�2, but not without considerable numerical obstacles.
Before discussing this, we note a simple scheme to evaluate tn(x; �) and thus, by summation, S(x; �). Letting un =
(�n − 1)tn(x; �), one obtains from (11) the recursive procedure

t1(x; �) = x − 1

� − 1
,

un = (1 − x/�n−1)un−1,

tn(x; �) = un

�n − 1
,

}
n = 2, 3, . . . , (17)
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Table 1
Largest values of | log � · tn(x;�)|
x\� 1.1 1.05 1.025 1.0125 1.00625

2 0.41 0.42 0.43 0.43 0.43
6 0.11 × 104 0.78 × 107 0.81 × 1015 0.17 × 1032 0.15 × 1065

10 0.19 × 108 0.24 × 1016 0.74 × 1032 0.13 × 1066 0.82 × 10132

Table 2
Errors achievable by the interpolation process of Section 5

x\� 1.1 1.05 1.025 1.0125 1.00625

2 0.17 × 10−12 0.14 × 10−23 0.95 × 10−46 0.18 × 10−88 0.20 × 10−174

6 0.24 × 10−8 0.43 × 10−15 0.22 × 10−28 0.43 × 10−55 0.11 × 10−107

10 0.43 × 10−4 0.12 × 10−6 0.17 × 10−11 0.54 × 10−21 0.76 × 10−40

d 40 50 60 100 200
n 100 200 400 800 1500

which needs to be initialized by

u1 = x − 1. (18)

To interpolate the common logarithm log x, the initial terms t1 and u1 must be multiplied by log �.
The “obstacles” referred to above have to do with the fact that for values of � larger than, but close to 1, the

quantities log � · tn(x; �) become extremely large before eventually converging to zero as n → ∞, at least when
x�10 is relatively large. This is illustrated in Table 1 above, which shows maxn�1| log � · tn(x; �)| for selected values
of x and �.

Yet, for each fixed �, the series S(x; �) = ∑∞
n=1 tn(x; �) converges. Because of the enormous amount of internal

cancellation that may take place in this series, however, the computation must be performed in appropriately high
precision.

This again is illustrated in Table 2, showing the errors achievable in symbolic/variable-precision computation with
d decimal digits and n terms of the series. It should, perhaps, be emphasized that for each fixed �, increasing d
and n beyond the values shown, will not reduce the errors any further; all it does is compute S(x; �), and with it,
log � · S(x; �) − log x, more accurately. This is why we called the errors “achievable”.

This somewhat bizarre behavior of the interpolation process, on reflection, is not entirely unexpected: For one, x
in (9) already had to be restricted to the interval (0, 2). For another, when � > 1 is very close to 1, then all xr = �r

initially are almost equal to 1. If they were all equal to 1, then the interpolation series would be Taylor’s expansion
of log x at 1, which diverges if x > 2. Our interpolation process, for x much larger than 2, thus behaves, initially, as if
it would diverge, and only when n becomes large and the points xr begin to spread out, does it turn around and take
on a more reasonable, eventually convergent, demeanor. While there may be some theoretical interest in this kind of
approximation process, it has little practical merit because of the excessive computing effort required. (The last five
columns of Table 2 take, respectively, 96, 187, 382, 741, and 1493 seconds to compute on the Sun Ultra5 Workstation.)

Nevertheless, if x is restricted to the interval [1, 5], the process is not entirely impractical, since when � = 1.1,
for example, there holds | log � · tn(x; �)| < 72.2, and with n = 100 terms, one is still able to obtain values of log x,
1�x�5, accurate to about 10 decimal digits, even in 14-digit computation. For values of x in the interval (5, 10], one
applies the process to x/2 and adds log 2 to the result. Better yet, in today’s age of technology and binary computer
arithmetic, we may restrict x to the interval [1, 2], in which case | log � · tn(x; �)| < 1 and � = 1.1, n = 20 generally
yields an accuracy of 10 or more decimal digits (nine digits near x = 1), while � = 1.05, n = 15 yields 11 or more
correct digits.
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7. There is still another way in which Euler’s ideas can in principle be salvaged and made workable. To begin with,
choose as interpolation abscissae xr = 10�/(r+1), � > 0, r = 0, 1, 2, . . . , so that

xr ∈ (1, 10�] for all r = 0, 1, 2, . . . . (19)

It is known, in fact (cf., e.g., [4, p. 83]), that for the function f and (arbitrary) abscissae of interpolation, all lying in
a finite interval [a, b], the interpolation series converges to f (x) for any x in [a, b], provided f has infinitely many in
[a, b] continuous derivatives and, moreover, there holds

lim
k→∞

(b − a)k

k! Mk = 0, (20)

where Mk denotes an upper bound of |f (k)| on [a, b]. This easily follows from Cauchy’s formula [4, (2.12)] for the
error of interpolation. It can also be shown ([4, p. 84]), that (20) is indeed true if f is analytic in a disk with center at
the middle of the interval [a, b] and radius r > 3

2 (b − a).
In our case f (x) = log x, one has f (k)(x) = (−1)k−1(k − 1)!x−k/ ln 10, and (20) is equivalent to |(b/a) − 1| < 1.

More precisely, one has at least geometric convergence with ratio q if∣∣∣∣ba − 1

∣∣∣∣ �q < 1. (21)

Choosing q = 1
2 , one obtains for the interval (19), where b/a = 10�,

�� log 3
2 = 0.17609 . . . . (22)

Thus, in the interval (19), when � is given by (22), the interpolation series converges (to the correct value) at least
geometrically with ratio 1

2 .
Now if x is given with 1�x < 10, one determines the integer k0�0 such that

10k0��x < 10(k0+1)�. (23)

This can easily be achieved (on a computer) by means of a small routine like (in pseudocode)

k0= 0;
while x�10(k0+1)�

k0= k0+1;
end

If then one puts t =10−k0�x, there holds 1� t < 10�, and one computes log t as above, whereupon log x =k0�+ log t .
Here too, however, not everything works as expected. It transpires (apparently because of the crowding of the

interpolation abscissae in the lower part of the interval (1, 10�]), that the algorithm described eventually succumbs to
the detrimental effects of rounding errors. The latter progressively affect the computation of the divided differences
(no longer explicitly known) to the point of rendering them completely meaningless. In computation with 36 decimal
places (quadruple precision in Fortran), for example, the error of the interpolation polynomial is seen to decrease
monotonically with increasing degree, but only up to a degree n of about n = 18; thereafter, the error increases rapidly.
Nevertheless, it is still possible, in this precision, to obtain at least 10 good decimals, generally, however, many more,
even as many as 35.

8. We have tried to understand and, following his own ideas, to rehabilitate Euler’s unsuccessful computation of the
logarithm, but do not want to leave behind the impression that the resulting computational schemes would be competitive
with newer methods of approximation theory (see, e.g., [6]). These modern methods, however, are products of the 20th
century.
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Seh ich die Werke der Meister an,
So sehe ich, was sie getan;
Betracht ich meine Siebensachen,
Seh ich, was ich hätt sollen machen.

–Goethe, Weimar 1814/1815

1. Introduction. It is a virtually impossible task to do justice, in a short span of
time and space, to the great genius of Leonhard Euler. All we can do, in this lecture,
is to bring across some glimpses of Euler’s incredibly voluminous and diverse work,
which today fills 74 massive volumes of the Opera omnia (with two more to come).
Nine additional volumes of correspondence are planned and have already appeared in
part, and about seven volumes of notebooks and diaries still await editing!

We begin in section 2 with a brief outline of Euler’s life, going through the three
stations of his life: Basel, St. Petersburg (twice), and Berlin. In section 3, we identify
in more or less chronological order Euler’s principal works and try to convey a flavor
and some characteristic features of his work by describing in more detail a few of his
many outstanding contributions. We conclude in section 4 with remarks on Euler’s
personality and intellect, as gained from testimonials of his contemporaries, and on the
quality of his craft, and in section 5 with some bibliographic information for further
reading.
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4 WALTER GAUTSCHI

2. His Life.

2.1. Basel 1707–1727: Auspicious Beginnings. Leonhard Euler was born on
April 15, 1707, the first child of Paulus Euler and Margaretha Brucker. Paulus Euler
came from modest folk, mostly artisans, while Margaretha Brucker’s ancestors include
a number of well-known scholars in the classics. Euler’s father at the time was a vicar
at the church of St. Jakob, just outside the old city walls of Basel. Although a
theologian, Paulus had interests in mathematics and took courses from the famous
Jakob Bernoulli during the first two years of his study at the university. About a year
and a half after Leonhard’s birth, the family moved to Riehen, a suburb of Basel,
where Paulus Euler assumed the position of Protestant minister at the local parish.
He served in that capacity faithfully and devotedly for the rest of his life.

Fig. 1 The parish residence and church in Riehen.

The parish residence, as it looks today (Figure 1), seems comfortable enough, but
at the time it had one floor less and only two rooms with heating. The living quarters
it provided, therefore, were rather cramped, especially after the family increased by
another child, Anna Maria, in 1708. Two more children, Maria Magdalena and Johann
Heinrich, were to follow later on.

Leonhard received his first schooling in mathematics at home from his father.
Around the age of eight he was sent to the Latin school in Basel and given room
and board at his maternal grandmother’s house. To compensate for the poor qual-
ity then prevailing at the school, Paulus Euler hired a private tutor for his son, a
young theologian by the name of Johannes Burckhardt, himself an enthusiastic lover
of mathematics. In October of 1720, at the age of thirteen (not unusual at the time),
Leonhard enrolled at the University of Basel, first at the philosophical faculty, where
he took the freshman courses on elementary mathematics given by Johann Bernoulli,
the younger brother of the now deceased Jakob. The young Euler pursued his math-
ematical studies with such a zeal that he soon caught the attention of Bernoulli,
who encouraged him to study more advanced books on his own and even offered him
assistance at his house every Saturday afternoon. In 1723, Euler graduated with
a master’s degree and a public lecture (in Latin) comparing Descartes’s system of
natural philosophy with that of Newton.

Following the wishes of his parents, he then entered the theological faculty, de-
voting, however, most of his time to mathematics. Euler’s father eventually had to
concede, probably at the urging of Johann Bernoulli, that Leonhard was predestined
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Fig. 2 The old university of Basel and Johann I Bernoulli.

to a career in mathematics rather than one in theology. This is how Euler himself
recounts this early learning experience at the university in his brief autobiography of
1767 (here freely translated from German; see Fellmann [10, Engl. transl., pp. 1–7]):

In 1720 I was admitted to the university as a public student, where I soon
found the opportunity to become acquainted with the famous professor
Johann Bernoulli, who made it a special pleasure for himself to help me
along in the mathematical sciences. Private lessons, however, he categor-
ically ruled out because of his busy schedule. However, he gave me a far
more beneficial advice, which consisted in myself getting a hold of some
of the more difficult mathematical books and working through them with
great diligence, and should I encounter some objections or difficulties, he
offered me free access to him every Saturday afternoon, and he was gra-
cious enough to comment on the collected difficulties, which was done with
such a desired advantage that, when he resolved one of my objections, ten
others at once disappeared, which certainly is the best method of making
happy progress in the mathematical sciences.

These personal meetings have become known, and famous, as the privatissima,
and they continued well beyond his graduation. It was during these privatissima that
Johann Bernoulli more and more began to admire the extraordinary mathematical
talents of the young Euler.

Barely nineteen years old, Euler dared to compete with the greatest scientific
minds of the time by responding to a prize question of the Paris Academy of Sciences
with a memoir on the optimal placing of masts on a ship. He, who at that point
in his life had never so much as seen a ship, did not win first prize, but still a
respectable second. A year later, when the physics chair at the University of Basel
became vacant, the young Euler, dauntlessly again, though with the full support of his
mentor, Johann Bernoulli, competed for the position, but failed, undoubtedly because
of his youth and lack of an extensive record of publications. In a sense, this was a
blessing in disguise, because in this way he was free to accept a call to the Academy of
Sciences in St. Petersburg, founded a few years earlier by the czar Peter I (the Great),
where he was to find a much more promising arena in which to fully develop himself.
The groundwork for this appointment had been laid by Johann Bernoulli and two of
his sons, Niklaus II and Daniel I, both of whom were already active at the Academy.
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6 WALTER GAUTSCHI

2.2. St. Petersburg 1727–1741: Meteoric Rise toWorld Fame and Academic
Advancement. Euler spent the winter of 1726 in Basel studying anatomy and phys-
iology in preparation for his anticipated duties at the Academy. When he arrived in
St. Petersburg and started his position as an adjunct of the Academy, it was soon
determined, however, that he should devote himself entirely to the mathematical sci-
ences. In addition, he was to participate in examinations for the cadet corps and
act as a consultant to the Russian state in a variety of scientific and technological
questions.

Fig. 3 The Academy in St. Petersburg and Peter I. (Photograph of the Academy of Sciences courtesy
of Andreas Verdun.)

Euler adjusted easily and quickly to the new and sometimes harsh life in the
northern part of Europe. Contrary to most other foreign members of the Academy
he began immediately to study the Russian language and mastered it quickly, both
in writing and speaking. For a while he shared a dwelling with Daniel Bernoulli, and
he was also on friendly terms with Christian Goldbach, the permanent Secretary of
the Academy and best known today for his—still open—conjecture in number theory.
The extensive correspondence between Euler and Goldbach that ensued has become
an important source for the history of science in the 18th century.

Euler’s years at the Academy of St. Petersburg proved to be a period of extraor-
dinary productivity and creativity. Many spectacular results achieved during this
time (more on this later) brought him instant world fame and increased status and
esteem within the Academy. A portrait of Euler stemming from this period is shown
in Figure 4.

In January of 1734 Euler married Katharina Gsell, the daughter of a Swiss painter
teaching at the Academy, and they moved into a house of their own. The marriage
brought forth thirteen children, of whom, however, only five reached the age of adult-
hood. The first-born child, Johann Albrecht, was to become a mathematician himself
and later in life was to serve Euler as one of his assistants.

Euler was not spared misfortunes. In 1735, he fell seriously ill and almost lost his
life. To the great relief of all, he recovered, but suffered a repeat attack three years
later of (probably) the same infectious disease. This time it cost him his right eye,
which is clearly visible on all portraits of Euler from this time on (for example, the
famous one in Figure 6, now hanging in the Basel Museum of Arts).

The political turmoil in Russia that followed the death of the czarina Anna
Ivanovna induced Euler to seriously consider, and eventually decide, to leave St. Pe-
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Fig. 4 Euler, ca. 1737.

tersburg. This all the more as he already had an invitation from the Prussian king
Frederick II to come to Berlin and help establish an Academy of Sciences there. This
is how Euler put it in his autobiography:

. . . in 1740, when His still gloriously reigning Royal Majesty [Frederick II]
came to power in Prussia, I received a most gracious call to Berlin, which,
after the illustrious Empress Anne had died and it began to look rather dis-
mal in the regency that followed, I accepted without much hesitation . . . .

In June of 1741, Euler, together with his wife Katharina, the six-year-old Johann
Albrecht, and the one-year-old toddler Karl, set out on the journey from St. Petersburg
to Berlin.

2.3. Berlin 1741–1766: The Emergence of Epochal Treatises. Because of his
preoccupation with the war campaign in Silesia, Frederick II took his time to set up
the Academy. It was not until 1746 that the Academy finally took shape, with Pierre-
Louis Moreau de Maupertuis its president and Euler the director of the Mathematics
Class. In the interim, Euler did not remain idle; he completed some twenty memoirs,
five major treatises (and another five during the remaining twenty years in Berlin),
and composed over 200 letters!

Even though Euler was entrusted with manifold duties at the Academy—he had
to oversee the Academy’s observatory and botanical gardens, deal with personnel
matters, attend to financial affairs, notably the sale of almanacs, which constituted
the major source of income for the Academy, not to speak of a variety of technological
and engineering projects—his mathematical productivity did not slow down. Nor was
he overly distracted by an ugly priority dispute that erupted in the early 1750s over
Euler’s principle of least action, which was also claimed by Maupertuis and which
the Swiss fellow mathematician and newly elected academician Johann Samuel König
asserted to have already been formulated by Leibniz in a letter to the mathematician
Jakob Hermann. König even came close to accusing Maupertuis of plagiarism. When
challenged to produce the letter, he was unable to do so, and Euler was asked to
investigate. Not sympathetic to Leibniz’s philosophy, Euler sided with Maupertuis
and in turn accused König of fraud. This all came to a boil when Voltaire, aligned
with König, came forth with a scathing satire ridiculing Maupertuis and not sparing
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8 WALTER GAUTSCHI

Fig. 5 The Berlin Academy and Frederick II. (Left panel reprinted with permission from the Archiv
der Berlin-Brandenburgischen Akademie der Wissenschaften.)

Fig. 6 Euler, 1753.

Euler either. So distraught was Maupertuis that he left Berlin soon thereafter, and
Euler had to conduct the affairs of the Academy as de facto, if not de jure, president
of the Academy.

By now, Euler was sufficiently well-off that he could purchase a country estate in
Charlottenburg, in the western outskirts of Berlin, which was large enough to provide
a comfortable home for his widowed mother (whom he had come to Berlin in 1750),
his sister-in-law, and all the children. At just twenty years old, his first-born son,
Johann Albrecht, was elected in 1754 to the Berlin Academy on the recommendation
of Maupertuis. With a memoir on the perturbation of cometary orbits by planetary
attraction he won in 1762 a prize of the Petersburg Academy, but had to share it
with Alexis-Claude Clairaut. Euler’s second son, Karl, went to study medicine in
Halle, whereas the third, Christoph, became an officer in the military. His daughter
Charlotte married into Dutch nobility, and her older sister Helene married a Russian
officer later in 1777.

Euler’s relation with Frederick II was not an easy one. In part, this was due
to the marked difference in personality and philosophical inclination: Frederick—
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proud, self-assured, worldly, a smooth and witty conversationalist, sympathetic to
French enlightenment; Euler—modest, inconspicuous, down-to-earth, and a devout
protestant. Another, perhaps more important, reason was Euler’s resentment for
never having been offered the presidency of the Berlin Academy. This resentment
was only reinforced after Maupertuis’s departure and Euler’s subsequent efforts to
keep the Academy afloat, when Frederick tried to interest Jean le Rond d’Alembert
in the presidency. The latter indeed came to Berlin, but only to inform the king of
his disinterest and to recommend Euler for the position instead. Still, Frederick not
only ignored d’Alembert’s advice, but ostentatiously declared himself the head of the
Academy! This, together with many other royal rebuffs, finally led Euler to leave
Berlin in 1766, in defiance of several obstacles put in his way by the king. He indeed
already had a most cordial invitation from Empress Catherine II (the Great) to return
to the Academy of St. Petersburg, which he accepted, and was given an absolutely
triumphant welcome back.

Fig. 7 The Euler house and Catherine II. (Left panel reprinted with permission from the Archiv
der Berlin-Brandenburgischen Akademie der Wissenschaften.)

2.4. St. Petersburg 1766–1783: The Glorious Final Stretch. Highly respected
at the Academy and adored at Catherine’s court, Euler now held a position of great
prestige and influence that had been denied him in Berlin for so long. He in fact was
the spiritual if not the appointed leader of the Academy. Unfortunately, however,
there were setbacks on a personal level. A cataract in his left (good) eye, which
already began to bother him in Berlin, now became increasingly worse, so that in 1771
Euler decided to undergo an operation. The operation, though successful, led to the
formation of an abscess, which soon destroyed Euler’s vision almost entirely. Later in
the same year, his wooden house burned down during the great fire of St. Petersburg,
and the almost blind Euler escaped from being burnt alive only by a heroic rescue by
Peter Grimm, a workman from Basel. To ease the misfortune, the Empress granted
funds to build a new house (the one shown in Figure 7 with the top floor having been
added later). Another heavy blow hit Euler in 1773 when his wife Katharina Gsell
died. Euler remarried three years later so as not to be dependent on his children.

In spite of all these fateful events, Euler remained mathematically as active as
ever, if not more so. Indeed, about half of his scientific output was published, or
originated, during this second St. Petersburg period, among which his two “best-
sellers,” Letters to a German Princess and Algebra. Naturally, he could not have
done it without good secretarial and technical help, which he received from, among
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10 WALTER GAUTSCHI

Fig. 8 Euler, 1778.

others, Niklaus Fuss, a compatriot from Basel and future grandson-in-law of Euler,
and Euler’s own son, Johann Albrecht. The latter, by now secretary of the Academy,
also acted as the protocolist of the Academy sessions, over which Euler, as the oldest
member of the Academy, had to preside.

The high esteem in which Euler was held at the Academy and at court is touch-
ingly revealed by a passage in the memoirs of the Countess Dashkova, a directress of
the Academy appointed by the empress. She recounts the first time she accompanied
the old Euler to one of the sessions of the Academy, probably Euler’s last. Before
the session started, a prominent professor and State Councilor as a matter of course
claimed the chair of honor, next to the director’s chair. The countess then turned
to Euler and said: “Please be seated wherever you want; the seat you select will of
course become the first of all.”

Leonhard Euler died from a stroke on September 18, 1783 while playing with one
of his grandchildren. Formulae that he had written down on two of his large slates
describing the mathematics underlying the spectacular balloon flight undertaken on
June 5, 1783, by the brothers Montgolfier in Paris were found on the day of his death.
Worked out and prepared for publication by his son, Johann Albrecht, they became
the last article of Euler; it appeared in the 1784 volume of the Mémoires. A stream
of memoirs, however, all queued up at the presses of the Academy, were still to be
published for nearly fifty years after Euler’s death.

3. HisWorks. In the face of the enormous volume of Euler’s writings, we content
ourselves with briefly identifying his principal works, and then select, and describe in
more detail, a few of Euler’s prominent results in order to convey a flavor of his work
and some of its characteristic features. The papers will be cited by their Eneström-
Index numbers (E-numbers).

3.1. The Period in Basel. During the relatively short time of Euler’s creative
activity in Basel, he published two papers (E1, E3) in the Acta Eruditorum (Leipzig),
one on isochronous curves, the other on so-called reciprocal curves, both influenced
by Johann Bernoulli, and the work on the Paris Academy prize question (E4). The
major work of this period is probably his Dissertatio physica de sono (E2), which he
submitted in support of his application to the physics chair at the University of Basel
and had printed in 1727 in Basel. In it, Euler discusses the nature and propagation of
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Fig. 9 Physical Dissertation on Sound, 1727. (Reprinted with permission from Birkhäuser Verlag.)

sound, in particular the speed of sound, and also the generation of sound by musical
instruments. Some of this work is preliminary and has been revisited by Euler in his
Tentamen (cf. section 3.2.1) and, thirty years later, in several memoirs (E305–E307).

3.2. First St. Petersburg Period. In spite of the serious setbacks in health, Eu-
ler’s creative output during this period is nothing short of astonishing. Major works
on mechanics, music theory, and naval architecture are interspersed with some 70
memoirs on a great variety of topics that run from analysis and number theory to
concrete problems in physics, mechanics, and astronomy. An account of the mathe-
matical work during this period is given in Sandifer [22].

Fig. 10 Mechanics, 1736. (Reprinted with permission from Birkhäuser Verlag.)

3.2.1. Major Works. The two-volume Mechanica (E15, E16) is the beginning of
a far-reaching program, outlined by Euler in Vol. I, sect. 98, of composing a com-
prehensive treatment of all aspects of mechanics, including the mechanics of rigid,
flexible, and elastic bodies, as well as fluid mechanics and celestial mechanics. The
present work is restricted almost entirely to the dynamics of a point mass, to its free
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12 WALTER GAUTSCHI

motion in Vol. I and constrained motion in Vol. II. In either case the motion may
take place either in a vacuum or in a resisting medium. The novelty of the Mechan-
ica consists in the systematic use of (the then new) differential and integral calculus,
including differential equations, and in this sense it represents the first treatise on
what is now called analytic (or rational) mechanics. It had won the praise of many
leading scientists of the time, Johann Bernoulli among them, who said of the work
that “it does honor to Euler’s genius and acumen.” Also Lagrange, who in 1788 wrote
his own Mécanique analytique, acknowledges Euler’s mechanics to be “the first great
work where Analysis has been applied to the science of motion.” Implementation
and systematic treatment of the rest of Euler’s program, never entirely completed,
occupied him throughout much of his life.

Fig. 11 Tentamen, 1739 (1731). (Reprinted with permission from Birkhäuser Verlag.)

It is evident from Euler’s notebooks that he thought a great deal about music
and musical composition while still in Basel and had plans to write a book on the
subject. These plans matured only later in St. Petersburg and gave rise to the Ten-
tamen novae theoriae musicae (E33), usually referred to as the Tentamen, published
in 1739 but completed already in 1731. (An English translation was made available
by Smith [27, pp. 21–347].) The work opens with a discussion of the nature of sound
as vibrations of air particles, including the propagation of sound, the physiology of
auditory perception, and the generation of sound by string and wind instruments.
The core of the work, however, deals with a theory of pleasure that music can evoke,
which Euler develops by assigning to a tone interval, a chord, or a succession of such,
a numerical value—the “degree”—which is to measure the agreeableness, or pleasure,
of the respective musical construct: the lower the degree, the more pleasure. This is
done in the context of Euler’s favorite diatonic-chromatic temperament, but a com-
plete mathematical theory of temperaments, both antique and contemporary ones, is
also given.

In trying to make music an exact science, Euler was not alone: Descartes and
Mersenne did the same before him, as did d’Alembert and many others after him
(cf. Bailhache [2] and Assayag, Feichtinger, and Rodrigues [1]). In 1766 and 1774,
Euler returns to music in three memoirs (E314, E315, and E457).

Euler’s two-volume Scientia navalis (E110, E111) is a second milestone in his
development of rational mechanics. In it, he sets forth the principles of hydrostatics
and develops a theory of equilibrium and oscillations about the equilibrium of three-
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Fig. 12 Naval Science, 1749 (1740–1741).

dimensional bodies submerged in water. This already contains the beginnings of the
mechanics of rigid bodies, which much later is to culminate in his Theoria motus corpo-
rum solidorum seu rigidorum, the third major treatise on mechanics (cf. section 3.3.1).
The second volume applies the theory to ships, shipbuilding, and navigation.

3.2.2. Selecta Euleriana.

Selectio 1. The Basel Problem. This is the name that has become attached to
the problem of determining the sum of the reciprocal squares,

(3.1) 1 +
1

22
+

1

32
+

1

42
+ · · · .

In modern terminology, this is called the zeta function of 2, where more generally

(3.2) ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · .

The problem had stumped the leading mathematicians of the time—Leibniz, Stirling,
de Moivre, and all the Bernoullis—until Euler came along. Typically for Euler, he
started, using his tremendous dexterity of calculation and his adroitness in speeding up
slowly converging series, to calculate ζ(2) in E20 to seven decimal places (cf. Gautschi
[13, sect. 2]). (Stirling, already in 1730, actually calculated the series to nine decimal
places, but Euler did not yet know this.) The breakthrough came in 1735 (published
as E41 in 1740) when he showed by a brilliant but daring procedure (using Newton’s
identities for polynomials of infinite degree!) that

ζ(2) =
π2

6
.

Spectacular as this achievement was, Euler went on to use the same method, with
considerably more labor, to determine ζ(s) for all even s = 2n up to 12. He found
ζ(2n) to be always a rational number multiplied by the 2nth power of π. It was in
connection with the Basel problem that Euler in 1732 discovered a general summa-
tion procedure, found independently by Maclaurin in 1738, and promptly used it to
calculate ζ(2) to twenty decimal places (cf. Gautschi [13, sect. 5.1]). Eventually, Euler
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14 WALTER GAUTSCHI

Fig. 13 Basel, mid 18th century. (Reprinted with permission from the University Library of Berne,
Central Library, Ryhiner Collection.)

managed to place his approach on a more solid footing, using his own partial fraction
expansion of the cotangent function, and he succeeded, in E130 (see also E212, Part
II, Chap. 5, p. 324), to prove the general formula

(3.3) ζ(2n) =
22n−1

(2n)!
|B2n|π2n.

Here, B2n are the Bernoulli numbers (introduced by Jakob Bernoulli in his Ars con-
jectandi), which Euler already encountered in his general summation formula.

Euler also tried odd values of s, but wrote in a letter to Johann Bernoulli that
“the odd powers I cannot sum, and I don’t believe that their sums depend on the
quadrature of the circle [that is, on π]” (Fellmann [9, p. 84, footnote 56]). The
problem in this case, as a matter of fact, is still open today. The Zürich historian
Eduard Fueter once wrote that “where mathematical reason could not go any further,
this for Euler was where the kingdom of God began.” Could it be that here was an
instance where Euler felt a brush with the kingdom of God?

Selectio 2. Prime Numbers and the Zeta Function. Let

P = {2, 3, 5, 7, 11, 13, 17, . . .}
be the set of all prime numbers, i.e., the integers > 1 that are divisible only by
1 and themselves. Euler’s fascination with prime numbers started quite early and
continued throughout his life, even though the rest of the mathematical world at the
time (Lagrange excluded!) was rather indifferent to problems of this kind. An example
of his profound insight into the theory of numbers is the discovery in 1737 (E72) of
the fabulous product formula

(3.4)
∏

p∈P

1

1− 1/ps
= ζ(s), s > 1,

connecting prime numbers with the zeta function (3.2). How did he do it? Simply
by starting with the zeta function and peeling away, layer after layer, all the terms
whose integers in the denominators are divisible by a prime! Thus, from

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · ,
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dividing by 2s and subtracting, one gets
(
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+ · · · .

All the denominator integers divisible by 2 are gone. Doing the same with the next
prime, 3, i.e., dividing the last equation by 3s and subtracting, one gets

(
1− 1

2s

)(
1− 1

3s

)
ζ(s) = 1 +

1

5s
+

1

7s
+

1

11s
+ · · · ,

where all integers divisible by 3 are gone. After continuing in this way ad infinitum,
everything will be gone except for the first term, 1,

∏

p∈P

(
1− 1

ps

)
ζ(s) = 1.

But this is the same as (3.4)!
The result provides a neat analytic proof of the fact (already known to the Greeks)

that the number of primes is infinite. Indeed, since ζ(1)—the harmonic series—
diverges to∞ (cf. Selectio 4), the product on the left of (3.4), if s = 1, cannot be finite.

The formula—the beginning of “analytic number theory”—in fact paved the way
to important later developments in the distribution of primes.

Selectio 3. The Gamma Function. Following a correspondence in 1729 with
Goldbach, Euler in E19 considers the problem of interpolating the sequence of facto-
rials

(3.5) n! = 1 · 2 · 3 · · ·n, n = 1, 2, 3, . . . ,

at noninteger values of the argument. Euler quickly realized that this cannot be done
algebraically, but requires “transcendentals,” that is, calculus. He writes n! as an
infinite product,

(3.6)
1 · 2n
1 + n

· 2
1−n · 3n
2 + n

· 3
1−n · 4n
3 + n

· 4
1−n · 5n
4 + n

· · · ,

which formally, by multiplying out the numerators, can be seen to be the ratio of
two infinite products, 1 · 2 · 3 · 4 · 5 · · · and (n + 1)(n + 2)(n + 3) · · · , which indeed
reduces to (3.5). Now for n = 1

2 , Euler manages to manipulate the infinite product
(3.6) into the square root of an infinite product for π/4 due to John Wallis; therefore,
1
2 ! =

1
2

√
π. This is why Euler knew that some kind of integration was necessary to

solve the problem.

By a stroke of insight, Euler takes the integral
∫ 1

0
xe(1− x)ndx—up to the factor

1/n!, the n-times iterated integral of xe, where e is an arbitrary number (not the basis
of the natural logarithms!)—and finds the formula

(3.7) (e+ n+ 1)

∫ 1

0

xe(1− x)ndx =
n!

(e+ 1)(e+ 2) · · · (e+ n)
.

He now lets e = f/g be a fraction, so that

f + (n+ 1)g

gn+1

∫ 1

0

xf/g(1− x)ndx =
n!

(f + g)(f + 2g) · · · (f + ng)
.

If f = 1, g = 0, then on the right we have n!; on the left, we have to determine the
limit as f → 1, g → 0, which Euler takes to be the desired interpolant, since it is
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16 WALTER GAUTSCHI

meaningful also for noninteger n. Skillfully, as always, Euler carries out the limit by
first changing variables, x = tg/(f+g), to obtain

f + (n+ 1)g

f + g

∫ 1

0

(
1− tg/(f+g)

g

)n
dt,

and then doing the limit as g → 0 with f = 1 by the Bernoulli–l’Hôpital rule. The

result is
∫ 1

0
(− ln t)ndt. Here we can set n = x to be any positive number, and thus

we obtain x! =
∫ 1

0
(− ln t)xdt, which today is written as

(3.8) x! =

∫ ∞

0

exp(−t)txdt = Γ(x+ 1)

in terms of the gamma function Γ. It is easily verified that

(3.9) Γ(x+ 1) = xΓ(x), Γ(1) = 1,

so that indeed Γ(n+ 1) = n! if n is an integer ≥ 0.

Fig. 14 The gamma function; graph and contour map. (Per Wikipedia, permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documen-
tation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. Subject to
disclaimers.)

Euler’s unfailing intuition in producing the gamma function had been vindicated
early in the 20th century when it was shown independently by Harald Bohr and
Johannes Mollerup that there is no other function on (0,∞) interpolating the factorials
if, in addition to satisfying the difference equation (3.9), it is also required to be
logarithmically convex. The gamma function indeed has become one of the most
fundamental functions in analysis—real as well as complex.

The integral in (3.8) is often referred to as the second Eulerian integral, the first
being

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt,

also called the beta function. The latter can be beautifully expressed in terms of the
gamma function by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

which is nothing but (3.7) for e = x− 1, n = y − 1.

I 
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LEONHARD EULER: HIS LIFE, THE MAN, AND HIS WORKS 17

For a recent historical essay on the gamma function, see Srinivasan [28].

Selectio 4. Euler’s Constant. It is generally acknowledged that, aside from the
imaginary unit i =

√
−1, the two most important constants in mathematics are

π = 3.1415 . . . , the ratio of the circumference of a circle to its diameter, and e =
2.7182 . . . , the basis of the natural logarithms, sometimes named after Euler. They
pop up everywhere, often quite unexpectedly. The 19th-century logician Auguste de
Morgan said about π that “it comes on many occasions through the window and
through the door, sometimes even down the chimney.” The third most important
constant is undoubtedly Euler’s constant γ introduced by him in 1740 in E43. Of
the three together—the “holy trinity,” as they are sometimes called—the last one,
γ, is the most mysterious one, since its arithmetic nature, in contrast to π and e, is
still shrouded in obscurity. It is not even known whether γ is rational, even though
most likely it is not; if it were, say, equal to p/q in reduced form, then high-precision
continued fraction calculations of γ have shown that q would have to be larger than
10244,663 (Haible and Papanikolaou [14, p. 349]).

Euler’s constant arises in connection with the harmonic series ζ(1) = 1+ 1
2+

1
3+· · ·

(so called because each of its terms is the harmonic mean of the two neighboring terms)
and is defined as the limit

(3.10) γ = lim
n→∞

(
1 +

1

2
+

1

3
· · ·+ 1

n
− lnn

)
= 0.57721 . . . .

It has been known as early as the 14th century that the harmonic series diverges, but
a rigorous proof of it is usually attributed to Jakob Bernoulli, who also mentioned
another proof by his younger brother Johann, which, however, is not entirely satis-
factory. At any rate, Euler, in defining his constant and showing it to be finite, puts
in evidence not only the divergence of the harmonic series, but also its logarithmic
rate of divergence. Beyond this, using his general summation formula (mentioned in
Selectio 1), he computes γ to 16 correct decimal places (cf. Gautschi [13, sect. 5.2]),
and to equally many decimals the sum of the first million terms of the harmonic series!
Since later (in 1790) Lorenzo Mascheroni also considered Euler’s constant, gave it the
name γ, and computed it to 32 decimal places (of which, curiously, the 19th, 20th,
and 21st are incorrect), the term “Euler–Mascheroni constant” is also in use. As of
today, it appears that γ has been computed to 108 million decimal places, compared
to over 2× 1011 decimals for π and 50.1 billion for e.

An inspiring tale surrounding Euler’s constant can be found in Havil [15], and a
rather encyclopedic account in Krämer [18].

After all these spectacular achievements, the numerous other memoirs written on
many different topics, and his responsibilities at the Academy, it is incredible that
Euler still had the time and stamina to write a 300-page volume on elementary arith-
metic for use in the St. Petersburg gymnasia. How fortunate were those St. Petersburg
kids for having had Euler as their teacher!

3.3. Berlin. Next to some 280 memoirs, many quite important, and consultation
on engineering and technology projects, this period saw the creation of a number of
epochal scientific treatises and a highly successful and popular work on the philosophy
of science.

3.3.1. MajorWorks. The brachistochrone problem—finding the path along which
a mass point moves under the influence of gravity down from one point of a vertical
plane to another (not vertically below) in the shortest amount of time—is an early
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18 WALTER GAUTSCHI

Fig. 15 Calculus of Variations, 1744, and Artillerie, 1745. (Reprinted with permission from Birk-
häuser Verlag.)

example of an optimization problem, posed by Johann Bernoulli, which seeks a func-
tion (or a curve) that renders optimal an analytic expression that depends on this
function. In 1744 (E65), and later in 1766 (E296) adopting an improved approach
of Lagrange, Euler vastly generalizes this problem, thereby creating an entirely new
branch of mathematics, called (already by Euler) the “calculus of variations.” He
derives his famous Euler equation: a necessary condition in the form of a differential
equation that any solution of the problem must satisfy. Typically for Euler, he illus-
trates this by many—some hundred!—examples, among them the principle of least
action that caused so much turmoil in the mid-1700s (cf. section 2.3).

Two smaller treatises, one on planetary and cometary trajectories (E66) and
another on optics (E88), appeared at about the same time (1744, resp., 1746). The
latter is of historical interest insofar as it started the debate of Newton’s particle
versus Euler’s own wave theory of light.

In deference to his master, king Frederick II, Euler translated an important work
on ballistics by the Englishman Benjamin Robins, even though the latter had been
unfairly critical of Euler’s Mechanica of 1736. He added, however, so many commen-
taries and explanatory notes (also corrections!) that the resulting book—his Artillerie
of 1745 (E77)—is about five times the size of the original. Niklaus Fuss in his 1783
Eulogy of Euler (cf. Opera omnia, Ser. I, Vol. 1, pp. xliii–xcv) remarks: “. . . the only
revenge [Euler] took against his adversary because of the old injustice consists in hav-
ing made [Robins’s] work so famous as, without him, it would never have become.”

The two-volume Introductio in analysin infinitorum of 1748 (E101, E102) together
with the Institutiones calculi differentialis of 1755 (E212) and the three-volume Insti-
tutiones calculi integralis of 1768–1770 (E342, E366, E385)—a “magnificent trilogy”
(Fellmann [9, sect. 4])—establishes analysis as an independent, autonomous discipline,
and represents an important precursor of analysis as we know it today.

In the first volume of the Introductio, after a treatment of elementary functions,
Euler summarizes his many discoveries in the areas of infinite series, infinite products,
partition of numbers, and continued fractions. On several occasions, he uses the fun-
damental theorem of algebra, clearly states it, but does not prove it. He develops a
clear concept of function—real- as well as complex-valued—and emphasizes the fun-
damental role played in analysis by the number e and the exponential and logarithm
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Fig. 16 Infinitesimal Analysis, 1748, and Differential and Integral Calculus, 1755, 1763, 1773.
(Reprinted with permission from Birkhäuser Verlag.)

functions. The second volume is devoted to analytic geometry: the theory of algebraic
curves and surfaces.

Differential Calculus also has two parts, the first being devoted to the calculus
of differences and differentials, the second to the theory of power series and summa-
tion formulae, with many examples given for each. Chapter 4 of the second part,
incidentally, contains the first example, in print, of a Fourier series; cf. also p. 297 of
the Opera omnia, Ser. I, Vol. 10. Another chapter deals with Newton’s method, and
improvements thereof, for solving nonlinear equations, and still another with criteria
for algebraic equations to have only real roots.

The three-volume Integral Calculus is a huge foray into the realm of quadrature
and differential equations. In the first volume, Euler treats the quadrature (i.e., in-
definite integration) of elementary functions and techniques for reducing the solution
of linear ordinary differential equations to quadratures. In the second volume, he
presents, among other things, a detailed theory of the important linear second-order
differential equations, and in the third volume a treatment, to the extent known
at the time (mostly through Euler’s own work), of linear partial differential equa-
tions. A fourth volume, published posthumously in 1794, contains supplements to the
preceding volumes. Euler’s method—a well-known approximate method for solving
arbitrary first-order differential equations, and the more general Taylor series method,
are embedded in Chapter 7 of the second section of Volume 1.

Euler’s program for mechanics (cf. section 3.2.1) progressed steadily as he tackled
the problem of developing a theory of the motion of solids. An important milestone
in this effort was the memoir E177 in which was stated for the first time, in full
generality, what today is called Newtonian mechanics. The great treatise Theoria
motus corporum solidorum seu rigidorum (E289) which followed in 1765, also called
the “Second Mechanics,” represents a summary of Euler’s mechanical work up to this
time. In addition to an improved exposition of his earlier mechanics of mass points
(cf. section 3.2.1), it now contains the differential equations (Euler’s equations) of
motion of a rigid body subject to external forces. Here, Euler introduces the original
idea of employing two coordinate systems—one fixed, the other moving, attached to
the body—and deriving differential equations for the angles between the respective
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20 WALTER GAUTSCHI

Fig. 17 Theoria motus corporum, 1765. (Reprinted with permission from Birkhäuser Verlag.)

Fig. 18 Optics, 1769–1771, and Letters, 1768, 1772 (1760–1762). (Reprinted with permission from
Birkhäuser Verlag.)

coordinate axes, now called the Euler angles. The intriguing motion of the spinning
top is one of many examples worked out by Euler in detail.

Later, in 1776, Euler returns to mechanics again with his seminal work E479,
where one finds the definitive formulation of the principles of linear and angular
momentum.

Throughout his years in Berlin and beyond, Euler was deeply occupied with geo-
metric optics. His memoirs and books on this topic, including the monumental three-
volume Dioptrics (E367, E386, E404), written mostly while still in Berlin, fill no fewer
than seven volumes in his Opera omnia. A central theme and motivation of this work
was the improvement of optical instruments like telescopes and microscopes, notably
ways of eliminating chromatic and spherical aberration through intricate systems of
lenses and interspaced fluids.

Euler’s philosophical views on science, religion, and ethics are expressed in over
200 letters written between 1760 and 1762 (in French) to a German princess and pub-
lished later in 1768 and 1772 (E343, E344, E417). (For a recent edition of these letters,
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see Euler [8].) While Euler’s role as a philosopher may be controversial (even his best
friend Daniel Bernoulli advised him to better deal with “more sublime matters”), his
Letters, written with extreme clarity and also accessible to people not trained in the
sciences, “even to the gentle sex,” as Fuss remarks in his Eulogy, became an instant
success and were translated into all major languages.

3.3.2. Selecta Euleriana.

Selectio 5. The Königsberg Bridge Problem. The river Pregel, which flows
through the Prussian city of Königsberg, divides the city into an island and three
distinct land masses, one in the north, one in the east, and one in the south. There
are altogether seven bridges, arranged as shown in green on the left of Figure 19,
connecting the three land masses with each other and with the island. The problem
is this: Can one take a stroll from one point in the city to another by traversing each
bridge exactly once? In particular, can one return to the starting point in the same
manner?

Evidently, this is a problem that cannot be dealt with by the traditional meth-
ods of analysis and algebra. It requires a new kind of analysis that deemphasizes
metric properties in favor of positional properties. Euler solved the problem in 1735,
published as E53 in 1741, by showing that such paths cannot exist. He does this
by an ingenious process of abstraction, associating with the given land and bridge
configuration (what today is called) a connected graph, i.e., a network of vertices and
connecting edges, each vertex representing a piece of land and each edge a bridge con-
necting the respective pieces of land. In the problem at hand, there are four distinct
pieces of land, hence four vertices, and they are connected with edges as shown on
the right of Figure 19. It is obvious what is meant by a path along edges from one
vertex to another. A closed path is called a circuit, and paths or circuits are (today)
called Eulerian if each edge is traversed exactly once.

Euler recognized that in modern terminology a crucial concept here is the degree
of a vertex, i.e., the number of edges emanating from it. If, in an arbitrary connected

Fig. 19 The Königsberg bridge problem. (Left image created by Bogdan Giuşcă, as displayed in
the Wikipedia article “Leonhard Euler.” Per Wikipedia, permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. Subject to dis-
claimers.)
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graph, n denotes the number of vertices of odd degree, he in effect proves that (a) if
n = 0, the graph has at least one Eulerian circuit, and he indicates how to find it;
(b) if n = 2, it has at least one Eulerian path, but no circuit, and again he shows
us how to find it; (c) if n > 2, it has neither. (The case n = 1 is impossible.) Since
the Königsberg bridge graph has n = 4, we are in case (c), hence it is impossible to
traverse the city in the manner required in the problem.

Here again, like in the calculus of variations, one can admire Euler’s powerful drive
and capacity of starting with a concrete example and deriving from it, by a process
of sweeping generalization, the beginnings of a whole new theory, in the present case,
the theory of graphs and topological networks.

Selectio 6. Euler’s Buckling Formula (1744). In a first supplement to his Metho-
dus (cf. Figure 15, left), Euler applies the calculus of variations to elasticity theory,
specifically to the bending of a rod subject to an axial load. He derives the critical
load under which the rod buckles. This load depends on the stiffness constant of the
material, on the way the rod is supported at either end, and it is inversely propor-
tional to the square of the length of the rod. A particular configuration of two rods
loaded on top by a connecting bar (assumed to be of infinite stiffness) is shown in
Figure 20, during the initial phase (left), and at the time of buckling (right). Here,
the top end of the rods is slidably supported and the bottom end clamped. For a
video, see http://epubs.siam.org/sam-bin/getfile/SIREV/articles/70271 02.avi.

Fig. 20 The buckling of a rod. (Images and video courtesy of Wolfgang Ehlers.)

The critical load is the first elastostatic eigenvalue of the problem. Euler also
calculates the elastokinetic eigenvalues, the eigenfrequencies of the rod’s transversal
oscillations, and the associated eigenfunctions, which determine the shapes of the
deformed rod.

Selectio 7. Euler Flow. In a series of three memoirs, E225–E227, all published in
1757, and another three papers (E258, E396, E409), Euler gave his definitive treatment
of continuum and fluid mechanics, the culmination of a number of earlier memoirs on
the subject. It contains the celebrated Euler equations, expressing the conservation of
mass, momentum, and energy. In two (three) dimensions, these constitute a system
of four (five) nonlinear hyperbolic partial differential equations, which have to be
solved, given appropriate initial and boundary conditions. Naturally, in Euler’s time,
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(a) (b)

(c) (d)

Fig. 21 Transonic Euler flow at Mach .85 about a cylinder. (Images and video courtesy of Nicola
Botta.)

this was virtually impossible to do, except in very special cases, and indeed Euler
in the introduction to E226 had to write that “if there remain any difficulties, they
shall not be on the side of mechanics, but solely on the side of analysis: for this
science has not yet been carried to the degree of perfection which would be necessary
in order to develop analytic formulae which include the principles of the motion of
fluids.” Nowadays, however, the Euler equations are widely being used in computer
simulation of fluids.

An example is the asymmetric flow of a compressible, inviscid fluid about a cir-
cular cylinder at transonic speed, calculated in 1995 by Botta [4]. Four color-coded
snapshots of the two-dimensional flow (vorticity contour lines), as it develops be-
hind the cylinder, are shown in Figure 21: (a) the onset of the flow, (b) a regi-
men of Kelvin–Helmholtz instability, (c) the flow after breakdown of symmetry, and
(d) the formation of vortex pairs. (The scaling of (c) and (d) differs from that of
(a) and (b).) For the complete Euler-flow video, see http://epubs.siam.org/sam-
bin/getfile/SIREV/articles/70271 03.avi.

Selectio 8. Euler’s Polyhedral Formula (1758). In a three-dimensional convex
polyhedron (not necessarily regular), let V denote the number of vertices, E the
number of edges, and F the number of faces. Thus, in the case of an octahedron
(cf. Figure 22), one has V = 6, E = 12, and F = 8. Mentioned in 1750 in a letter to
Goldbach, and later published in E231, Euler proves for the first time the extremely
simple but stunning formula

(3.11) V − E + F = 2.
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Fig. 22 Octahedron. (From the Wikipedia article “Octahedron.” Per Wikipedia, permission is
granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Subject to disclaimers.)

The way he did it is to chop off triangular pyramids from the polyhedron, one after
another, in such a manner that the sum on the left of (3.11) remains the same.
Once he got it chopped down to a tetrahedron, that sum is easily seen to be 2.
(For a critical and historical review of Euler’s proof, see Francese and Richeson [11].)
Descartes, some 100 years earlier, already knew, but did not prove, something close
to the formula (3.11).

The expression on the left-hand side of (3.11) is an example of an Euler character-
istics, a topological invariant for polyhedra. Euler characteristics have been defined for
many other topological spaces and today still come up often in homological algebra.

The generalization to higher-dimensional polytopes leads to what is called Euler–
Poincaré characteristics, where the pattern of alternating signs can be seen to come
from the dimensionality of the respective facets, something already noted in 1852 by
another Swiss mathematician, Ludwig Schläfli [25, sect. 32].

Selectio 9. Euler and q-Theory. The story here begins with a letter Euler wrote
in 1734 to Daniel Bernoulli, in which he considered the (somewhat bizarre) problem
of interpolating the common logarithm log x at the points xr = 10r, r = 0, 1, 2, . . . .
He essentially writes down Newton’s interpolation series S(x) (without mentioning
Newton by name) and remarks that, when x = 9, the series converges quickly, but
to a wrong value, S(9) �= log 9 (cf. Gautschi [12]). Rather than losing interest in the
problem, Euler must have begun pondering the question about the nature of the limit
function S(x): what is it, if not the logarithm?

Almost twenty years later, in 1753, he returned to this problem in E190, now more
generally for the logarithm to base a > 1, and studied the respective limit function
S(x; a) in great detail. Intuitively, he must have perceived its importance. Today
we know (Koelink and Van Assche [17]) that it can be thought of as a q-analogue
of the logarithm, where q = 1/a, and some of the identities derived by Euler (in
part already contained in Vol. 1, Chap. 16 of his Introductio) are in fact special cases
of the q-binomial theorem—a centerpiece of q-theory in combinatorial analysis and
physics. Thus, Euler must be counted among the precursors of q-theory, which was
only developed about 100 years later by Heinrich Eduard Heine.
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Selectio 10. The Euler–Fermat Theorem and Cryptology. Let N be the set
of positive integers, and ϕ(n), n ∈ N, Euler’s totient function, that is, the number
of integers 1, 2, 3, . . . , n coprime to n. The Euler–Fermat theorem, published 1763 as
E271, states that for any a ∈ N coprime to n,

(3.12) aϕ(n) ≡ 1 (mod n).

It generalizes the “little Fermat” theorem, which is the case n = p a prime number,
and therefore ϕ(p) = p− 1.

In cryptography, one is interested in the secure transmission of messages, whereby
a message M is transmitted from a sender to the receiver in encrypted form: The
sender encodes the message M into E, whereupon the receiver has to decode E back
into M . It is convenient to think of M as a number in N, for example, the number
obtained by replacing each letter, character, and space in the text by its ASCII code.
The encrypted message E is then E = f(M), where f : N → N is some function on
N. The problem is to find a function f that can be computed by the general public
but is extremely difficult to invert (i.e., to obtain M from E), unless one is in the
possession of a secret key associated with the function f .

A solution to this problem is the now widely used RSA encryption scheme (named
after its inventors R. Rivet, A. Shamir, and L. Adleman). To encode the message M ,
one selects two distinct (and very large) prime numbers p, q and defines a “modulus”
n = pq assumed to be larger than M . Then an integer e, 1 < e < ϕ(n), is chosen with
e coprime to ϕ(n). The numbers n, e form the “public key,” i.e., they are known to
the general public. The encoded message M is E = f(M), where f(M) ≡ Me (mod
n). The “private key” is n, d, where d is such that de ≡ 1 (mod ϕ(n)). To compute d,
one needs to know p and q, since n = pq, ϕ(n) = (p− 1)(q − 1). The general public,
however, knows only n, so must factor n into prime numbers to get a hold of p, q. If
n is sufficiently large, say n > 10300, this, today, is virtually impossible. The person
who selected p and q, on the other hand, is in possession of d, and can decode the
ciphertext E as follows,

Ed ≡ (Me)d (mod n) ≡Med (mod n) ≡MNϕ(n)+1 (mod n), N ∈ N,

by the choice of d. Using now the Euler–Fermat theorem (3.12), with a =MN (almost
certainly coprime to n = pq or can be made so), one gets

Ed ≡Maϕ(n) (mod n) ≡M (mod n) =M,

since M < n. (It is true that M , e, n, and d are typically very large numbers so
that the computations described may seem formidable. There are, however, efficient
schemes to execute them; see, e.g., Silverman [26, Chaps. 16, 17].)

3.4. Second St. Petersburg Period. This may well be Euler’s most productive
period, with well over 400 published works to his credit, not only on each of the
topics already mentioned, but also on geometry, probability theory and statistics,
cartography, and even widow’s pension funds and agriculture. In this enormous body
of work there figure three treatises on algebra, lunar theory, and naval science, and
what appear to be fragments of major treatises on number theory (E792), natural
philosophy (E842), and dioptrics (E845).

3.4.1. Major Works. Soon into this second St. Petersburg period, another of
Euler’s “bestsellers” appeared: the Vollständige Anleitung zur Algebra (E387, E388),
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Fig. 23 Algebra, 1770. (Reprinted with permission from Birkhäuser Verlag.)

or Algebra for short. Even before publication of the German original, a translation
into Russian came out, and translations into all major languages were soon to fol-
low. (The French translation by Johann III Bernoulli includes a long supplement by
Lagrange containing an exposé on the arithmetic theory of continued fractions and
many addenda to the last section of the Algebra dealing with Diophantine equations.)

Euler wrote this 500-page work to introduce the absolute beginner into the realm
of algebra. He dictated the work to a young man—a tailor’s apprentice—whom he
brought with him from Berlin, and who (according to the preface of the work) “was
fairly good at computing, but beyond that did not have the slightest notion about
mathematics . . . . As far as his intellect is concerned, he belonged among the mediocre
minds.” Nevertheless, it is said that, when the work was completed, he understood
everything perfectly well and was able to solve algebraic problems posed to him with
great ease.

It is indeed a delight to witness in this work Euler’s magnificent didactic skill, to
watch him progress in ever so small steps from the basic principles of arithmetic to
algebraic (up to quartic) equations, and finally to the beautiful art of Diophantine
analysis. Equally delightful is to see how the theory is illustrated by numerous well-
chosen examples, many taken from everyday life.

The orbit of the moon, with all its irregularities, had long fascinated mathemati-
cians like Clairaut and d’Alembert, as well as Euler, who already in 1753 published
his Theoria motus lunae (E187), the “First Lunar Theory.” The theory he devel-
oped there, while tentative, provided astronomers with formulae needed to prepare
lunar tables, which in turn served seafaring nations for over a century with accurate
navigational aids. Euler’s definitive work on the subject, however, is his “Second
Lunar Theory” (E418) of 1772, a monumental work dealing in a more effective way
than before with the difficult three-body problem, i.e., the study of the motion of
three bodies—in this case the sun, the earth, and the moon, thought of as point
masses—moving under the influence of mutual gravitational forces. Already Newton
is reputed to have said that “an exact solution of the three-body problem exceeds,
if I am not mistaken, the power of any human mind.” Today it is known, indeed,
that an exact solution is not possible. Euler grapples with the problem by intro-
ducing appropriate variables, again choosing two coordinate systems—one fixed, the
other moving—applying processes of successive approximation, and making use, when
needed, of observational data.
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Fig. 24 Second Lunar Theory, 1772, and Second Theory of Ships, 1773. (Reprinted with permission
from Birkhäuser Verlag.)

According to L. Courvoisier (cf. Opera omnia, Ser. II, Vol. 22, p. xxviii), “all later
progress in celestial mechanics is based, more or less, on the ideas contained in the
works of Euler, [and the later works of] Laplace and Lagrange.”

The Théorie complete de la construction et de la manœuvre des vaisseaux (E426),
also called the “Second Theory of Ships,” is a work that treats the topic indicated
in the title for people having no or little mathematical knowledge, in particular for
the sailors themselves. Not surprisingly, given the level of presentation and the au-
thor’s extraordinary didactic skill, the work proved to be very successful. The French
maritime and finance minister (and famous economist) Anne Robert Jacques Tur-
got proposed to King Louis XVI that all students in marine schools (and also those
in schools of artillery) be required to study Euler’s relevant treatises. Very likely,
Napoléon Bonaparte was one of those students. The king even paid Euler 1,000
rubles for the privilege of having the works reprinted, and czarina Catherine II, not
wanting to be outdone by the king, doubled the amount and pitched in an additional
2,000 rubles!

3.4.2. Selecta Euleriana.

Selectio 11. Partition of Numbers. Euler’s interest in the partition of numbers,
i.e., in expressing an integer as a sum of integers from some given set, goes back to
1740 when Philippe Naudé the younger, of the Berlin Academy, in a letter to Euler
asked in how many ways the integer 50 can be written as a sum of seven different
positive integers. This gave rise to a series of memoirs, spanning a time interval of
about 20 years, beginning with E158, published (with a delay of 10 years) in 1751,
and ending with E394, published in 1770. In this work, Euler almost single-handedly
created the theory of partition. A systematic exposition of part of this work can also
be found in Volume 1, Chapter 16, of his Introductio (cf. section 3.3.1) and relevant
correspondence with Niklaus I Bernoulli in the Opera omnia, Ser. IVA, Vol. 2, pp. 481–
643, especially pp. 518, 537ff, 555ff.

Euler, as de Moivre before him (cf. Scharlau [24, p. 141f]), attacked problems of
this type by a brilliant use of generating functions and formal power series. Thus, in
the case of Naudé’s inquiry, in Euler’s hands this becomes the problem of finding the
coefficient of z7x50 in the expansion of (1 + xz)(1 + x2z)(1 + x3z)(1 + x4z) · · · , for
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which Euler finds the answer 522, “a most perfect solution of Naudé’s problem,” as he
proudly wrote (at the end of section 19 of E158). In the context of “unrestricted par-
titions,” Euler in the penultimate paragraph of E158 surprises us with the marvelous
expansion

(1− x)(1− x2)(1− x3)(1− x4) · · · =
∞∑

n=−∞
(−1)nxn(3n−1)/2,

which he conjectured as early as 1742 by numerical computation, and then labored on
it for almost ten years to find a proof (in E244, a “masterpiece” according to C. G. J.
Jacobi). He used (in E175) the expansion to obtain his astonishing recurrence relation
for s(n), the sum of divisors of n (including 1 and n), and (in E191) the reciprocal
expansion to obtain a similar recurrence for the partition function p(n), the number
of ways n can be written as a sum of natural numbers. In E394, Euler considers
the problem of how many ways any given number can be thrown by n ordinary dice.
He shows that the answer is given by the appropriate coefficient in the expansion of
(x+x2 +x3 +x4 +x5 +x6)n. Of course, Euler also solves the same problem for more
general dice having an arbitrary number of sides, which may even differ from die to
die.

Euler’s magnificent work on partitions has not found much response among his
contemporaries; it was only in the 20th century that his work was continued and
significantly expanded by such mathematicians as Ramanujan, Hardy, and Rogers.

Selectio 12. Euler’s Gear Transmission. In connection with the design of water
turbines, Euler developed optimal profiles for teeth in cogwheels that transmit motion
with a minimum of resistance and noise (E330, OII.17, pp. 196–219). These profiles
involve segments of circular evolvents as shown in Figure 25. For the gear in action,
see the video at http://epubs.siam.org/sam-bin/getfile/SIREV/articles/70271 04.avi.

The technical realization of this design took shape only later in what is called
the involute gear. Euler not only is the inventor of this kind of gear, but he also
anticipated the underlying geometric equations now usually called the Euler–Savary
equations.

Fig. 25 Euler gear, 1767. (Image and video courtesy of Bert Jüttler.)
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Selectio 13. Euler’s Disk. In a number of memoirs (E257, E292, E336, E585)
from the 20-year period 1761–1781, Euler analyzes the motion of a rigid body around a
moving axis, including the effects of friction. An interesting example is the Euler disk,
a circular (homogeneous) metal disk being spun on a clean smooth surface. At first, it
will rotate around its vertical axis, but owing to friction, the axis is beginning to tilt
and the disk to roll on a circular path. The more the axis is tilting, the wider the circu-
lar path and the higher the pitch of the whirring sound emitted by the point of contact
of the disk with the surface. Thus, paradoxically, the speed of the motion seems to in-
crease, judging from the rising pitch of the sound, although energy is being dissipated
through friction. The disk, eventually, comes to an abrupt halt, flat on the surface.

Fig. 26 Euler disk. (Produced by Multimedia Services, ETH Zürich.)

Two snapshots, one from the initial phase and the other from a later phase of
the motion, are shown in Figure 26 on the left and right, respectively. For the complete
Euler-disk video, see http://epubs.siam.org/sam-bin/getfile/SIREV/articles/70271 05.
avi.

The key toward explaining the motion are Euler’s equations, a set of differential
equations involving the Euler angles and other parameters. The technical details of
the motion, though, are still being analyzed today (cf., e.g., Le Saux, Leine, and
Glocker [19] and the literature cited therein).

4. The Man.

4.1. Personality. From various testimonials of Euler’s contemporaries, and also,
of course, from Euler’s extensive correspondence, one can form a fairly accurate pic-
ture of Euler’s personality. A valuable source is the eulogy of Niklaus Fuss (Opera
omnia, Ser. I, Vol. 1, pp. xliii–xcv), who during the last ten years of Euler’s life had
seen him regularly, almost on a daily basis, as one of his assistants. Also based on per-
sonal acquaintance is the eulogy of the marquis Nicolas de Condorcet (Opera omnia,
Ser. III, Vol. 12, pp. 287–310), which, however, deals more with Euler’s work. Euler
comes across as a modest, inconspicuous, uncomplicated, yet cheerful and sociable
person. He was down-to-earth and upright; “honesty and uncompromising rectitude,
acknowledged Swiss national virtues, he possessed to a superior degree,” writes Fuss.
Euler never disavowed—in fact was proud of—his Swiss heritage. Fuss (who also
originated from Basel) recalled that Euler “always retained the Basel dialect with
all the peculiarities of its idiom. Often he amused himself to recall for me certain
provincialisms and figures of speech, or mix into his parlance Basel expressions whose
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use and meaning I had long forgotten.” He even made sure that he and his children
retained the Basel civic rights.

Feelings of rancor, due to either priority issues or unfair criticism, were totally
foreign to Euler. When Maclaurin, for example, discovered the well-known summa-
tion formula which Euler obtained six years earlier, Euler did not object, let alone
complain, when for some time the formula was generally referred to as the “Maclau-
rin summation formula.” It may even have pleased him that others hit upon the
same fortunate idea. In due time, of course, the formula became justly known as the
Euler–Maclaurin summation formula. Another example is Maupertuis’s claim for the
principle of least action (cf. section 2.3), which Euler had already enunciated before,
much more clearly and exhaustively; yet Euler remained supportive of Maupertuis.
Euler’s forgiving way of reacting to Robins’s criticism of the Mechanica has already
been mentioned in section 3.3.1.

Sharing ideas with others and letting others take part in the process of discovery
is another noble trait of Euler. A case in point is the way he put on hold his already
extensive work on hydrodynamics, so that his friend Daniel Bernoulli, who was work-
ing on the same topic, could complete and publish his own Hydrodynamics first! It
became a classic.

An important aspect of Euler’s personality is his religiousness: By his upbringing
in the Riehen parish environment, he was a devout protestant and even served as
an elder in one of the protestant communities in Berlin. Indeed, he felt increasingly
uncomfortable and frustrated in the company of so many “free-spirits”—as he and
others called the followers of French enlightenment—that populated and began to
dominate the Berlin Academy. He gave vent to his feelings in the (anonymously pub-
lished) pamphlet Rettung der göttlichen Offenbarung gegen die Einwürfe der Freygeis-
ter (E92, Opera omnia, Ser. III, Vol. 12, pp. 267–286). This frustration may well have
had something to do with his atypically harsh treatment of Johann Samuel König in
the dispute about the Euler/Maupertuis principle of least action (cf. section 2.3). It
may also have been one, and not the least, of the reasons why Euler left Berlin and
returned to St. Petersburg.

4.2. Intellect. There are two outstanding qualities in Euler’s intellect: a phenom-
enal memory, coupled with an unusual power of mental calculation, and an ease in
concentrating on mental work irrespective of any hustle and bustle going on around
him: “A child on the knees, a cat on his back, that’s how he wrote his immortal
works,” recounts Dieudonné Thiébault, the French linguist and confidant of Frederick
II. With regard to memory, the story is well known of Euler’s ability, even at an
advanced age, to recite by heart all the verses of Virgil’s Aeneid. One of these, Euler
says in a memoir, has given him the first ideas in solving a problem in mechanics.
Niklaus Fuss also tells us that during a sleepless night, Euler mentally calculated the
first six powers of all the numbers less than twenty (less than 100 in Condorcet’s
account), and several days later was able to recall the answers without hesitation.
“Euler calculates as other people breathe,” Condorcet wrote.

Equipped with such intellectual gifts, it is not surprising that Euler was extremely
well read. In Fuss’s words,

he possessed to a high degree what commonly is called erudition; he had
read the best writers of antique Rome; the older mathematical literature
was very well known to him; he was well versed in the history of all times
and all people. Even about medical and herbal remedies, and chemistry,
he knew more than one could expect from a scholar who doesn’t make
these sciences a special subject of his study.
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Many visitors who came to see Euler went away “with a mixture of astonishment
and admiration. They could not understand how a man who during half a century
seemed to have occupied himself solely with discoveries in the natural sciences and
mathematics could retain so many facts that to him were useless and foreign to the
subject of his researches.”

4.3. Craftsmanship. Euler’s writings have the marks of a superb expositor. He
always strove for utmost clarity and simplicity, and he often revisited earlier work
when he felt they were lacking in these qualities. Characteristically, he will proceed
from very simple examples to ever more complicated ones before eventually revealing
the underlying theory in its full splendor. Yet, in his quest for discovery, he could be
fearless, even reckless, but owing to his secure instinct, he rarely went astray when
his argumentation became hasty. He had an eye for what is essential and unifying. In
mechanics, Gleb Konstantinovich Mikhailov [20, p. 67] writes, “Euler possessed a rare
gift of systematizing and generalizing scientific ideas, which allowed him to present
large parts of mechanics in a relatively definitive form.” Euler was open and receptive
to new ideas. In the words of André Weil [30, pp. 132–133],

. . . what at first is striking about Euler is his extraordinary quickness in
catching hold of any suggestion, wherever it came from. . . . There is not
one of these suggestions which in Euler’s hands has not become the point
of departure of an impressive series of researches. . . . Another thing, not
less striking, is that Euler never abandons a research topic, once it has
excited his curiosity; on the contrary, he returns to it, relentlessly, in order
to deepen and broaden it on each revisit. Even if all problems related to
such a topic seem to be resolved, he never ceases until the end of his life
to find proofs that are “more natural,” “simpler,” “more direct.”

4.4. Epilogue. In closing, let me cite the text (translated from German)—concise
but to the point—that Otto Spiess had inscribed on a memorial plaque attached near
the house in Riehen in which Euler grew up:

LEONHARD EULER
1707–1783

Mathematician, physicist, engineer,
astronomer and philosopher, spent his

youth in Riehen. He was a great scholar

and a kind man.
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5. Further Reading. For readers interested in more details, we recommend the
authoritative scientific (yet formula-free!) biography by Fellmann [10], the essays in
the recent book by Henry [16], and several accounts on Euler and parts of his work
that have recently appeared: Bogolyubov, Mikhailov, and Yushkevich [3], Bradley,
D’Antonio, and Sandifer [5], Dunham [6], [7], Nahin [21], Sandifer [22], [23], and
Varadarajan [29].

The web site of the U.S. Euler Archive,

http://www.math.dartmouth.edu/∼euler,

also provides detailed information about Euler’s complete works, arranged by their
E-numbers.

Sources and Acknowledgments. The sources for the videos posted here, with
permission, are as follows. Video buckle.avi: Professor Wolfgang Ehlers, Institute of
Applied Mechanics (CE), University of Stuttgart, Germany. Video eulerflow.avi:
2-dimensional compressible inviscid flow about a circular cylinder—a computer sim-
ulation by Nicola Botta, c©1993 Eidgenössische Technische Hochschule Zürich. Video
zahn.avi: Professor Bert Jüttler, Institute of Applied Geometry, Johannes Kepler
Universität, Linz, Austria. Video eulerdisk.avi: produced at the author’s request
by Olaf A. Schulte, Multimedia Services, ETH Zürich, Zürich, Switzerland, c©2007
Walter Gautschi.
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tionen, in Leonhard Euler 1707–1783: Beiträge zu Leben und Werk, Gedenkband des Kan-
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Abstract A good portion of Gatteschi’s research publications—about 65%—is
devoted to asymptotics of special functions and their zeros. Most prominently
among the special functions studied figure classical orthogonal polynomials,
notably Jacobi polynomials and their special cases, Laguerre polynomials,
and Hermite polynomials by implication. Other important classes of special
functions dealt with are Bessel functions of the first and second kind, Airy
functions, and confluent hypergeometric functions, both in Tricomi’s and
Whittaker’s form. This work is reviewed here, and organized along method-
ological lines.
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1 Introduction

In asymptotics there are two kinds of theories: a qualitative theory, and a
quantitative theory. They differ in the way the error of an asymptotic approx-
imation is characterized. In the former, the error is estimated by an order-
of-magnitude term O(ω(x)), i.e., by a statement that there exists a positive,
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unspecified constant C such that the error is bounded in absolute value by
Cω(x) as the variable (or parameter) x is in the neighborhood of a limit value
x0. Here, ω is a known, computable, positive function of x, for example a
reciprocal power of x if x0 = +∞. A quantitative theory, in contrast, provides
a numerical upper bound for the constant C, or better still, concrete numerical
lower and upper bounds for the error, ω−(x) and ω+(x), along with a precise
description of the domain of validity (in x). The approximation, in effect,
then takes on the form of a two-sided inequality. Much of the older, classical
theory of asymptotics is of a qualitative nature, while modern exigencies of
computing require a quantitative theory. In the realm of special functions and
their zeros, Luigi Gatteschi is without doubt one of the major exponents of,
and contributor to, the quantitative theory of asymptotics. His results are not
only of a concrete numerical nature, but often attain a degree of sharpness
rarely found elsewhere in the literature.

In the following we briefly summarize Gatteschi’s relevant work as it
pertains to orthogonal polynomials, Bessel and Airy functions, and confluent
hypergeometric functions. We arrange the presentation according to the type
of methods used, and in each case proceed in more or less chronological order.
Even though we can give only a quick and superficial account of finished
results, it must be emphasized that, underneath it all, there is a great deal of
hard analysis, imaginatively and skillfully executed.

2 The early influence of Szegö, Van der Corput, and Tricomi

Among important individuals who had an influence in shaping Luigi’s for-
mation as a research mathematician, one must mention Giovanni Sansone,
who guided Luigi’s first research efforts, Gabor Szegö and Johannes Van
der Corput, with whom Luigi interacted during a visit in 1951 to Stanford
University, and above all, from the start of Luigi’s career at the University
of Turin, Francesco Tricomi, who became his mentor.

2.1 A general method of Tricomi

Already in the very first papers of Luigi, dealing with zeros of Legendre
and ultraspherical polynomials of large degrees, and high-order zeros of
Bessel functions, an important ingredient is a method of Tricomi for deriving
the asymptotics of zeros of functions from the asymptotics of the functions
themselves (see [57], or [59, p. 151]). While Tricomi formulated his method
in qualitative terms, Luigi in the special cases studied supplies concrete error
bounds by tracing and estimating remainder terms in all Taylor expansions
employed.

2.1.1 Zeros of ultrashperical polynomials

In the case of Legendre and ultraspherical polynomials, the results obtained in
[10–12] are somewhat preliminary inasmuch as they cover only limited ranges
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of zeros. This deficiency is overcome later in [33], though at the expense of
sharpness, where Tricomi’s method is again applied to ultraspherical polyno-
mials P(λ)

n = P(λ−1/2,λ−1/2)
n , 0 < λ < 1. For the rth zero θ(λ)

n,r of P(λ)
n (cos θ) it is

found that for each r = 1, 2, . . . , �n/2� (which, by symmetry, is all we need),

θ(λ)
n,r = ϑ(λ)

n,r + λ(1 − λ)

2(n + λ)(n + λ + 1)
cot ϑ(λ)

n,r + ρ, (1)

where ϑ(λ)
n,r = (r − (1 − λ)/2)π/(n + λ), and1

|ρ| <
λ(1 − λ)

(n + λ + 1)(2r + λ − 1)2
, 0 < λ < 1. (2)

It can be seen that when r is fixed and n → ∞, the first two terms on the
right of (1), as well as the bound in (2), are all ∼ cn−1, with the respective
constants c decreasing [actually, when r = 1, and in part also when r = 2, the
constant c for the bound in (2) is a bit larger than the one for the second term].
On the other hand, when r = �δn/2�, with 0 < δ ≤ 1 fixed, the two terms and
bound are respectively O(1), O(n−2), and O(n−3). For the zeros x(λ)

n,r = cos θ(λ)
n,r

themselves, one finds

x(λ)
n,r = ξ (λ)

n,r

[
1 − λ(1 − λ)

2(n + λ)(n + λ + 1)

]
+ ε, (3)

where ξ (λ)
n,r = cos((r − (1 − λ)/2)π/(n + λ)), and

|ε| <
1.55 λ(1 − λ)

(n + λ)(n + λ + 1)(2r + λ − 1)
, 0 < λ < 1. (4)

2.1.2 Zeros of Bessel functions

Similarly complete are the results in [13] for the Bessel function Jν , 0 ≤ ν ≤ 1.
Thus, for the rth positive zero jν,r of Jν , Luigi shows that

jν,r = xr − 4ν2 − 1

8xr
+ ε(ν, r), r = 1, 2, 3, . . . , (5)

where xr = (r + ν/2 − 1/4)π , and

|ε(ν, r)| <
(7.4A2 + 1.1A)r

64(6r − 5)
(2r + ν − 1)−3, A = |4ν2 − 1|, (6)

valid for each r = 1, 2, 3, . . . . The formula (6), in fact, quantifies the O(r−3)

term in a classical asymptotic formula of McMahon [54]. In another formula
of McMahon for the rth zero of J0(kx)Y0(x) − J0(x)Y0(kx), where J0 and Y0

are the zeroth-order Bessel functions of first and second kind, an O(r−7) term
is similarly quantified in [14] for r ≥ 2 and values of the parameter k satisfying
1 < k < 3 + 2

√
2. The calculations, however, are rather more formidable in

this case. For the rth positive zero j ′
ν,r, 0 ≤ ν ≤ 1, of the derivative J′

ν of the

1The square in the second factor of the denominator is missing in Eq. (2.131) of [33].
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Bessel function, a formula analogous to (5), (6), also due (without error bound)
to McMahon, is derived in [20].

2.1.3 Zeros of Jacobi polynomials

The application of Tricomi’s method to more general Jacobi polynomials P(α,β)
n

had to wait until 1980, when a suitable asymptotic expansion for P(α,β)
n became

available through the work of Hahn [53]. Using the first three terms of this
expansion in conjunction with Tricomi’s method (in fact, a slight extension
thereof), and assuming |α| ≤ 1/2, |β| ≤ 1/2, Luigi jointly with Pittaluga [50]
proves that for the zeros θ

(α,β)
n,r of P(α,β)

n (cos θ) contained in any compact
subinterval of (−1, 1), there holds

θ(α,β)
n,r = ϑ(α,β)

n,r + 1

(2n + α + β + 1)2

[(
1

4
− α2

)
cot

(
1

2
ϑ(α,β)

n,r

)

−
(

1

4
− β2

)
tan

(
1

2
ϑ(α,β)

n,r

)]
+ O(n−4),

(7)

where ϑ
(α,β)
n,r = (2r + α − 1/2)π/(2n + α + β + 1). If α2 = β2 = 1/4, not only

the expression in brackets, but also the error term in (7) vanish. In the
ultraspherical case α = β, the result (7) is asymptotically in agreement with
earlier ones in [11]. There is of course a result analogous to (7) for the zeros
x(α,β)

n,r of P(α,β)
n (x) themselves. Numerical tests revealed that already for n = 16,

these asymptotic approximations (with the error term removed) typically yield
4 1

2 – 6 correct significant digits for all zeros x(α,β)
n,r . Interestingly, if one of the

parameters α, β has the value ±1/2, the accuracy is several orders higher near
the appropriate boundary of [−1, 1], a phenomenon duly explained by Luigi.

2.2 A general method of Gatteschi and Van der Corput’s theory
of enveloping series

2.2.1 Zeros of Bessel functions by Gatteschi’s method

In [15], with the assistance of Van der Corput, Luigi develops a general
procedure of his own for generating inequalities for the zeros of a function

f (x) = (1 + δ) sin x + ε cos x − ρ, δ > −1, (8)

where δ, ε, and ρ may depend on x but are small in magnitude. This kind
of functions is often encountered in asymptotic expansions (for large x) of
certain Bessel-type functions. Luigi in [15] applies his new procedure to Bessel
functions Jν(x), where ν can now be arbitrary nonnegative, and supplements
the results in [13] by estimating the zeros jν,r that are larger than (2ν + 1)(2ν +
3)/π . The same procedure is applied in [19] to Airy functions Ai(−x), Bi(−x)

and their positive zeros.
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In two of his late papers, [47] and [48], Luigi, jointly with Giordano, returns
to his procedure and makes further applications to Bessel functions. In [47],
McMahon’s formula for jν,r is taken up again and in the case |ν| ≤ 1/2 supplied
with lower and upper bounds for the O(r−5) term, and in the case ν > 1/2
with similar bounds for the O(r−3) and O(r−5) terms. A two-term asymptotic
approximation with explicit error bounds is obtained in [48] for the positive
zeros iν,r > (r + ν/2 − 3/4)π , r ≥ 10, of (d/dx)[√xJν(x)] in the case that |ν| ≤
1/2.

2.2.2 Bessel functions at and near the transition point

A new methodological element—Van der Corput’s theory of “enveloping
series”—appears in [21]. Given a series

∑∞
n=0 an (not necessarily convergent)

and a majorizing series
∑∞

n=0 An thereof, i.e., |an| ≤ An for all n, the series∑∞
n=0 an is said to envelope a number (or function) s relative to the majorant∑∞
n=0 An, if for each n = 0, 1, 2, . . .

s =
n−1∑
k=0

ak + ϑn An, |ϑn| ≤ 1.

Using two key theorems in Van der Corput’s theory of enveloping series,
one relating to the formal substitution of a series into another series, and
another relating to integration of (functional) enveloping series, both applied
to contour integral representations of Hankel functions, Luigi in [21] derives
very impressive asymptotic expansions for Jν(ν) and Yν(ν) as ν → ∞, both
supplied with error estimates. They are not simple, involving as they do
incomplete gamma functions and coefficients A(m)

k in the Taylor expansion
of

(
1
5! + 1

7! z + 1
9! z2 + · · · )m

, m = 2, 3, . . . (which today, however, are easily
obtainable by symbolic computation systems such as Maple). As an applica-
tion, Luigi takes the first two terms of his expansion for Jν(ν) (the second term
happening to be zero) and obtains

Jν(ν) = �(1/3)

22/331/6π
ν−1/3 − θη, 0 < θ ≤ 1, ν ≥ 6, (9)

where2

η = 1

πν

(
e−νπ/

√
3 + .521e−(2π/

√
3)3ν/6

)
+ 1.4

π

(
6

ν

)5/3

.

This recovers an asymptotic formula of Cauchy, but endows it with an explicit
error bound. The simpler bound η < ν−5/3 is given in the lecture [25].

As observed in [22], there is a slight inaccuracy (on p. 275) in [21], but the
results obtained there are shown to continue to hold. Also, from the first term

2The first term in parentheses is misprinted in [21, Eq. (20′)] as e−2π/
√

3.
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of the asymptotic expansion for Yν(ν) in [21], the following companion result
to (9) is obtained,

Yν(ν) = − �(1/3)

(4/3)1/3π
ν−1/3 + ρ, |ρ| ≤ .252

πν
, ν ≥ 1. (10)

An interesting consequence of this is⎧⎨
⎩ |Jν(νx)|

|Yν(νx)|

⎫⎬
⎭ <

1√
x

[
3.841

πν1/3
+ .252

πν

]
, (11)

valid for x > 1, ν ≥ 1.
An asymptotic estimate of Jν(x) around the transition point x = ν is devel-

oped in [26], by using a Liouville–Steklov-type approach (cf. Section 3.1). It is
shown that

Jν

(
ν exp(6−1/3ν−2/3t)

) = 32/3�(2/3)Jν(ν)Ai
( − 3−1/3t

) + ρ, (12)

where for ν ≥ 6

|ρ| <

⎧⎪⎨
⎪⎩

t4 + 5.6 t
πν

if 0 < t < 61/3ν2/3,

1

ν
[.005 t4 exp(4(|t|/3)3/2) + 1.77 |t| exp(2(|t|/3)3/2)] if t < 0.

(13)

Sharper estimates are obtained by a reapplication of the Liouville–Steklov
method.

Luigi also gives an asymptotic estimate of the derivative J′
ν(x) at x = ν,

J′
ν(ν) = 1

2
√

3π

[
�(2/3)

(
6

ν

)2/3

− �(1/3)

30

(
6

ν

)4/3
]

+ ϑ
2

ν2
, |ϑ | < 1, ν ≥ 6,

(14)
an interesting subsidiary result.

3 Methods based on differential equations

Linear second-order differential equations, which are at the heart of much
of special function theory, can be used in many ways to obtain asymptotic
approximations and inequalities. There are two techniques, in particular, that
Luigi frequently, and early on, availed himself of: One is the method of
Liouville–Steklov (sometimes also attributed to Fubini), which is based on
transforming the differential equation into a Volterra integral equation; the
other is the use of Sturm-type comparison theorems.

3.1 The method of Liouville–Steklov

3.1.1 Hilb’s formula and zeros of Legendre polynomials

Already in one of his early papers, [16], Luigi applies the method of Liouville–
Steklov, following Szegö’s treatment in [55, Section 8.62], to the differential

~Springer 547



Numer Algor (2008) 49:11–31 17

equation satisfied by (sin θ)1/2 Pn(cos θ). (By symmetry, it suffices to consider
the interval 0 ≤ θ ≤ π/2.) This yields immediately Hilb’s formula,

Pn(cos θ) =
(

θ

sin θ

)1/2

J0((n + 1/2)θ) + σ, (15)

where for large n, when θ is away from the origin (i.e., θ ≥ cn−1 for some
positive constant c), the error is σ = θ1/2 O(n−3/2), otherwise σ = O(n−2). In
his quest for quantification, Luigi derives explicit inequalities for the error σ :
In the first case,

|σ | < .358 θ−1/2n−5/2 + .394 θ1/2n−3/2 if π/2n < θ ≤ π/2 (16)

(which may also be written as |σ | < .622 θ1/2n−3/2; cf. [23, Eq. (2)]), and in the
second case,

|σ | < .09 θ2 if 0 < θ ≤ π/2n. (17)

This is then applied to obtain two-sided inequalities for the zeros θn,r (in
ascending order) of Pn(cos θ), namely3

0 <
j0,r

n + 1/2
− θn,r < (1.6 + 3.7r)n−4, n = 1, 2, . . . , �n/2�, (18)

where j0,r is the rth positive zero of the Bessel function J0.
A reapplication of the Liouville–Steklov method to the same differential

equation, but now with (15) inserted in the integral of the Volterra integral
equation, in [23] yields an improved two-term asymptotic approximation for
Pn(cos θ), and in consequence also two-term approximations for the zeros θn,r

of Pn(cos θ), and likewise for the zeros xn,r of Pn(x). Thus, for example,

xn,r = 1 − j 2
0,r

2(n + 1/2)2
+ j 2

0,r + j 4
0,r

24(n + 1/2)4
+ O(n−6), (19)

which for n = 16, r = 1 and r = 2 (neglecting the error term), yields approxi-
mations for the respective zeros having errors 2.28 × 10−8 resp. 2.15 × 10−6.

3.1.2 Hilb’s formula for ultraspherical polynomials

Hilb’s formula for ultraspherical polynomials is supplied with error bounds in
[18] and applied to the zeros of P(λ)

n . A slightly different application of the
method of Liouville–Steklov, especially if applied successively as suggested
by Szegö [55, Section 8.61(2)] in the case of Legendre polynomials, yields
more accurate approximations of ultraspherical polynomials P(λ)

n , valid in any
compact subinterval of (−1, 1), and of their zeros contained therein [34].

3There is a misprint in Eq. (17) of [16], where the number 16 in the denominator should be 10. The
upper bound given there (and in our Eq. (18)) has been checked by us on the computer and was
found to be too small, at least for larger values of n. The reason for this may be inaccuracies in the
numerical constants supplied.
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3.1.3 Hilb’s formula for Jacobi polynomials

There is a Hilb’s formula also for Jacobi polynomials P(α,β)
n , α > −1 and β

arbitrary real [55, Section 8.63], which in the classical form reads as follows,

θ−1/2

(
sin

1

2
θ

)α+1/2 (
cos

1

2
θ

)β+1/2

P(α,β)
n (cos θ)

= 2−1/2 N−α �(n + α + 1)

n! Jα(Nθ) + σα(n, θ), (20)

where N = n + (α + β + 1)/2 and σα = θ1/2 O(n−3/2) away from the origin, and
σα = θα+2 O(nα) otherwise. In [31], this is improved in two ways: First, the
method of Liouville–Steklov is refined, with the result that in (20) the number
N can be replaced by

ν =
[(

n + α + β + 1

2

)2

+ 1 − α2 − 3β2

12

]1/2

(21)

and the error term improved to σα = θ5/2 O(n−3/2) and σα = θα+4 O(nα) away
from, and near the origin, respectively.4 Secondly, the method of Liouville–
Steklov is iterated once more, similarly as in [23], producing a two-term
approximation,

θ−1/2

(
sin

1

2
θ

)α+1/2 (
cos

1

2
θ

)β+1/2

P(α,β)
n (cos θ)

= 2−1/2ν−α �(n + α + 1)

n!
[(

1 − 4 − α2 − 15β2

1440 ν2
θ2

)
Jα(νθ)

+ 4 − α2 − 15β2

720 ν3
θ

(
1

2
ν2θ2 + α2 − 1

)
J′
α(νθ)

]
+ ρα(n, θ), (22)

with the remainder term further improved to respectively ρα = θ9/2 O(n−3/2)

and ρα = θα+6 O(nα). The result (22) can easily be specialized to ultraspherical
polynomials (i.e., to α = β = λ − 1/2) and to Legendre polynomials (λ = 1/2).
In the latter case, by expressing J′

0 in terms of J0 and J2, one obtains the rather
simple formula

(
sin θ

θ

)1/2

Pn(cos θ) = J0(νθ) − θ3

360 ν
+ θ2

360 ν2
J2(νθ) + ρ(n, θ), (23)

with ν = [(n + 1/2)2 + 1/12]1/2 and ρ = θ9/2 O(n−3/2) resp. ρ = θ6 O(1).

4In the second of these formulae, the factor θα+4 is misprinted as θα+1 in the original Eq. (19)
of [31].
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Luigi now once again applies Tricomi’s theorem (cf. Section 2.1) to derive
from the asymptotic approximations in [31] asymptotic results for zeros of
Jacobi polynomials in terms of zeros of Bessel functions, and vice versa. In
the ultraspherical case, for example, he finds for the rth positive zero js,r of Js,
−1/2 < s < 1/2, when r is fixed, the following asymptotic approximation,

js,r = νθn,r + 1 − 4s2

360 ν
θ3

n,r − (1 − s2)
1 − 4s2

180 ν3
θn,r + O(n−6), (24)

where ν = [
(n + s + 1/2)2 + (1 − 4s2)/12

]1/2 and θn,r = θ
(s+1/2)
n,r is the rth zero

of P(s+1/2)
n (cos θ).

In [2], the method of Liouville-Steklov is used to derive a new asymptotic
approximation of Hilb’s type for Jacobi polynomials P(α,β)

n , |α| ≤ 1/2, |β| ≤
1/2, with realistic and explicit error bounds, and from it an asymptotic estimate
of the zeros θ

(α,β)
n,r of P(α,β)

n (cos θ) obtained previously in a different manner by
Frenzen and Wong [7]. Continuation of this work in [41, 42] led to a number
of significant improvements.

The classical Hilb’s formula (20) for Jacobi polynomials is applied in [17]
to study the relative extrema of P(α,β)

n . If yn,r are their abscissae, and yn,r =
cos ϕn,r, a short and elegant proof is given of the limit relation

lim
n→∞

(
sin

1

2
ϕn,r

)α (
cos

1

2
ϕn,r

)β

P(α,β)
n (yn,r) = Jα( jα+1,r). (25)

3.2 Methods based on Sturm comparison theorems

Sturm-type comparison theorems, for example in the form stated by Szegö
in [55, Section 1.82], are a natural tool for comparing zeros of one type of
special functions with zeros of another type, the types of special functions
depending on the choice of differential equations that are being compared.
This is a recurring theme in Luigi’s work and gives rise to many interesting
inequalities.

3.2.1 Zeros of Jacobi polynomials and Bessel functions

In [32], the comparison is between zeros θ
(α,β)
n,r of Jacobi polynomials

P(α,β)
n (cos θ) and zeros jα,r of Bessel functions Jα , which, under the assumption

|α| ≤ 1/2, β ≤ 1/2, finds expression in the inequalities

jα,r

[
N2 + 1

4
− α2 + β2

2
− 1 − 4α2

π2

]−1/2

< θ(α,β)
n,r < jα,r

[
N2 + 1 − α2 − 3β2

12

]−1/2

, (26)

valid for r = 1, 2, . . . , �n/2�, where N = n + (α + β + 1)/2.
The first zero, jν = jν,1 of the Bessel function Jν , ν > 0, and also the abscissa

j ′
ν of its first maximum, are studied in [49], where Sturm’s theorem is used in
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a form given by Watson in [61, Section 15.83] and is slightly extended and
combined, in part, with Tricomi’s theorem (cf. Section 2.1). The result can be
written in the form

jν = ν exp
(
2−1/3ν−2/3a1 − 1.623 ϑ ν−4/3

)
,

j ′
ν = ν exp

(
2−1/3ν−2/3a′

1 − 1.06 ϑ ′ ν−4/3
)
, (27)

where 0 < ϑ, ϑ ′ < 1, and a1 = 2.33810741, a′
1 = 1.01879297 are the first zero,

resp. maximum, of the Airy function Ai(−x). The bounds implied by (27)
compare favorably with earlier estimates by Schafheitlin and Tricomi.

Restricting ν to the “principal" interval |ν| < 1/2, Luigi, together with
Giordano, in [46] obtains a very sharp upper bound for jν , namely

jν < �(ν)K(ν), −1/2 < ν < 1/2, (28)

where

�(ν) = arccos

√
10ν + 35 + 2

√
10ν2 + 55ν + 70

4ν2 + 32ν + 63

is the first zero θ
(ν)
5,1 of P(ν,ν)

5 (cos θ),

K(ν) =
[
(ν + 11/2)2 +

(
1

4
− ν2

)(
1

sin2 φ(ν)
− 1

φ2(ν)

)]1/2

,

and

φ(ν) =
√

ν + 1
(√

ν + 2 + 1
)

ν + 11/2
.

Outside the principal interval, there holds

jν <
1

3
�(ν)

√
6ν2 + 99ν + 273, ν �∈ (−1/2, 1/2). (29)

These inequalities are generally sharper (often considerably so) than the
best inequalities (valid for ν > −1) known in the literature.

3.2.2 Zeros of Laguerre polynomials

The application of Sturm’s theorem (again in Szegö’s form) to zeros 0 <

λ
(α)
n,1 < λ

(α)
n,2 < · · · < λ(α)

n,n of Laguerre polynomials L(α)
n is carried out in [37]. Two

types of comparison differential equations are used, one giving rise to Bessel
functions, the other to Airy functions. In the former case, under the assumption
−1 < α ≤ 1, Luigi finds that

λ(α)
n,r < ν cos2

(
1

2
x(α)

n,r

)
, r = 1, 2, . . . , n, (30)

where x(α)
n,r is the root of the equation

x − sin x = π − 4 jα,r

ν
, (31)
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and ν = 4n + 2α + 2. In the latter case, he shows that

λ(α)
n,r > ν cos2

(
1

2
x∗(α)

n,r

)
if − 1/2 ≤ α ≤ 1/2, (32)

and

λ(α)
n,r < ν cos2

(
1

2
x∗(α)

n,r

)
if − 1 < α ≤ −2/3 or α ≥ 2/3, (33)

where x∗(α)
n,r is the root of the equation

x − sin x = 8

3ν
a3/2

n+1−r (34)

and ak the kth zero in ascending order of Ai(−x).
Since Hermite polynomials are related to Laguerre polynomials with pa-

rameters α = ±1/2, and j1/2,r = rπ , j−1/2,r = (r − 1/2)π , the inequalities (30)
and (32) yield upper5 and lower bounds for the positive zeros 0 < hn,�(n+1)/2�+r,
r = 1, 2, . . . , �n/2�, of the Hermite polynomial Hn:

hn,�(n+1)/2�+r <
√

2n + 1 ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos

[
1

2
x

(
2n − 4r + 3

2n + 1
π

)]
, n even,

cos

[
1

2
x

(
2n − 4r + 1

2n + 1
π

)]
, n odd,

(35)

where x = x(y) is the inverse function of y = sin x − x and

hn,�(n+1)/2�+r >
√

2n + 1 cos

[
1

2
x

(
8

3(2n + 1)
a3/2

�n/2�+1−r

)]
, r = 1, 2, . . . , �n/2�.

(36)

All these inequalities are remarkably sharp.

3.2.3 Zeros of confluent hypergeometric functions

Since Laguerre polynomials L(α)
n are special cases of confluent hypergeometric

functions �(a, c; x) and �(a, c; x) (in Tricomi’s notation), namely a = −n,
c = 1 + α, it is natural to try extending the inequalities obtained in [37] for
Laguerre polynomials to confluent hypergeometric functions. This is done in
[39], where Sturm-type comparison theorems are used in both Szegö’s and
Watson’s form. With regard to the first (“regular”) confluent hypergeometric
function �(a, c; x), it is known that, if c > 0, there are no positive zeros
of �(a, c; x) if a ≥ 0, and precisely −�a� positive zeros if a < 0. Under the
assumption a < 0, 0 < c ≤ 2, Luigi then proves that for the rth positive zero
φr there holds

φr < 4k cos2

(
1

2
xr

)
, r = 1, 2, . . . , s, (37)

5In the upper bound of (35) for n odd, the numerator 2n − 4r + 1 in [37] is misprinted as
2n − 4r + 3.

~Springer 552



22 Numer Algor (2008) 49:11–31

where k = 1
2 c − a, s = � 1

4 − a�, and xr is the root of the equation

x − sin x = π − jc−1,r

k
. (38)

Note that (38) is identical with (31) in the case a = −n, c = 1 + α of Laguerre
polynomials, since k = 1

2 (1 + α) + n = ν/4. Also, s = � 1
4 − a� is either the total

number of positive zeros, or one less, depending on whether a − �a� is less
than, or greater or equal to, 1/4.

As for the (“irregular”) confluent hypergeometric function �(a, c; x), it is
known that, if c ≥ 1, it has no positive zeros if a ≥ 0, and precisely −�a� positive
zeros ψr if a < 0. Here, assuming a < 0, 1 ≤ c ≤ 2, Luigi proves the inequality

ψr < 4k cos2

(
1

2
x0

r

)
, r = 1, 2, . . . , −�a�, (39)

where k = 1
2 c − a and x0

r is the root of

x − sin x = π − j 0
c−1,r

k
, k = 1

2
c − a, (40)

with j 0
c−1,r the rth positive zero of cos((a−�a�)π)Jc−1(x)−sin((a−�a�)π)

Yc−1(x). The case 0 < c < 1 can be reduced to 1 < c < 2 by applying the
identity �(a − c + 1, 2 − c; x) = xc−1�(a, c; x).

Using a different differential equation for comparison in Sturm’s theorem,
Luigi derives additional inequalities for φr and ψr, where the former reduce
to the inequalities (32), (33) in the case of Laguerre polynomials. Another
interesting special case is a = (1 − ν)/2, ν > 1 and c = 3/2, which leads to
parabolic cylinder functions Dν and upper and lower bounds for their positive
zeros δν,r, r = 1, 2, . . . ,−�(1 − ν)/2�.

3.2.4 Inequalities from asymptotic estimates

Applications of Sturm’s theorem of a somewhat different character are made
in [36] and [43], where known asymptotic estimates containing order-of-
magnitude terms are shown to actually become inequalities if the O-term is
omitted. Such is the case, e.g., in a result of Frenzen and Wong [7, Corollary 2]
concerning the zeros θ

(α,β)
n,r of P(α,β)

n (cos θ), which in the hands of Luigi becomes
the inequality

θ(α,β)
n,r ≥ 1

N
jα,r − 1

4N2

[(
1

4
− α2

)(
2

t
− cot

1

2
t
)

+
(

1

4
− β2

)
tan

1

2
t
]
,

N = n + α + β + 1

2
, t = 1

N
jα,r, (41)

valid for |α| ≤ 1/2, |β| ≤ 1/2 and r = 1, 2, . . . , n, with equality holding if α2 =
β2 = 1/4. In fact, (41) can be improved by replacing N in the definition of t
(but not elsewhere) by ν = [N2 + (1 − α2 − 3β2)/12]1/2. A similar upper bound
can be obtained by switching the parameters α and β and using a well-known
identity relating P(α,β)

n with P(β,α)
n . These inequalities are quite sharp, especially
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near the respective end points π and 0. Sometimes, the upper bound in (26)
may be better for the first few values of r than the upper bound obtainable from
(41) by switching α and β, and likewise the lower bound obtainable similarly
from the upper bound of (26) may be better than (41) for the last few values
of r. Thus, in applications, (41) and (26) should be considered conjointly. All
these inequalities are easily specialized to the ultraspherical case α = β.

Similarly, by omitting the O-term in (7), the right-hand side becomes an
upper bound in the ultraspherical case α = β.

For the zeros jν,r of Bessel functions Jν , the removal of the O-terms in some
asymptotic (for large ν) estimates of Olver is conjectured in [43] to lead to
upper and lower bounds, specifically to

νxν,r < jν,r < νxν,r + gν(xν,r), r = 1, 2, 3, . . . , (42)

where xν,r is the root of the equation
√

x2 − 1 − arctan
√

x2 − 1 = (2/3ν)a3/2
r ,

gν(x) = x
ν

1

(x2 − 1)1/2

[ −5ν

48 a3/2
r

+ 5

24(x2 − 1)3/2
+ 1

8(x2 − 1)1/2

]
, (43)

and ar is th rth zero of Ai(−x). The lower bound is actually proved to hold for
ν > 0 and all r, and the upper bound for ν > 0 and all r sufficiently large. In fact,
if in (43) the right-hand side is multiplied by the factor 1 + 21/3/(280 arν

4/3),
then the conjecture is proved to hold for ν ≥ 1/2 and all r. Heavy use is made
in this work of symbolic computation with Maple V.

4 Uniform expansions

4.1 Zeros of Laguerre polynomials

Asymptotic estimates of the zeros of Laguerre polynomials L(α)
n that resemble

the inequalities in (30)–(34) are obtined in [38] from the initial terms of
uniform asymptotic expansions for Laguerre polynomials due to Frenzen
and Wong [8]. With x(α)

n,r again denoting the root of (31), and setting τ (α)
n,r =

cos2
(

1
2 x(α)

n,r

)
, from the expansion [8, Eq. (4.7)] Luigi finds the asymptotic

estimate

λ(α)
n,r = ντ (α)

n,r − 1

2ν

⎡
⎣(

1 − 4α2
)
ν

2 jα,r

(
τ (α)

n,r

1 − τ
(α)
n,r

)1/2

+ 4α2 − 1

2

+ τ (α)
n,r

1 − τ
(α)
n,r

+ 5

6

(
τ (α)

n,r

1 − τ
(α)
n,r

)2
⎤
⎦ + O

(
ν−3), (44)

where ν = 4n + 2α + 2, and the O-term is uniformly bounded for all r =
1, 2, . . . , �qn�, with 0 < q < 1 fixed.

A companion estimate, valid in the range r = �pn�, �pn� + 1, . . . , n,
0 < p < 1, which overlaps with the range for (44) when p ≤ q, is similarly
obtained from the expansion [8, Eq. (5.13)]. With x∗(α)

n,r again denoting the root
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of (34), and setting τ ∗(α)
n,r = cos2

(
1
2 x∗(α)

n,r

)
, the asymptotic estimate now reads

λ(α)
n,r = ντ ∗(α)

n,r + 1

ν

⎡
⎣ 5ν

24 a3/2
n+1−r

(
τ ∗(α)

n,r

1 − τ
∗(α)
n,r

)1/2

+ 1

4
− α2

−1

2

τ ∗(α)
n,r

1 − τ
∗(α)
n,r

− 5

12

(
τ ∗(α)

n,r

1 − τ
∗(α)
n,r

)2
⎤
⎦ + O

(
ν−3

)
, (45)

where ν is as above in (44).
In the case where r is fixed and ν → ∞, the estimate (44) can be

sharpened to

λ(α)
n,r = j 2

α,r

ν

[
1 + j 2

α,r + 2(α2 − 1)

3 ν2

]
+ O

(
ν−5

)
, r fixed, (46)

which is an old estimate of Tricomi from the 1940s. Likewise, the estimate (45)
for r = n + 1 − s and s fixed can be sharpened to

λ
(α)
n,n+1−s = ν − 22/3asν

1/3 + 1

5
24/3a2

s ν
−1/3 + O

(
ν−1

)
, s fixed, (47)

which is another of Tricomi’s earlier estimate.

4.2 Zeros of confluent hypergeometric functions

Two types of uniform asymptotic expansions for Whittaker’s confluent
hypergeometric functions Mκ,μ, Wκ,μ, given by Dunster [5], are used in [9] to
develop asymptotic estimates (for large κ) of the positive zeros m(κ,μ)

r , w
(κ,μ)
r

of Mκ,μ(x) and Wκ,μ(x), respectively. If specialized to Laguerre polynomials,
κ = n + (α + 1)/2, μ = α/2, they yield approximations for the zeros λ(α)

n,r of
Lα)

n that are now applicable for unrestrictedly large values of both n and α.
Uniformity of the results, of course, comes at a price of increased complexity
of the formulae.

In [45], Luigi develops two new uniform asymptotic expansions for Whit-
taker functions, one involving Bessel functions, the other Airy functions.
Using three terms of the former, he then derives asymptotic estimates of the
respective zeros, which are simpler than those obtained previously in [9] and
valid as κ → ∞ for fixed μ. Thus, for the rth positive zero of Mκ,μ(x) he finds

m(κ,μ)
r = 4κξr + 1

2κ

(
ξr

1 − ξr

)1/2
[

κ

2

16μ2 − 1

j2μ,r
− 2μ2

(
1 − ξr

ξr

)1/2

+ 1

24

4ξ 2
r − 12ξr + 3

(1 − ξr)3/2ξ
1/2
r

]
+ O(κ−3), (48)

where ξr = ξ
(κ,μ)
r is the root of the equation

arcsin
√

ξ +
√

ξ − ξ 2 = j2μ,r

2κ
. (49)
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The O-term is uniformly bounded for all r = 1, 2, 3, . . . such that m(κ,μ)
r ≤ 4qκ

with q fixed, 0 < q < 1. Similarly, for the rth positive zero of Wκ,μ(x),

w(κ,μ)
r = 4κτr + 1

2κ

(
τr

1 − τr

)1/2
[

κ

2

16μ2 − 1

j0
2μ,r

− 2μ2

(
1 − τr

τr

)1/2

+ 1

24

4τ 2
r − 12τr + 3

(1 − τr)3/2τ
1/2
r

]
+ O

(
κ−3

)
, (50)

where τr = τ
(κ,μ)
r is the root of

arcsin
√

τ +
√

τ − τ 2 = j0
2μ,r

2κ
, (51)

and j0
2μ,r the rth positive zero of sin((κ − μ)π)J2μ(x) − cos((κ − μ)π)Y2μ(x).

Three terms of Luigi’s Airy-type asymptotic expansion yield estimates valid
for all zeros m(κ,μ)

r , w
(κ,μ)
r larger than 4pκ , with p fixed, 0 < p < 1. Specifically,

with n = �κ − μ − 1/2� denoting the number of positive zeros,

m(κ,μ)
r = 4κξ ∗

r + 1

24κ

(
ξ ∗

r

1 − ξ∗
r

)1/2

×
[

5κ

c3/2
n+1−r

− 1

2

(48μ2 − 4)(ξ ∗
r − 1)2 + 4ξ ∗

r + 1

(1 − ξ∗
r )3/2ξ

∗1/2
r

]
+ O

(
κ−3

)
, (52)

where ξ∗
r = ξ

∗(κ,μ)
r is the root of the equation

arccos
√

ξ −
√

ξ − ξ 2 = c2/3
n+1−r

3κ
(53)

and ck the kth positive zero in ascending order of sin((κ − μ)π)Ai(−x) +
cos((κ − μ)π)Bi(−x), and

w(κ,μ)
r = 4κτ ∗

r + 1

24κ

(
τ ∗

r

1 − τ ∗
r

)1/2

×
[

5κ

a3/2
n+1−r

− 1

2

(48μ2 − 4)(τ ∗
r − 1)2 + 4τ ∗

r + 1

(1 − τ ∗
r )3/2τ

∗1/2
r

]
+ O

(
κ−3

)
, (54)

where τ ∗
r = τ ∗

n,r is the root of

arccos
√

τ −
√

τ − τ 2 = a2/3
n+1−r

3κ
, (55)

and ak the kth positive zero in ascending order of Ai(−x).
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5 Miscellanea

In this section, a few of Luigi’s papers are collected, which do not fit into the
classification scheme we have adopted.

5.1 Retouching asymptotic formulae

The idea of “retouching” asymptotic formulae, going back to Tricomi [56],
consists in introducing into the asymptotic approximation small correction
terms, which can be compactly tabulated or presented graphically so as to
enable a quick and relatively accurate determination of the desired quantity.
The idea is particularly useful if two or more variables are involved. In [27],
Luigi experiments with this idea in connection with asymptotic formulae for
Bessel functions Jν(x), Yν(x) in the range x ≥ 10 and arbitrary ν with −1 <

ν < 1. He is able, in this way, to produce approximations accurate to about
six decimals. He does the same in [28] for Laguerre polynomials Ln(x), n ≥ 7,
in the oscillatory region 0 ≤ x ≤ 4n + 2, where retouching is applied to two
asymptotic formulae, one appropriate for the left tenth, the other for the
remaining part, of the interval.

Retouching of sorts is taking place also in the paper [29], dedicated to the
computation of all zeros of the generalized Laguerre polynomial L(α)

n , α > −1.
Classical results need to distinguish between zeros in three zones: a central
zone and two lateral zones. Appropriate retouching of the asymptotic formula
for the central zone gives rise to a unique procedure for computing all zeros.
It involves the first �n/2� zeros of the Bessel function Jα(x) and of the Airy
function Ai(−x).

5.2 Reversing asymptotic approximations

Hilb-type formulae such as (15) and their generalizations to ultraspherical
and Jacobi polynomials are intended to approximate these polynomials in
terms of Bessel functions, and likewise for the respective zeros. There is no
intrinsic reason why this process cannot be turned around and thus be used
to approximate Bessel functions in terms of, say, ultraspherical polynomials.
This in fact is done in [30], where an improved Hilb formula for ultraspherical
polynomials P(ν+1/2)

n (cos θ), ν > −1/2, is used to compute Bessel functions
Jν(x) in terms of them, the variable x being an appropriate multiple (depending
on ν and n) of θ . Luigi’s intention was to bridge in this way the gap of
moderately large x, where neither the power series expansion of Jν(x) (for
small x) nor its asymptotic expansion (for large x) is numerically satisfactory.
Strong competitors, however, are computational algorithms based on three-
term recurrence relations satisfied by Bessel functions, which have been
developed by one of us (W. G.) and others at just about the same time.
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5.3 Bernstein-type inequalities

A well-known inequality for Legendre polynomials is Bernstein’s inequality

(sin θ)1/2|Pn(cos θ)| < (2/π)1/2n−1/2, 0 ≤ θ ≤ π, (56)

where the constant (2/π)1/2 is best possible. This result has been sharpened and
generalized to ultraspherical polynomials by various authors. A generalization
to Jacobi polynomials is due to Baratella [1]. By improving the constant in
Baratella’s result, Luigi jointly with Chow and Wong in [4] proves, for |α| ≤
1/2, |β| ≤ 1/2, that

(
sin

1

2
θ

)α+1/2 (
cos

1

2
θ

)β+1/2

|P(α,β)
n (cos θ)| ≤ �(q + 1)

�(1/2)

(
n + q

n

)
N−q−1/2,

N = n + (α + β + 1)/2, 0 ≤ θ ≤ π,

(57)

where q = max(α, β). The numerical constant in (57) is best possible (cf. [52]).

5.4 Jacobi polynomials in the complex plane

In [6], Elliott obtained an asymptotic expansion for Jacobi polynomials
P(α,β)

n (z) which is valid uniformly for all z in the complex plane cut along
the real axis from −∞ to 1, with a neighborhood of z = −1 deleted, and
with regard to the parameters α and β holds for arbitrary real β but only for
α ≥ 0. From this expansion, Luigi in [3], together with Baratella, derives one-
and two-term asymptotic approximations for P(α,β)

n (z) with the same region
of validity for z as stated above, and the same assumption on β, but with the
restriction α ≥ 0 relaxed to α > −1 by a judicious use of the differential equa-
tion and differentiation formulae satisfied by Jacobi polynomials. Analogous
approximations that are valid in the z-plane cut along the real axis from −1
to +∞, with a neighborhood of z = 1 deleted, can be obtained by switching
α and β and using the reflection formula for Jacobi polynomials.

5.5 An expansion of Jacobi polynomials in Laguerre polynomials

In [40], for α > −1, β > −1, the following curious expansion is derived,

P(α,β)
n (x) = (2k + t)n+α+β+1

(2k)n+α+1(2k − t)β
e−t

∞∑
m=0

Am

(
k,

α + 1

2

) (
t

2k

)m

L(α+m)
n (t),

(58)
where

t = 2k
1 − x
3 + x

, k = n + β + α + 1

2
, |t| < 2k,
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and Am = Am(k, �) satisfies the recurrence relation

(m + 1)Am+1 = (m + 2� − 1)Am−1 − 2kAm−2, m = 2, 3, . . . ,

with A0 = 1, A1 = 0, A2 = �. The condition |t| < 2k translates into x > −1. In
the special case β = 0, the expansion is due to Tricomi; see [58, Eq. (26)] as
corrected in [60, p. 98].

5.6 Surveys

On a number of occasions, Luigi has taken time out to survey recent progress
he and others had made. In an early lecture, [24], beautifully written, he
explains the nature of asymptotics, the need for error bounds and techniques
to obtain them, for special functions as well as for their zeros, all carefully
illustrated on the example of Legendre polynomials.6

In [35], work on asymptotic estimates for the zeros of Jacobi polynomials
and Bessel functions is reviewed.7 There are also many original results in this
survey, for example a new application of (22) to obtain the following estimate
for the zeros of Jacobi polynomials P(α,β)

n (cos θ), |α| ≤ 1/2, |β| ≤ 1/2,

θ(α,β)
n,r = jα,r

ν

[
1 − 4 − α2 − 15β2

720 ν4

(
1

2
j2
α,r + α2 − 1

)]
+ j5

α,r O
(
n−7

)
(59)

valid for r = 1, 2, . . . , �γ n�, with γ fixed in 0 < γ < 1, and ν defined as in
(21). Moreover, when r is fixed, (59) with the error term replaced by O(n−7),
is shown to hold for any α > −1 and arbitrary real β. If solved for jα,r, it
yields a good approximation for the first few zeros of the Bessel function Jα .
The simplified O(n−5) version of (59), with r = 1, has been found useful by
one of us (W. G.) to discuss (in [51]) a conjectured inequality involving θ

(α,β)

n,1

and θ
(α,β)

n+1,1.
The final sections of [35] discuss inequalities holding between zeros of Jacobi

polynomials and zeros of Bessel functions, some of which sharpening (26), and
others extending (26), with the bounds switched, to8 |α| > 1/2, |β| > 1/2. In
particular, many interesting and sharp upper and lower bounds are obtained
for the first zero jα,1, and first few zeros jα,r, of the Bessel function Jα .

Asymptotic estimates and inequalities for the zeros λ(α)
n,r of Laguerre poly-

nomials L(α)
n are reviewed in [44] and, here too, supplemented by new results.

6There are some misprints that may distract the reader: ε1(
∗) at the bottom of p. 88 should be

ε1(x∗); on p. 89, second text line, x should read x∗; and in the displayed equation that follows, the
first term on the left should be multiplied by δ.
7For unexplained reasons, the numbers in Table 1 differ somewhat from those in the correspond-
ing table in [50, p. 85]. In the survey, plots for these numbers are also provided.
8In [35, Theorem 5.1 ii)], the inclusion sign ∈ should be �∈.
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Thus, e.g., the formula (45) is used to derive a very sharp and interesting
estimate for the last few zeros of L(α)

n , namely, when s is fixed and n → ∞,

λ
(α)
n,n+1−s = ν − 22/3asν

1/3 + 1

5
24/3 a2

s ν
−1/3 +

(
11

35
− α2 + 12

175
a3

s

)
ν−1

+
(

92

7875
a4

s − 16

1575
as

)
22/3ν−5/3 +

(
15152

3031875
a5

s − 1088

121275
a2

s

)
21/3

× ν−7/3 + O
(
ν−3

)
, (60)

where ν = 4n + 2α + 2. This, in fact, improves an old O(ν−1) result of Tricomi.
In obtaining (60), heavy use is made of Maple V. Luigi also conjectures that
in the case |α| ≤ 1/2, when O-terms are omitted, the right-hand side of (44)
becomes a lower bound for all r = 1, 2, . . . , n, whereas the right-hand side of
(45) becomes an upper bound for all, except the first few, zeros, and for all
zeros if −.4999 ≤ α ≤ 1/2.

The last three sections of [44] review results obtained by Luigi and others in
the case where the parameter α is large compared to n, or both parameters α

and n are large.
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Alexander M. Ostrowski (1893-1986): 
His life, work, and students* 

Walter Gautschi 

As a former student of Professor Ostrowski-one of his last - I am de
lighted to recall here the life and work of one of the great mathematicians 
of the 20th century. Needless to say that, in view of Ostrowski's immense 
and vastly diverse mathematical legacy, this can be done only in a most 
summary fashion. Further literature on Ostrowski can be found in some of 
the references at the end of this article. We also assemble a complete list 
of his Ph.D. students and trace the careers of some of them 

1. His life 

Alexander Markovich Ostrowski was 
born in Kiev on September 25, 1893, 
the son of Mark Ostrowski, a mer
chant in Kiev, and Vera Rashevskaya. 
He attended primary school in Kiev 
and a private school for a year be
fore entering the Kiev School of Com
merce. There, his teachers soon be
came aware of Alexander's extraordi
nary talents in mathematics and recom
mended him to Dmitry Aleksandrovich 
Grave, a professor of mathematics at 
the University of Kiev. Grave him
self had been a student of Cheby· 

The mother of Alexander shev in St. Petersburg before assum-
ing a position at the University of 

Kharkov and, in 1902, the chair of mathematics at the University 
of Kiev. He is considered the founder of the Russian school of algebra, 
having worked on Galois theory, ideals, and equations of the fifth degree. 
The seminar on algebra he ran at the University of Kiev was famous at the 
time. 

*Expanded version of a lecture presented at a meeting of the Ostrowski Foundation in 
Bellinzona, Switzerland, May 24-25, 2002, and published in Italian in [14]. 
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After a few personal interviews with Alexan
der, Grave became convinced of Alexander's ex
ceptional abilities and accepted him- then a boy 
of 15 years-as a full-fledged member of his sem
inar. Alexander attended the seminar for three 
years while, at the same time, completing his stud
ies at the School of Commerce. During this time, 
with Grave's assistance, he wrote his first mathe
matical paper, a long memoir on Galois fields, writ
ten in Ukrainian, which a few years later (in 1913) 
appeared in print. . 

D. A. Grave When the time came to enroll at the University, 
Ostrowski was denied entrance to the University 

of Kiev on purely bureaucratic grounds: he graduated from the School of 
Commerce and not from High School! This prompted Grave to write to 
E. Landau and K. Hensel and to ask for their help. Both responded favor
ably, inviting Ostrowsld. to come to Germany. Ostrowsld. opted for Hensel's 
offer to study with him at the University of Marburg. Two years into his 
stay at Marburg, another disruptive event occurred - the outbreak of World 
War I-which left Ostrowsld. a civil prisoner. Only thanks to the interven
tion· of Hensel, the restrictions on his movements were eased somewhat, 
and he was allowed to use the university library. That was all he really 
needed. During this period of isolation, Ostrowski almost single-handedly 
developed his now famous theory of valuation on fields. 

After the war was over and peace was 
restored between the Ukraine and Germany, 
Ostrowski in 1918 moved on to Gottingen, 
the world center of mathematics at that time. 
There, he soon stood out among the stu
dents by his phenomenal memory and his al
ready vast and broadly based knowledge of 
the mathematical literature. One student later 
recalled that the tedious task of literature 
search, in Gottingen, was extremely simple: 
all one had to do was to ask the Russian stu
dent Alexander Ostrowsld. and one got the 
answer- instantly and exhaustively! At one AJexander,ca. 1915 

time, he even had to come to the rescue of David Hilbert, when during 
one of his lectures Hilbert needed, as he put it, a beautiful theorem whose 
author unfortunately he could not recall. It was Ostrowsld. who had to 
whisper to him: "But, Herr Geheimrat, it is one of your own theorems!" 
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Not surprisingly, therefore, 
Felix Klein, always keen in rec
ognizing young talents, became 
interested in Ostrowski, took 
him on as one of his assistants, 
and entrusted him, together with 
R. Fricke, with editing the first 
volume of his collected works. 
In 1920, Ostrowski graduated 
summa cum laude with a the
sis written under the guidance of 
Hilbert and Landau. This, too, David Hilbert 
caused quite a stir, since it an-
swered, in part, Hilbert's 18th problem. Ostrowski succeeded in proving, 
among other things, that the Dirichlet zeta series ((x, s) = 1-sx + 2- 5 x 2, + 
3-s x3 + · · · does not satisfy an algebraic partial differential equation. · · 

After his graduation, Ostrowski left Gottingen for Hamburg, where as 
assistant of E. Heeke he worked on his Habilitation Thesis. Dealing with 

Ostrowski, the skater 

modules over polynomial rings, this work was also inspired by Hilbert. The 
habilitation took place in 1922, at which time he returned to Gottingen to 
teach on recent developments iii complex function theory and to receive 
habilitation once again in 1923. The academic year 1925-26 saw him as a 
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Rockefeller Research Fellow at Oxford, Cambridge, and Edinburgh. Shortly 
after returning to Gottingen, he received - and accepted - a call to the 

Ostrowski, in his 40s and 50s, and at 60 

University of Basel. The local newspaper (on the occasion of Ostrowski's 
80th birthday) could not help recalling that 200 years earlier, the university 
lost Euler to St. Petersburg because, according to legend, he found himself 
at the losing end of a lottery system then in use for choosing candidates 
(in reality, he was probably considered too young for a professorship at 
the university). Now, however, the university hit the jackpot by bringing 
Ostrowski from Russia to Basel! 

Ostrowski remained in 
Basel for his entire aca
demic career, acquiring the 
Basel dtizenship in 1950. It 
was here where the bulk of 
his mathematical work un
folded. Much of it lies in the 
realm of pure mathematics, 
but important impulses re
ceived from repeated vis
its to the United States in 
the late forties and. early 
fifties stirred his interest in 
more applied problems, par-

Ostrowski, Washington, D.C., 1964 ticularly numerical methods 
in conformal mapping and 

problems, then emerging, relating to the iterative solution of large systems 
of linear algebraic equations. He went about this work with great enthu-
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siasm, even exuberance, having been heard, in the halls of the National 
Bureau of Standards, to exclaim Gottfried Keller's lines "Trinkt, o Augen, 
was die Wimper halt, von dem goldnen Uberfluss der Welt!"1. And indeed, 
exciting problems of pressing significance began to burst forward at this 
time and demanded nothing less than farsighted and imaginative uses of 
advanced mathematical techniques. 

In 1949, Ostrowski married Margret Sachs, 
a psychoanalyst from the school of Carl Gus
tav Jung and at one time, as she once revealed 
to me, a secretary and confidante of Carl Spit
teler2. Her warm and charming personality 
greatly helped soften the severe lifestyle of Os
trowski, the scholar, and brought into their 
lives some measure of joyfulness. This, in fact, 
is the time the author got to know the Os-. 
trowskis, having become his student and assis- · · 
tant, and, on several occasions, having had the 
pleasure of being a guest at their house in the 
old part of the city. 

Margret Ostrowski, 1970 Ostrowski retired from the University in 
1958. This did not bring an end to his scientific 

activities. On the contrary! He continued, perhaps at an even accelerated 
pace, to produce new and important results until his late eighties. At the 
age of 90, he was still able to oversee the publication by Birkhauser of his 
collected papers, which appeared 1983-85 in six volumes. 

After Ostrowski's retire
ment, he and his wife took 
up residence in Montagnola, 
where they earlier had built 
a beautiful villa- Cas a Al
marost (ALexander MARgret 
OSTrowski), as they named 
it - overlooking the Lake of 
Lugano. They were al
ways happy to receive visi
tors at Almarost, and their 
gracious hospitality was leg
endary. Mrs. Ostrowski, 
knowing well the inclina- 75th birthday, Buffalo 
tions of mathematicians, always led them down to Ostrowski's library in 

1As recalled, and kindly related to the author, by Olga Taussky-Todd. 
2Swiss poet (1845-1924), 1919 Nobel Laureate in literature. 
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Margret and Alexander Ostrowski at Almarost 

order to leave them alone for a while, so they could catch up on the newest 
mathematics and mathematical gossip. The walls of the library were filled 
with books, not all mathematical, but also a good many on science fiction 
and mystery stories, Ostrowski's favored pastime reading. 

Mrs. Ostrowski passed away in 1982, four years before Ostrowski's 
death in 1986. They are buried in the lovely cemetery of Gentilino, not 
far from the grave of Hermann Hesse, with whom they were friends. 

Ostrowski's merits are not restricted to research alone; they are eminent 
also on the didactic level, and he exerted 
a major influence on mathematical pub
lishing. With regard to teaching, his three 
volumes on the differential and integral 
calculus [22], which began to appear 
in the mid-1940s, and in particular the 
extensive collection of exercises, later 
published separately with solutions [23], 
are splendid models of mathematical ex
position, which still today serve to edu
cate generations of mathematicians and 
scientists. His book on the solution 
of nonlinear equations and systems of 
equations, published in the United States 
in 1960 and going through several edi- Ostrowski at the age of 90 
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tions [24], [25], continues to be one of the standard works in the field. And 
last but not least, he had well over a dozen doctoral students, some hav
ing attained international stature of their own, and all remaining grateful to 
him for having opened to them the beauty of mathematics and imparted on 
them his high standards of intellectual integrity. On the publishing front, 
Ostrowski was a long-time consultant to the Birkhauser-Verlag and was in
strumental in establishing and supervising their well~known Green Series 
of textbooks. To a good extent, he can be credited for Birkhauser having 
attained the leading position it now occupies in mathematical publishing. 

Cemetery of Gentilino 

Ostrowski's achievements 
did not remain unrecognized. 
He was awarded three hon
orary doctorates, · one from 
the Federal Institute of Tech
nology (ETH Zurich) in 19~8, 
one from the University of Be
san<;on in 1967, and another 
in 1968 from the University of 
Waterloo. 

In the early 1980s Profes
sor and Mrs. Ostrowski estab
lished an International Prize 
to be awarded every two years 
after their deaths [13]. It is to 

recognize the best achievements made in the preceding five years in Pure 
Mathematics and the theoretical foundations of Numerical Analysis. So far, 
eleven prizes have been awarded, the first in 1989 to Louis de Branges for 
his proof of the Bieberbach conjecture, the fourth in 1995 to Andrew Wiles 
for his proof of Fermat's last theorem. Characteristically of Ostrowski's 
view of mathematics as an international and universal sdence, he expressly 
stipulated that the award should be made "entirely without regard to poli
tics, race, religion, place of domicile, nationality, or age." This high esteem 
of scientific merits, regardless of political, personal, or other shortcom
ings of those attaining them, came across already in 1949, when he had 
the courage of inviting Bieberbach- then disgraced by his Nazi past and 
ostracized by the European intelligentsia- to spend a semester as guest of 
the University of Basel and conduct a seminar on geometric constructions. 
Undoubtedly, it was Ostrowski who successfully persuaded Birkhauser to 
publish the seminar in book form [3]. 
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2. His work 

Let us now take a quick look at Ostrowski's mathematical work. A first 
appreciation of the vast scope of this work can be gained from the headings 
in the six volumes of his collected papers [27]: 

Vol. 1 Determinants, Unear Algebra, Algebraic Equations; 

Vol. 2 Multivariate Algebra, Formal Algebra; 

Vol. 3 Number Theory, Geometry, Topology, Convergence; 

Vol. 4 Real Function Theory, Differential Equations, Differential Transfor
mations; 

Vol. 5 Complex Function Theory; 

Vol. 6 Conformal Mapping, Numerical Analysis, Miscellany. 

Much of this work is at the highest levels of mathematics and can be 
indicated here only by key words and phrases. The same applies to work 
that, although more accessible, is difficult to adequately summarize in a few 
words. From the remaining papers, a few results are selected in chronolog
ical order and briefly sketched in "excerpts", hoping in this way to provide 
a glimpse into Ostrowski's world of mathematics. We go through this work 
volume by volume and add dates to indicate the period of his life in which 
the respective papers have been written. 

2.1. Volume 1 

Key words: Sign rules of Descartes, Budan-Fourier, and Runge (1928-65); 
critique and correction of Gauss's first and fourth proof of the Fundamental 
Theorem of Algebra (1933); long memoir on Graeffe's method (1940); linear 
iterative methods for symmetric matrices (1954); general theory of vector 
and matrix norms (1955); convergence of the Rayleigh quotient iteration 
for computing real eigenvalues of a matrix (1958-59); Perron-Frobenius 
theory of nonnegative matrices (1963-64) 

Excerpt 1.1. Matrices with dominant diagonal (1937), 

A= [aiJ ], di := laiil - L latJI > 0, all i. 
Jfi 

Hadamard in 1899 proved that for such matrices detA =I= 0. Ostrowski 
sharpens this to ldetAI ~ fli di. 
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Excerpt 1.2. M-matrices (1937), 

A = [aij], aii > 0, aii ~ 0 

I 
an a121 > 0 a11 > 0, 
a21 a22 ' · · ·' 

Theorem. If A is an M-matrix, then A - 1 ~ 0. 

(i =I= j), 

detA > 0. 

The theory of M-matrices and the related theory of H-matrices, stem
ming from Ostrowski's 1937 paper, have proved to be powerful tools in 
the analysis of iterative methods for solving large systems of linear equa
tions. In addition, this theory forms the basis for the general theory of 
eigenvalue inclusion regions for matrices, as in the c~se of the well-known 
Gershgorin Theorem. See also Excerpt 2.2. 

Excerpt 1.3. Continuity of the roots of an algebraic equation (1939). 
It is well known that the roots of an algebraic equation depend contimi

ously on the coefficients of the equation. Ostrowski gives us a quantitative 
formulation of this fact. 

Theorem. Let Xv, Yv be the zeros of 

p(z) = aozn + a1zn- l + · · · +an, aoan =I= 0, 

resp. 

If 

then 

Excerpt 1.4. Convergence of the successive overrelaxation method (1954). 
The iterative solution of large (nonsingular) systems of linear algebraic 

equations 
Ax= b, A E ~nxn, bE ~n. 

was an object of intense study in the 1950s culminating in the "successive 
overrelaxation method" (SOR) 

Dxk+l = w(b - Lxk+l- Uxk)- (w- 1)Dxk, k = 0, 1, 2, . .. , 

where w is a real parameter and D, L, U are, respectively, the diagonal, 
lower triangular, and upper triangular part of A. The method is said to 
converge if limk-oo xk = A-lb for arbitrary b and arbitrary x 0 E ~n. 
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Ostrowski-Reich Theorem. If A is symmetric with positive diagonal ele
ments, and 0 < w < 2, then SOR converges if and only if A is positive 
definite. · 

Reich proved the theorem for w = 1 in 1949. Ostrowski proved it for 
general win (0, 2), even when w = wk depends on k but remains in any 
compact subinterval of (0, 2). 

Excerpt 1.5. A little mathematical jewel (1979). 

Theorem. Let p and q be polynomials of degrees m and n, respectively. 
Define 

Then 

MJ = max lf(z)l . 
· lzl =l 

MM M MM ·mTT ·nTT 
;y P q::::; pq::::; P q, ;y =SID 8m SID Bn. 

The interest here lies in the lower bound, the upper one being trivial. It 
is true that this lower bound may be quite small, especially if m and/or n 

· are large. But jewels need not be useful as long as they shine! 

2.2. Volume 2 

Key words: Algebra of finite fields (1913); theory of valuation on a field 
(1913- 17); necessary and sufficient conditions for the existence of a finite 
basis for a system of polynomials in several variables (1918-20); various 
questions of irreducibility (1922, 1975-77); theory of invariants of binary 
forms (1924); arithmetic theory of fields (1934); structure of polynomial 
rings (1936); convergence of block iterative methods (1961); Kronecker's 
elimination theory for polynomial rings (1977). 

The fact, proved by Ostrowski in 1917, that the fields of real and com
plex numbers are the only fields, up to isomorphisms, which are complete 
(Ostrowski used the older term "perfecf' for "complete") with respect to 
an Archimedean valuation is known today as "Ostrowski's Theorem" in 
valuation theory (P. Roquette [31]). 

Excerpt 2.1. Evaluation of polynomials (1954). If 

p(x) = aoxn + a1xn-l + · · · + an- lX +an, 

then, by Horner's rule, p (x) = Pn, where 

Po = ao, Pv = XPv-1 + av, v = 1, 2, ... , n. 

Complexity: n additions, n multiplications. 
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Theorem. Horner's rule is optimal for addition and optimal for multiplica
tion when n ~ 4. 

It has later been shown by V. Ja. Pan [28] that Horner's scheme indeed 
is not optimal with respect to multiplication when n > 4. 

Because of this paper, the year 1954 is generally considered "the year 
of birth of algebraic complexity theory" (P. Bfugisser and M. Clausen [5]). 

Excerpt 2.2. Metric properties of block matrices (1961), 

A21 Azz . . . Azn 

[

Au A12 . . . A1n] 

A = : : : , Avli E ~VXJ.I. 
. . . 

Anl Anz Ann 

Question. Is Hadamard's theorem still valid if I · I is replaced by II · II? 
Answer: Yes, if 

IIAull* 
- IIAz1ll 

- IIA1zll 
IIAzzll * 

- IIAnl ll -IIAnzll 
is an M-matrix, where 

-IIA1n ll 
-IIAznll 

II Annll * 

IIBII * = min IIBxll, IIB II = max IIBxll . 
"xU=l "x U=l 

2.3. Volume 3 ' · 

Key words: Existence of a "regular" basis for polynomials with coefficients 
in a finite arithmetic field that take on integer values for integer arguments 
(1919); arithmetic theory of algebraic numbers (1919); Diophantine equa
tions and approximations (1921-27, 1964- 82); existence criterion for a 
·common zero of two real functions continuous inside and on the bound
ary of a disk (1933); topology of oriented line elements (1935); evolutes 
and evolvents of a plane curve (1955) and an oval in particular (1957); 
differential geometry of plane parallel curves (1955); Ermakov's conver
gence and divergence criteria for rQ j(x) dx (1955); necessary and suffi
cient conditions for two line elements to be connectable by a curve with 
monotone curvature (1956); behavior of fixed-point iterates in the case of 
divergence (1956); summation of slowly convergent positive or alternating 
series (1972). 
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Excerpt 3.1. Infinite products (1930), 

Xo =X, Xv+l = Q?(Xv), V = 0, 1, 2, ... , 
00 

fl (1 + Xv) = 4.>(x). 
v=O 

Example. Euler's product Q?(x) = x 2, 4.>(x) = (1 - x) - 1. 

Problem. Determine all products which converge in a neighborhood of 
x = 0, and for which <P is rational and <P algebraic. 

Solution: completely enumerated. 

Excerpt 3.2. "Normal" power series (1930), 

00 

L avzv with av ;;::; 0, a~;;::; av-lav+l• 
V=-oo 

and all coefficients between two positive ones are also positive. 

Theorem. The product of two normal power series, if it exists, is also normal. 

2.4. Volume 4 

Key words: Dirichlet series and algebraic differential equations, thesis Got
tingen (1919); strengthening, or simplifying, proofs of many known results 
from real analysis (1919-38); various classes of contact transformations in 
the sense of S. Ue (1941-42); invertible transformations of line elements 
(1942); conditions of integrability for partial differential equations (1943); 
indefinite integrals of "elementary" functions, liouville Theory (1946); con
vex functions in the sense of Schur with applications to spectral properties 
of Hermitian matrices (1952); theory of characteristics for first-order par
tial differential equations (1956); points of attraction and repulsion for 
fixed-point iteration in Euclidean space (1957); univalence of nonlinear 
transformations in Euclidean space (1958); a decomposition of an ordinary 
second-order matrix differential operator (1961); theory of Fourier trans
forms (1966); study of the remainder term in the Euler-Maclaurin formula 
(1969-70); asymptotic expansion of integrals containing a large parameter 
(1975). 

A technique introduced in the 1946 paper on liouville's Theory is now 
known in the literature as the "Hermite-Ostrowski method" 0. H. Daven
port, Y. Siret, and E. Tournier [7]). This work has attained renewed relevance 
because of its use in formal integration techniques of computer algebra. 
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Excerpt 4.1. The (frequently cited) Ostrowski-Griiss inequality (1970), 

11 11 11 1 I j(x)g(x) dx- j(x) dx g(x)dx I ~ -
8 

osc jmax lg' l. 
0 0 0 [0,1) [0.1) 

Excerpt 4.2. Generalized Cauchy-Frullani integral (19 76), 

Joco f(at) ~f(bt) dt = [M(j) - m(j)]ln~, a> 0, b > 0, 

where 

M(f) = lim .!. Jx j(t) dt, m(j) =lim x f1 
j(t) dt. 

x -. cox 1 xlO x t 2 

In the original version of the formula, there were point evaluations, f ( oo). 
and j(O), in place of the mean values M(j) and m(j). 

2.5. Volume 5 

Key words: Gap theorems for power series and related phenomena of" over
convergence" (1921-30); investigations related to Picard's theorem (1925-
33); quasi-analytic functions, the theory of Carleman (1929); analytic con
tinuation of power series and Dirichlet series (1933, 1955). 

Excerpt 5.1. Alternative characterization of normal families ofmeromor
phic functions (1925). 

Theorem. A family :f ofmeromorphic functions is normal (i.e., precompact) 
if and only if it is equicontinuous with respect to the spherical metric. 

Excerpt 5.2. Carleman's theorem on quasianalytic functions, as reformu
lated by Ostrowski (1929). 

Given a sequence m = { mv} ~=l of positive numbers mv, an infinitely
differentiable function f on I = [0, oo) is said to belong to the class C(m) 
if 

lf(v) (x) I ~ mv on I , v = 0, 1, 2, .... 

The class C(m) is called quasianalytic iff E C(m) and J(v>(O) = 0, 
v = 0, 1, 2, ... , implies j(x) = 0 on I. 

Ostrowski reformulates, and gives a simplified proof of, one of the main 
·results of Carleman's theory of quasianalytic functions by introducing the 
function T(r) = SUPv rv /mv (sometimes named after him). 
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Theorem. The class C(m) is quasianalytic if and only if 

foo dr 
1ogT(r) 2 = oo. 

1 r 

Ostrowski's work related to Picard's theorem, though predating R. Nevan
linna's own theory ofmeromorphic functions, points in the same direction. 

2.6. Volume 6 

Key words: Constructive proof of the Riemann Mapping Theorem (1929); 
boundary behavior of conformal maps (1935-36); Newton's method for a 
single equation and a system of two equations: convergence, error esti
mates, robustness with respect to rounding (1937-38); convergence of re
laxation methods for linear n x n systems, optimal relaxation parameters 
for n = 2 (1953); iterative solution of a nonlinear integral equation for the 
boundary function of a conformal map, application to the conformal map 
of an ellipse onto the disk (1955); "absolute convergence" of iterative meth
ods for solving linear systems (1956); convergence of Steffensen's iteration 

· (1956); approximate solution of homogeneous systems of linear equations 
(195 7); a device of Gauss for speeding up iterative methods (1958); conver
gence analysis of Muller's method for solving nonlinear equations (1964); 
convergence of the fixed-point iteration in a metric space in the presence 
of "rounding errors" (1967); convergence of the method of steepest de
scent (1967); a descent algorithm for roots of algebraic equations (1969); 
Newton's method in Banach spaces (1971); a posteriori error bounds in it
erative processes (1972-73); probability theory (1946- 1980); book reviews, 
public addresses, obituaries (G. H. Hardy, Wilhelm Suss, Werner Gautschi) 
(1932-75). 

Excerpt 6.1. Matrices close to a triangular matrix (1954), 

A = [aii], laiil ~ m (i > j), laij l ~ M (i < j), 0 < m < M . 

The limit case m = 0 corresponds to a trtangular matrix with its eigen
values being the elements on the diagonal. If m is small, one expects the 
eigenvalues to remain near the diagonal elements. This is expressed by 
Ostrowski in the following way. 

Theorem. All eigenvalues of A are contained in the union of disks Ui Dt, 
Di = {z E (: lz- aii l :::;; 8(m,M)}, where 

l 1 

o(m,M) = Mm~ - m~:n 
M:n-m:n 

The constant 8 ( m, M) is best possible. 
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Excerpt 6.2. The Moivre-Laplace formula (1980). If 

M(n) = L (~) pvqn-v , 0<p<1 , p+q=1,n>O, 
lv - np I ~ry.J2npq 

then 
2 ! '~ 2 

M(n) = .fiT Jo e- t dt + p(I'J, n), 

where 
( ) - r n - '12 0 ( 1 I ) p 11, n - 12 e + n , n --+ oo , 

v rrnpq 

and, with R(x) = x- LxJ, 

rn = 1 - R(nq + ry.J2npq)- R(np + ry.J2npq). 

The numbers rn eire everywhere dense in [ - 1, 1]. Prior to Ostrowski's 
work, the formula has been stated (incorrectly) with 1 in place of rn. · 

3. His students 

Professor Ostrowski has been the primary advisor ("Referent") for the doc
toral students listed below. All dissertations, except one, were written at 
the Faculty of Mathematics and Natural Sciences of the University of Basel. 
(The exception is the thesis by Willy Richter.) 

1932 Stefan Emanuel Warschawski (1904-1989) 
"Ober das Randverhalten der Ableitung der Abbildungsfunktion 
bei konformer Abbildung" 

1933 Alwin von Rohr (1903-2001) 
"Ober die Hilbert-Story'schen invariantenerzeugenden Prozesse" 

1934 Leo Leib Kriiger (1903-?) 
"Ober eine Klasse von kontinuierlichen Untergruppen der 
allgemeinen linearen homogenen projektiven Gruppe des 
(2N - 1)-dimensionalen Raumes" 

1936 Theodor Samuel Motzkin (1908-1970) 
"Beitrage zur Theorie der linearen Ungleichungen" 

1938 Caleb Gattegno (1911-1.988) 
"Le cas essentiellement geod~sique dans les equations de 
Hamilton-Jacobi integrables par separation des variables" 
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1938 Fritz Blumer (1904-1988) 
"Untersuchungen zur Theorie der halbregelmassigen 
Kettenbruchentwicklungen, I & II" 

1944 Eduard Batschelet (1914-1979) 
"Untersuchungen uber die absoluten Betrage der Wurzeln 
algebraischer, insbesondere kubischer Gleichungen" 

1945 Gerhard Stohler (1915-1999) 
"Uber eine Klasse von einparametrigen Differential
Transformationsgruppen" 

1948 Rolf Conzelmann (1916- ) 
"Beitrage zur Theorie der singularen Integrale bei 
Funktionen von mehreren Variablen, I & II" 

1949 Karl-FelixMoppert (1920- 1984) 
"Uber Relationen zwischen m - und p-Funktionen" 

1951 Hermann Georg Wundt (1921-?) 
"Eine neue Methode der Periodogramm-Analyse und ihre 
Anwendung auf die Reihe der Sonnen:flecken-Relativzahlen" 

1952 Willy Richter (1915-1998) 
"Estimation de l'erreur commise dans la methode de 
M. W. E. Milne pour !'integration d'un systeme de 
n equations differentielles du premier ordre" (These, 
Faculte des Sciences, Universite de Neuchatel) 

1953 Rudolf Thfuing (1924-) 
"Studien uber den Holditchschen Satz" 

1954 Werner Gautschi (1927-1959) 
"On norms of matrices and some relations between norms 
and eigenvalues" 

1954 Walter Gautschi (1927-) 
"Analyse graphischer Integrationsmethoden" 

1959 Hans Richard Gutmann (1907-2001) 
"Anwendung Tauberscher Satze und Lambertscher Reihen 
in der zahlentheoretischen Asymptotik" 

Many of these students have had successful careers either in academia 
or in secondary school education. Like Ostrowski himself, some of the ear
lier students came to Basel from abroad: Warschawski from Konigsberg; 
KrUger from Riga; Motzkin from Berlin; and Gattegno from Alexandria, 
Egypt. All the other students, except Wundt, a native of Aalen, WUrttem
berg, were born and grew up in, or near, Basel. 
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We have no information about the careers of von Rohr, Kriiger, and 
Wundt. 

Warschawski became a Ph.D. student of Ostrowski while the latter was 
still in Gottingen, and moved with him to Basel, where he completed his 
thesis in 1932. He returned to Gottingen to start his teaching career but 
was forced to escape from Nazi persecution. He was able, eventually, to 
reach the United States, where he developed into a highly respected re
searcher in the area of conformal mapping. He also distinguished himself 
as a successful academic administrator by building up to prominence two 
departments of mathematics, one at the University of Mllmesota, the other 
at the University of California at San Diego. For a biography, see [21]. 

Motzkin, the son of Leo Motzkin, a prominent member of the Zionist 
movement who participated at the First Zionist Congress (1897) in Basel 
and in his youth started on a doctoral dissertation under Kronecker, af
ter completion of his · thesis moved to the Hebrew University in Jerusale111, 
where during World War II he worked as a cryptographer for the British · 
government. In 1948 he emigrated to the United States, where in 1950 he 
became a member of the Institute of Numerical Analysis at the University 
of California at Los Angeles and a professor ten years later. Motzkin's 
work as a mathematician is widely recognized to be brilliant and inge
nious. Extremely versatile, he contributed significantly to fields such as 
linear programming, combinatorics, approximation theory, algebraic ge
ometry, number theory, complex function theory, and numerical analysis. 
Motzkin numbers and Motzkin paths are mathematical objects still studied 
extensively in today's literature. See [1] for an obituary. 

Gattegno turned his attention to the psychology and didactics of teach
ing in general, and of teaching mathematics, reading and writing, and for
eign languages, in particular. He promoted his innovative and unortho
dox approaches in more than SO books and other publications, conducted 
seminars throughout the world, founded numerous organizations, and pro
duced relevant teaching material. He earned a second doctorate in psychol
ogy in 1952 from the University of Lille. In 1965, Gattegno moved to New 
York, where he established an educational laboratory and continued his 
pedagogical activities. For more on Gattegno's life and work, see [29]. 

Batschelet was a teacher at the Humanistischen Gymnasium Basel from 
1939 to 1960 and a Privatdozent at the University of Basel from 1952 to 
1957. In 1958 he was awarded the title of extraordinary professor and two 
years later moved to Washington, D.C. to assume a professorship at the 
Catholic University. He returned to Switzerland in 1971 where he became 
professor of mathematics at the University of Zurich. His field of research 
was statistics and biomathematics; he taught and wrote successful text
books in this area. See [18] for an obituary. 
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Moppert, after five years of teaching at schools in Basel, emigrated to 
Australia, where he assumed a lectureship at the University of Tasmania 
aJ:ld in 1958 became a senior lecturer in mathematics at the University of 
Melbourne. In 1967 he joined the Department of Mathematics at Monash 
University, where he remained until his death. His mathematical work 
addressed Riemann surfaces -his thesis topic- and miscellaneous other 
topics including operators in Hilbert space, Diophantine analysis, Brown
ian motion, and Euclidean and non-Euclidean geometry. He had a knack 
for scientific instruments, of which a sundial mounted on one of the walls 
of the Union Building at Monash, "often a better indicator of the correct 
time than most other clocks on campus" [6], remains a lasting witness. 

Werner Gautschi, a twin brother of the author, emigrated in 1953 to the 
United States, where during postdoctoral years at Princeton University and 
the University of California at Berkeley he worked himself into the areas 
of mathematical statistics and probability theory. He started his academic 
career in 1956 at Ohio State University, moved to Indiana University at 
Bloomington in 1957 and two years later back to Ohio State University: 

. Soon after he arrived there, a massive heart attack put an abrupt end to his 
life and to a very promising career. See [4] and [26] for obituaries. 

Walter Gautschi, after two years of postdoctoral work in Rome and at 
Harvard University, took on positions as a research mathematidan at (what 
was then called) the National Bureau of Standards in Washington, D.C. and 
at Oak Ridge National Laboratory, Oak Ridge, Tennessee. In 1963 he ac
cepted a professorship in mathematics and computer sciences at Purdue 
University, where he remained until his retirement in 2000. He worked 
in the areas of special functions, constructive approxi.niation theory, and 
numerical analysis, as documented in [15]. 

Among the students who chose a teaching career at schools in Basel are 
Blumer, Humanistisches Gymnasium (HG), 1932-1973; Stohler, Madchen
gymnasium (MG) (later Holbein-Gymnasium), 1946-1980; Conzelmann, HG 
Gater Mathematisch-Naturwissenschaftliches Gymnasium (MNG)), 1949-
1982; Thii.ring, Realgymnasium(RG), 1956-1986; Gutmann, RG, 1935-1970 
(rector thereof from 1962-1970). Both, Blumer and Conzelmann held also 
academic positions at the University of Basel, the former a lectorship from 
1960 to 1974, the latter aLehrauftragin 1956/57, alectorship from 1958 to 
19 7 4, and an extraordinary professorship from 19 75 until his retirement in 
1984. Richter, injured in a military accident and battling tuberculosis, ab
solved his university studies by correspondence in the military sanatorium 
of Novaggio and the sanatorium in Leysin during World War II and wrote 
most of his thesis on the sick-bed. He became a teacher in Neuchatel, for 
a few years at the Ecole de Commerce and then at the Gymnase Cantonal 
until his retirement in 1978. 
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Ostrowski is listed as secondary advisor ("Korreferent") to the following 
students: 

1931 Heinrich Johann Ruch (1895-1960) 
"Dber eine Klasse besonders einfacher Modulargleichungen 
zweiten Grades von der Form y 2 = R(x)" (Referent: Otto Spiess) 

1942 Ernst Fischer (1914-2000) 
"Das Zinsfussproblem der Lebensversicherungsrechnung 
als Interpolationsaufgabe" (Referent: Ernst Zwinggi) 

1947 Heinz HermannMilller (1913-1996) 
"Scharfe Fassung des Begriffes faisceau in einer 
gruppentheoretischen Arbeit Camille Jordans" 
(Referent Andreas Speiser) 

1955 Mario Gottfried Howald (1925-2001) 
"Die akzessorische IrrationalWit der Gleichung fUnften 
Grades" (Referent: Andreas Speiser) 

Nothing is known to us about the curricula vitae of these students ex
cept for Howald, who was teaching at the MNG from 1951 to 1990 (in be
tween for four years at the Gymnasium Baumlihof). For two years (1962-
63) he was working at the Natural Science section of the Goetheanum in 
Dornach. Besides his teaching activity at the Gynmasien, Howald regularly 
organized courses in Carona (near Lugano) for amateur astronomers. He 
is the author of two informative articles [16], [17] on Maupertuis's Lapland 
expedition to measure the length of a meridional degree that led to the 
affirmation of the flatness of the earth near the poles. He also edited, and 
wrote commentaries to, Daniel Bernoulli's work on positional astronomy 
[2] and from 199 7 to his death was a member of the Curatorium of the Otto 
Spiess foundation which supports the Bernoulli edition. 

4. Epilogue 

To conclude, let me make a few general remarks about Ostrowski's work. 
Apart from the kaleidoscopic variety of themes treated by him, a character
istic quality of his work is a strong desire to go to the bottom of things, to 
unravel the essential features of a problem and the basic concepts needed 
to deal with it in a satisfactory manner. This is coupled with a relentless 
drive to be exhaustive. Notable are also his frequent attempts to estab
lish results, even entirely classical ones, under the weakest assumptions 
possible, and his delight in finding proofs that are short and succinct. A 
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good part of Ostrowski's work has a definite constructive bent, and all of it 
exhibits a masterly skill in the use of advanced mathematical techniques, 
particularly analytic techniques of estimation. His work bears the stamp of 
scholarly thoroughness, coming from a careful study of the literature, not 
only the contemporary literature, but also, and perhaps more importantly, 
the original sources. 
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My Collaboration with Gradimir V. Milovanovic 

Walter Gautschi 

l. Collaborative efforts, and joint publications resulting therefrom, are much more 
prevalent in the physical sciences than they are in mathematics. The reason is that 
research in the physical sciences usually requires team work involving a number of 
scientists with specialized skills, whereas research in mathematics is a much more 
individual and solitary enterprise. Nevertheless, even in mathematics, collaboration 
between different mathematicians may come about through a variety of circum
stances. In my own experience, most of my collaboration originated in my attend
ing mathematical conferences, visiting other institutions, or entertaining guests at 
my own institution. Another not insignificant group of collaborators comes from 
Ph.D. or postdoctoral students. In all these cases, an important aspect is interper
sonal communication and oral exchange of ideas. Not so in the case of Gradimir! 
Here, collaboration started anonymously, almost ghostlike, during a process of ref
ereeing, exactly 25 years ago. (I may be permitted to divulge information that nor
mally is held confidential!) That is when I received a manuscript from the editor of 
Mathematics of Computation authored by some Gradimir Milovanovic, a name I had 
never heard of before. I was asked to referee it for the journal, whose editor-in-chief 
I was to become shortly thereafter. 

2. The topic of the manuscript looked interesting enough: It was a matter of 
computing integrals that frequently occur in solid state physics, e.g. the total energy 
of thermal vibration of a crystal lattice, which is expressible as an integral 

looo ( 

f(t)-f-1 dt, o e -

Walter Gautschi 
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where f(t) is related to the phonon density of states, or the crystal lattice heat 
capacity at constant volume, which is 

with g(t) = e1 J(t ). Gradimir's idea was to compute these integrals, and similar ones 
with t/(e1 - I) replaced by l/(e1 +!),by Gaussian quadrature, treating t/(e1 -I), 
or its square, as a weight function. This is a neat way of dealing with the poles of 
this function at ±2kni, k = 0, l, 2, ... , which otherwise would adversely interfere 
with more standard integration techniques. 

Another simple, but interesting observation of Gradimir was this: Integrals of the 
type (I) can be used to sum infinite series, 

= ~o= t 2, ak = h(t)-1-dt, 
k=l o e - l 

(2) 

if the general term of the series, ak = -F'(k), is the (negative) derivative of the 
Laplace transform F(p) = fo= e-pt h(t)dt evaluated at p = k of some known function 
h. Since series of this kind are typically slowly convergent, the representation (2) 
offers a useful summation procedure, the sequence of n-point Gaussian quadrature 
rules, n = l, 2, 3, ... , applied to the integral on the right converging rapidly if h is 
sufficiently smooth. 

This is all very nice, but how do we generate Gaussian quadrature rules with such 
unusual weight functions? Classically, there is an approach via orthogonal polyno
mials and the moments of the weight function, 

k =0, 1,2, ... 

ln fact, this is the road Gradimir took in his manuscript, noting that the moments are 
expressible in terms of the Riemann zeta function, 

.Uk=(k+l)!((k+2), k=0,1,2, .... 

It was at this point where I felt I had to exercise my prerogatives as a referee: 
I criticized the highly ill-conditioned nature of this approach and proposed more 
stable alternative methods that I developed just a year or two earlier. In the pro
cess, I rewrote a good portion of the manuscript and informed the editor that the 
manuscript so revised would be an appropriate and interesting contribution to com
putational mathematics. I suggested, subject to the author's approval, to publish the 
work as a joint paper. The approval was forthcoming, and that is how our first joint 
publication [6] came about. 

In retrospect, Gradimir's original approach via moments has regained some via
bility since software has become available inthe last few years that allows generating 
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the required orthogonal polynomials in variable-precision arithmetic. One such 
program is the Matlab symoolic Chebyshev algorithm schebyshev. m (down
loadable from 

http://www.cs.purdue.edu/archives/2002/wxg/codes/SOPQ .html), 

which generates the required recurrence coefficients directly from the moments. 
Table l in [6), and similarly Tables 2-4 (cf. 4 [Sects. 4-5]), can thus be produced 
very simply using the following Matlab script: 

syms mom ab 
digits(65); dig=65; 
for k=l:BO 

mom(k)=vpa(gamma(vpa(k+l))*zeta(vpa(k+l))); 
end 
ab=schebyshev(dig,40,mom); 
ab=vpa(ab,25) 

True, it takes 65-decimal-digit arithmetic to overcome the severe ill-conditioning 
and obtain the first 40 recursion coefficients (in the array ab) of the orthogonal 
polynomials to 25 decimal digits. But this is a one-time shot; once these coefficients 
are available, one can revert to ordinary arithmetic to compute the desired Gaussian 
quadratures and the integrals in question. 

3. In March of 1984, on a visit to Nis, I haq the opportunity to.finally meet my 
collaborator in person. He invited me to dinner at his home (my compliments to Do
brila for her culinary art!), after which Gradimir and I retired to his study, where we 
engaged in a most lively brainstorming session. I was astonished how well he knew 
earlier work of mine. He must have read my short 1984 paper on spherically sym
metric distributions and their approximation by step functions matching as many 
moments of the distribution as possible. Because he obviously had thought about 
extending this type of approximation to more general spline approximations. An
other idea that surfaced during this discussion was orthogonality on the semicircle 
and related (complex-valued) orthogonal polynomials. We agreed to pursue these 
topics further, which provided enough material to keep us busy for several years 
to come. It so happened that it was the second of these problems that received our 
attention first, but soon enough we worked on both problems concurrently. 

4. Polynomials that are orthogonal on curves r in the complex plane have a 
long history in the case where the underlying inner product is Hermitian, i.e., of the 
form (u,v) = fru(z)v(z)da(z), da being a positive measure on r; see, e.g., [14, 
Chaps. 11 and 16]. The case most studied, by far, is the unit circle, r = { ei9 , 0 s 
e < 2n }, which gives rise to Szego's theory of orthogonal polynomials on the unit 
circle. The question we asked ourselves is this: what happens if the second factor in 
the inner product is not conjugated? We decided to begin our study with a prototype 
inner product, namely, da the Lebesgue measure, and r the upper half of the unit 
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circle (the whole unit circle being ruled out by Cauchy's theorem). Thus, we began 
looking at 

(3) 

postponing for later the study of more general weight functions. 
The moment functional associated with (3) is I- zk = ( l, zk ), k = 0, l, 2, ... ; it is 

well known that a sequence of monic polynomials { lrn} orthogonal with respect to 
the inner product (3) exists uniquely if the moment sequence {.uk}, J.lk = f.o i, is 
quasi-definite, i.e., L1n :/:0 for all n?: I, where 

J.lo J11 · · · J.ln-1 

L111 = det (4) 

J.ln - I J.ln · · · J.12n - 2 

We were able to prove quasi-definiteness by explicit computation of the moments 
and the determinant in (4). 

Since (z.u, v) = (u,zv), there must exist a three-term recurrence relation to the 
polynomials { Jr11 }; we found it to be of the form 

nk+l(z)=(z--iak)nk(z) f3knk_ 1(z), k=0,1,2, ... , 
(5) 

,r_,(z)=O, no(z.)=l, 

where 
(6) 

and 

.(} - _2_ [r((k+2)/2)] 2 

Uk - 2k + 1 r ( ( k + 1 ) /2) ' k ?: 0 · 
(7) 

Ask --> oo, one finds ak --> 0, f3k --> ~, familiar from Szego's class of polynomials 
orthogonal on the interval [- l' 1]. 

Interestingly, the polynomials Jr,1 are closely connected to Legendre polynomials, 

(8) 

where Pk is the monic Legendre polynomial of degree k. This allowed us to derive a 
linear second-order differential equation for lrn, which, like the differential equation 
for Legendre polynomials, has regular singular points at l, -1, and oo, but unlike 
Legendre polynomials, an additional singular point on the negative imaginary axis, 
which depends on n and approaches the origin monotonically as n T oo. 

All zeros of nn are contained in the half disk D+ = { z E C: lzl < 1, Imz > 0} and 
located symmetrically with respect to the imaginary axis. They are all simple and 
can be computed as the eigenvalues of the real, nonsymmetric, tridiagonal matrix 
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having the first n of the coefficients ak on the diagonal, the first n - I of the i}k on 
the upper side diagonal and their negatives on the lower side diagonal. 

There is a Gaussian quadrature formula for integrals over the semicircle, 

(9) 

where (v are the zeros of 1tn and Gv the (complex) Christoffel numbers. The latter 
can be computed by an adaptation of the well-known Golub/Welsch procedure. 

All these results are briefly announced in [7] and fully developed in [8], where 
one also finds applications of the Gauss formula (9) to numerical differentiation and 
the evaluation of Cauchy principal value integrals. 

Partial results for Gegenbauer weight functions had already been obtained, when 
new impulses were received through collaboration with Henry J. Landau, cf. [ 12]. 
This resulted in a considerable simplification of the existence and uniqueness theory. 
Indeed, if the inner product is 

(lO) 

where w is positive on ( I, I) and holomorphic in D 1 , then the (monic) polynomi
als { 1tn} orthogonal with respect to ( lO) exist uniquely if 

This is always true for symmetric weight functions, 

w( -z) = w(z) and w(O) > 0, ( 11) 

for example, the Gegenbauer weight w( z) = (I - z2 )A. -I/Z, A. > -I /2, and also for 
the Jacobi weight function w(z) = (I - z)a(l + z)i3, a > -I, f3 > -I. 

There are interesting interrelations between the (monic) complex polynomials 
{ 1tn} orthogonal with respect to the inner product (I 0), the (monic) real polynomials 
{p,z} orthogonal with respect to the inner product [u, v] = J~ 1 u(x)v(x)w(x)dx, and 
the associated polynomials of the second kind, 

( ) -1 1 Pn(Z)- Pn(x) ( )dx qn Z - W X , 
-1 z-x 

n=O, 1,2, ... ; 

Thus, for example (cf. (8)), 

1tn(Z) = Pn(Z)- ii}n-lPn-l(Z), n = 0, 1,2, ... , 

where 

.(} _ f.1D Pn(O) + iqn(O) ( ) 
Un-1 - · , f.1D = l, l , 

if.l{) Pn-1 (0)- qn-1 (0) 
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or, alternatively, 

.CI • bn 0 l 2 u,1 = IQ 11 + ~, n = , , , ... ; 
Un-1 

~-I = Jlo, ( 12) 

where ak, bk are the recursion coefficients for the real orthogonal polynomials {Pn}. 
For symmetric weight functions (II), one can prove ,Uo = nw(O) > 0, so that by 
(12), since a11 = 0 and bn > 0, all ~n are positive. 

Moreover, the three-term recurrence relation for the Jt11 again has the form (5), 

where now 

O'o = l9o- iao, ak = ~k -l~k-l- iak (k :::> l), 

f3o = Jlo, f3k = ~k-t(~k-1- iak_t) (k :::> l). 

For symmetric weight functions (ak = 0), this reduces to (6), and for Gegenbauer 
weight functions, one finds 

l9o = r(J. + l/2) 
)ir(J.+t)' 

generalizing (7). 

= _1_ r((k + 2)/2)/(J. + (k + 1 )/2) k > 1 
~k J.+k l((k+l)/2)/(J.+(k/2))'-' 

With regard to the location of the zeros of TCn, we showed for symmetric weight 
functions that they are contained in D+, with the possible exception of a single 
(simple) zero on the positive imaginary axis outside the unit disk. (For a related 
result, see also [5]). The exception cannot occur for Gegenbauer weights, at least 
not when n :::> 2, and all zeros in this case can be shown to be simple. For Gegenbauer 
weights, one can also obtain the linear second-order differential equation for ltn, 

which has properties analogous to those stated above for Legendre weight functions. 

5. Our second joint venture deals with a problem of spline approximation on 
the half line JR.+= {t: t :::> 0}. Given a function f on IR+ having finite moments, we 
want to approximate f by a spline function s of degree m :::> 0 that also has finite 
moments; in fact, we want f and s to have the same successive moments up to an 
order as high as possible. 

Now any spline function of degree m is the sum of a polynomial of degree m and 
a linear combination of truncated mth powers. lf this is to have finite moments on 
lR+, then the polynomial part must be identically zero, and the splines therefore is 
of the form 

1l 

Sn,m(t) = L av(rv- t)~, 
v=l 

where u7 are the truncated powers 

if u :::> 0, 

ifu < 0, 
m = 0, 1,2, .... 

(13) 
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The coefficients av are real and the "knots" 'fv mutually distinct and positive, say 0 < 
r 1 < r 2 < · · · < rn. but otherwise can be freely chosen. Since there are 2n unknowns, 
we can impose 2n moment conditions, 

( 14) 

where Jlj = fiR+ tj f(t) dt are the ·(given) moments of f. The problem thus amounts 
to solving the system (14) of 2n nonlinear equations in the 2n unknowns av. rv. 
v = 1,2, ... ,n. 

The problem is reminiscent of Gaussian quadrature and in fact can be solved by 
constructing a suitable n-point Gaussian quadrature rule [9]. Indeed, iff is such that 

(a) f E em+! (!R+) 
(b) The moments Jlj = fiR+ ri f(t) dt, j = 0, l, 2, ... , 2n- l exist 

(c) j(!ll(t) = o(t- 2"-!l) as t ___, oo, J1 = 0, I, ... ,m 

then the equations ( 14) have a unique solution if and only if the measure 

admits an n-point Gaussian quadrature formula 

f I! 

}IT<:.+ g(t)dAm(t) = ~1 A~ g(t~), 

satisfying 0 < tf < tf < · · · < t,<(. If so, then the solution to ( 14) is 

G. A-S 
'fv = lv) av = [tg]m+l' v = 1,2, ... ,n. 

(15) 

(l6) 

( 17) 

In general, of course, dAm is not a positive measure, and therefore the existence 
of the Gauss formula ( 16) with positive nodes is by no means guaranteed. However, 
when f is completely monotone, i.e., (- Il j<k) ( t) > 0 on JR.+ for k = 0, I, 2, ... , 
then the measure (15) is obviously positive and under the assumptions (a)-(b) can 
be shown to have finite moments of orders up to 2n- 1. In this case, the quadrature 
formula (16) exists uniquely and has distinct positive nodes rg. Moreover, by ( 17), 
the coefficients av are all positive, so that sn,m is also completely monotone, at least 

in the weak sense that (-I )ks~~~ (t) 2: 0 for all k 2: 0 a.e. on JR.+. 
In case the spline approximation Sn,m(t) exists, its error f(t)- sn,m(t) at t = x 

can be expressed in terms of the error of the Gauss formula ( !6) for a special spline 
function g(t) = t-(m+l)(t -x)~ (cf. [lO, Theorem 2.3]). 

Similar problems of moment-preserving spline approximation can be considered 
on a finite interval, say [0, 1]. In this case, we can add to ( 13) a polynomial of degree 
m, which increases the degree of freedom by m + I. We may use this increased 
degree of freedom either to add m + l more moment conditions, or to impose m + 1 
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bou~dary conditions of the form s~~~ (I) = j(k) (I), k = 0, I, ... , m. The relevant 

measure then becomes 

dA.m(t) = ( -l)m+l fm+l)(t)dt on [0, 1], 
m! 

(18) 

and the solution of the two problems can be given (if it exists) in terms of general

ized Gauss-Lobatto formulae for the first problem, and generalized Gauss-Radau 

formulae for the other, both for integration with respect to the measure ( 18); cf. [ 1]. 

The numerical construction of such formulae, however, is rather more complicated, 

and has been considered by the author only recently in [2, 3]. Gradimir, together 

with M.A. Kovacevic [ 13], also studied moment-preserving approximation on JR.+ 
by defective splines, which gives rise to Gauss-Tunin quadrature rules for the mea

sure (15). Undoubtedly, this led Gradimir to wonder about how to compute these 

quadratures effectively. 

6. Gauss-Tunin quadrature fromulae are of Gaussian type, i.e., have maximum 

algebraic degree of exactness, and involve not only values of the integrand function, 

but also values of its successive derivatives up to an even order 2s, all evaluated at a 

common set of n nodes. Since there are (2s +I )n coefficients (n for each derivative) 

and n nodes to be determined, the maximum degree of exactness is expected to be 

2(s + I )n- I, and the formula thus has the form 

( 19) 

where d/1.. is a given positive measure. It is known that the nodes rv must be the zeros 

of the (monic) polynomial TCn = Trn,s of degree n whose (2s + 1 )st power is orthogo

nal (relative to the measure d/1..) to all polynomials of degree <n. In other words, n11 

is the nth-degree polynomial orthogonal with respect to the positive measure 

dJ.L(t) = rc;s (t) dA. (t). (20) 

We have here a case of implicit orthogonality-also called s-orthogonality-since 

the polynomial TCn to be determined appears also in the measure of orthogonality. 

The problem of computing Gauss-Tunin quadrature rules ( 19), considered in [ l 0], 

thus will in some way come down to a problem of solving a system of nonlinear 

equations. 
Gradimir's idea was to embed Trn in a sequence of n + I polynomials no, 

TCJ, ••• , Trn, namely, the polynomials orthogonal with respect to the measure (20). 

As such, they must satisfy a three-term recurrence relation 

nk+l (t) = (t- ak)nk(t)- f3krck-t (t), k = 0, I, ... ,n- l, 

rr_, (t) = o, no(t) = 1. 
(21) 
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Although the coefficients ao, a,, ... , CXn-!; f3o, /3!, ... , f3n-l are not known, in fact, 
need to be determined, we know from the general theory of orthogonal polynomi
als that they are expressible in terms of inner products involving the polynomials 
Jro, .1t"J, ••• , TCn-1; specifically, 

Jm mf(t)dJl(t) 

'4 ~ lrcf(t) dJi(t) , k ~ 0, I, ... ,n- 1: 

Jm n}(t)dJl(t) 

fJ, ~ J.•rcL (t )dJl(t) , k ~ I, 2, ... ,n- I, 

and f3o =fiR d,u (t) by convention. If we insert here the definition (20) of the measure 
d,u and clear all fractions, we arrive at the following system of 2n equations: 

f3o- r n,;s(t)dA.(t) = 0, 
}R . 

~ (ak- t)nf(t)n,;s(t)dA.(t) = 0, k = 0, I, ... ,n- 1; (22) 

~ (f3knL 1 (t) -tcf(t) )n,~(t) dA. (t) = 0, k = l, 2, ... ,n- I. 

We note that (22) represents a system of 2n nonlinear equations in the 2n un
knowns ak> f3k· lndeed, each of the polynomials Ttr appearing in (22) can be thought 
of as a function of ao, a 1, ... , ar-l; f3o, {31, ••• , f3r-l by virtue of the relations in 
(21). Furthermore, each integrand in (22) is a polynomial of degree:::; 2(s + I )n- 2, 
and therefore alf integrals in (22) can be evaluated exactly by anN-point Gaussian 
quadrature rule relative to the measure dA, where N (s + l)n. The same is true 
for the integrals appearing in the Jacobian matrix of the system (22). We were able, 
therefore, to apply to (22) the Newton~Kantorovich method, which could be made to 
converge by a careful choice of the initial approximations a~0), f31°) to the unknowns 
ak> f3k· Once the f4 and f3k have been obtained, the zeros rv of lrn, i.e., the nodes 
in the quadrature rule ( 19), can be computed by the well-known Golub/Welsch 
procedure. 

All that remains is to compute the coefficients Ai,v in (19). By inserting in (l9) 
suitably selected polynomials of degree :::; 2(s + 1 )n- 1, the coefficients Ai,v for 
each fixed v, I :::; v :::; n, can be found by solving an upper triangular system of 
2s + 1 linear algebraic equations (cf. [ 10, Theorem 3.3]). 

7. Conformal maps in fluid mechanics often require Cauchy principal value inte
grals of the form 

.. i/} 't"- ~ U!a,pj</>)(s) = ¢(r)coth-dr, 
· a 2 a<~< {3, (23) 
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which are notoriously difficult to evaluate numerically. Some possible approaches 
are discussed in [II]. If the interval [a,/3] is finite, (23) can be transformed to 

Uaf)(x) = ~1 1 f(t) w(t)dt, -1 <x< 1, 
a -Jt-x 

(24) 

where x = [2~- (a+ /3)]/(/3- a), a= (/3- a)/4, and 

w(t) = w(a(t -x)), w(u) = ucothu. 

The difficulty here is caused by the poles of w(t) at t = x ±kin/ a, k = I, 2, ... , which 
can be close to the interval [- l, t] if a is large. Following standard procedure, (24) 
is first written in the form 

1 { sinha(l -x) j' } 
(/af)(x) =- f(x)ln . h (I ) + g(t)w(t)dt , 

a sm a +x -I 
(25) 

where g(t) = [x,t]f is the divided difference off at x and t. The integral in (25) can 
then be computed either by Gauss quadrature relative to the (nonstandard) weight 
function w, which gives excellent results but is somewhat expensive, or by the less 
expensive Gauss-Legendre quadrature, which, however, works well only for a rel
atively small. An alternative procedure is interpolatory quadrature of (24) on the 
zeros of the respective orthogonal polynomials, which cirumvents the need of com
puting a divided difference. Error analyses are provided, either in real variable form, 
involving derivatives, or in terms of contour integration in the complex plane. 

Cauchy principal value integrals (23) with infinite interval [a,/3] = [-oo,oo] 
can be rendered accessible to the same approaches after suitable truncation of the 
interval. 

8. In looking back on my collaboration with Gradimir, l can only marvel at the 
spontaneity and originality of his input, which often reduced my own role to one 
of implementor and organizer. It has been truly a pleasure to work together with 
Gradimir, and I am sure I am sharing this feeling with the many other individuals 
who have had the privilege of collaborating with Gradimir. I wish him many more 
years of good health and continued excellence and success in his research. 
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FA.i\1ILIES OF ALGEBRAIC TEST EQUATIONS 

W. GAUTSCHI (I) 

1. Introduction. 

Test matrices have been in use for some time to scrutinize computer algo
rithms for solving linear algebraic systems and eigenvalue problems; see, e. g., 
Gregory and Karney [ 1969]. For the problem of finding roots of algebraic 
equations, the construction of appropriate test equations has been given less 
attention. Here we wish to propose two families of algebraic test equations, the 
first consisting of equations with predominantly complex roots, the second of 
equations with only real roots. 

To be useful for testing purposes, a test equation (of some fixed degree) 
should have the following characteristics: 

(1) All roots of the equation can be calculated directly (i. e., without 
recourse to a rootfinding algorithm). 

(2) The equation contains a parameter (or parameters) which can be 
used to control the numerical condition of the roots. By varying the parameter (s), 
the condition number of the worst-conditioned root can be made to range from 
relatively small to arbitrarily large values. 

(3) All coefficients of the equation are integer-valued. 

It may not be easy, in practice, to achieve all these characteristics, partic
ularly the last one, if we are interested in relatively large degrees. Even when 
this is possible, the integer coefficients may become so large as to make exact 
representation in floating-point arithmetic impossible. Although equations which 
do not satisfy (3) are less desirable, they are still useful for testing purposes, 

- Received June 6, 1979. 
(I) Department of Computer Sciences, Purdue University, Lafayette, Indiana 47907, 

U.S.A .. 
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384 W. GAUTSCHI: Families 

provided one takes properly into account the influence of rounding errors in the 
coefficients upon the results. 

Isolated examples of test equations, particularly ill-conditioned ones, have 
been known for a long time. Perhaps the best-known example, due to Wilkinson 
[1963], is the equation with roots at 1, 2, ... , n. Some of these roots are rela
tively well-conditioned, while others are quite ill-conditioned, more so the larger 
the degree n. (The numerical condition of Wilkinson's equation is analyzed in 
Gautschi [1973]; see also Gautschi [1978, § 4]). The roots of unity lead to 
another interesting example if one removes half of them and retains only those 
on the half-circle (Jenkins and Traub [1975]). Our first family of test equations, 
indeed, is a simple extension of this latter example. 

2. A first family of test equations and their numerical condition. 

Given an algebraic equation of degree n, 

(2.1) p (z)=O, 

with complex coefficients aJ., and a simple root C of (2.1), we adopt as condition 
number for ' the quantity (Wilkinson [1963, p. 38 ff], Gautschi [1973]) 

., 

(2.2) 
I laJ.I 

d 1- A=l 
con "'::::: ,...,..,, ..... 1 IP-:,-:-<C--.)1 

lt measures the sensitivity of C, in terms of relative errors, to small (relative) 
perturbations in all nonzero coefficients aJ.. 

(2.3) 

Our first family of test equations (with parameter a) is 

n 

p,.(z)=O, p,.(z)= n [z-C.da)]=z"-atzn-1+ ... +(-l)nan, 
i.=l 

21t' 
O<a::;;-. 

n 

If a=2rcjn, the 'J. are the n-th roots of unity, thus Pa. (z) =zn-1, and we are 
in the case of a well-conditioned equation, all roots having condition 1/n. 
For a=n'/(n-1), we get the roots of unity on a half-circle, which are all 
relatively ill-conditioned. As a~ 0, the condition deteriorates unboundedly. 
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of algebraic test equations 385 

From Eq. (2.2) we find for the condition of the roots in (2.3), 

(2.4) cond ~v= .. I I . 2"- 1 n sin (v- A.) !!:... 
1=1 2 
1,e .. 

v=1,2, ... ,n. 

In view of the symmetry property cond ~v= cond ~n+1-v, v= 1, 2, ... , n, it 
suffices to consider the condition numbers for v = 1, 2, ... , n', where 

, [n+ lj 
n= 21" 

We show that 

(2.5) cond ~1 < cond ~2< ... < cond ~n' for 0< a< 2rc. 
1Z 

If n=2, there is nothing to prove. If n>2, we let rc. denote the product in 
the denominator of (2.4) and observe that 

sin (v-1)~ 
I (2.6) 

:rr:. 2 v=2, 3, ... , n'. -
I . TCv-1 

sin (n- v+ 1) ~ 

Our assumption on a implies that both sine functions in the numerator and 
denominator are evaluated in the open interval (0, rc), the former in fact in 
(0, :rr:/2). The absolute value signs in (2.6) can thus be deleted, and an elementary 
calculation shows that all ratios in (2.6) are less than 1 precisely if 

(2.7) tan (n ~)> tan(v-1) ~· v=2,3, ... ,n'. 

Since the tangent is monotone increasing on [0, rc/2), the inequality (2.7) for 
v=n' implies all others, and indeed holds true by virtue of 

(tan (n !!:... - !!:...) if n is even, 
tan (n' -1) .!!:_ ==' 4 2 

2 I tan (n !!:... - !!:...) if n is odd. \ 4 4 

It follows that TC1 > :rt:2 > ... >Ten· , hence (2.5). 
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We recall that the condition number in (2.2) is invariant with respect to 
scaling of the independent variable. Any transformation z=<uz*, where cu=!=O 
is arbitrary complex, leaves the condition of the roots unchanged. As a conse
quence, the assumption ICvl = 1 made in (2.3) does not restrict generality, and 
we are free to subject the roots to a rigid rotation on the unit circle. Taking 
advantage of this last remark, we may bring the equation Pa (z)=O, which 
generally has complex coefficients, into a form with real coefficients. It suffices 
to rotate the roots into a position symmetric with respect to the real axis, i. e., 
to put 

z=ei<n-!)a/2 z*. 

Then 

(2.8) Prz (ei<n-t)rr./2 z*) = ein(n-tJa/2 Pa * (z*), 

where 

and C.t* =C* n+t-1, A.= 1, 2, ... , n, implying that all coefficients of Pa * indeed 
are real. 

3. Computation of the coefficients of Pa * and the condition numbers cond C •• 

In analogy to (2.3), we write 

n , 

(:S.l) Pa*(u)= n [u-C.t*(a)]= E (-1).tcr.t*u"-J., O'u* = 1, 
1=1 l=O 

where all O'.t* are real. Observing from (2.8) that 

Prz (z) =ein<n-t>rztz Pa * (e-i<n-tla/2 z), 

and using (3.1), we find 

" Pa (z) = E (- 1 )A ei(n-l).l.a/2 0'). * zn-1. 
!.=0 

Hence, by comparison with (2.3), 

(3.2) 0'). = ei(n-I)J.a/2 O'.t *, A.=O, 1, 2, ... , n. 

604



of algebraic test equations 387 

For the following, it will be necessary to introduce the more precise 
notation {iJ. = {iJ.,n, indeed, to define {iJ.,p by 

p. ,. 

(3.3) ll [z-C.da)] = I ( -l).t {iJ.,p zP-l, p.=1, 2, 3, ... ' 
l=l 1=u 

and similarly a* l,p by 

p. fJ 

(3.4) ll [u-'*l,p (a)]= I ( -1)1 a*1..p u~-J., p.= 1, 2, 3, ... , 
4=1 J.-o 

where 

( p.-1) 
}"* ( ) i A.-1-- a 1 1 2 <:. l,p a =e 2 , ,. = , , ... , p., 

Then, as in (3.2), 

(3.5) 

Defining 

(3.6) ao.p= 1, (ip+t.p=O for p.=O, 1, 2, ... , 

one obtains from (3.3) the well-known recursion 

(3.7) 

where CJJ+t=eiJJa. Substituting (3.5) into (3.6), (3.7), and observing that all 
(j*J.,,. are real, one finds 

a*o.u=1, O"*p+l,p=O, I 
a""l,JJ+t= cos (la/2) a*1..p+ cos ((.u-l+ l)a/2) a*J.-t,11 \ 

l=1,2, ... ,.u+1 ' 

A simple induction argument will sh,ow that 

It suffices, therefore, to compute 

a*o.11 = 1, p.=O, 1, .,. , n~ 1, 

p.=O, 1, 2, .... 
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(3.8) 

o-*;.,1:+t== cos (A.a/2) a*1,{L+ cos {(fl-A.+l) a/2) a*.t-I,{L J 

A.=1,2, .... [tl+21.J. f 
\ 

.u=O,l, ... ,n-1. 

a'!- =a /' (if fl is even) -;+t.,u+l 2''"'+1 ! 

I 

The numerator in the condition number (2.4), by (3.2), can now be obtained 
from 

i " 
I 2-1 

" " '1 + Ja~ . ..l +2 ,.!; Ja*;.,nj, n even, 

I /a;./ = I /a* l,n/ = 1 

1=1 1=1 I ~ 
~ 

1 +2 I jo-*.t,n/, n odd. 
l=l 

In Figure 1 we show the latgest condition number, cond sn· , as function 
of a==2rrx/n, 0:::5x< 1, for n= 10, 20, 40. 

log10 ( cond) 

40 

.0 .2 .4 .6 .8 1.0 X 
Fig. 1. Condition number of the worst-conditioned root of Pa (z)=O, a=J.n·x/n, for 

o::::;x::::;t, n=10,20,40. 
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4. Equations with integer coefficients. 

The polynomials Pa"', as constructed in Section 3, will not have integer 
coefficients, in general. It is desirable to find a subset of parameter values a, 
and a suitable constant multiple Pa. ** of Pa * such that all coefficients O'.<,n * * 
of p,/'* become integer-valued when a is restricted to the subset in question. 
We can achieve this by letting 

(4.1) 
a 1 

cos 2 =1- p' p>O. 

Then all cosine factors in (3.8), hence all O"* ;.,11 , become polynomials in p-1 with 

integer coefficients, since cos( m ~ ) ==T m ( l- ; ). m= 1, 2, 3, ... , where T m 

is the Chebyshev polynomial of the first kind. Multiplying through by an 
appropriate power of p we obtain a polynomial p .. ** whose coefficients O'.<,n ** 
are polynomials in p with integer coefficients, hence integer-valued if p is an 
integer. Selecting p sufficiently large we can get a arbitrarily small, and thus 
produce equations which are arbitrarily ill-conditioned. The only serious limi
tation of this procedure is due to the finiteness of the machine arithmetic in 
which the integer p and, above all, the resulting integer coefficients, are to be 
represented. A lower limit on p is imposed by the condition a$.2n/n, which 
translates into 

(4.2) 1 p>---. 
2 sin2 2: 

In Table 1 the results are summarized for 2:::;. n < 8. Only the coefficients 
O'.<,n**, A.::;. [n/2], are listed, as the others can be obtained by symmetry, O'.t,n**= 

=O'**n-.l.,n• 

(1, ** O,n ** O'J,n 0'. ** 2,n 0' ** 4,n 

2 p 

3 p2 

4 p4 

s2 (p) 

s3 (p) 

2ps2 (p) s4 (p) 2s3 (p) s4 (p) 

5 

6 

7 

8 pl6 

r2 ss (p) 

p4 s2 (p) s6 (p) 

p5 s, (p) 

2s4 (p) s5 (p) 

PSs (p) s6 (p) 

p2 s6 (p) s7 (p) 

2.s2 (p) s4 (p) Ss (p) "% (p) 

Ss (p) s7 (p) s6 (p) 

" TABLE 1. The coefficients of the test polynomial p,/* (u) = I (-t).t O';.,n** un-J .. 
1.=0 

4 
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The notations used in Table 1 are as follows: 

S2 (p)==2 (p-1) 

S3 (p)==(p-2) (3p-2) 

S4 (p)=f-4p+2 

ss (p)==5p4 -40~+84 p2-64p+ 16 

S6 (p)=3p4-32p3+80f-64p+ 16 

S7 (p) = 7 p6 -112p5 + 504p4 - 960~ + 880f- 384p + 64 

sa (p)=p6 -20I+ 106p4-224v+2t6p2-96p+ t6 

s6 (p)=p2-Bp+4 

Ss (p)=p4-16pl+40f-32p+8. 

Inequality (4.2) imposes the constraints 

(4.3) p~ 1, p>2, p~4, p~6, p~8, p~ 11, p~ 14 

for n=2, 3, ... , 8, respectively. 
Thus. for example, the family of test equations of degree 5, according to 

Table 1 (n==5), is 

5. Numerical tests. 

Test equations can be put to many uses. One of the more important ones 
is the comparative analysis of different algorithms (and their computer imple
l_llentations) for solving equations. Since we can vary the numerical condition of 
the roots, for each fixed degree, we are able to observe the performance of 
these algorithms on equations of fixed degree under increasing pressures of ill
conditioning. Our main interest, here, being in the accuracy of the algorithms, 
it is interesting to observe how closely the relative errors in the results are going 
to conform with what one ideally expects, namely that all these errors are of 
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the order of the machine precision multiplied by the respective condition 
numbers. 

If '=1=0 denotes an exact root of the equation, % the approximation to ' 
returned by the computer algorithm, and e denotes the machine precision (i. e., 
e=2-r, where t is the number of binary digits in the mantissa of the floating
point word), then for a good algorithm the quantity 

(5.1) 

ought to be of the order of magnitude 1, or even smaller (considering that cond' 
is a somewhat conservative measure of the condition of ,). The larger f.l (,), 

the poorer the performance of the algorithm (with regard to accuracy). If we 
are interested in the performance of the algorithm on an equation, rather than an 
isolated root, we can measure it by the average 

(5.2) 

where n is the degree of the equation and 'k its n (simple) roots. 
By way of illustration, we compare two .subroutines, ZRPOL Y and ZPOLR, 

cut cf the IMSL library (International Mathematical Statistical Libraries, Version 
7). The first implements the three-stage algorithm of Jenkins and Traub [ 1970], 
while the other is based on Laguerre's method, as implemented by Smith [1967]. 
We compiled both subroutines on the CDC 6500 computer, using the FTN 
compiler (CDC Fortran Extended Compiler), and ran them on the test equations 
Pa.*=O of degrees n=5,10,20,40, with a=2nx/n, x=.2,.4, ... ,1.0. The 
coefficients a*J.n were generated by (3.8) in double precision, and then 
rounded to single precision. Likewise, we used double precision to compute 
reference values for the roots 'l* (a). The results are summarized in Table 2 e). 
The last two columns exhibit, for ZRPOLY and ZPOLR, respectively, the 
values observed for the average measure J.lav in (5.2). The two preceding columns 
contain the smallest and the largest condition number associated with the n 
roots in question. It is seen that the performance of both algorithms is quite 
good, in general, even on ill-conditioned equations. ZPOLR yields consistently 
smaller values of f.lav (with one exception, for n=5,x=.6). ZRPOLY seems to 
have some difficulties maintaining accuracy when x is near 1.0 and n is large 
(i. e., for relatively well-conditioned equations!). 

(2) Numbers in parentheses indicate decimal exponents. 
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TABLE 2. Performance of ZRPOLY and ZPOLR on the test equation 
p4 *=:0, a==2;rx/n, xo:::.2(.2)1., n=5,10,20,40. 

n X min cond max cond /1av ZRPOLY {.Cav ZPOLR 

5 .2 .323 (3) .184 (4) .252 .748 (-1) 

.4 .199 (2) .960 (2) .185 .201 (-1) 

.6 .376 (1) .135 (2) .182 .236 
.8 .103 (1) .229 (1) .750 (2) .194 

1.0 .200 .200 .160 (2) .000 

10 .2 .370 (6) .408 (8) .399 .151 
.4 .774 (3) .564 (5) .346 .541 (-1) 
.6 .222 (2) .761 (3) .298 .165 

.8 .178 (1) .176 (2) .845 (2) .288 
1.0 .100 .100 .831 (2) .200 (1) 

20 .2 .637 (12) .436 (17) .295 .377 (-1) 

.4 .153 (7) .412 (11) .205 .104 

.6 .100 (4) .489 (7) .281 .136 

.8 .668 (1) .188 (4) .687 (1) .115 

1.0 .500 (-1) .500 (-1) .409 (5) .100 (1) 
----· 

40 .2 .265 (25) .973 (35) .183 (-11) .161 (-11) 

.4 .846 (13) .431 (23) .432 .688 (-2) 

.6 .291 (7) .399 (15) .225 (1) .707 (-1) 

.8 .136 (3) .426 (8) .200 (3) .804 (-1) 

1.0 .250 (-1) .250 (-1) .534 (10) .200 (1) 

Interestingly, both routines do not fall to pieces when confronted with 
an extremely ill-conditioned equation, such as the one for n=40, x=.2. All 
roots are obtained with relative errors ranging between 30 and 120%. This 
accounts for the very small values of /1av shown in this case. 

Similar results (l) are observed on equations with integer coefficients (those 
of Table 1), where n=2, 3, ... , 8, and where p is varied between the smallest 

. admissible integer (cf. (4.3)) and the largest possible integer subject to exact 
representation of the coefficients a1.n ** in CDC 6500 floating-point arithmetic. 

(3) One of our tests runs (for n=3, p=8X 107) uncovered an implementation error 
in one of the auxiliary routines called by ZRPOLY. 
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6. A second family of test equations. 

We now briefly describe our second family of test equations, viz., 

qa (z)=O, 

(6.1) 

.. 
qa (z)= n [z-;.t (a)] =z"-?:t zn-1+ ... +( -1)" 7:,., 

-'=I 

393 

The equations (6.1) are well-conditioned, when a is large, and become progressive
ly more ill-conditioned as a approaches 1. The condition number of g.t, using 
Gautschi [1973, Thm. 3.1], is easily found to be 

(6.2) 
2.,.+ rc+ - .... -v(v-1)/2 

d ~ '" v-1 n-v ~ con !:»•= _ _ , 
TC v-1 TC n-v 

v=l,2, ... ,n, 

where 

I' 
Jro==t, rc/== n (l±u-.1.), fL=l,2, ... ,n. 

A=l 

It follows that 

cond gt ~ 1, cond Sv ~ 2 (v> 1), as a--,)> co, 

while 

Furthermore, 

11: ... v-1 rc+ tn-v condS'.<2 _ _ , v= 1, 2, ... , n. 
7r v-111: ·n-v 

The bounds on the right are symmetric, i. e., invariant under the substitution 
V-,)o.n+l-v, and increase monotonically for v<n/2, attaining their maximum 
value at v= [n/2] + 1. The true values of the condition number behave similarly. 
We have, in particular, 

(6.3) [n/2) (1 +a--' )2 
max condg.< n -1--_-.t- . 

J.s,.:s;n A=l -a 

The largest condition number is shown in Figure 2 as a function of a, 
for n== 10, 20, 40. 
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1.0 1.2 1.6 1.8 a 

Fig. 2. Condition number of the worst-conditioned root of qa (z)=O, for a> 1, 
n = 10, 20, 40. 

The coefficients ••=T.t,n in (6.1) are easily generated by recursion, as in 
(3.6), (3.7), 

(6.4) 

If we let 

To,p= 1, Tp+t,11 =0, p.=O, 1, 2, ... , 

'Z'l,p+t=T.t,p+SP+l T.t-t,p, l=1,2, ... ,,u+1, p.=0,1,2, ... ,n-1. 

1 a=l+-, p>O, 
p 

and multiply through by appropriate powers of p+ 1, the new coefficients •*.l,n 

become polynomials in p with integer coefficients, hence integer-valued, if p is 
an integer. More specifically, they assume the form 
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.1.(1+11 (11-l)(n+t-J.\ 

(6.5) -r:*l.n=p-2 -(p+ 1)--2 ---r.t,n** (p), A.:::O, 1, 2, ... , n, 

where n,n ** are polynomials satisfying 

-ro,.t** (p) = 1, 

't'.<,n""* (p)=-r:**n-J.,n (p), ,l=O,l, 2, ... , n. 

The polynomials 7:).,n** (p), A.=1,2, ... , [n/2], for 2<n~8, are shown in 
Table 3. 

TABLE 3. The coefficients of the test polynomial 

7:J,n •• 

t2 (p) 

t3 (p) 

tz (p) t4 (p) 

ts (p) 

n 
q,,* (z)= I (-1) Ap.l.(l+l)/2 (p+t)Cn-.l)(tHl-l)/Z n.n"'* (p) zn-J. 

1=0 

t3 (p) t4 (p) 

t4 (p) ts (p) 

7: ** J,n 

tz (p) t3 (p) t6 (p) t2 (p) t4 (p} t5 (p) t6 (p) 

fs (p) t6 (p) t7 (p) t1 (p) 

1'4,n ** 

t2 (p) t4 (p) ta (p) 

t3 (p) ts (p) t6 (p) 

t3 (p) t6 (p) t1 (p) 

t4 (p) t7 (p) ta (p) ~W4W~W~W~OO ~W~OO~OO~OO 

The notations used in Table 3 are as follows: 

tz (p)=2p+l 

t3 (p)=3pl+3p+ 1 

t4 (p)=2pl+2p+ 1 

ts (p)=5p4+ lOp+ 10pl+5p+ 1 

t6 (p)=p2+p+ 1 

t1 (p)=1p6 +21p5+35p4+35pl+21pl+ 1p+ 1 
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Thus, for example, the family of test equations of degree 5, according to 
Table 3 (n=5), is 

7. Numerical tests. 

The same two subroutines, as in Section 5, were tested on the equations 
qa*=O of degrees n=5, 10, 20, 40, for selected values of a between 1 and 5. 
The results are reported in Table 4, in an outlay similar to the one in Table 2. 
On the whole, the subroutines perform similarly as on the first test equations, 
ZPOLR generally yielding smaller values of f.lav, but the differences are not as 
pronounced as before. In the case n=40, a= 5, a series of low-order coefficients 
underflows, making a meaningful test impossible. 
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TABLE 4. Performance of ZRPOLY and ZPOLR on the test equation 

q,.*=O, a = 1.05 (var.) 5.0, n=5, 10, 20, 40. 

n a min cond max cond f.lau ZRPO L Y (J.au ZPOLR 

5 1.05 .227 (6) .137 (7) .256 (2) .287 
1.1 .157 (5) .947 (5) .977 (-1} .564 (-1} 

1.25 .558 (3) .326 (4) .598 .427 
1.5 .619 (2) .329 (3) .212 .858 (-1) 
2.0 .113 (2) .491 (2) .197 .466 (-1) 
5.0 .200 (1) .527 (1) .519 .285 

10 1.05 .190 (10) .231 (12) .381 (1) .450 (-1) 

1.1 .533 (7) .584 (9) .148 (1) .142 
1.25 .560 (4) .363 (6) .367 .191 
1.5 .129 (3) .333 (4) .312 .294 
2.0 .130 (2) .113 (3) .328 .000 
5.0 200 (1) .549 (1) .458 .190 

20 1.05 .116 (15) .759 (19) .231 (-2) .409 (-2) 
1.1 .115 (10) .324 (14) .225 .662 (-1) 
1.25 .148 (5) .206 (8) .332 .152 
1.5 .143 (3) .105 (5) .279 .182 
2.0 .130 (2) .136 (3) 250 .101 
5.0 .200 (1) .550 (1) .850 .319 

40 1.05 .289 (19) .148 (29) .133 (-5) .758 (-6) 

1.1 .187 (11) .889 (18) .269 .149 (-1) 
1.25 .166 (5) .116 (9) .235 .129 
1.5 .143 (3) .124 (5) .369 .199 
2.0 .130 (2) .136 (3) .354 .155 
5.0 200 (1) .550 (l) 
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AN ALGORITHM FOR SIMULTANEOUS ORTHOGONAL 
TRANSFORMATION OF SEVERAL POSITIVE DEFINITE SYMMETRIC 

MATRICES TO NEARLY DIAGONAL FORM* 

BERNHARD N. FLURYt AND WALTER GAUTSCHI:f: 

Abstract. For k ~ 1 positive definite symmetric matrices A to • • • , Ak of dimension p x p we define the 
function «<>(A~o · · ·, Ak; nto • • ·, nk) = Il~=t [det (diag A1)]"•/[det (A1)]"', where n1 are positive constants, 
as a measure of simultaneous deviation of A~o · · · , Ak from diagonality. We give an iterative algorithm, 
called the FG-algorithm, to find an orthogonal p xp-matrix B such that «<>(BTA1B, • • ·, BT AkB; n1, • • ·, nk) 
is minimum. The matrix B is said to transform A" • • · , Ak simultaneously to nearly diagonal form. Conditions 
for the uniqueness of the solution are given. 

The FG-algorithm can be used to find the maximum likelihood estimates of common principal com
ponents in k groups (Flury (1984)). For k = 1, the FG-algorithm computes the characteristic vectors of the 
single positive definite symmetric matrix A 1 • 

.Key words. diagonalization, principal components, eigenvectors 

1. The problem. It is well known (see, e.g., Basilevsky (1983, § 5.3) that if A is a 
positive definite symmetric (p.d.s.) matrix of dimension p xp, then there exists a real 
orthogonal matrix B such that 

(1.1) BTAB =A= diag (At.· · · , Ap), 

where the A1 are all positive. For k > 1 p.d.s. matrices At. · · · , Ak the associated 
orthogonal matrices are in general different. We call At.···, Ak simultaneously 
diagonalizable if there exists an orthogonal matrix B such that 

(1.2) BT A 1B = A 1 (diagonal) fori= 1, · · ·, k. 
Conditions equivalent to (1.2) have been given by Flury (1983). 

Now suppose that At.···, Ak are not simultaneously diagonalizable, but we wish 
to find an orthogonal matrix B which makes them simultaneously "as diagonal as 
possible" in a sense to be defined. As a simple measure of "deviation from diagonality" 
of a p.d.s. matrix F we can take 

(1.3) cp(F) = ldiag PI/IF!, 
where 1·1 is the determinant and diag F is the diagonal matrix having the same diagonal 
elements as F. The fact that cp is a reasonable measure of deviation from diagonality 
can be seen from Hadamard's inequality (Noble and Daniel (1977, exercise 11.51)): 

(1.4) IFI ~ jdiag Fl 
with equality exactly ifF is diagonal. Therefore, cp(F) ~ 1 holds, with equality exactly 
when F is diagonal. Actually, cp( G) increases monotonically as G is continuously 
"inflated" from diag F to F. This can be seen from the following lemma. 

(1.5) 

LEMMA 1. IfF= (fij) is a p. d.s. matrix of dimension p X p, then 

(

fu 

af21 
d(a) := det : 

a/,1 a/,2 

• Received by the editors March 15, 1984. The work of the first author was supported by the Swiss 
National Science Foundation under contract #82.008.0.82 ih the Department of Statistics at Purdue 
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t Department of Statistics, University of Berne, CH-3012 Berne, Switzerland. 
:f: Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907. The work of 

this author was supported in part by the National Science Foundation under grant OCR 8320561. 
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170 BERNHARD N. FLURY AND WALTER GAUTSCHI 

is a decreasing function of a for a e [ 0, 1 ]. IfF is not diagonal, d (a) is strictly decreasing. 

Proof. The case F = diag (f11, • • • ,/pp) is trivial; assume therefore that F is not 
diagonal. Write 

(1.6) 
d(a) =laF+(1- a)diag Fl 

= ldiag Fl·la(diag F)- 112 F(diag F)-112 + (1- a)Jpl 

and note that d(a)>O for all ae[O, 1], since both F and diagF are p.d.s. Let 
R=(diagF)-112F(diagF)-112. R is p.d.s. with l's on the main diagonal. Let d1(a)= 
iaR + (1- a)Jpl· Then d1(0) = 1 and d1(1) < 1 by Hadamard's inequality. It remains to 
show that d1(a) is strictly decreasing in (0, 1). Let p1?; p2 ?; • · ·?; Pp > 0 denote the 
eigenvalues of R. The eigenvalues of aR + ( 1 -a) JP are 

(1.7) (j= 1, ... ,p), 

and therefore 

p p 

(1.8) dl(a)= n 'Yi= n (1+a(pi-1)). 
i=l i=l 

Taking the first derivative gives 

(1.9) 
ad1 P p p p·-1 
-;-= L (ph-1) n [1+a(pi-t)J=dt(a) L 1+ '< 1)' 
ua h=t J=l i=l a Pi

i"'h 

where all denominators are positive because of Pi> 0 and a ~ 1. Letting 

(1.10) d2( a) = f Pi - 1 
J=t 1 + a(pi -1)' 

we note that d2(0)=L%=t (pi-l)=tr R-p=O and 

(1.11) ad2=- f (pj-1)2 2<0. 
aa i=l (1+a(pi-1)) 

Therefore, d2( a)< 0 on (0, 1], implying that adtf a a< 0 for 0 <a~ 1. This proves the 
lemma. 

The reader may notice a similarity to ridge regression: Hoerl and Kennard (1970, 
Thms. 4.1 and 4.2) have given monotonicity properties of some functions related to 
the trace of the matrix (F+ alp)- 1 for a> 0. 

Let us now consider k p.d.s. matrices Ft. · · · , Fk and positive weights nt. · · · , n~co 
Then we define the simultaneous deviation from diagonality of the matrices Ft.···, Fk 
with given weights nh • · · , nk as 

k 

(1.12) ct>(Ft. · · ·, Fk; nt. · · ·, nk) = ll [f/'(F;)]"•. 
i=l 

Let now F; = Br A;B (i = 1, · · ·, k) for a given orthogonal matrix B. Then we can take 

(1.13) cl>o(At. · · ·, Ak; nh · · · , nk) = min ct>(BT At B.· · ·, BT AkB; nt. · · ·, nk), 
BeO(p) 

where O(p) is the group of orthogonal p xp-matrices, as a measure of simultaneous 
diagonalizability of At.· • ·, Ak. Clearly, 4>0 ?; 1 holds, with equality if and only if (1.2) 

is satisfied. 
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It can be shown (Flury (1984)) that if the minimum <1>0 is attained for a matrix 
B0 = ( b" · · · , bp) E O(p ), then the following system of equations holds: 

(1.14) (l,j= 1, ... ,p; 1-:F j) 

where 

(1.15) (,. = 1 . . . k· h = 1 . . . p) ' ' ' ' ' . 
In this paper we give an algorithm for finding B0• 

It may be noted that our measure of "deviation from diagonality" (formula (1.3)) 
is not the only natural one; one could, for instance, also consider the sum of squared 
off-diagonal elements. Our reason for considering (1.3) was that this criterion arises 
naturally from a statistical problem of maximizing a likelihood function in principal 
component analysis of several groups; see Flury (1984) for details. 

2. The FG-algorithm. The FG-algorithm consists of two algorithms, called F and 
G respectively, which minimize <I> by iteration on two levels: 

On the outer level (F-level), every pair (b, b1) of column vectors of the current 
approximation B to the solution B0 is rotated such that the corresponding equation 
in (1.14) is satisfied. One iteration step of the F-algorithm consists of rotations of all 
p(p -1)/2 pairs of vectors of B. The F-algorithm is similar to algorithms used in factor 
analysis to perform varimax and other rotations (see, e.g., Weber (1974)). 

On the inner level (G-level), an orthogonal 2 X2-matrix Q which solves a two 
dimensional analog of (1.14) is found by iteration. This matrix defines the rotation of 
a pair of vectors currently being used on the F-level. 

THE F-ALGORITHM. Let 

(2.1) 

denote the simultaneous deviation of BT A 1B, · · ·, BT AkB from diagonality as a func
tion of B, the A1 and n1 being considered as fixed. The F-algorithm yields a converging 
sequence of orthogonal matrices B<0 >, B<•>, • • ·,such that <I>(B(f+t>) ~ <I>(Bu>). 

The algorithm proceeds as follows: 
step F0 : Define B = ( bh · · · , bp) E O(p) as an initial approximation to the 

orthogonal matrix minimizing <1>, e.g. B ~ IP" Put f ~ 0. 
step F1 : Put B<n ~ B and f ~ f + 1 
stepF2: Repeat steps F21 to F24 for all pairs (l,j), 1~l<j~p: 

step F21 : Put H(p x2) ~ (b1, b1) and 

T;(2 x 2) ~ ( b~ A 1b1 b~ A 1b1) (i = 1, ... 'k). 
b1 A;b1 b1 A 1b1 

The T; are p.d.s. 
step F22: Perform the G-algorithm on ( T" · · · , Tk) to get an orthogonal 

. (cos a -sin a) 2 x 2- matnx Q = . . 
sm a cos a 

step F23 : Put H*(p x2) = (bf, bj) ~ HQ. (This corresponds to an orthogonal 
rotation of the two columns of H by an angle a). 

step F24: In the matrix B, replace columns b1 and b1 by bt and bj, respectively, 
and call the new matrix again B. 

step F3 : If, for some small eF > 0, <I>(Bu-o) -<I>( B)< eF holds, stop. Otherwise, 
start the next iteration step at F1• 
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172 BERNHARD N. FLURY AND WALTER GAUTSCHI 

THE G-ALGORITHM. This algorithm solves the equation 

r( l>u- 812 l>kl- l>kz ) 
q1 n1 ~ ~ T1+· · ·+nk ~ ., Tk q2=0, 

(}11 (}12 Ukl Vk2 
(2.2) 

where Th · · · , Tk are fixed p.d.s. 2 x2-matrices, n; > 0 are fixed constants, 

(2.3) (i=l ... k·j"=l 2) ' , ' ' ' 
and Q =(qt. q2) is an orthogonal 2 X2-matrix. The iteration of the algorithm yields a 
sequence of orthogonal matrices Q<0>, Q0 >, ···,converging to a solution of (2.2). 

The algorithm proceeds as follows: 
step 0 0 : Define Q(2 x2) as an initial approximation to the solution of (2.2), e.g. 

o~ lz. Put g~o. 
stepG1: Put Q(g)~Q and g~g+l. 
step 0 2 : Compute the l>ii (2.3), using the current Q. Put 

T(2 X 2) ~ n1 l>u- l>t2 T1 + ... + nk l>kt- l>kz Tk' 
l>u l>12 l>k1l>k2 

step 0 3 : Compute the (normalized) eigenvectors ofT. In Q =(qt. q2), put q1 ~first 

eigenvector of T, q2 ~second eigenvector of T. 
step 04: If IIQ<s-1>- Qll < ea (where 11·11 denotes a matrix norm and eo> 0 is a 

small positive constant), stop. Otherwise, start the next iteration step at 
G 1• Note that, since the order of eigenvectors is arbitrary, as well as their 
signs, it may be necessary to exchange q1 and q2 and/ or to multiply one 
or both columns of Q by -1 before comparing Q with Q(g-1). 

The motivation for the two algorithms and their connection with the basic system 
of equations (1.14) is as follows. Suppose that the (l,j)th equation of (1.14) is to be 
solved. With H = (b1: bi) denoting the current lth andjth columns of B, and A;h being 
defined as in (1.15), b1 and bi are the desired solution if and only if the 2 X2-matrix 

(2.4) 

is diagonal, where 

(2.5) (i=l,···,k). 

Assume now that b, and bi do not solve the (l,j)th equation, but bf = Hq 1 and bf = Hq2 

do, where Q = ( q1: q2) is an orthogonal 2 x 2 matrix. Then 

(2.6) b*r[ ~ n.A~-Aq A]b~=O 
I L. ' '*'* ' J ' i=l 1\jll\ij 

where 

(2.7) (i = 1, ... , k, h = l,j). 

Putting H* = (bf: bj) = HQ, (2.6) holds precisely if 

k A*-A* 
"' n· u ii H*rAH* 
L. • ·~,·~ • 

i=1 "• "u 
(2.8) 

is diagonal. Now we note that 

(2.9) H*TA;H*=(HQ)TA;(HQ)= QTT;Q, 
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(2.10) ( i = 1 ... k) 
' ' ' 

and 

(2.11) (i=1,···,k). 

Thus the problem of rotating the lth and jth columns of B so as to satisfy (1.14) can 
be reduced completely to the problem of finding an orthogonal2 x 2-matrix Q = ( q, : q2) 

such that 

(2.12) 

where l>n and l>12 have been written in place of A f, and A 1;, respectively. 
Since (2.12) is a 2-dimensional analogue of (1.14), and since the group of 

orthogonal 2 X2-matrices is compact, it follows that a solution of (2.12) always exists. 
The problem of solving (2.12) is itself nontrivial. Although (2.12) can be written 

in terms of a rotation angle a, solving for a would involve solving a polynomial 
equation of degree 4k in cos a and sin a, which seems rather tedious. A more elegant 
solution is provided by the G-algorithm, which is based on the observation that the 
vectors qt. q2 satisfying (2.12) are eigenvectors of the matrix in brackets. Since the 
latter, however, depends also on qt. q2, an iterative procedure is required. 

3. Convergence of the FG-algorithm. 
3.1. Convergence of the F-algorithm. We show that the F-algorithm, in theory (i.e. 

if Bp = e0 = 0), does not stop unless the equations (1.14) are satisfied for the current 
B, and that, if B does not satisfy (1.14), an iteration step of the F-algorithm will 
decrease <I>. 

Suppose that the current orthogonal matrix B = (bt. · · ·, bp) does not satisfy the 
(~j)th equation of (1.14). For notational simplicity, we can take l = 1 andj = 2 without 
loss of generality. Let us write B = (B<0 : B<2>), where B< 0 = (bt. b2). In step F21 , the 
matrices T; = B<or A,B<t> are passed to the G-algorithm. The G-algorithm gives back 
an orthogonal 2 X2 matrix Q (step F22). (Note that Q is not necessarily unique, 
depending upon the conventions used in the G-algorithm. We will consider every 
matrix Q obtained from Q by interchainging the columns of Q and/ or multiplying 
one or both columns by -1 as equivalent to Q). Steps F23 and F24 correspond to the 
transformation 

(3.1) B*=B(Q O ) =(B<0 Q:B<2>). 
0 lp-2 

B* is orthogonal, since it is the product of two orthogonal matrices. Now we have 
k 

<I>(B*) = 0 [jdiag B*r A,B*I!IB*rA,B*ir• 
(3.2) 

i=l 

k 

= 0 [ldiag QrB<t>r A,B(l>QI·Idiag B<2>r A,B<2>1/IA;!]n'. 
i=l 

It will be shown in § 3.2 that if, as assumed, (1.14) is not satisfied for I= 1 and j = 2, 
then 

(3.3) 
i=l i=l 

If (1.14) is satisfied, Q will be equivalent to / 2, and hence (3.3) holds with equality. 
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Therefore, each iteration step of the F-algorithm decreases <1>, and the algorithm will 
stop only if (1.14) is satisfied. 

3.2. Convergence of the G-algorithm. In analogy to (1.13), (1.14), the equation 
(2.2) is satisfied for the matrix Q = (qh q2) which minimizes 

Let Q(g) denote the orthogonal 2 x2 matrix after the gth iteration. We will show that 

(3.4) 

and that the sequence Q(gl converges to an orthogonal matrix which solves (2.2). 
Suppose now that the (g + 1 )st iteration of the G-algorithm is being performed. 

It is somewhat simpler to prove the convergence if we introduce the following notation: 
Let Q = ( qh q2) contain the current approximation to the solution of (2.2) and 8ii be 
defined as in (2.3). Then we put 

(3.5) 

(3.6) 

and 

(3.7) 

8il- 8;2 
a-= 

' Bn812 

k 

T= I n;a;T;, 
i=l 

(i=1,·. ·,k), 

The U1 are p.d.s., and clearly 

k 

(3.8) T= I n,a1QU1QT 
i=l 

and 

(3.9) 

In step G3 the characteristic vectors of T are computed. Denote the solution by Q*, 
so that 

(3.10) Q*TTQ*=A 

is diagonal. From (3.8) it follows that 

k 

(3.11) L n;a;Q* T QU1Q T Q* =A. 
i=l 

The characteristic vectors of the symmetric matrix 

(3.12) 
k 

U= I n1a1U1 
i=l 

are therefore given by the orthogonal matrix 

(3.13) 
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and Q* can therefore be obtained by 

(3.14) Q*=QP. 

Note that U = QTTQ is diagonal if and only if Q =(qt. q2 ) is a solution of (2.2). From 
(3.9) and (3.12) it follows that 

(3.15) 

Let 

(3.16) 

(3.17) 

and 

(3.18) 

k u<l> _ u<i) ("<n 
~ 11 22 11 

U = £.. n; (i) (i) (i) 
l=t Uu U22 U21 

ifuW> uW, 
ifui?< uW, 
if uW = u~1, 

ui1) 
(i) • 

U22 

11 12 ' (s(i) s<i)) 
81 = (i) <1> = a 1U1 (i=1,· .. ,k). 

s21 S22 

S1 is p.d.s., unless -{}1 = 0. With this notation, we have 

(3.19) 
k 

U = L n;-{};S;. 
i=l 

Now let k' ~ k denote the number of -{};'s which are not zero. Without loss of generality 
assume that the k- k' matrices S1 which are zero have the indices k' + 1, · · · , k. 
Therefore the sum (3.19) extends only up to k', and we are going to show that 

k' k' 

(3.20) ll jdiag PrS;PI"' ~ ll (sWs~1)"'. 
1=1 i=l 

with equality if and only if U is diagonal. Assuming for the moment that (3.20) holds 
true, the proof of (3.4) can be completed by noting that (3.20) implies 

~ ~ 

(3.21) fl (af-{}~jdiag pTlf;PI)"• ~ fl (af-{}~u\'lu~1)"' 
i=l i=l 

and therefore 

k' k' 

(3.22) fi jdiag Q*TT;Q*I"• ~ fi jdiag Qr~QI"•. 
1=1 i=l 

For the remaining k- k' matrices U1(i = k' + 1, · · ·, k) we have uW = ui~. and therefore, 
as is easily verified, 

(3.23) 

for any Be 0(2), with equality exactly if B is equivalent to 12 or u~~ = 0. This holds, 
in particular, for B = P. Putting (3.22) and (3.23) together gives now the desired result 
(3.4). It remains to show (3.20). 

Let P = (Pt. p2) denote the eigenvectors of U = L ~~ 1 -{};n;S;, with P• being associated 
with the algebraically larger root. Since U is symmetric, P is orthogonal (or can be 
so chosen if the two roots are identical), and both characteristic roots are real. Assume 
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that U is not diagonal, and let e1(i = 1, · · ·, k') be defined by 

(3.24) 

From (3.5), (3.9) and (3.16) to (3.18) we have 

(i) (i) (i) (i) ( 1 1 ) s 11 s22 = 1'}1(s 11 - s22 ), or 1 = 1'}1 m-m 
S22 su 

(3.25) (i=1,···,k'), 

which implies that either sW or s~~ is smaller than 1. It then follows that e1 < 1 
( i = 1, · · · , k'). Indeed, if 1'}1 = 1, then sW < 1 by (3.25), and the positivity of s~~- e1 

implies B; < 1. If '!'}; = -1, then sW < 1, and sW- e1 > 0 implies again e1 < 1. 
The product of the diagonal elements of P r S1P is 

ldiag PrS;Pi = (sW+ 'l'};e;)(s~1-'l'};e;) 

= sWs~~- e1'1'}1(sW- s~~)- e~ 
(3.26) 

= (1- e1)sWs~~- e7 

(i = 1, ... 'k'). 

Thus, 

(3.27) k' ( k' )( k' ) g1 ldiag PrS;Pi"• ~ 1~1 (1- e;)"• D. ldiag S11"• , 

and (3.20) holds if we can prove that 

(3.28) 
i=l 

To demonstrate this, we note that, since U is assumed not diagonal, 

(3.29) 

or equivalently, 

i=l i=l 

(3.30) 

i=l 

Since p'[ S1p1 - sW = i}1e1(i = 1, · · ·, k'), this implies 

(3.31) 
k' 

I n1e1>0, 
i=l 

so that not all e1 can be zero. On the other hand, if U is diagonal, then P is equivalent 
to 12, and all e1 are zero. Therefore the e1 vanish simultaneously if and only if U is 
diagonal. Now we need the following lemma. 

LEMMA 2. Ifx; > 0, n; > O(i = 1, ... 'k') and L~:l li;X; ;:;EI~:. n;, then n~:l x7• ~ 1. 
Proof. Maximize the function n::l x7• under the restriction I~: I n;X; = g (>0), 

using a Lagrange multiplier. The maximum has the value (g/n)" and is attained for 
k' 

x 1 = · · · = xk' = g/ n, where n = L;=t n;. Noting that g ~ n completes the proof. 
Since e1 < 1(i = 1, · · ·, k') and I::1 n1e1 > 0, we can use Lemma 2 with x1 = 1- e1 

and get (3.28). Note that equality in (3.28) holds exactly if all e1 are zero. This completes 
the proof of convergence of the G-algorithm. 
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4. Conditions for uniqueness of the solution. In § 3 we have shown that the FG
algorithm converges to a minimum of (2.1), unless the initial approximation of the 
orthogonal matrix B is (badly) chosen as a stationary point of~- However, we do not 
know whether ~ has a unique minimum. We are now going to show that in some 
"extreme" cases there exist more than one local minimum, and we give approximate 
conditions when this will happen. Throughout this section (unless otherwise stated) 
we will only consider the case k = 2 and p = 2. 

Let the p.d.s. matrix S1 have the characteristic roots 11 > 12 (the case 11 = 12 being 
trivial), and assume, for simplicity, that 

(4.1) s1=(~ ~)· 
From (3.5) it can be seen that the solutions of (2.2) are unaffected by proportionality, 
i.e., we can assume (see also (3.25)) 

(4.2) 

without loss of generality. Consider now an orthogonal matrix 

(4.3) B = B(cp) = (c~s cp -sin cp). 
sm cp cos cp 

The product of the diagonal elements of BTS1B is 

(4.4) 

where 

ldiag(BTS1B)I = U2 + (11 -12) cos2 q> ][11- 01 -12) cos2 cp] 

= 1112 + ( 11 - 12)2 cos2 cp sin2 cp 

= 11M1 + 1112 cos2 q> sin2 q>] 

= r1[1 + r1 cos2 cp sin2 cp ], 

(4.5) r 1 =1112 

denotes the product of the characteristic roots of S1• Let the eccentricity d1 of S1 be 
defined as the ratio of the larger to the smaller root of s., 
(4.6) 

which is also the Euclidean condition number of S1. From (4.2) it follows that 
12 = 111 (11 + 1), and therefore d1 = 11 + 1. Similarly, d1 = 1/ (1-12 ), and therefore 

(4.7) 

Multiplying these two equations gives 

(4.8) 

Note that d1 does not depend on the absolute size of S1 (every matrix proportional to 
S1 has the same eccentricity), and so the same is true for r 1• 

For a second p.d.s. matrix S2, let d2 denote its eccentricity, and 

(4.9) 

Let 

Bo = (c~s cp0 -sin cp0 ) 

sm cpo cos q>0 
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178 BERNHARD N. FLURY AND WALTER GAUTSCHI 

denote the orthogonal matrix which diagonalizes S2• Then, in analogy to ( 4.4), we get 

(4.10) 

The function <I> to be minimized is 

(4.11) 

Let us now assume that n1 = n2, so that it remains to minimize 

(4.12) G(cp) = [1 +!r1 sin2 (2cp)][1 +!r2 sin2 (2(cp- 'Po))]. 

G(cp) is 7T/2-periodic, and from (4.12) it becomes clear that for cp0 ¥0, G(cp) may 
have more than one local minimum in one period, depending on rh r2 and cp0 (and, 
in the general situation, on n1 and n2). Note that cp0 is the minimum angle between 
two characteristic vectors of sl and s2. 

Let us first look at the extreme situation cp0 = 7T /4. From a Taylor expansion it 
can be seen that in a neighborhood of 0, 

(4.13) 

The function G( cp) has therefore a stationary point at cp = 0, which is a 

(4.14) 
minimum, if r1 - r2 + !r1 r2 > 0, 

Note that for r1 ~ 4 or r1 = r2 this is always a minimum. 
Similarly, at cp == 7T /4, we get a 

(4.15) 
minimum, if r2 - r1 +!r1r2 > 0, 

For '2 ~ 4 or r1 = r2 this is always a minimum. 
Since r1 and r2 are both positive, there cannot be a maximum at 0 and 7T /4 

simultaneously. Local minima at both points, however, are obtained e.g. if both r1 and 
'2 are larger than 4, or if r1 = r2 (even if r1 = r2 is very close to zero!). Thus the case 
of equal eccentricity of both matrices seems most "dangerous" in terms of multiple 
local minima. 

Using the relation r; = (d; -1f/ d;(4.8, 4.9), the conditions (4.14) and (4.15) can 
be transformed to conditions on the eccentricities d; (i = 1, 2). Figure 1 shows a partition 
of [ 1, oo) x [ 1, oo) into three areas in which a minimum is attained at 0 only, at 7T /4 
only, or at both points, depending on the values of d1 and d2 • Note that for d1 > 5.828427 
( d2 > 5 .828427) there is always a minimum at cp = 0 ( cp = 7T /4), and if d1 = d2, there are 
always two minima. 

The case cp0 = 7T /4 treated so far is of course the "worst possible" case, since the 
minimum angle between two characteristic vectors of S1 and S2 cannot exceed Tr /4. 
For the application in common principal component analysis (Flury (1984)), however, 
we expect cp0 rather close to zero, if the null hypothesis of identical principal components 
in the populations holds. Therefore we look now at the situation where cp0 is close to 
zero. Without loss of generality we can assume cp0 > 0. Again, for simplicity, we take 
nt = n2 = 1. 

Approximating the trigonometric functions in the two factors of G by Taylor 
series at cp = 0 (first factor) and at cp = cp0 (second factor), and taking the first derivative 
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FIG. 1. Conditions for minima and maxima if n1 = n2, fPo = 1r I 4. 

of G with respect to lp yields 

G'( lp) = 2r1[ lp + O( lp 3) ][ 1 + ri ( lp -lp0) 2 + 0( lp -lp0) 4)] 
(4.16) 

+ 2r2[ ( lp -lp0 ) + 0( lp -lp0 ) 3][1 + r1 ( lp2 + 0( lp 4 ) )]. 

179 

If lpo is close to zero, sufficient accuracy can be had for 0 ~ lp ~ lp0 if we ignore all 
terms of order higher than 2. An approximation to the solution(s) of G'( lp) = 0 within 
[0, lpo] is therefore given by the solution(s) of 

( 4.17) r1lp[1 + r2( lp -lpo)2] + r2( lp -lp0)[1 + r1 lp 2 ] = 0. 

This equation has either one or three real roots, depending on r., r2 and ({Jo. For 
r1 =r2 =r, (4.17) can be written as 

(4.18) lp(1 + r(lp- q;0) 2}+ (lp.- q;0)(1 + rq;2 ) = 2( q;- ~0 )(rq;2 - rlp0 lp + 1) = 0. 

Thus lp = lp0 j2 is a solution of (4.18} (and also of (4.16) if r1 = r2 ). If, approximately, 

(4.19) 4 2 -> (/)o, 
r 

G(lp) takes a minimum at lp0/2. Under the same condition (4.19}, the polynomial 

(4.20) Tlp 2 - T(/)o(/) + 1 

has no real root, and the minimum at lp0/2 is unique. 
If, always approximately for small q;0 , 4/ r < q;~, we get a maximum at lpo/2, and 

two minima at 

(4.21) 

In terms of the eccentricity parameters d1 = d2 = d, condition (4.19) becomes 

(4.22) 
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which shows that two minima are to be expected only if the eccentricity is high. For 
large d, (4.22) is approximately the same as 

(4.23) 

For example, if cp0 = .2( =11.5 degrees), a single minimum can be expected approxi
mately if d < 100. 

Figure 2 shows the typical behavior of the function G( cp) for cp0 == .2 and r = 160 
(d = 161.99). The two minima are approximately at .039 and .161. If different values 
are chosen for r1 and r2, the two minima are in general not identical, but the shape 
of the graph is similar, with one "valley" being less deep than the other. 

Although these results are only approximate, they give a general idea about the 
conditions for uniqueness of the minimum. For k > 2 matrices, the relations are of 
course more complicated, but still we can expect a unique minimum unless some of 
the matrices are highly eccentric. 

Fordimensionp > 2, the minimum is certainly unique if all the p(p -1)/2equations 
(1.14) have a unique minimizing solution. (By a minimizing solution we mean a solution 
which corresponds to a local minimum of G, or, in the p-dimensional case, of the 
function ct>.) On the other hand, if some of the equations have more than one minimizing 
solution, this does not necessarily imply that the whole system (1.14) has more than 
one minimizing solution. 

11.00 

9.00 

7.00 

5.00+---.....-----.----,----, 
-.10 0.00 .10 

FI 
.20 .30 

FIG. 2. Graph of G( rp) for rp0 = .2, n1 = n2 = 1 and d1 = d2 = 162. 

A solution given by the FG-algorithm does of course not prove its uniqueness. 
However, Fig. 2 suggests the following: If we start the FG-algorithm with 

B(O)=G ~) 
as an initial approximation, it will converge to the left minimum, while 

B( 'Po) = (c~s cp0 -sin cp0 ) 

Stn cp0 cos 'Po 

as an initial approximation leads to convergence to the right minimum. (This is indicated 
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by the arrows in Fig. 2.) Since the function <P is a product of k functions (see 1.12), 
minimizing solutions can always be expected to be somehow "close" to the characteris
tic vectors of one of the matrices. Therefore, if there is doubt about the uniqueness of 
the solution, it is recommended that one run the FG-algorithm k times, using the k 
sets of characteristic vectors of A., · · · , Ak as initial approximations. If all k solutions 
found are equal, it is reasonable to assume that there is a unique global minimum. 

As a numerical example, let 

s =(100 0) 
I 0 1 

and 8 = (96.0143 
2 19.4603 

19.4603) 
4.9857 ' 

so that d1 = d2 = 100 and cp0 = 202( ==11.57 degrees), which is a borderline case according 
to approximation (4.22). G(cp) assumes two minima at .08 and .12, approximately. If 
we reduce the eccentricity to 90 (leaving cp0 unchanged), we get the matrices 

s =(90 0) 
1 0 1 

and S = (86.4168 
2 17.4946 

17.4946). 
4.5831 

For these two matrices, there is a unique minimum at cp0/2. The bound (4.22) ford is 
in general too high, but the approximation becomes better when cp0 gets smaller. 

5. Remarks. 
1. The proof of convergence of the G-algorithm makes strong use of the assumption 

that the matrices ~ are positive definite. If one or several of the matrices A 1 are close 
to singularity, this could cause numerical problems, because the a1 (3.5) might become 
very large. 

2. Since the stopping rule given in step F3 depends on the absolute size of the 
matrices A;, it may be better to replace it by a criterion similar to the one used in the 
G-algorithm: 

F3: If IIB(f-1)- Bll < ep for some small ep > 0, stop. Otherwise, start the next 
iteration step at F 1• 

3. If the current version of B in the F-algorithm is a stationary point of <P, and 
12 is taken as an initial approximation of Q in the G-algorithm, FG will not change 
B, since (1.14) is satisfied. This occurs, e.g., if the diagonal elements of the Armatrices 
are identical for each A 1, that is, diag A1 = diag( c1, • • • , c1) for some c1 > 0( i = 1, · · · , k ), 
and IP is taken as an initial approximation of B. An important special case of this are 
correlation matrices, where the diagonal elements are all 1. If the first iteration of the 
F-algorithm does not change B, it might therefore be helpful to try FG with another 
initial approximation. 

4. On the F-level, a better initial approximation than /P might be to take the 
eigenvectors of one of the A1 (e.g. the one with the largest n1), or the eigenvectors of 
I~: 1 n;Ai. On the G-level, 12 is a good initial approximation for Q, when the current 
B on the F-level is already close to the correct solution. 

5. In step F24, the lth and jth column of B are adjusted using the matrix Q given 
by the G-algorithm. Since these two columns will undergo changes in subsequent 
executions of steps F21 to F24, it is not necessary to iterate on the G-level until full 
convergence is reached. In most cases the first iteration steps of the G-algorithm will 
decrease <P(B) much more than the later iterations. If k = 1, only one iteration step is 
required in ,each execution of the G-algorithm. 
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6. In order to avoid permutations of the columns of B and multiplications by -1, 
it is convenient to order the columns of Q such that 

(5.1) Q = (c~s a -sin a) 
sm a cos a 

where -n"/2 <a< 'fr/2. 
7. If k= 1, the FG-algorithm reduces to a Jacobi-method (Parlett (1980, Chap. 

9)) for diagonalizing the single p.d.s. matrix A= At. 
8. The listing of a FORTRAN program performing the FG-algorithm (Flury 

(1985)) can be obtained from the first author upon request. 

6. Example. In this section we illustrate the performance of the FG-algorithm by 
a numerical example of dimension p = 6 with k = 2 matrices and weights nt = n2 = 1. 
The matrices are 

45 10 0 5 0 0 

10 45 5 0 0 0 

0 5 45 10 0 0 
At= 

5 0 10 45 0 0 

0 0 0 0 16.4 -4.8 

0 0 0 0 -4.8 13.6 

27.5 -12.5 -.5 -4.5 -2.04 3.72 

-12.5 27.5 -4.5 -.5 2.04 -3.72 

-.5 -4.5 24.5 -9.5 -3.72 -2.04 
A2= 

-4.5 -.5 -9.5 24.5 3.72 2.04 

-2.04 2.04 -3.72 3.72 54.76 -4.68 

3.72 -3.72 -2.04 2.04 -4.68 51.24 

The characteristic vectors of At are the columns of the matrix 

.5 .5 .5 .5 0 0 

.5 .5 -.5 -.5 0 0 

.5 -.5 -.5 .5 0 0 
Bt= 

.5 -.5 .5 -.5 0 0 

0 0 0 0 .8 .6 
0 0 0 0 -.6 .8 

The associated roots are 60, 50, 40, 30, 20 and 10. For matrix A2, the characteristic 
vectors are 

.5 .5 .3 -.6 .1 -.2 

.5 .5 -.3 .6 -.1 .2 

B2= 
.5 -.5 -.6 -.3 -.2 -.1 

.5 -.5 .6 .3 .2 .1 

0 0 -.18 -.26 .54 .78 
0 0 -.26 .18 .78 -.54 

with roots 10, 20, 30, 40, 50 and 60. We used the FG-algorithm as programmed by 
Flury (1985) with ep = e0 = .0001. The stopping rule for the F-algorithm was as 
described in Remark 2 above. As an initial approximation we used B = 16, the identity 
matrix of dimension 6. The rotation pairs in the F-algorithm were chosen cyclically 
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(see Golub and Van Loan (1983, p. 299)). A sweep (or iteration step) of the F-algorithm 
consists therefore of (~) = 15 pairwise rotations. For each sweep of the F-algorithm, 
we give the current orthogonal matrix B, the value of the criterion ci>(B) = n;=l ldiag(B T A;B)I/IA;I and the average number of iterations of the G-algorithm per 
call. At the beginning, the value of the criterion is ci>(J6 ) = 2.24718. 

after sweep 1 

.8138 -.0721 .4584 .3474 -.0398 .0124 

.0000 .7646 .4627 -.4451 .0553 -.0114 

B<o= -.1321 -.6346 .5378 -.5358 -.0456 -.0370 
-.5642 0384 .5353 .6256 .0321 .0358 ' 

.0390 -.0699 .0002 -.0357 .7998 .5938 
-.0224 .0326 .0003 -.0379 -.5937 .8028 

ci>(B0 l) = 1.25461 
average number of iterations of G-algorithm: 2.73 

after sweep 2 

.4983 -.5648 .4993 .4174 -.0955 .0072 

.5025 .5613 .4998 -.4164 .0955 -.0072 

B<2l= -.5003 -.4124 .5003 -.5711 -.0537 -.0180 
-.4988 .4150 .5006 .5703 .0538 .0180 

.0003 -.1276 -.0001 -.0010 .7921 .5968 

.0003 .0864 .0000 -.0323 -.5903 .8019 

ci>(B<2>) = 1.03574 
average number of iterations of G-algorithm: 2.4 

after sweep 3 

.5000 -.5548 .5000 .4278 -.0956 .0083 

.5000 .5548 .5000 -.4278 .0956 -.0083 

B<J>= -.5000 -.4247 .5000 -.5625 -.0541 -.0170 
-.5000 .4247 .5000 .5625 .0541 .0170 

.0000 -.1265 .0000 .0013 .7919 .5974 

.0000 .0878 .0000 -.0336 -.5905 .8015 

ci>(B<3>) = 1.03568 

average number of iterations of G-algorithm: 1.8 

after sweep 4 

.5000 -.5545 .5000 .4281 -.0956 .0083 

.5000 .5545 .5000 -.4281 .0956 -.0083 

B<4>= -.5000 -.4250 .5000 -.5623 -.0541 -.0169 
-.5000 .4250 .5000 .5623 .0541 .0169 

.0000 -.1265 .0000 .0014 .7919 .5974 

.0000 .0878 .0000 -.0337 -.5906 .8015 

ci>(B<4l) = 1.03568 

average number of iterations of G-algorithm: 1.07. 
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Sweep 5 did not produce any changes in the first four digits of the elements of B 
and the algorithm stopped. The "nearly diagonal" matrices Br A 1B and BrA2 B were 
given by the program as 

50.0000 .0000 .0000 .0000 .0000 .0000 

.0000 29.9305 .0000 -1.2531 1.5738 .0753 

BTAtB= 
.0000 .0000 60.0000 .0000 .0000 .0000 

.0000 -1.2531 .0000 39.7904 -.6200 .7728 ' 

.0000 1.5738 .0000 -.6200 20.2584 -.0351 

.0000 .0753 .0000 .7728 -.0351 10.0207 

20.0000 .0000 .0000 .0000 .0000 .0000 

.0000 40.2336 .0000 -1.6232 3.1472 1.1790 

BTA2B= 
.0000 .0000 10.0000 .0000 .0000 .0000 

.0000 -1.6232 .0000 32.0055 -1.0458 5.4272 

.0000 3.1472 .0000 -1.0458 59.2485 .4738 

.0000 1.1790 .0000 5.4272 .4738 48.5123 

The FG-algorithm has clearly recovered the two common eigenvectors of A1 and A2. 
The four other columns of B = B<4> can be considered as "compromises" between 
eigenvectors of A1 and A 2• Of course the order of the columns of B is not relevant; 
it is simply determined by the initial approximation used in the F-algorithm. 

It is worth noting that the convergence is rather fast: after only two sweeps, the 
coefficients of B are already correct to two digits. This was typically also the case in 
statistical examples (see Flury (1984)), where the weights n1 are not necessarily equal. 
In none of these examples, more than five sweeps were needed to reach convergence. 

The computation of the above example required .07 seconds of CPU time (not 
including input/output operations) on the CDC 170/855 computer of Indiana Uni
versity. 
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A CLASS OF SLOWLY CONVERGENT SERIES 
AND THEIR SUMMATION BY GAUSSIAN QUADRATURE 
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ABSTRACT. Series are considered whose general term is a rational function mul
tiplied by a fractional power. The summation of such series is reduced, via 
Laplace transformation techniques, to a problem of quadrature, which is then 
solved by Gaussian quadrature relative to Einstein and Fermi weight functions. 
A number of examples are worked out in detail. 

1. INTRODUCTION 

We consider series of the type 
00 

( 1.0) S0 = L:e-'r(k) 
k=l 

or 
00 

( 1.1) s, = L:(-l)k-le-'r(k), 
k=l 

where 0 < v ~ 1 and r(·) is a rational function 

( 1.2) r(s) = p(s) 
q(s) 

with p , q real polynomials of degrees degp :5 deg q . Strict inequality is as
sumed when necessary for convergence. It is further assumed that the zeros of 
q all have nonpositive real parts: 

(1.3) if q(-a) = 0 then Rea~ 0. 
This condition can always be achieved by a preliminary summation of a few 
initial terms. 

The problem can be simplified by first obtaining the partial fraction decom
position of r , 

mP m, 

(1.4) r(s) =I: I: cpm(s + ap)-m +I: I:[cym(s + ay)-m + cym(s + ay)-m]' 
p m=l Y m=l -----
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where the first sum is over all real zeros ( -ap) of q (with multiplicities mP), 
and the second sum is over all pairs of conjugate complex zeros ( -aY, -ay) 
(with multiplicities my). The coefficients cpm in the first sum are real, those 
in the second complex, in general. (We have assumed in (1.4) that degp < 
deg q . If degp = deg q , and we are thus dealing with S1 in ( 1.1 ), there will 
be an additional constant term in (1.4). Its contribution to the series in (1.1) 
is expressible in terms of the Riemann zeta function; cf. (3.9) below for m = 
0.) Once the decomposition ( 1.4) has been obtained (for relevant constructive 
methods, see, e.g., [8, §7 .1 ]), it clearly suffices to consider 

1 
(1.5) r(s) = ( )m, Rea~ 0, m ~ 1. 

s+a 

Without restriction of generality, it may be further assumed that Im a ~ 0. 
By interpreting the terms in the series ( 1.0) and ( 1.1) as Laplace transforms at 

integer values, it is possible to express the sum of the series as a weighted integral 
over R+ of certain special functions related to the incomplete gamma function. 
The weighting involves the product of a fractional power and either Einstein's 
function t(e1 - 1)- 1 (in the case of (1.0)), or Fermi's function (i + 1)-1 (in 
the case of ( 1.1) ), both having infinitely many poles on the imaginary axis of the 
complex plane. Properties of the required special functions are briefly developed 
in §2. Section 3 discusses the summation of ( 1.0), ( 1.1) via Gaussian quadrature. 
The case v = 1 of purely rational series is treated in §4 and complements more 
traditional techniques (e.g., those in [8, §7.211]). Numerical examples for the 
case v = 1 are given in §5, where also comparisons are made with direct 
summation and accelerated summation using the e-algorithm. 

2. PRELIMINARIES 

Define, for t > 0, 
t-1 

(2.1_1) g_l (t; v) = g_l (t) = r(l- v)' 0<v<1, 

and for t > 0, n = 0, 1 , 2, ... , 
-at v-1 t 

e t r ar n -v d 
gn(t; a, v) = gn(t) = n!r(l- v) lo e (t- r) r r, 

Re a ~ 0 , Im a ~ 0 , a f; 0 , 0 < v < 1. 

Lemma 2.1. We have 
-at • (2.2) g0(t; a, v) = e y ( 1 - v, -at), 

where y* is Tricomi'sform of the incomplete gamma/unction (cf. [3, eq. 6.5.4]). 
Furthermore, 

(2.3) 
1 {( n+1-v) t } gn+l (t) = n + 1 t + a gn(t)- (ign-1 (t) ' 

n=0,1,2, .... 
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Proof. By definition, 

e t at -II 
-at v-i lot 

go(t) = f( 1 - v) o e r dr' 

which, upon the change of variables u = -ar , gives 

e-at ( -att-J r-at -U -II 

go(t)= f(l-v) Jo e u du 

e-at( -at)-(1-v) -at * 
= f( 1 _ v) y( 1 - v , -at) = e y ( 1 - v, -at) 

(cf. [3, eqs. 6.5.2, 6.5.4]). Next, 

-at v-1 t 
e f r at n -11 d 

gn+l (t) = (n + l)!f(l- v) Jo e (t- r) (t- r)r r 

t e-at{- 1 t at n l-11 

= n+1gn(t)- (n+1)!f'(1-v)}o e (t-r) r dr. 

311 

To the last integral we apply integration by parts, letting u = r 1- 11 (t - r)n, 
1 at h v = e , ence 

1 -v n 1-v )n-1 u =(l-v)r (t-r) -nr (t-r 
n -v n-i -v = (n + 1- v)(t- r) r - nt(t- r) r , 

1 at v = -e . 
a 

This yields (2.3) for n ~ 1 . A similar calculation gives 

( 1-v) 1 
g1 (t) = t +-a- go(t)- af(1- v)' 

which, in view of (2.1_ 1), shows that (2.3) holds also for n = 0. D 

To the author's knowledge, no software seems to be readily available for 
computing the incomplete gamma function in the domain of interest here (left 
half plane), and one thus has to rely on standard techniques such as power series 
and asymptotic expansions. An effort of developing good software for Tricomi's 
function y* ( 1 - v, z), 0 < v < 1 , applicable for arbitrary complex z, would 
certainly be worthwhile. For the case v = t, however, see §5. 

3. SUMMATION OF S0 AND S1 

We employ a technique already used in [7], namely, to interpret the general 
term of the series as a Laplace transform and thereby converting the series into 
a suitably weighted integral. We first treat the series S0 in ( 1.0). 

Assume r(·) given as in (1.5), and consider first the case a =I 0. Then 

( 3.1) 
v-1 1 o;~{ t-v tm-le-at} 

s . - ..z; * -:---':"77 (s+a)m- f(l-v) (m-1)!' O<v<l, 
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where 2' { ·} is the Laplace transform and * means convolution. We thus have 

!( ) Chi- I { Sv-l } 1 t -a(t-T) m-1 -v d 
t := .z (s + a)m = (m- l)!r(l -v) lo e (t- r) r r 

e ar m-1 -v d -at lo' 
(3.2) =(m-l)!r(l-v)oe(t-r) r r 

1-v 
= t gm_ 1(t; a, v), m ~ 1, 

where gn(t; a, v) is defined in (2.1n). There follows 

00 kv-1 00 00 roo t; (k + a)m = t;(2' f)(k) = t; lo e-ktf(t) dt 

~ 100 -t 1-v -(k-1)1 
=L...J e t e gm_ 1(t;a,v)dt 

k=l 0 

100 00 
-1 1-v -(k-1)1 

= e t L:e gm_ 1(t; a, v)dt 
0 k=l 

100 1-v 1 d = t - 1--gm-l (t; a, v) t. 
o e - 1 

Thus, 
oo kv-1 100 

(3.3) L (k )m = t-ve(t)gm_ 1{t; a, v)dt, 
k=l +a o 

m~l, O<v<l, 

where e(·) is "Einstein's function" (cf. [7]), 

t 
(3.4) e{t) = e' _ 1 , 0:::; t < oo. 

Since gm_ 1(·; a, v), by Lemma 2.1, is an entire function, formula (3.3) 
suggests to apply Gaussian quadrature to the integral on the right, using w(t) = 
t-ve(t) as a weight function on [0, oo]. The required orthogonal polynomials 
can be computed by techniques already discussed in [7] (see, in particular, (2.3) 
and Example 4.4 of that paper). Gauss quadrature will converge quite rapidly, 
unless Rea and/or Ima is large, in which case "stratified" summation can be 
employed to regain rapid convergence (see Examples 5.1 and 5.4). For v = ! , 
the first 80 recursion coefficients for the required orthogonal polynomials are 
given to 25 significant digits in Table 1 of the Appendix. 

It is easily seen that (3.3) holds also for a= 0 if we define 

1 t 
(3.5) Ko(t)= r(2-v)' Kn+l(t)= n+2-vgn(t), 

n = 0, 1, 2, ... (a= 0). 

The series can then be expressed in terms of Riemann's zeta function, 
00 

(3.6) Lk-(m+l-v) = ((m + 1 -v), 

k=l 
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and since Km-l is a monomial of degree m -1, the n-point Gauss formula for 
the integral in (3.3) gives exact answers (modulo rounding) if n = L(m+ 1)/2J. 

For the sum S1 in (1.1), a calculation similar to the one which led to (3.3) 
now yields, for a =I 0 , 

~ k-l e-l {00 -v 
(3.7) ~(-1) (k+a)m = Jo t rp(t)·tgm_ 1(t;a,v)dt, 

where rp(·) is the "Fermi weight function" (cf. [7]), 

1 
(3.8) rp(t) = -~-' 0 ~ t < oo. 

e + 1 

m~O, 0<v<1, 

The result (3. 7), as noted, holds also for m = 0, if g_ 1 is defined as in (2.1_ 1). 

If a= 0, then (3.7) holds with gm-l, m ~ 0, defined in (2.1_ 1) and (3.5), 
and represents the series 

00 

(3.9) L(-1)k-lk-(m+l-v) = (1- 2-m+v)((m + 1-v). 
k=l 

Again, Gauss quadrature for the integral in (3. 7), in this case, is exact if we take 
n = L(m + 2)/2J points. 

The first 80 recursion coefficients for the orthogonal polynomials with respect 
to the weight function t-v rp(t), v = ! , are listed in Table 2 of the Appendix. 

Remarks. 1. The fractional power e- 1 in ( 1.0), ( 1.1) can easily be generalized 
to (k +bt-l, Reb~ 0, since this only introduces a factor e-bt in (3.1) and 
gives f(t) = tl-v e-bt Km-l (t; a- b, v) in place of (3.2), hence 

(3.10) 
00 (k +bt-l ioo -v -bt 

L (k )m = t e(t)e gm_ 1(t;a-b,v)dt, 
k=t +a o 

and the similarly generalized version of ( 3. 7), 

oo (k b)v-l loco ~ k-l + -v -bt b d .L...(-1) (k )m = t rp(t)·te gm_ 1(t;a- ,v) t. 
k=l +a o 

(3.11) 

2. As an alternative to Gauss quadrature with weight function t-v e(t), one 
could write the integral in (3.3) as 

(3.12) foorve(t)gm_ 1(t;a,v)dt= { 00 t-ve-1 • t _1 gm_ 1(t;a,v)dt lo lo 1-e 
and apply Gauss-Laguerre quadrature to the integral on the right. The poles 
that were previously incorporated in the weight function t-v e(t) then, how
ever, become part of the integrand, which may adversely affect the speed of 
convergence of the quadrature scheme. This was indeed found to be the case 
when a is relatively small, but for larger values of a , in particular when used 
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in conjunction with stratified summation (cf. Examples 5.1 and 5.4), the Gauss
Laguerre method is competitive and, in Example 5.1, even more efficient. 

The same alternative approach is possible for the integral in (3.7), if written 
as 

(3.13) { 00 1-vrp(t)·tgm-l(t;a,v)dt= { 00 1-ve-1 • t ,gm-l(t;a,v)dt, lo lo 1+e 
although this time the poles affect convergence more severely, since they are 
half as clos.e to the real axis than before. Still, for sufficiently large values of a , 
Gauss-Laguerre quadrature here, too, gains the upper hand. 

Finally, if many different values of v were contemplated, then Gauss
Laguerre would also be preferable, since the recursion coefficients for the respec
tive orthogonal polynomials-the generalized Laguerre polynomials-are then 
explicitly known and need not be tabulated. In the case of the weight function 
w(t) = t-ve-1 on (0, oo), the corresponding (monic) orthogonal polynomials 
nk(·) = nk(·; w) indeed satisfy 

( 3.14) 
nk+l (t) = (t- ak)nk(t)- Pknk-l (t), k = 0, 1, 2, ... , 

n_ 1(t)=0, n0(t)=1, 

with the coefficients ak = ak(w), Pk = Pk(w) [P0(w) = f0
00 w(t) dt] having 

the particularly simple form 

ak(w)=2k+1-v, k~O; 
(3.15) (w=t-ve- 1). 

P0 (w) = f(1- v), Pk(w) = k(k- v), k ~ 1 

4. SERIES OF PURELY RATIONAL TERMS 

So far, we assumed that 0 < v < 1 in ( 1.0) and ( 1.1 ). The same techniques, 
however, are applicable when v = 1 , i.e., for series 

00 00 

( 4.1) s~ = L:r(k), I "' k-1 k S1 =L..)-1) r( ). 
k=l k=l 

One finds, when 

(4.2) 
1 

r(s) = ( )m , 
s+a 

Rea~ 0, 

for m ~ 2 that 

~ 1 1 100 m-2 -atd 
(4.3) L...., (k )m = ( 1)' e(t)t e t, 

k=l +a m- . o 

and for m ~ 1 that 

( 4.4) 
00 (-1)k-l 1 100 m-1 -at 
L(k )m=( l)' rp(t)t e dt, 
k=l +a m- . o 

with e and rp as given in (3.4) and (3.8), respectively. 
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For more general rational functions 
m; 

(4.5) r(s) = L L cim(s + a;)-m, 
i m=l 

we get from ( 4.3) 

(4.6) f r(k) = ("' e(t)g(t) dt, 
k=l lo 

where 

(4.7) 
m. 

g(t) = I:t (mc:Zl)!tm-2e-a;t. 
z m=l 

Evidently, g is again an entire function, provided 

(4.8) I: cit= 0, 

which is required for the series in ( 4.6) to converge. Similarly, 

00 100 L(-l)k-tr(k) = rp(t)h(t)dt, 
k=l 0 

(4.9) 

where 

( 4.1 0) 

an entire function for any choice of the coefficients cim . 
The first 40 recursion coefficients for the polynomials orthogonal with respect 

to e and rp can be found to 25 significant digits in [7, Appendices Al and A2]. 
The method described in this section provides an alternative to other summa

tion/integration methods, such as those discussed in [8, §7.211]. An advantage 
of the present method is that it leads to Gaussian quadrature of entire functions, 
a possible complication, that the interval of integration is infinite. 

5. EXAMPLES 

In all of our examples we take v = t . In this case, the function g0 
is given by ( cf. [3, eq. 6.5.18]) 

(5.1) ( 1) -at * ( 1 ) 2 F( v'ai) g0 t; a , 2 = e y 2 , -at = /1i v'ai , 
where F is Dawson's integral, 

(5.2) F(z) = e -z1 foz / dt. 

in (2.2) 

For real z , this can be evaluated with an accuracy of up to about 20 significant 
digits, using the rational Chebyshev approximations given in [2]. 

All computations reported below were done in double precision on the Cyber 
205 computer (the equivalent of about 29 decimal places). 

Example 5.1. S0 = I:~ 1 k- 112 /(k + a)m. 
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This series with a = m = 1 was communicated to the author by Professor 
P. J. Davis, who encountered it in his study of spirals [4]. 

We computed S0 from (3.3) (with v = !) , (5.1), and (2.1_ 1), (2.3), for 
a= .5, 1., 2., 4., 8. and m = 1(1)5. The integral in (3.3) was evaluated by 
n-point Gaussian quadrature rules, which were generated with the help of the 
recursion coefficients in Table 1 of the Appendix and well-known eigenvalue 
techniques (see, e.g., [6, § 1.3(iv)]). In Table 5.1 we show only the results for 
m = 1 ; those for m > 1 are similar, but exhibit somewhat slower convergence. 
It is evident that, as a increases, convergence of the Gauss quadrature formula 
slows down considerably. The reason for this is the behavior of the function 
g0 on the right of (5.1), which for increasing a approaches a discontinuous 
function (see Figure 5.1). 

n 
5 

10 
15 
20 
25 
30 
35 
40 

TABLE 5.1 
n-point quadrature approximations to the integral in (3.3) with 
v = ! , m = 1 , a = .5, 1., 2., 4., 8. 

a= .5 
2.1344163 
2.1344166429861 
2.1344166429862372611 
2.1344166429862372611 

n 
5 

10 
15 
20 
25 
30 
35 
40 

a= I. a= 2. 
1.8599 1.537 
1.860025078 
1.86002507922117 
1.860025079221190306 
1.8600250792211903071 
1.8600250792211903072 

1.53967 
1.539680509 
1.539680512350 
1.53968051235329 
1.5396805123533020 I 0 
1.5396805123533020128 
1.5396805123533020128 

a= 4. 
1.19 
1.217 
1.21826 
1.218273 
1.218274011 
1.21827401461 
1.218274014668 
1.2182740146698 

a =8. 
.8 
.91 
.930 
.9312 
.93135 
.931371 
.9313727 
.93137291 

To achieve better accuracy, when a is large, we proceed as follows. With 
a0 = LaJ denoting the largest integer :S a, and a = a0 + a1, where a0 ~ 1, 
0 :S a1 < 1 , the summation over all k ~ 1 may be "stratified" by letting 
k =A.+ Ka0 and summing over all K ~ 0 for A.= 1, 2, ... , a0 • Thus, 

oo k-1/2 ao oo (A+ Ka )"'d/2 
So = L . m = L L 0 m 

k=l (k + ao + al) A.=l K=O (A.+ Kao + ao + al) 

a0 oo ( A.j )-1/2 
(5.3) = a~(m+l/2) LL K + ao m 

A.=l K=O (K + 1 +(A.+ al)fao) 

-(m+l/2) ao { oo (K + A.fao)-1/2 (A.fao)-1/2 } 
=ao f; E(K+l+(A.+al)/ao)m+(l+(A.+al)fao)m. 
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0 0.5 1.5 

FIGURE 5.1 
The function g0 in ( 5.1) 

To the inner sum we now apply (3.10) to obtain 

oo (K + A.fao)-1/2 

!; (K + 1 +(A.+ a1)fa0 )m 
(5.4) 

= looo t-1/2e(t)e-(A.fao)tg (c· I+~ !) dt 
m-1 ' a '2 . 

0 0 
The "effective" parameter in gm_ 1 is now 1 + a1ja0 , a number close to 1, 
and the coefficient A./ a0 in the exponential is bounded by 1. Gauss quadrature 
applied to the integral in (5.4) should therefore converge quite rapidly, indeed, 
more so the larger a0! This is borne out by the results displayed for m = 1 and 
a= a0 = 8., 16., 32. in Table 5.2. 

The correct number of significant decimal digits produced by direct summa
tion of the series, using 1000 terms, is shown in Table 5.3. The numbers in 
parentheses are the correct digits obtained by applying the e-algorithm with the 
same number of terms. For the entries marked by an asterisk, we used (5.3), 

n 
5 

10 
15 
20 
25 
30 
35 
40 

TABLE 5.2 
Approximations to S0 in (5.3) for m = I, a1 = 0, a0 = 8., 
16., 32., using n-point quadrature in (5.4) 

a= 8. 
.93098 
.9313726 
.931372933 
.9313729340028 
.9313729340031036 
.9313729340031038714 
.93137293400310387169 
.93137293400310387169 

a= 16. 
.6946 
.6949315 
.6949317145 
.6949317146409 
.6949317146410454 
.6949317146410455900 
.69493171464104559016 
.69493171464104559016 

a= 32. 
.5097 
.5099264 
.5099265169 
.5099265170271 
.5099265170272112 
.5099265170272113479 
.509926517027211348804 
.509926517027211348804 
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TABLE 5.3 
Number of correct significant decimal digits in direct (and accel
erated) summation of S0 using 1000 terms 

m 
I 
2 
3 
4 
5 

a- .5 
2 (2) 
4 (5) 
7 (9) 

10 (13) 
14 ( 17) 

a- l. 
I (2) 
4 (5) 
7 (9) 
9 ( 12) 

13 (IS) 

a- 2. 
2 (2) 
4(5) 
6 (8) 
9 ( 12) 

II (14) 

a -4. 
2 (2) 
4 (5) 
6 (8) 
8(11). 

II (13)• 

a= 8. 
I (I) 
3 (4) 
5(7)" 
8 ( 10). 

10(12). 

(5.4) to verify the number of correct digits. As is evident from Table 5.3, the 
e-algorithm is only marginally effective on this particular series. 

Example5.2. S1 =l:~ 1 (-1)k-lk- 1 12 j(k+a)m. 

We now apply Gauss quadrature (obtained from the recursion coefficients 
in Table 2 of the Appendix) relative to the weight function t- 112 rp(t) to the 
integral in (3.7) (with v =!),using the same values of a and m as in Example 
5.1. The results are similar to those in Table 5.1 of Example 5.I, except that 
convergence is slightly slower. Stratified summation similar to (5.3), (5.4), on 
the other hand, gives 

(5.5) S = -(m+l/2) ~(-1).1.{ . - ().fao)-1/2 } 
I ao ~ s-. (I + (A+ a )fa )m ' 

.t=l I 0 

where 

if a0 is even , 

if a0 is odd, 

{ 
{'XJ -1/2 -(J.fa0 )t . 

- lo t e(t)e gm_ 1(t, I +a1ja0 , l/2)dt, a0 even, 
(5.7) S;. = 00 

fo t- 112 rp(t)·te-(J.fao)tgm_ 1(t; I +a1ja0 , I/2)dt, a0 odd. 

The use of (5.5), with n-point quadrature applied to (5.7), yields results con
verging at the same speed as those in Table 5.2. 

Direct summation using 1000 terms yields 2-3 more correct digits than in 
Table 5.3, but the e-algorithm is now surprisingly effective, giving full accuracy 
(20 decimals) with only 23-27 terms! 
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This is another series of interest in P. J. Davis's work on spirals [4]. It can 
be readily evaluated with the help of Remark 1 in §3, taking m = 1 , a = b + 1 
in (3.10), and noting (5.1); one finds 

b roo -1/2 -bt ( 1 ) d S0( ) = lo t e(t)e g0 t; 1 , 2 t 

2 1oo -btF(.Ji) -1/2 ( )d = - e -- · t e t t . .fio .Ji 

(5.8) 

Thus, S0(b) is the Laplace transform of the function (F(.Ji)/vt)t- 112e(t), 
which has a square root singularity at the origin and poles at integer multiples 
of 2ni. The last integral in (5.8) is easily computed by Gaussian quadrature 
relative to the weight function C 112e(t). No more than 24 quadrature points 
are needed to get 14 correct significant decimal digits in the range 0 < b < 1 . 

Example 5.4. S0 = 2:~ 1 k- 112 j(k + io:), o: > 0. 

Here, a = io:, m = 1 , hence 

(5.9) roo -1/2 ( . 1) S0 =}
0 

t e(t)g0 t;to:, 2 dt. 

Use of (5.1) and a simple change of variables gives 

2 

g0 (t; io:, ~) = ie:z erf(-iz), z = ..;r;;t, 

where erf is the error function. Letting -iz = !..fi(l- i)x, i.e., x = J2o:tjn, 
one finds (cf. [5, eq. 7.3.22]) 

. 2 2 

(5.10) g0(t; io:, ! ) = J2f(o:t)e -Ia 1 [C( J2o:tfn) +iS( J2o:tfn)]. 

Here, C(x), S(x) denote the Fresnel integrals [5, eqs. 7.3.1, 7.3.2]. They can 
be computed with an accuracy of up to 18 significant digits from the rational 
Chebyshev approximations provided (on microfiche cards) in [1]. Gaussian 
quadrature of (5.9), with g0 given by (5.10), yields the results shown in Table 
5.4. For each n , the first entry is the real part, the second the imaginary part 
of the Gauss approximation to S0 . Convergence is seen to deteriorate rapidly 
with increasing o: , which is to be expected in view of the highly oscillatory 
behavior of g0 in ( 5.1 0) when o: is large. The device of stratified summation, 
used successfully in Examples 5.1 and 5.2, however, can also be applied here, 
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( 5.11) 
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TABLE 5.4 
n-point quadrature approximations to the integral in (3.3) with 
v = ! , m = 1 , a = ia, a = .5 , 1., 2. , 4. , 8. 

n 
10 

20 

40 

80 

n 
10 

20 

40 

80 

a- .5 
2.382181322854 
-.564259325223 
2.38218132285517164 
-.56425932522086830 
2.38218132285517164 
-.56425932522086830 

a= 2. 
1.52 

-.846 
1.51822 

-.84397 
1.518231590364 

-.843981047692 
1.51823159036615356 

-.84398104769701668 

a= 1. 
2.006153 
-.7964883 
2.0061526552273 
-.79648812356982 
2.00615265522741423 
-.79648812356984801 
2.00615265522741424 
-.79648812356984802 

a= 4. a= 8. 
1.14 1.0 

-.91 -.3 
1.10 .9 

-.72 -.7 
1.0978 .73 

-.745 -.54 
1.0976938 .77 

-.7460348 -.599 

So= a~3/2 ~ { fooo t-l/2e(t)e -(.l./<>olt go (t; i ( 1 + :~) ' 4) dt 

(ao/A.)3/2 } 
+ 1+i(a0 +a1)/A. · 

Using (5.11) instead of (5.9) yields the results shown in Table 5.5. 
Direct summation using 1000 terms gives 1-2 correct decimal digits in the 

real part, and 4-5 in the imaginary part. The epsilon algorithm produces no 
more than one additional correct digit. 

Applying Gauss quadrature to 

(5.12) 
roo -1/2 sl = lo t ({J(t)·tgo(t; ia, !)dt, 

with g0 as in (5.10), or to formulae analogous to those in (5.5)-(5.7), yields 
results similar in quality to those in Table 5.4 (but converging at a slightly slower 
rate) and to those in Table 5.5. As in Example 5.2, here too, the e-algorithm 
produces full accuracy (20 decimals) with as few as 25-28 terms. 
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TABLE 5.5 
Approximations to S0 for a 1 = 0, a 0 = 8., 16., 32., using 
n-point quadrature for the integral in ( 5.11) 

n 0< = 8. 0< = 16. 0< = 32. 
5 .78217 .55456 .39250 

-.6028 -.46405 -.34703 
10 .78214786 .554548189 .392496065 

-.60290377 -.464094441 -.347063784 
15 .782147849839 .554548181558 .392496059680 

-.602903762412 -.464094436689 -.347063781179 
20 .7821478498420740 .5545481815605363 .3924960596818862 

-.6029037624091237 -.46409443668759260 -.3470637811774942 
25 .78214784984207490 .55454818156053686 .39249605968188663 

-.60290376240912468 -.46409443668759260 -.34706378117749456 
30 .78214784984207491 .55454818156053686 .39249605968188663 

-.60290376240912469 -.46409443668759260 -.34706378117749456 
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APPENDIX 

Coefficients ak, pk in the recurrence relation (3.14) for the (monic) poly
nomials nk(·; w1) and nk(·; w2) orthogonal on (0, oo) with respect to the 
weight functions w 1(t) = t- 112e(t) and w2(t) = t- 112rp(t), where e and rp are 
the Einstein and Fermi functions, respectively. 

TABLE 1 
Recursion coefficients for the polynomials { 1r k ( • ; w 1)} 

k alpha(k) beta(k) 

0 0.77026867019278179736191580+00 0.23151573733941170004258190+01 
1 0.31875985567615246793664140+01 0.10240846879834073034233870+01 
2 0.52637469230456075097135900+01 0.44142904264700503516592160+01 
3 0.73017185139793212284724010+01 0.98113025695540054901760240+01 
4 0.93256497425572464039917170+01 0.17220198465973390696553350+02 
5 0.11342533803387059107008590+02 0.26638169277777889946706440+02 
6 0.13355278620003509127761660+02 0.38063081451713061889973790+02 
7 0.15365344638234987638798410+02 0.51493472261239039805402110+02 
8 0.17373558079167667562843310+02 0.66928314185979485177735950+02 
9 0.19380426713403465987817990+02 0.84366859492647833064115610+02 

10 0.21386282307577038402018350+02 0.10380854621690826434949630+03 
11 0.23391352121618863872832040+02 0.12525294023979745947121270+03 
12 0.25395797800772431866967020+02 0.14869969834382843365066720+03 
13 0.27399737908126324383360570+02 0.17414854380937822111560810+03 
14 0.29403261660321889569536190+02 0.20159924977173251906126710+03 
15 0.31406437659759026983137270+02 0.23105162754565671608347200+03 
16 0.33409319645249837542931900+02 0.26250551822904687433989860+03 
17 0.35411950394815987595886940+02 0.29596078653156353235649550+03 
18 0.37414364444106038877489660+02 0.33141731615047276900823550+03 
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TABLE 1 (continued) 

k a1pha(k) 

19 0.39416590023263585452615330+02 
20 0.41418650464761856741814970+02 
21 0.43420565244991268776951730+02 
22 0.45422350767174583074598720+02 
23 0.47424020958286094251402120+02 
24 0.49425587730056977442132630+02 
25 0.51427061339201650743365920+02 
26 0.53428450671916934060193810+02 
27 0.55429763470782432459859490+02 
28 0.57431006517359307228941780+02 
29 0.59432185780362916511967560+02 
30 0.61433306536828190182706840+02 
31 0.63434373471900528796986440+02 
32 0.65435390761571238355914520+02 
33 0.67436362141699625774572290+02 
34 0.69437290965930137820205920+02 
35 0.71438180254556600517079700+02 
36 0.73439032735960077220210810+02 
37 0.75439850881918665662853800+02 
38 0.77440636937832458610121710+02 
39 0.79441392948707162373152670+02 
40 0.81442120781582404323611670+02 
41 0.83442822144965808849797740+02 
42 0.85443498605734155233472280+02 
43 0.87444151603882807452353530+02 
44 0.89444782465439899808580560+02 
45 0.91445392413809230825583840+02 
46 0.93445982579762955930272480+02 
47 0.95446554010270029651380260+02 
48 0.97447107676317407560870720+02 
49 0.99447644479857079327406540+02 
50 0.10144816525999212006277570+03 
51 0.10344867079849836496548260+03 
52 0.10544916182476443092111050+03 
53 0.10744963902022114574067750+03 
54 0.10945010302232161215028070+03 
55 0.11145055442812481455001720+03 
56 0.11345099379752861586368010+03 
57 0.11545142165619198045292140+03 
58 0.11745183849818112574823170+03 
59 0.11945224478836990902782430+03 
60 0.12145264096462098031507550+03 
61 0.12345302743977098129155520+03 
62 0.12545340460344026333460340+03 
63 0.12745377282368516849534210+03 
64 0.12945413244850880957019360+03 
65 0.13145448380724445251977880+03 
66 0.13345482721182400692152740+03 
67 0.13545516295794273463653270+03 
68 0.13745549132613006528000630+03 
69 0.13945581258273533553232210+03 
70 0.14145612698083632750973700+03 
71 0.14345643476107765202062290+03 
72 0.14545673615244529077211670+03 
73 0.14745703137298296479311840+03 
74 0.14945732063045542362519090+03 
75 0.15145760412296324184459290+03 
76 0.15345788203951325814744970+03 
77 0.15545815456054839058441500+03 
78 0.15745842185844020353565270+03 
79 0.15945868409794728243625730+03 

beta(k) 

0.36887500624612839234891000+03 
0.40833376871438369164044520+03 
0.44979352604673523203340150+03 
0.49325420963079124902694020+03 
0.53871575838535563785044310+03 
0.58617811765310286795840240+03 
0.63564123829389873772350910+03 
0.68710507593610413709676090+03 
0.74056959035350743740703770+03 
0.79603474494307220406826760+03 
0.85350050628427242712060020+03 
0.91296684376497226030864840+03 
0.97443372926197615538750380+03 
0.10379011368667987515100730+04 
0.11033690426490744434031610+04 
0.11708374244514828389943800+04 
0.12403062617112092545027930+04 
0.13117755353038632147856560+04 
0.13852452274064977526901270+04 
0.14607153213769494381217140+04 
0.15381858016471847294913380+04 
0.16176566536287162050918560+04 
0.16991278636284607506928310+04 
0.17825994187736649614361730+04 
0.18680713069447318425658800+04 
0.19555435167149559671002500+04 
0.20450160372963183493430180+04 
0.21364888584906127960666750+04 
0.22299619706452766869494990+04 
0.23254353646133844460390560+04 
0.24229090317173341621904480+04 
0.25223829637158191367866090+04 
0.26238571527737284013690170+04 
0.27273315914346649422114470+04 
0.28328062725958087121389720+04 
0.29402811894848845056255060+04 
0.30497563356390232510218680+04 
0.31612317048853299220559710+04 
0.32747072913229926627512630+04 
0.33901830893067863346470400+04 
0.35076590934318399342904770+04 
0.36271352985195515302087660+04 
0.37486116996045468169718760+04 
0.38720882919225883207108260+04 
0.39975650708993519202566720+04 
0.41250420321399958451169650+04 
0.42545191714194548244673660+04 
0.43859964846733987173941940+04 
0.45194739679898008628725560+04 
0.46549516176010666422057890+04 
0.47924294298766774277297110+04 
0.49319074013163092693359630+04 
0.50733855285433894052545180+04 
0.52168638082990570280145560+04 
0.53623422374364977361851350+04 
0.55098208129156237971183660+04 
0.56592995317980747701647110+04 
0.58107783912425152240401070+04 
0.59642573885002082527804610+04 
0.61197365209108452753560230+04 
0.62772157858986142150565710+04 
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TABLE 2 
Recursion coefficients for the polynomials {7tk(·; w2)} 

k alpha(k) 

0 0.63245886971850936236610460+00 
1 0.26184924841473600282012220+01 
2 0.45795649636410436101717030+01 
3 0.65640307792994767460871910+01 
4 0.85550699231017914919898420+01 
5 0.10549055512086048984290300+02 
6 0.12544660675830604084014320+02 
7 0.14541268416263327765338090+02 
8 0.16538547584107779369781120+02 
9 0.18536302389020313856558920+02 

10 0.20534408661457238081223300+02 
11 0.22532783340432013142933420+02 
12 0.24531368481173921194445440+02 
13 0.26530122264191848592115500+02 
14 0.28529013649267782240601800+02 
15 0.3052801904751258293005461D+02 
16 0.3252712016881291968149760D+02 
17 0.34526302583572362649125600+02 
18 0.3652555473451833018142980D+02 
19 0.38524867241069635231210970+02 
20 0.4052423239911886032854784D+02 
21 0.42523643814499269297692570+02 
22 0.4452309612986561756291508D+02 
23 0.46522584818096776986896490+02 
24 0.4852210602388269609628421D+02 
25 0.50521656440753942160941500+02 
26 0.52521233214548101958414000+02 
27 0.5452083386684847465695719D+02 
28 0.5652045623368841980826095D+02 
29 0.5852009841604980400440341D+02 
30 0.6051975873956415655717186D+02 
31 0.62519435721460662218508360+02 
32 0.64519128043269586392564240+02 
33 0.66518834528133022804534780+02 
34 0.6851855412183125570209516D+02 
35 0.70518285876826409469872370+02 
36 0.72518028938772244433083800+02 
37 0.74517782535051945126398730+02 
38 0.7651754596499318109446470D+02 
39 0.78517318591477892365063300+02 
40 0.80517099833717184973553040+02 
41 0.82516889161008843089517750+02 
42 0.84516686087311834874113400+02 
43 0.86516490166532739042895270+02 
44 0.88516300988398713143783990+02 
45 0.9051611817484278269255930D+02 
4E 0.92515941376824714480485610+02 
47 0.94515770271527215239623500+02 
48 0.96515604559876188752741020+02 
49 0.98515443964341698304127520+02 
50 0.10051528822698283859030950+03 
51 0.1025151371077051766150250D+03 
52 0.10451499038270397759220850+03 
53 0.10651484784307025186877580+03 
54 0.10851470929353987292901980+03 
55 0.11051457455136873011069300+03 
56 0.11251444344531917828506350+03 
57 0.11451431581474500009306840+03 
58 0.11651A19150876376134854740+03 
59 0.1185140703855068636699258D+03 

beta(k) 

0.10721549299401913395308970+01 
0.67521709631759430156397120+00 
0.31675835602583982388211780+01 
0.76961592305189008195692770+01 
0.14222840658306459618714580+02 
0.22747103956778693637439300+02 
0.33269363867785143113505170+02 
0.45790003399176020819747280+02 
0.60309314352732408490887330+02 
0.76827515995496473448402300+02 
0.95344775569597250176840180+02 
0.11586122321188056567075160+03 
0.13837696218079208224295570+03 
0.16289207586793601379874050+03 
0.18940663268191962647617660+03 
0.21792068951820909101532070+03 
0.24843429427418868760992560+03 
0.28094748770694697765938790+03 
0.31546030482966644598659590+03 
0.35197277597800S63345288450+03 
0.3904849276362956159680060D+03 
0.4309967830860900405116312D+03 
0.~7350836292136877393545460+03 
0.51801968546228273911583010+03 
0.5645307670907364429349043D+03 
0.61304162252506360690444090+03 
0.6635522650467400693493852D+03 
0.7160627066889587821461353D+03 
0.77057295839460569446735430+03 
0.82708303014947991732583530+03 
0.8855929310953301741134029D+03 
0.94610266962631620820926770+03 
0.10086122534717668122061500+04 
0.10731216897675371712987610+04 
0.1139630985117825228888483D+04 
0.12081401456489591355932390+04 
0.12786491770563929689326330+04 
0.1351158084645929041756438D+04 
0.1425666873370009681906469D+04 
0.15021755478597798603524910+04 
0.15806841124535072291924620+04 
0.16611925712218524460328120+04 
0.17437009279904058102436780+04 
0.18282091863598428750301830+04 
0.19147173497239992076459300+04 
0.2003225421286120784146841D+04 
0.2093733404073509988742094D+04 
0.2186241300950756537132996D+04 
0.2280749114631716813598169D+04 
0.2377256847690383261846901D+04 
0.24757645025707669192869960+04 
0.2576272081595900380206470D+04 
0.2678779586976054963886758D+04 
0.2783287020816254278645068D+04 
0.2889794385123156407511188D+04 
0.2998301681811368343859689D+04 
0.3108808912709248866969463D+04 
0.32213160795642495942948660+04 
0.33358231840478383339654740+04 
0.34523302277600439659559070+04 
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TABLE 2 (continued) 

k a1pha(k) 

60 0.12051395231143881879755630+03 
61 0.12251383716073831823441340+03 
62 0.12451372481473457622376030+03 
63 0.12651361516139320562866780+03 
64 0.12851350809484656335520840+03 
65 0.13051340351496408993084100+03 
66 0.13251330132695867961882340+03 
67 0.13451320144102556389004820+03 
68 0.13651310377201058136811020+03 
69 0.13851300823910504928852390+03 
70 0.14051291476556475167220250+03 
71 0.14251282327845092342769920+03 
72 0.14451273370839054226291630+03 
73 0.14651264598935624570779580+03 
74 0.14851256005846077224225900+03 
75 0.15051247585576798651057430+03 
76 0.15251239332411709148675630+03 
77 0.15451231240895955748115050+03 
78 0.15651223305820761098769960+03 
79 0.15851215522209332724680490+03 

beta(k) 

0.35708372122336578011331530+04 
0.36913441389381226176721310+04 
0.38138510092831372811057330+04 
0.39383578246220019555894680+04 
0.40648645862547263571056460+04 
0.41933712954309212393451420+04 
0.43238779533524913014306890+04 
0.44563845611761459305106390+04 
0.45908911200157426132141270+04 
0.47273976309444764435983100+04 
0.48659040949969279004484750+04 
0.50064105131709799453614520+04 
0.51489168864296144891219020+04 
0.52934232157025973737105120+04 
0.54399295018880602088796170+04 
0.55884357458539866751374620+04 
0.57389419484396102500536940+04 
0.58914481104567297240260140+04 
0.60459542326909483380020060+04 
0.62024603159028418929514910+04 
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ON CERTAIN SLOWLY CONVERGENT SERIES 
OCCURRING IN PLATE CONTACT PROBLEMS 

WALTER GAUTSCHI 

ABSTRACT. A simple computational procedure is developed for accurately sum
ming series of the form E:0(2k + 1)-p ik+l, where z is complex with 
I zl $ I and p = 2 or 3, as well as series of the type 

00 

~)2k + I)-Pcosh(2k + l)xfcosh(2k + l)b 
k=O 

and 
00 

~)2k + l)-psinh(2k + l)xfcosh(2k + l)b, 
k=O 

where 0 $ x $ b , p = 2 or 3. The procedures are particularly useful in 
cases where the series converge slowly. Numerical experiments illustrate the 
effectiveness of the procedures. 

l. INTRODUCTION 

Our concern, in §§2-4, is with series of the type 
00 2k+l 

(l.lP) RP(z) = L (2~ + l)P 
k=O 

or the type 
00 2k+i 

" k z SP(z) = L..J(-1) (2k + l)P, 
k=O 

where 

(1.3) z E C, lzl $ l, and p = 2 or 3. 

Of particular interest to us is the numerical evaluation of these series in cases 
of slow convergence, i.e., when lzl is close or equal to I. It clearly suffices to 
concentr~te on the first of the two series, RP , since 

(1.4) SP(z) = iRP(-iz). 
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326 WALTER GAUTSCHI 

Furthermore, R,( -z) = -R,(z) and R,(z) = R,(z), so that attention can be 
restricted to the first quadrant of the complex plane. 

Series of the type ( 1.1 ,) , with 

(1.5) z=A, O<A$1, and 
io z=e , aEIR, 

occur in the mathematical treatment of unilateral plate contact problems, and 
their numerical evaluation, in this context, has recently been discussed by K. 
M. Dempsey, D. Liu, and J. P. Dempsey [1]. The method proposed by these 
authors consists in applying Plana's summation formula, which in tum requires 
the numerical evaluation of several definite integrals-for example by Romberg 
integration. 

Here we develop a technique which appears to be considerably simpler. All it 
requires is the application (in the backward direction) of a three-term recurrence 
relation, once a set of numerical constants has been precomputed. Results of 
high accuracy are easily achieved, even for lzl near or equal to I. 

Some of the series (1.1,), (1.2,) with p = 2 or p = 3 can be summed 
explicitly as Fourier series when z is given by the second expression in ( 1.5). 
We thus have 

(1.6) ~cos(2k+ l)a =n(n-21al)f8, 
2 Li ·(2k + 1)2 

k=O 

( 1.63) f: sin(2k + I]a = na(n-lal)/8, 
k=O (2k + 1) 

and analogous formulae for 
00 00 

-n::=;a::=;n [8, (17.2.16)], 

-1l ::::; a ::::; 1l [8, ( 14.2.21 )], 

L(-tl(2k+ lf2 sin(2k+ l)a, L(-l)k(2k+ l)-3 cos(2k+ l)a, 
k=O k=O 

which can be obtained from (1.6) by applying (1.4). When z = 1, the sum of 
( 1.1 ,) is expressible in terms of the Riemann zeta function, 

( 1. 7) 

whereas S2(1) is known as Catalan's constant, and S3(1) = n3 /32. All these 
explicit formulae will be useful for testing purposes. 

In §5 we combine our techniques of §2 with series expansion to deal with the 
more difficult series 

T X b _ ~ 1 cosh(2k + l)x 
(I.S,) ,( ' ) - Li (2k + l)P cosh(2k + l)b 

k=O 

and 

~ I sinh(2k + 1 )x 
( 1.9,) u,(x' b)= Li (2k + 1), cosh(2k + l)b' 

k=O 
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where 

(1.10) 0 :::; x :::; b , b > 0, and p = 2 , 3. 

Both are also of interest in plate contact problems [1]. Here again, we are able to 
sum these series effectively and to high precision, the major (as yet unresolved) 
difficulty occurring when b is very small. 

2. SUMMATION OF RP AND SP, p = 2 AND p = 3 

We begin with an idea used previously in [7, 6), namely to express part of 
each term of the series (not the whole term, as in [7, 6]) as a Laplace transform 
with integer argument. Specifically, 

(2.1) 

where 

(2.2) 

Then 

that is, 

(2.3) 

1 
(k + 1/2)P = (,!? /)(k)' .:? = Laplace transform , 

f(t) = 1 ..P-1 -t/2 
(p-1)!' e . 

00 2k 00 100 .JJ-1 -t/2 z z z 2k -kt ,- e 
RP(z) = 2P L (k + 1/2)P = 2P L z e · (p- 1)' dt 

k=O k=O 0 • 

100 00 

= z "". ( 2 -t)k • .J)-1 -t/2 d 
2P( _ 1)' L..J z e r e t 

p . O k=O 

z 100 1 ..P-1 -t/2 
= 2P( -1)'. 2 -t' e dt, P . o 1-ze 

We distinguish two cases. 

Case 1: z = 1 . In this case, (2.3) takes the form 

(2.4) 1 100 t ..P-2 1/2 RP(1) = 2P( 1)' - 1- • r e dt p- ·O e-1 

and can be evaluated by Gaussian quadrature relative to the weight function 
(cf. [7]) 

(2.5) 
t 

e(t) = -1- on [0, oo] 
e - 1 

("Einstein function"). 

However, there is no real need for this, since by ( l. 7) the sum is expressible in 
terms of the well-tabulated Riemann zeta function [9]. In particular, R2 ( l) = 

2 
1C /8. 
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The more difficult case is 

Case 2: z :f. 1. Here we could proceed similarly as in (2.4) and write 

(2.6) z e - -2 t/2 100 t 1 
RP(z) = 2P(p _ l)! 0 e(t) · e' _ z2 • f e dt. 

Unfortunately, the second factor in the integrand is quite ill-behaved when !zl 
is close to 1, exhibiting a steep boundary layer near t = 0. (Consider, e.g., 
z2 = 1 - '1, 0 < '1 « 1.) Gaussian quadrature, therefore, will no longer be 
effective. 

Instead, we make the change of variable e-1 = r in (2.3) (and then replace 
r again by t ) to obtain 

(2.7) R (z) = 1 [ 1 [ln(l/t}t- 1 dt . 
P 2P(p- l)!z lo .fi z-2 - t 

This expresses RP ( z) as a Stieltjes transform of the weight function 

(2.8) wP(t) = [ln(ljil'-1 on [0, 1]. 

Our assumptions on z are such that the point z -l at which the transform is 
evaluated lies outside of the interval [0 , 1] , 

(2.9) z - 2 E C\[0, 1 ]. 

The integral in (2. 7), therefore, can be evaluated by backward recursion, as is 
discussed in [3, §5]. 

Indeed, if 

(2.10) Yn+ 1 = (z - 2 - an)Yn- PnYn_ 1 , n = 0, 1, 2, ... , 

is the recurrence relation for the orthogonal polynomials {nn(z-2 ; wp)} relative 
to the weight function (2.8), thus, 

(2.11) 

and if we define the sequence {r~~ 1 (z)}~!~ for any integer 11 > 0 by 

[v) 0 ,rvJ (z) - Pn I 1 0 (2.12) rv (z) = , n- 1 - _ 2 [v]( ) , n = 11, 11- , ••• , , , 
z -an- rn Z 

then (cf. [3, equation (5.2) for N = 0]) 

(2.13) 11 wp(t) dt . [v) 
_ 2 = hm r_ 1(z). 

0 Z - l v-oo 

Thus, by (2. 7), 

(2.14) 
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Convergence in (2.13) is faster the further away z - 2 is from the interval [0, 1]. 
The evaluation of r~~1 (z) is quite cheap, once the coefficients an, Pn in 

(2.11) have been precomputed for sufficiently many n . One simply lets v 
increase through a sequence {v;} of integers 0 < v1 < v2 < · · · and stops at 

the smallest i, say i = imin, for which lr~~1(z)- r~t• 1 (z)j :::; ej,l~11 (z)l, where e 

is a preset error tolerance. One then accepts r~i1 (z) with i = imin as the desired 
approximation of r~~l(z) in (2.14). For the two choices of z in (1.5), practical 
guidelines for determining an acceptable value of v (i.e., one for which r~l(z) 
sufficiently approximates r~~1 (z)) will be given in §4. 

The coefficients an, Pn can be computed by known methods, as will be fur
ther discussed in §3. The first 100 coefficients are tabulated in Tables 1 and 2 
of the Appendix for p = 2 and p = 3 to an accuracy of 25 and 20 significant 
decimal digits, respectively. 

The procedure (2.12)-(2.14), in view of ( 1.4), is readily adapted to the series 
s, in (1.2,). Indeed, letting s~1 (z) = -r~1(-iz), one finds 

(2.15) 

where 

(2.16) s~1 (z) = 0, s[v] (z) _ Pn 
n-1 - -2 [v]( ) ' z +an- sn z 

n = v , v - 1 , ... , 1 , · 0. 

Since S,(z) is effectively the Stieltjes transform of w,(·) evaluated at -z-2 , 

the process (2.15), (2.16) converges more rapidly (as v-+ oo) the further away 
- z - 2 is from the interval [0, 1] . In particular, it converges rapidly for z = 1 , 
yielding a fast way of computing Catalan's constant when p = 2. Indeed, taking 
v = 16 in (2.16) produces s~~1 ( 1), hence S2 ( 1), accurately to 25 decimal digits! 

3. GENERATING THE COEFFICIENTS an(w,), Pn(w,) FOR p = 2 AND p = 3 

Consider the weight function 

(3.1) O<t$1, a>-1, p?_2, 

and let 

(3.2) n=0,1,2, ... , 

denote the "modified moments" of w,(·; a) relative to the shifted Legendre 
polynomials P;(t) = Pn(2t- 1). In the case p = 2 these modified moments 
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are explicitly known (cf. [2]): 

1 { 1 n k } m a·2 =-- --+2 
n( ' ) a+ 1 a+ 1 · £; (k +a+ l)(k- a- l) 

(3.3) 
·fr~+1-k 

k=l a+ l +k" 

It is also well known how the modified moments of a weight function w can 
be used to generate the recursion coefficients an(w), Pn(w) of the respective 
orthogonal polynomials { 1t k ( • ; w)} by means of the so-called modified Cheby
shev algorithm [4, §2.4]. This algorithm indeed works particularly well in the 
case of the weight function (3.1) with p = 2, a.= -!, i.e., for w(t) = w2{t) 
(cf. (2.8)), as was demonstrated in [5, Example 5.3]. This, then, is the way we 
computed the quantities an(wP), Pn(wP) for p = 2. Compensating for a loss 
of about four decimal digits, when n runs from 0 to 99, we tabulate the results 
in Table 1 of the Appendix to only 25 decimals (having done the computation 
in 29-decimal arithmetic). 

In order to get the same quantities for p = 3, it suffices to observe that 

ow 
a:(t; a)= -wp+l(t; a), 

and therefore 

{l * {)w {)m 
mn(a;p+1)=- Jo Pn(t) 0:(t;a)dt=- oan(a;p). 

Thus, the required modified moments mn(a; 3) can be obtained by differenti
ating both sides of (3.3) with respect to a (after multiplication by -1). The 
result is 

(3.4) 
mn(a; 3) = 2 

3 { 1 + 2(a + 1) L 
(a+ 1) 1 

+2(a+ 1) 2 2:~ -2(a+ 1)3 L:2}n, 

where 
n k 

Lt = L(k+a+l)(k-a-1)' 
k=l 

(3.5) 
n k 

L 2 = £; (k+a+ 1)2(k-a-1)2 ' 

n=fia+1-k. 
k=l a+ 1 + k 

Putting a = -! in (3.4), and using the resulting quantities as input to the 
modified Chebyshev algorithm, produces the coefficients an(w3), Pn(w3). The 
procedure is somewhat less stable than in the case p = 2 , suffering a loss of 
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about eight to nine decimal digits when applied up to n = 99 . For this reason 
we tabulate an(w3), Pn(w3) in Table 2 of the Appendix to only 20 decimals. 

4. IMPLEMENTATION AND NUMERICAL EXAMPLES 

It would clearly be desirable in our procedure (2.12) to know a priori what 
value to choose for the starting index v , given any z in the first quadrant of 
C and given the required accuracy. The recursion in (2.12) then would need to 
be run through only once, and the iterative procedure suggested in §2 could be 
dispensed with. 

To deal with this problem, we consider only the two cases of practical inter
est stated in ( 1.5). More precisely, we address the following related problem: 
Given v and the desired relative accuracy e , determine the set of values A in 
[0, 1], resp. a in [0, n/2], for which r~l in (2.13) approximates r~~~ within 
a relative error of e . 

As to the values of A, we note that the speed of convergence in (2.13) de
creases .as A increases in [0, I] . The desired set of A-values must thus have 
the form 0 $ A $ A(v, e) $ 1, and the problem is to determine A(v, e). 
We solve this empirically by a bisection procedure: Start with two numbers 
A0, A~ such that A0 $ A(v, e)$ A~, for example, A0 = 0, A~= 1. Hav
ing already obtained A;_1 and A;_1 with A;_1 < A;_1 , test the midpoint 
M = !<A;_ 1 + A;_ 1) to see whether at M the procedure (2.12) yields an ap
proximation r~l with relative error larger or smaller than e. In the former 
case we set A; = A;_ 1 , A; = M, in the latter case A; = M, A; = A;_ 1 • 

We quit this iteration as soon as, say, A; -A; $ t 10-6 and take !<A; +A;) 
to approximate A(v, e). In order to determine the relative errors of r~l, as 
required in this procedure, we approximate r~~~ by r~~~ and, at the same time, 
check to see that r~~J and r~~J agree to within a relative accuracy e f 100 . If 
they do, it is safe to assume that r~~~ can reliably substitute r~~~ in determin
ing whether r~l has relative error > e or < e . If they do not, we print a 
cautionary message, and take A; as a (conservative) estimate from below of 
A(v,e). 

The results of this procedure are summarized in Table 4.1 for both p = 2 
and p = 3. An asterisk indicates a conservative lower estimate of A(v, e) for 
reasons explained above. 

We can see from Table 4.1, for example, that if we are interested in 12-digit 
accuracy and only in positive values of A satisfying A $ .99, then we can 
safely use v = 50 in (2.12) when p = 2, and v = 40 when p = 3. On the 
other hand, the choice v = 1 0 for the same range of A-values, always gives at 
least four correct decimal digits. 

Interestingly, the procedure (2.12), (2.13) seems to converge even for A= 1, 
albeit slowly, but there is no theoretical justification for it (to our knowledge). 
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TABLE 4.1 
Values of A(v, e), e = ! 10-acc, such that r~l approximates 

r~~~ to ace digits for all A with 0 :SA :S A(v, e) 

v ace p=2 p=3 v ace p=2 p=3 v ace p=2 p=3 
10 4 .9902 1.0000 40 4 .9999 1.0000 70 4 1.0000 1.0000 

8 .9313 .9S92 8 .9962 .9993 8 .9989 1.0000 
12 .8422 .8732 12 .9889 .9936 12 .9961* .9980* 
16 .7384 .7688 16 .9786 .9842 16 .9922* .99SS 
20 .632S .6603 20 .96S3 .9717 20 .9887 .9914 

20 4 .998S 1.0000 so 4 1.0000 1.0000 80 4 1.0000 1.0000 
8 .9827 .9931 8 .9977 .9998 8 .9990* 1.0000 

12 .9SS1 .968S 12 .9931 .9963 12 .9961* .9980* 
16 .9178 .9330 16 .9864 .9903 16 .9922* .9961* 
20 .8729 .8891 20 .9777 .9823 20 .9914 .9922* 

30 4 .9996 1.0000 60 4 1.0000 1.0000 90 4 1.0000 1.0000 
8 .9927 .9980 8 .998S 1.0000 8 .9990* 1.0000 

12 .9800 .9873 12 .99S3 .9976 12 .9961. .9980* 
16 .9620 .9708 16 .9906 .9936 16 .9922* .9961* 
20 .939S .9492 20 .984S .9880 20 .9922* .9922* 

For the second choice z = eia, 0 :S a :S n/2, in (1.5), it was observed 
empirically that the speed of convergence in (2.13) decreases-slowly at first, 
and then faster-as a decreases from n/2 to 0. Therefore, a similar procedure 
as above for A-values can be applied to determine the number w(v, e) with 
the property that for all a satisfying 0 :S ro(v, e)n/2 :Sa :S n/2, the procedure 
(2.12) produces r~f with (at least approximately) l(r~l- r~~1 )/r~~1 1 :S e. The 
results are displayed in Table 4.2. 

TABLE 4.2 
Values of w(v, e), e = ! 10-acc, such that r~l approximates 

r~1 to ace digits for all a with w(v, e)n/2 :Sa :S n/2 

v ace p=2 p=3 v ace p=2 p=3 v ace p=2 p=3 
10 4 .0159 0.0000 40 4 .0002 0.0000 70 4 0.0000 0.0000 

8 .1066 .0690 8 .OOS4 .0013 8 .0020* 0.0000 
12 .2864 .2313 12 .01S2 .0096 12 .0046 .002S 
16 .6789 .SS16 16 .0294 .0226 16 .0092 .0078* 
20 1.0000* l.OOoo· 20 .0482 .0404 20 .01S6* .0120 

20 4 .0026 0.0000 so 4 .0001 0.0000 80 4 0.0000 0.0000 
8 .0247 .0118 8 .0033 .ooos 8 .0020* 0.0000 

12 .0649 .0481 12 .009S .0056 12 .0039* .0020~ 
16 .12S1 .1045 16 .0185 .0138 16 .0078* .0078* 
20 .2095 .1844 20 .0304 .0249 20 .0156* .0089* 

30 4 .0007 0.0000 60 4 0.0000 0.0000 90 4 0.0000 0.0000 
8 .0103 .0036 8 .0022 .0002 8 .0020* 0.0000 

12 .0278 .0190 12 .0064 .0036 12 .0039* .0020* 
16 .0535 .0428 16 .0126 .0091 16 .0078* .0078* 
20 .0878 .0754 20 .0208 .0168 20 .0156* .0078* 
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TABLE 4.3 
Results for Example 1 

A p=2p=3 R2(A) R3(A) 

.8 21 16 .8772880939214647253008518 .82248858052014232615 

.9 30 23 1.025938951111110172771877 .93414857586540185586 

.95 43 31 1.114099577929052481501213 .99191543992242877550 

.99 95 65 1.202075664776857538062901 1.0395722318736413458 

.999 - 1.2293981974 1.0505677498304 
1.000 - 1.2336 1.051799789 

Example 1. RP(A) for A = .8, .9, .95, .99, .999, 1.000, and p = 2, 3. 

We applied the procedure (2.12) with v = 1, 2, 3, ... , terminating it for 
the first value of v, v = vmin, for which j(r~l- r~1- 11 )fr~l1 S e, where e = 
! 10-25 for p = 2, and e = ! 10-20 for p = 3. Table 4.3 shows the values of 
vmin along with 25-, resp. 20-digit results for RP(A), p = 2, 3. 

For A ~ . 999 , full accuracy could not be achieved with v S 99 , only the 
partially accurate results shown in Table 4.3. 

Example 2. RP(e1a) for a= (JJ7t/2, (JJ = .2, .1, .05, .01, .001, 0.000, and 
p=2, 3. 

The same experiment as in Example 1 was run in this case, with the results 
being shown in Table 4.4. The first entry under each heading Rp(e1(J)n/2) rep
resents the real part, the second the imaginary part. The results for Re R2 , 
Im R3 were checked against formulas ( 1.62) and ( 1.63), respectively, and re
vealed agreement to all digits shown. 

TABLE 4.4 
Results for Example 2 

w p=2p=3 R2(eirJ11r/2)) R3(eiw1112) 

.2 27 21 .9869604401089358618834491 .96915102126251836837 
.4474022700859631972532577 .34882061265337297697 

.I 37 28 1.110330495122552844618880 1.0268555576593748316 
.2783029792855803918158969 .18409976778928018229 

.05 51 38 1.172015522629361335986596 1.0444944153967221625 
.1663915239689736941195221 .09447224926028851460 

.01 76 1.2213635446348081290808 1.0514082919738793229 
.04592009281744058404956 .01928202831056145067 

.001 - 1.232466849 1.051794454929 
.006400460 .001936923346 

0.000 - 1.2337 1.051799789 
0. 0. 
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5. SUMMATION OF TP AND UP, p = 2 AND p = 3 

We first take up the series ( 1.8P) . We expand the ratio of hyperbolic cosines 
as follows: 

cosh(2k + 1 )x = f:c _1 )n { e -(2k+1)[(2n+1lb-xJ + e -(2k+1)[(2n+1)b+xl}. 

cosh(2k + 1 )b n=O 

Then, upon using again the Laplace transform technique (2.1 ), (2.2), and in
terchanging the summations over k and n , one obtains after an elementary 
calculation 

( ) ( b) 1 ~ n (2n+1)b 
5.1 T,x, = 2,( _ 1)!L.)-l)e [9'n(-x)+9'n(x)], 

P n=O 

where 

(5.2) 
_ s 11 w,(t) dt 

9'n(s)- e 2[(2n+1)b+s) ' o e - t 
-b $ s $b. 

The integral in (5.2) again is a Stieltjes transfonil of the weight function (2.8), 
this time evaluated at u = exp(2[(2n + 1)b +s]). Clearly, u > 1, unless n = 0 
and s = -b, in which case, by (2. 7) and ( l. 7), 

-b {1 w,(t) P -b 
(5.3) q~0(-b) = e lo T=t dt = (2 - 1)(p- 1)!{(p)e . 

The integral in (5.2), hence both 9'n(x) and 9'n(-x) in (5.1) (the latter if 
n > 0 or x < b) , can be computed, as before, by the recursive procedure 
(2.12), (2.13) (where z-2 is to be replaced by u). For large n, this procedure 
converges almost instantaneously. 

The series in (5.1), on the other hand, converges geometrically, with ratio 
exp( -2b). This is easily seen by noting that its general term (including the fac
tor in front of the series) behaves like 2( -1 )ncoshx · e-2nb as n --+ oo. Thus, 
convergence is quite satisfactory, unless b is small, the speed of convergence 
being independent of x . Table 5.1 shows the number of terms, N, required 

b 
.05 

.. 10 

TABLE 5.1 
Number of terms required in the series of ( 5.1) to achieve an 
accuracy of ace significant decimal digits 

ace p=2 p=3 b ace p=2 p=3 b ace p=2 p=3 
4 104 105 .20 4 26 26 .80 4 7 7 
8 196 198 8 49 49 8 13 13 

12 288 290 12 72 72 12 18 18 
16 380 382 16 95 96 16 24 24 
20 473 474 20 118 119 20 30 30 
4 52 53 .40 4 13 13 1.60 4 4 4 
8 98 99 8 25 25 8 6 6 

12 144 145 12 36 36 12 9 9 
16 190 191 16 48 48 16 12 12 
20 236 237 20 59 59 20 15 15 
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in (5.1) to achieve various accuracies. As mentioned, N does not depend on 
x . It can be seen that the convergence characteristics of the series are virtually 
the same for p = 2 and p = 3 . (When x is very close to b , the backward 
recursion (2.12) with v:::; 99 for evaluating q~0(-x) in (5.1) may provide only 
limited accuracy; cf. Example 1.) 

For the series (1.9P) one finds similarly 

(5.4) UP(x' b)= 2P(p 1_ 1)! ~( -1)ne(2n+1)b[91n( -x)- 9'n(x)]' 

with 91n(·) defined in (5.2); the convergence behavior, when x > 0, is similar 
to the one shown in Table 5.1 for the series (5.1). 

Series of the types (1.8P), (l.9P), which include alternating sign factors, can 
be treated similarly. 

APPENDIX 

Recursion coefficients an, Pn for the (monic) polynomials {nk(·; w2)} and 
{nk(·; w3)} orthogonal on [0, 1] with respect to the weight functions w2(t) = 
t- 1/ 2 1n(1/t) and w3(t) = C 112[ln(1/t)]2 . 

TABLE 1 
Recursion coefficients for the polynomials { nk ( ·; w2)} 

n alpha (n) beta (n) 

0 0.11111111111111111111111110+00 0.40000000000000000000000000+01 
1 0.46614836410754778101716880+00 0.27654320987654320987654320-01 
2 0.48806905819764265617396540+00 0.55342926841707111832654760-01 
j 0.49387434192080573312748220+00 0.59405262984888651830670450-01 
4 0.49626395786134592637002770+00 0.60777146066747328938272870-01 
5 0.49748051363454704994043270+00 0.61403711431264107469512990-01 
6 0.49818464245393947128190880+00 0.61741676592022707968813790-01 
7 0.49862903362598437705294480+00 0.61944536279147177113286880-01 
8 0.49892760828492354155461950+00 0.62075765809336261443409400-01 
9 0.49913795646648500479808020+00 0.62165502445884118610013400-01 

10 0.49929176974499659259765740+00 0.62229551936309398534370940-01 
11 0.49940767088590894835203750+00 0.62276853260785448991122810-01 
12 0.49949719160946385662422020+00 0.62312770828774884775638860-01 
13 0.49956778517513642661565990+00 0.62340681999294532513398640-01 
14 0.49962444394626209576455660+00 0.62362798995205712980762830-01 
15 0.49967061459798408085488420+00 0.62380619889958642133257180-01 
16 0.49970873924645614917289150+00 0.62395188347252497533381380-01 
17 0.49974058765317366261908720+00 0.62407249483560017106891110-01 
18 0.49976746790109466064172450+00 0.62417346753844348994681910-01 
19 0.49979036384406940474666120+00 0.62425884050278824859136150-01 
20 0.49981002705096913819591060+00 0.62433166588468583056150250-01 
21 0.49982703969019018110531160+00 0.62439428474877549860531150-01 
22 0.49984185840112695470616280+00 0.62444851692092106639680730-01 
23 0·.49985484545257844247060200+00 0.624495794245242235343769~0-01 
24 0.49986629123242189438015920+00 0.62453725573422426004572260-01 
25 0.49987643072044243974059480+00 0.62457381657371861246587780-01 
26 0.49988545571692466694490190+00 0.62460621888084789791669570-01 
27 0.49989352403282268865915720+00 0.62463506952697074534795680-01 
28 0.49990076647503651079180770+00 0.62466086865952047985422400-01 
29 0.49990729221153824306286710+00 0.62468403144728664686728160-01 
30 0.49991319293218225649394690+00 0.62470490482828369678795670-01 
31 0.49991854610466230691806920+00 0.62472378053067142820290630-01 
32 0.49992341754380909657649870+00 0.6247(090528510611614299770-01 
33 0.49992786345494608768660860+00 0.62475648889997358363554210-01 
34 0.49993193207089328386338690+00 0.6247707106956441B23595053D-Ol 
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TABLE 1 (continued) 

n alpha(n) 

35 0.49993566497245406232743870+00 
36 0.49993909816047174225911360+00 
37 0.49994226293149237049864770+00 
38 0.49994518659711757542975720+00 
39 0.49994789307815401140731280+00 
40 0.49995040339786883924638830+00 
41 0.49995273609347511826150160+00 
42 0.49995490756098630051579170+00 
43 0.49995693234549617386198330+00 
44 0.49995882338654000220856400+00 
45 0.49996059222631174261703180+00 
46 0.49996224918702990583070700+00 
47 0.49996380352256988086167250+00 
48 0.49996526354854458006619690+00 
49 0.49996663675426574349517600+00 
50 0.49996792989941510586974580+00 
51 0.49996914909776702528955350+00 
52 0.49997029988990820961917610+00 
53 0.49997138730657725491594920+00 
54 0.49997241592398227492928210+00 
55 C.49997338991223750466566490+00 
56 0.49997431307788035905095070+00 
57 0.49997518890128183973639030+00 
58 0.49997602056963968446411640+00 
59 0.49997681100614066062366410+00 
60 0.49997756289579223287645170+00 
61 0.49997827870835151002620050+00 
62 0.49997896071871848931336890+00 
63 0.49997961102510920793750520+00 
64 0.49998023156528088329313350+00 
65 0.49998082413104416628476110+00 
66 0.49998139038126617097765000+00 
67 0.49998193185354109268926700+00 
68 0.49998244997468225298481290+00 
69 0.49998294607016970662732910+00 
70 0.49998342137267060738312020+00 
71 0.49998387702973493562844620+00 
72 0.49998431411075658897628900+00 
73 0.49998473361327893148989470+00 
74 0.49998513646871444389858050+00 
75 0.49998552354753989555587000+00 
76 0.49998589566402131313076270+00 
77 0.49998625358051677652882820+00 
78 0.49998659801139962346524640+00 
79 0.49998692962663987058905350+00 
80 0.49998724905507747365108150+00 
81 0.49998755688741737239537490+00 
82 0.49998785367897303053181260+00 
83 0.49998813995218232968472900+00 
84 0.49998841619891715908902880+00 
85 0.49998868288260581739140920+00 
86 0.49998894044018537244231550+00 
87 0.49998918928389937766567310+00 
88 0.49998942980295479197062460+00 
89 0.49998966236505057038048590+00 
90 0.49998988731778916389181310+00 
91 0.49999010498998107152682920+00 
92 0.49999031569285160940919280+00 
93 0.49999051972115818727787720+00 
94 0.49999071735422560018384380+00 
95 0.49999090885690614170861970+00 
96 0.49999109448047071571510210+00 
97 0.49999127446343655832302730+00 
98 0.49999144903233667340357460+00 
99 0.49999161840243562716707900+00 

beta(n) 

0.62478372466799400949739840-01 
0.62479566366005707088442480-01 
0.62480664275367942846832460-01 
0.62481676204346723780222450-01 
0.62482610891830340060054430-01 
0.62483475994783822493212880-01 
0.62484278245021161187513160-01 
0.62485023580109695368168720-01 
0.62485717253170974603860490-01 
0.62486363925377658340444820-01 
0.62486967744193529050156970-01 
0.62487532409813195044691080-01 
0.62488061231792005965147220-01 
0.62488557177486847424336190-01 
0.62489022913633424970980430-01 
0.62489460842149083321263850-01 
0.62489873131059629430074730-01 
0.62490261741294392844848990-01 
0.62490628449968384339076960-01 
0.62490974870668072753981020-01 
0.62491302471173420879341720-01 
0.62491612588979806010242960-01 
0.62491906444926453024891310-01 
0.62492185155190765363169240-01 
0.62492449741868646704979040-01 
0.62492701142328116447748200-01 
0.62492940217496070868440320-01 
0.62493167759214988509543610-01 
0.62493384496786960159997890-01 
0.62493591102806020155188000-01 
0.62493788198365859759996310-01 
0.62493976357718199841148000-01 
0.62494156112447047498505120-01 
0.62494327955215478293573300-01 
0.62494492343134239328565330-01 
0.62494649700795165509036310-01 
0.62494800423006981141695780-01 
0.62494944877266387481900900-01 
0.62495083405993301774307460-01 
0.62495216328555620635385420-01 
0.62495343943105851189052470-01 
0.62495466528249320491956040-01 
0.62495584344561381116599000-01 
0.62495697635969030566714540-01 
0.62495806631010613961025700-01 
0.62495911543985748666603890-01 
0.62496012576006266900662000-01 
0.62496109915957792638830890-01 
0.62496203741380530970683220-01 
0.62496294219276932887863060-01 
0.62496381506853090526296560-01 
0.62496465752200003462669330-01 
0.62496547094920224011749820-01 
0.62496625666704828408756540-01 
0.62496701591865162479387640-01 
0.62496774987823367258530750-01 
0.62496845965565295379479030-01 
0.62496914630059077143233140-01 
0.62496981080642280958818350-01 
0.62497045411380331927055380-01 
0.62497107711398600881171530-01 
0.62497168065190350835475360-01 
0.62497226552902525579844230-01 
0.62497283250601183504392530-01 
0.6249733821 518216369371570-01 
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TABLE 2 
Recursion coefficients for the polynomials {nk(·; w3)} 

n a1pha(n) beta(n) 

0 0.370370370370370370370-01 0.160000000000000000000+02 
1 0.358112886697830609170+00 0.662825788751714677640-02 
2 0.442935967643460203110+00 0.411545510173613954150-01 
3 0.469253333226302840960+00 0.517417820039360910090-01 
4 0.480779762870002836700+00 0.560648457548657538290-01 
5 0.486847406382403431110+00 0.582285781577404704600-01 
6 0.4~0432919876408696510+00 0.594613847645483857980-01 
7 0.492727682372104546090+00 0.602290808549112994510-01 
8 0.494284899033476845090+00 0.607390668034939985970-01 
9 0.495390088046689431720+00 0.610949067891826976750-01 

10 0.496202794123509640030+00 0.613529556412366784990-01 
11 0.496817876136741964930+00 0.615459983758887488860-01 
12 0.497294618235115543340+00 0.616941559072299414300-01 
13 0.497671622987665810340+00 0.618103297368858466140-01 
14 0.497974904890962502540+00 0.619031001054282542120-01 
15 0.498222514902624939420+00 0.619783527344674301330-01 
16 0.498427297203095100510+00 0.620402336745231267650-01 
17 0.498598593288236782900+00 0.620917315961383768340-01 
18 0.498743329019634381460+00 0.621350448107383080680-01 
19 0.498866727424028632500+00 0.621718193770722606900-01 
20 0.498972787596666046840+00 0.622033075515687583770-01 
21 0.499064613497687283170+00 0.622304756385494533170-01 
22 0.499144644109496865410+00 0.622540788962099098820-01 
23 0.499214817385640716890+00 0.622747145150633869350-01 
24 0.499276688899653102930+00 0.622928597083546061010-01 
25 0.499331518956049000980+00 0.623088995102263471070-01 
26 0.499380337394014142230+00 0.623231473410701489650-01 
27 0.499423992382207004380+00 0.623358604132496548580-01 
28 0.499463187570588576790+00 0.623472514051112803440-01 
29 0.499498510669808821480+00 0.623574974015782259180-01 
30 0.499530455646725006750+00 0.623667468089566198760-01 
31 0.499559440115447732390+00 0.623751247519882283200-01 
32 0.499585819076886641290+00 0.623827373222322127450-01 
33 0.499609895857545083910+00 0.623896749488820168210-01 
34 0.499631930881624183080+00 0.623960150932135546910-01 
35 0.499652148753445911670+00 0.624018244174209306730-01 
36 0.499670744012219954610+00 0.624071605418236686150-01 
37 0.499687885836189202780+00 0.624120734773589581510-01 
38 0.499703721909805403850+00 0.624166068001608116160-01 
39 0.499718381619917174040+00 0.624207986199570451310-01 
40 0.499731978710815415060+00 0.624246823826290970210-01 
41 0.499744613500379737690+00 0.624282875386114752840-01 
42 0.499756374738337099100+00 0.624316401021602457720-01 
43 0.499767341171200302620+00 0.624347631213870568410-01 
44 0.499777582865637353920+00 0.624376770749656935410-01 
45 0.499787162331971908130+00 0.624404002082980181870-01 
46 0.499796135481587444300+00 0.624429488194714566450-01 
47 0.499804552445720202710+00 0.624453375033980931150-01 
48 0.499812458278112671190+00 0.624475793609806117750-01 
49 0.499819893559982034280+00 0.624496861789151789220-01 
50 0.499826894922523121770+00 0.624516685847489550260-01 
51 0.499833495499548554050+00 0.624535361810088022230-01 
52 0.499839725320742524620+00 0.624552976615681244520-01 
53 0.499845611654269676450+00 0.624569609128897188160-01 
54 0.499851179306059043480+00 0.624585331023498630620-01 
55 0.499856450881913835630+00 0.624600207554936390850-01 
56 0.499861447017632544120+00 0.624614298237787226430-01 
57 0.499866186581526993410+00 0.624627657441226858310-01 
58 0.499870686853057895390+00 0.624640334913678107090-01 
59 0.499874963680753602530+00 0.624652376246099430640-01 
60 0.499879031622113345700+00 0.624663823281979573920-01 
61 0.499882904067806320290+00 0.624674714480930668860-01 
62 0.499886593352149616180+00 0.624685085241785382880-01 
63 0.499890110851570649720+00 0.624694968190271456770-01 
64 0.499893467012524858140+00 0.624704393435633102770-01 
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TABLE 2 (continued) 

n alpha(n) beta(n) 

65 0.499896671730139923940+00 0.624713388799971375740-01 
66 0.499899733818687923640+00 0.624721980023568406820-01 
67 0.499902661674841776510+00. 0.624730190949026725520-01 
68 0.499905463034548261120+00 0.624738043686685365200-01 
69 0.499908145084243401150+00 0.624745558763457047320-01 
70 0.499910714507044476750+00 0.624752755256958452150-01 
71 0.499913177524474026140+00 0.624759650916571106170-01 
72 0.499915539934203064820+00 0.624766262272868129200-01 
73 0.499917807144241777210+00 0.624772604736667184450-01 
74 0;499919984203954788970+00 0.624778692688818438230-01 
75 0.499922075832233680180+00 0.624784539561704775860-01 
76 0.499924086443120697500+00 0.624790157913317076900-01 
77 0.499926020169143861250+00 0.624795559494667608870-01 
78 0.499927880882594154860+00 0.624800755311217502930-01 
79 0.499929672214949648530+00 0.624805755678918086250-01 
80 0.499931397574628748850+00 0.624810570275399079590-01 
81 0.499933060163234857190+00 0.624815208186778059120-01 
82 0.499934662990437199360+00 0.624819677950514046220-01 
83 0.499936208887617145580+00 0.624823987594682698830-01 
84 0.499937700520395705660+00 0.624828144674010537930-01 
85 0.499939140400145828630+00 0.624832156302970266010-01 
86 0.499940530894582460730+00 0.624836029186207931010-01 
87 0.499941874237513848430+00 0.624839769646544949410-01 
88 0.499943172537829165150+00 0.624843383650773384090-01 
89 0.499944427787790063080+00 0.624846876833440994600-01 
90 0.499945641870687092490+00 0.624850254518803107900-01 
91 0.499946816567915993010+00 0.624853521741101007320-01 
92 0.499947953565523559250+00 0.624856683263311056500-01 
93 0.499949054460268043200+00 0.624859743594494943230-01 
94 0.499950120765234812620+00 0.624862707005869054790-01 
95 0.499951153915044181980+00 0.624865577545699914120-01 
96 0.499952155270684920310+00 0.624868359053122668170-01 
97 0.499953126124003875010+00 0.624871055170970697320-01 
98 0.499954067701879393890+00 0.624873669357696395400-01 
99 0.499954981170103745560+00 0.624876204898455953260-01 
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Chapter 25. Contour Plots of Analytic 
Functions 

W. Gautschi and J. Waldvogel 

25.1 Introduction 

There are two easy ways in MATLAB to construct contour plots of analytic 
functions, i.e., lines of constant modulus and constant phase. One is to use the 
MATLAB contour command for functions of two variables, another to solve the 
differential equations satisfied by the contour lines. This is illustrated here for 
the function /(z) = e11(z), where 

z2 z" 
e (z) = 1 + z + - + · · · +-

n 2! n! 
(25.1) 

is the nth partial sum of the exponential series. The lines of constant modu
lus 1 of en are of interest in the numerical solution of ordinary differential equa
tions, where they delineate regions of absolute stability for the Taylor expansion 
method of order nand also for any n-stage explicit Runge-Kutta method of or
der n, 1 ~ n ~ 4 (cf. [4, §9.3.2]). 

25.2 Contour Plots by the contour Command 

Let f be analytic and /(z) =rei"'. We may consider the modulus rasa function 
of two variables x, y, where z = x + iy; similarly for the phase I{J, -11" < IP $ 11". 

Hence, we can apply the MATLAB command contour to r·and t.p to obtain the 
lines of constant modulus and phase. 

In the MATLAB program below, the set of all x- andy-values is collected 
(in true MATLAB spirit) in a matrix a, which is operated upon to compute the 
desired values of r and t.p for f = en as input matrices to the routine contour. 

The program begins with the definitions of the mesh h and the number nmax 
· of contour plots to be generated. The vector bounds contains common lower and 
upper bounds for the x- and y-coordinates applicable for all plots. The bounds 
used here have been chosen to accommodate contour plots of the first four 
exponential sums. Then the contour levels vabsO and vangO for the modulus 
and phase of /(z) are defined. The last preparatory step is generating the 
vectors x and y containing the discrete x- and y-values to be used in the matrix a 
of grid points. In the lo~p over n the values f of en on the entire grid are 
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generated by almost the same statements that would evaluate en at a single 
point, where t stands for an individual term of the series (25.1). The only 
difference is the statement t=t . *a/n, in which ·the operation symbol . * invokes 
the element-by-element product of the matrices t and a. The last line of the 
program (here turned off by the comment sign %) generates the encapsulated 
postscript file fign. eps of figure (n), ready to be printed or incorporated into 
a text file. 

7. Contour plots of the first nmax exponential sums (Figure 1) 
Y. 
>> h • 1/64; nmax = 4; bounds= [-3.25 .75 -3.375 3.375]; 
>> vabsO = [0:.1:1]; vangO • [-.875:.125:1]*Pii 
>> x = bounds(1):h:bounds(2); y•bounds(3):h:bounds(4); 
>>a= ones(size(y'))•x + i•y'•ones(size(x)); 
7. Next line: a shorter vay of generating a (more memory!) 
>> Y. [xx,yy]=meshgrid(x,y); a=xx+i•yy; 
>> t. • ones(size(a)); fat; 
>> for n • 1: nmax 
>> if n <= 2, vabs • vabsO; vang = vangO; 
>> elseif n == 3, vabs = [vabsO .47140452]; vang = vangO; 
>> else vabs = [vabsO .58882535 .27039477]; 
>> vang = [vangO 1.48185376 -1.48185376]; 
>> end; 
>> t = t.•a/n; f ~ f + t; 
>> figure(n); elf; hold on; 
>> ~is(bounds); axis image; 
>> contour(x, y, abs{f), vabs); 
>> contour(x, y, angle(f), vang); 
» end; 
>> Y. figure(n); print -deps fign; 

The results for n = 1 : 1 : 41 are shown in the plots below. Clearly visible are 
the n zeros of en from which emanate the lines of constant phase. Near these 
zeros, the lines of constant modulus become circle-like with radii tending to 0 
as the zeros are approached. The contour lines are for r = .1 : .1 : 1 and 
tn = - I1l' . !11' • 11' .., s ·s · · . 

At points Zo where e~(zo) = en-t(Zo) = 0, n 2: 2, two lines of constant 
modulus intersect (cf. §3.1 below). The respective r-values are r = len(.zo)l. or 
r = l.zol" /n!, since 

zn 
en(z) = en-t(z) + 1· (25.2) n. 

These critical lines are also included in the plots {see the if statement of the 
program). When n = 2, they go through Zo = -1, where r = i• while for n = 3 
and n = 4, one has to 8 decimal digits: z0 = -1 ± i, r = /2/3 = .47140452. 
and Zo = -.70196418 ± 1.80733949i, r = (1.93887332)4/24 = .58882535, Zo = 
-1.59607164, r = .27039477, respectively. 

1This MATLAB notation stands for n = 1, 2, 3, 4. 
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FrauR.E 25.1. 
Contour Plots of tbe First 4 &ponen~W Sllll18 

-2 -1 0 -3 -2 -1 0 

-3 -2 -1 0 -3 -2 -1 0 
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What's good for the r-lines is good for the· <p-line8i ·The singular points for 
them are also the zeros zo of e~ (cf. §3.2), to which there correspond rp-values 
defined by en(Zo)/le.a(Zo)l = (Zo/lzol)n = ei"'~ i.e., I{J = narg~. Thus, for n = 2, 
we have I{J = 0 (mod 211'"), whereas for n = 3 we get rp = ±i corresponding to 
Zo = -1 ± i, respectively. All three of these <p-values are included among the 
values already listed above. For n = 4, the two complex values of Zo shown in 
the previous paragraph yield rp = 4argZo = ±1.48185376 (mod 21r), and the 
real value of Zo yields rp = 0. These critical <p-lines are also shown in the plots 
in Figure 25.1 · 

The figure was generated by means of the step size b=1/64 in order to obtain 
a good resolution, even for the "branch cuts" corresponding to I angle(f) I =pi. 
The choice b=l/32 is a good compromise, whereas .h=l/16 is very fast while 
still producing satisfactory plots. 

25.3 Differential Equations 

For an analytic function f, let 

w = f(z), w =rei"', z = x + iy. 

25.3.1 Contour Lines r = const. 

(25.3) 

To describe the lines r = const, it is natural to take. rp as independent variable. 
Differentiating 

f(z(rp)) =rei"', r = const, 

with respect to rp then gives f'(z)~; = irei"' = if(z), that is, 

dz . ( ) 
drp=tqz, where 

/(z) 
q(z) = f'(z) · 

With s the arc length, one has 

: = (:)' + (!)' = /:;/ = jq(z)j, 

so that 
dz dz drp . q(z) 
-=--=t--. 
ds drp ds lq(z)l 

Written as a system of differential equations, this is 

:=-1m {,:~:~I }• 
~~ = Re {I:~:~ I }• 

z = x+iy. 

(25.4) 

(25.5) 

(25.6) 

(25.1) 
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If we are interested in a. contour line crossing tbe real axis, we must find a.n 
initial point x(O) =- x,., y(O) = 0 for (25.7) with real x,. such tba.t /(zr) = r 
(assuming /(z) real for real x). In the case /(z) = e..(:t), this is easy if r ~ 1, 
since e..(O) = 1 and e11 (:t) monotonically increases for x ~ 0. Tbere iB thus a. 

. unique x,. ~ 0 such tbat e,.(xr) = r. U 0 < r < I, this is still possible when n 
is odd. Then, ~(x) = e,._1(x) > 0, since all zeros of e..., when m is even, are 
known to be complex [3J (d. also [1]). Thus, en monotonically increases from 
-oo to +oo as % increases from -oo to +oo, and there is a unique Xr < 0 
such that en(Xr) = r. When n is even, we b.ave e..(:t) > 0 for all real x, 
and e',. = e..-t vanishes at exactly one point z.o. < 0, where en has a minimum 
(cf. [2]). Owing to (25.2) and en-t(Zo) = 0, we have en(xo) = ~/n!, and there 
is a solution x,. < 0 of e,.(x,.) = r if and only if r ~ 3:Qjn!. For smaller positive 
values of r, one must find a complex initial point x(O), 11(0) > 0 near one of the 
complex zeros of e,.. 

The point zo where f'(zo) = 0 is a singular point of (25.7), a point where 
two r-1inea intersect at a right a.ogle. This requires special care to get the 
integration of (25.7) start-e<f in all four directionB. The initial point, of course, 
iB Zo, that is, :t (0) = Re zo. y(O) = Im zo. What needs some analysis is the value 
of the right-hand side of (25.7) at zo. Let. h(z) = (z- Zo) q(z); then h iB smootb 
near Zo and has the Taylor expansion 

/o + l(z- zo)2 /~' + ... 
h(z) == ~~~ 21 ( H"' ' o + 2: z- zo o + · · · 

where / 0 = f(z.o), etc. (we asswne / 0 i- 0 and n; i- 0). Letting 

z-zo i8 1 1 . I I = e I --'tf < 8 ~ -27r' h(z.o)/lh(zo)l = ew, -7r < w ~ 7r, z-zo .2 

(being mindful that to ea.eb 0 there is a 0 + 'l'r corresponding to tbe backward 
continuation of tbe Line), we then have 

q(z) _ lz- .zol h(z) i(w-IJo) 

lq(z) I - z- Zo lh(z)l -4 e . as z -4 Zo, 

where 80 = Jim 6 -ua 8. [t remains to determine 00 • 

Along an r-line through zo, we bave 

r2 = l/(z)l2 =I/o+ Hz- z.o) 2
/; + · · · 1

2 

= l/ol2 + Re[(z- zo)2 /~'To)+ O(lz- .zol3
). 
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hence, as z-+ zo, 

Therefore, 
Re(/~fo) 

tan 2Bo = Im{f~' /o). (25.8) 

There are exactly two solutions in -i1l' < 80 :5l11", which differ by !1r, confirm
ing the orthogonality of the two r-Unes through zo. 

Note that in the case f(z) = en(z), we have /'(z) = en-t(z), so that zo is a 
zero of en-t· This is clearly visible in the plots of §2. Furthermore, / 0 = en(Zo), 
/~ = en-2 (z0) if n ~ 2, so that (25.2) with z = Zo, once applied as is, and 
once with n replaced by n -1, gives /o = z0fn!, /~ = -z:-• /(n- 1)!; and the 
equation for 80 reduces to 

Rezo 
tan2Bo = --- (/=en)· 

Imzo 

25.3.2 Contour Lines cp = const. 

For the lines <p = const, we take r as the independent variable and, by differen
tiating 

/(z(r)) = rei'P, <p = const, 

with respect .tor, obtain 
dz ei"' 
dr = /'(z) · 

In terms of the arc length s, we now have 

so that 
dz dz dr iv> 1/'(z)l 
-=--=e --
ds dr ds f'(z) ' 

or, written as a system of differential equations, 

dx = Re {ei"' 1/'(z)l} 
ds /'(z) ' 

z = x+iy. 

dy = 1 { iv> 1/'(z)l} 
ds m e /'(z) ' 

The singular point of (25.9) is again z0 , a zero off'. At this point, 

fo _ iv> 

1/ol-e ' -11" < 1/) $ 11", 

(25.9) 
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which determines VJ. The limit of Jf'(z)J/ f'(z) as z -? Zo may b~ determined 
by a procedure similar to the one in §3.1. Instead, we directly use the Taylor 
series off in Zo in order to study the <p-lines (and the r-lines as well) near Zo 
with f'(.zo) = 0. Let z = z0 +(,where (is a complex increment, and let 

h: := j<kl(.zo), k 2: 0, fo :f:. 0, It = 0, h :f:. 0, (25.10) 

be the derivatives of f at Zo' Then the Taylor series is 

(2 (3 
!(Zo + () = fo + h 21 + h 31 + · · · · (25.11) 

Next, we observe that by defining w = fo eu in (25.3), i.e., by putting 

f(zo + () = f(zo) eu, (25.12) 

the r-lines through Zo are given by the values of ( corresponding to purely 
imaginary values u = it,. whereas the cp-lines through Zo are given by u E R. 
The point Zo itself corresponds to ( = u = 0. We therefore need to solve Equ. 
(25.12), with f(Zo + () substituted from (25.11), for (, which is a typical task 
for MAPLE. 

In the program below2 the series (25.11) and the equation (25.12) are de
noted by s and eq, respectively. The solve command automatically expands 
eu in a Taylor series and solves the equation by means of a series progressing in 
appropriate po\vers of u (here half-integer powers). As expected, two solutions 
corresponding to the two possible values of the square root are found. Only the 
first solution zetO (1] is processed further: first by substituting the abbrevia
tions fk defined in Equ. (25.10), then by introducing the variable v according 
to 

or ( 2uf0)i v= -- . 
h 

(25.13) 

The symbols D(f) and (DGCik) (f) stand for the derivative off and the kth 
derivative of j, respectively. The call to the function map causes the operation 
defined by its first argument, here the simplification of the radicals, to be applied 
to each term of the expression defined by the second argument. Finally, the call 
to series causes the 0-term to be simplified. 

> N := 5: Order :• N: 
> s :• series(f(zO + dz), dz): 
> sO :• subs(D(f)(zO) • 0, s); 

1 1 1 
sO := f(zO) + - (D<2))(J)(z0) dz2 + - (DC3l)(J)(z0) dz3 +- (D<4l)(J)(z0) 

2 6 24 
dz4 +O(di;) 

2The authors are indebted to Dominik Gruntz for this program. 
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> eq :=sO= f(zO)•exp(u): 
> zetO := solve.(eq, dz); 

W; Gautschi and J. Waldvogel 

·- f(zO) J2 ..fii _ ! (D<3>)(J)(z0) f(zO) u _1 ( 
zetO .- v'%1 , 3 (D<2>)(J)(z0)2 + 288 

40 f(z0) 3 (D<3>)(J)(z0)2 - 24 (D<2>)(J)(z0) f(z0)3 (D<4>)(J)(z0) 

+ 72 (D<2>)(J)(z0)3 f(z0) 2)-/2 u312 j((D<2>)(J)(z0)2 %13/ 2) + O(u2), 

_ f(zO) J2 ..fii _! (D<3>)(J)(z0) f(zO) u __ 1 (40 f{z0)3 (D(3))(/){z0)2 
J%1 3 (D<2>)(J)(z0)2 288 

- 24 (D<2>)(J)(z0) f(z0) 3 (D<4>)(J)(z0) + 72 (D<2>)(J)(z0)3 f(z0)2)-/2 u312 

j((D<2>)(J)(z0)2 %13/ 2) + O(u2) 

%1 := f(zO) (D<2>)(J)(z0) 

> zet1 :• subs(seq( (DGGk)(f)(zO) • f.k, k=O •• N-1), zet0(1]): 
> zet2 := map(radsimp, subs(u = vA2•f2/2/f0, zet1)): 
>zeta:= series(zet2, v); 

The MAPLE program works for any N ~ 3, producing N- 2 terms of the above 
series. However, it is fairly slow, since no "intelligence", such as information on 
the form of the resulting seriesi is built in. To be able to find this series, never-

. theless, is a good accomplishment of a general-purpose symbolic manipulator. 
It can be seen that ( may be written as a formal power series in the variable 
v defined in (25.13). If the original series (25.11) converges in a neighborhood 
of Zo. the resulting series converges in a neighborhood of v = 0. 

The direction~ 80 of the r-lines at z0 are now given by the values of ( cor
responding to u = it in the limit t -t 0. The above series and Equ. (25.13) 
immediately yield 

1 ~ 
80 = argv = 2 (arg/o- argh ± 2) · 

Hence there are two r-lines through z0 intersecting at a right angle,· in perfect 
agreement with Equ. (25.8). 

The directions of the !p-lines through z0, on the other hand, are given by 
(25.13) for real values of u. We obtain the two directions 80±i, i.e., the tangents 
of the two !p-lines through z0 are the bisectors of the tangents of the r-lines. 

25.4 The Contour Lines r = 1 of f = en 

As indicated in §3.1, we need to solve (25. 7) with initial values x = y = 0. 
Let Sn be the point of intersection of the 1-line of en with the negative real 
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axis. By symmetry, only the portion of each 1-line lying in the upper half of 
the complex plane needs to be computed. 

We will discuss two implementations of this process: first a naive approach 
only using termination of the numerical integration at a precomputed value s 1 
of the independent variable (as available in the previous version MATLAB 4). At 
the end of this section we will present a simplified algorithm taking advantage 
of the Events capability of the current version MATLAB 5. For both imple
mentations a good upper bound s1 for the arc length on the 1-line between the 
origin and Sa is needed. 

Such an upper bound s 1 may be obtained as follows. We first observe that 
the region len(z)J $ 1 approaches a semidisk of radius p(n) as n 4 oo. An 
asymptotic analysis shows that 

p(n) = exp( -1) · (n +log J2ni + 0(1)). 

A good empirical choice of 0(1) is 3; then we obtain 

SJ = (~ + i) exp(-1) · (n + logJ2;m + 3) (25.14) 

as a close upper bound for the arc length up to the point Sn for n ~ 1. 
If the Events capability is not used, we first integrate the differential equa

tions up to the final value s1. Then, only the points satisfying the condition 
y ~ 0 need to be plotted. The point Sn can be approximated by linear interpo
lation between the two points on the 1-line closest to S0 • 

In the MA'i'LAB program below this is done by using the find command 
with the parameter y ~ 0 in order to find the subset of all points satisfying the 
condition y ~ 0. Their indices are collected in the vector indices. The indices 
of the points used in linear interpolation are then l=length(indices) and 
11=1+1. Finally, vis the normalized row vector containing the two interpolation 
weights, and .the actual interpolation is carried out by the product w•z (1: 11. :) . 

Y. Level curves r = 1 for the first 21 exponentia+ sums (Figure 2) 
» global n 
>> nmin = 1; nmax = 21; tol = 3.e-8; 
» axis equal; hold on; Y. arc • 0 ; 
>>options= odeset('RelTol',tol,'AbsTol',tol); 
>> for n = nmin:nmax, 
>> sf= 0.94574•(n +.5•log(2•pi•n) + 3); 
Y. 0.94574•(1+pi/2)•exp(-1) 
>> [s,z] = ode45('level4', [0 sf], [0; 0], options); 
» indices • find(z(:, 2) >= 0); 
>> 1 = length(indices); 11 = 1 + 1; 
>> v; [-z(l1, 2), z(l, 2)]; v = v/sum(w); 
>> z(l1,:) = v•z(l:l1,:); 
>> plot{z(1:11, 1), z(1:11, 2)); 

7. approximate arclengths and bounds sf 
>> 7. arc • [arc; v•s(l:l1), sf]; 
>> end; 
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ALGORITHM 25.1. level4.m 

function zdot = level4(s, z) 
XLEVEL4 generates the right-hand side of 
X the differential equation for the 1-lines of 
X f(z) = 1 + z + z~2/2! + ... + zAn/n! 

global n 

zc • z(1) + i•z(2); t = 1; fO = 0; f • t; 
for k = 1: n, t = t•zc/k; fO = f; f = f + t; end; 
q = f/fO; zdot • [-imag(q); real(q)]/abs(q); 

The l\1ATLAB program begins with the definitions of the parameters nmin, 
nmax and the error tolerance tol to be used in the definition of the inte
grator options structure, options, by means of odeset. The 1-lines ·in the 
range nmin =:::; n =:::; nmax are generated and plotted in the accuracy given by tol. 
Rerunning the program with, new values of nmin and nmax adds new curves to 
the figure. The statements turned off by the comment marks % generate a 
table arc containing the actual arc lengths and the upper bounds s 1 computed 
from (25.14). · 

The actual integration is done in the call to the integrator ode45. The in
put parameters of this procedure are: the name 1 level4 1 (in string quotes) of 
theM-file defined in Alg. 25.1 according to Equ. (25.7), a vector containing the 
initial value 0 and the final value sf of the independent variable, the column 
vector (0; 0] of the initial values, and the options structure, options. The 
choice tol = 3.0e-8 yields a high-resolution plot, whereas the default RelTol 
= 1. Oe-:-3, AbsTol = 1. Oe-6 (when the parameter options is omitted in the 
call) still yields a satisfactory plot. The values of the independent and depen
dent variables generated by the integrator are stored as the vectors s and z, 
respectively, ready to be plotted. 

The results for n = 1 : 1 : 21 are shown in Figure 25.2 below. The features 
near the imaginary axis at the transition to the circular part seem to show 
a periodicity in n of a little over 5. For example, the curves corresponding 
to n = 5, 10, 15, 21 all show a particularly large protrusion into the right half
plane. 

An investigation of this phenomenon is interesting, but exceeds the scope of 
this article. We limit ourselves to reporting that as n -+ oo, the period tends 
to 

21T 
lr ( ) = 5.22329130. 
2 - exp -1 . 

This result was obtained by considering the function ev(z) for real values of 11 

(which leads to the incomplete gamma function) and requiring the 1-line of ev(z) 
to contain a saddle point with e~(z) = 0. 

The Events capability of MATLAB 5 allows to stop a numerical integration 
at an "event", i.e. if a so-called "event function" passes through zero. The 
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FIGURE 25.2. 
Level Curves r = 1 for the First 21 Exponential Sums 

5 

369 

event function, in our case the imaginary part imag(z) of the complex depen
dent variable, has to be defined in the function level (Alg. 25.2), which also 
defines the right-hand sides zdot of the differential equations. This function 
needs to be coded with the additional input parameter flag and the additional 
output parameters isterminal and direction in such a way that zdot is the 
vector of the right-hand sides of the differential equations if flag is missing or 
undefined. If flag has the value 'events', however, the vector zdot must be 
defined as the event _function, and the parameters i sterminal (the indices of the 
relevant components of zdot) and direction (the direction of the zero passage) 
must be appropriately defined. Since ode45 of MATLAB 5 allows to integrate 
complex-valued dependent variables, this simplification is taken advantage of in 
the program below. 

X Level curves r = 1 for the first 21 exponential sums (Fig. 2) 
X using the 'Events' capability and integrat~on of complex 
X dependent variables 
» global n 
>> nmin = 1; nmax = 21; tol • 1e-6; 
» axis equal; hold on; X arc = 0; 
>>options= odeset('RelTol',tol,'AbsTol',tol,'Events','on'); 
>> for n = nmin:nmax, 
>> sf • 0.94574•(n +.5*log(2•pi•n) + 3); 
» [s, zJ • ode45 ('level' , [0 sf]. 0, options) ; 
» plot(z); 
X arclengths and bounds sf 
>> X arc • [arc; s(length(s)), sf); 
» end; 
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ALGORITHM 25.2. level.m 

function [zdot, isterminal, direction] • level(s, z, flag) 
%LEVEL ·generates the right-hand side of· 
1. the differential equation for the 1-lines of 
7. f(z) • 1 + z + z-2/2! + ... + z-n/n! 

global n 

if nargin<3 isempty(flag), 
t • 1; fO = 0; f = t; 
for k = l:n, t = t•z/k; £0 = f; £ = f + t; end; 
q = f/fO; zdot = i•q/abs(q); 

else 
svitch(flag) 
case • events • 

zdot= imag(z); 
isterminal= 1; 
direction= -1; 

othervise 
error(['Unknovn flag: ' flag]); 

end; 
end 

25.5 The Contour Lines <.p = const off= en 

Below is a MATLAB program that implements the method of §3.2 for any 
fixed n > 0, where the differential equations (25.9) must be implemented in 
the function phase and stored in the M-file phase .m (Alg. 25.3). · 

7. Lines of constant phase for the 10th exponential sum (Fig 3) 
7, 
» global n phi 
>> n = 10; tol = l.e-5; sf = 1.5; 
>>elf; axis([-6 6 -1 8]); hold on; 
>> r = roots(l./gamma(n + 1:-1:1)); 
»indices= find(imag(r) >= 0); zero .. r(indices) 
>>options= odeset('RelTol',tol,'AbsTol',tol); 
>>fork= 1: length(zero), 
>> zO = zero(k); 
>> for phi = -7/S•pi:pi/S:pi, 
>> [s,z] = ode45('phase•, [0 sf]. zO, options); 
>> plot(z); 
>> end; 
>> end; 

The program begins with the definitions of n, the error tolerance tol, and the 
desired arc length· sf of the curve segments emanating from the zeros. Then, 
the vector r of the zeros of en is computed by means of the function roots, 
where the coefficients of en are generated by means of the gamma function. On 
the next line the subset of the zeros in the upper half-plane is formed by means 
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ALGORITHM 25.3. phase.m 
function zdot = phase(s,z) 

global n phi 

eiphi = exp(i•phi); 
t ... 1; f = t; 
for k-1:n-1, t a t•z/k; f = f+t; end; 
zdot • eiphi•abs(f)/f; 

371 

of the find command with the argument imag(r)>•O. The statement used in 
the program stores all the indices defining the subset in the vector indices; 
then r(indices) is the vector of the zeros of en in the upper half-plane (which 
is printed for convenience). 

The input parameters in the call to the integrator ode45 are: the name 
'phase' (in string quotes) of the differential equations defined in Alg. 25.3 
according to Equ. (25.9), a vector containing the initial value 0 and the final 
value sf of the independent variable, the complex initial value zO, and the 
options structure, options (defaults 10-3,10-6 when omitted). The values of 
the independent and dependent variables generated by the integrator are stored 
as the vectors s and z, respectively, ready to be plotted. The result for n = 10 
is shown in Figure 25.33. 

FIGURE 25.3. 
Lines of Constant Phase for the 10th Exponential Sum 

8 

-4 -2 0 2 4 

3 We wrote and ran the script on August 1, 1996, while fireworks went off in celebration of 
the SwiSs national holiday. 
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None of the complex singular points is in evidence in Figure 25.3 since the cp
values chosen do not correspond to level lines passing through a complex singular 
point. The real singular point at Zo = -3.333551485, however, is clearly visible 
by an abrupt right-angled tum of the line tp = 0 (near the bottom of the figure). 
It is curious to note how the ode45 integrator was able to integrate right through 
the singularity, or so it seems. 
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1. Introduction 

Work on the complete monotonicity of certain functions involving the polygamma functions led Alzer 
et al. [2] to consider the function 

00 1 . X 
H (x) = L - sm -

k=l k k 
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already studied by Hardy and Littlewood [7, Section 7] in connection with a summation procedure of 
Lambert. Hardy and Littlewood prove that the function is unbounded, there being infinitely many (though 
rare) positive values of x with x -+ oo for which H(x) > C(log logx) 112. The complete monotonicity 
property alluded to above was shown by Alzer eta!. [2] to be equivalent to the inequality H(x) >- n/2 
for all x > 0. Although this inequality was eventually disproved by these authors, there may be some 
interest in studying the behavior of the function H (x) numerically. Given the slow convergence of the 
series in ( 1 ), this is a challenging task in its own right. 

We describe two procedures for computing H(x). The first is one that has been used previously with 
some success (cf. [6, Section 4], and for further references [4, Section 3.2]) and employs Gaussian 
quadrature. In the present context, its effectiveness is somewhat limited, and does not allow us to go 
much beyond x = 100. We therefore develop another more direct method which can deal with values of 
x that are considerably larger. 

2. Summation by quadrature 

Consider an infinite series 

00 

S = L ak. ak = (2 f)(k), (2) 

k=l 

whose general term is the Laplace transform 

(2 f)(s) = fooo e-st f(t) dt 

evaluated at s = k of some known function f. Then we have 

00 00 roo roo 00 

S = L (2 f)(k) = L Jo e-kt f(t) dt = Jo L e-(k-I)re-t f(t) dt 

k=l k=l k=l 

= e-1 f(t) dt, 100 1 

o 1 - e-t 

that is 

s = roo . t f(t) e-t dt. 
Jo 1 - e-t t 

(3) 

In general, if ak "'k-P ask-+ oo, p > 1, then f(t) "'tp-l as t-+ 0. 
To determine the function fin the case of series (I) we note that [1, Eq. (29.3.81)] 

1 xis ~ - e = (2ct)fo(2v xt))(s), 
s 

where Io is the modified Bessel function of order zero. There follows, by Euler's formula, 

I 1 1 . I ·I 1 r:-: ~ 
- sin(x/s) =---: (etx s - e-Ix s) =--: (2ct)[/o(2v ixt)- /o(2v -ixt)](s)), 
s s 21 21 
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Table 1 
Number of Gauss points required in (3) for 6-digit accuracy, and severity of cancellation 

X 

nmax 
d 

10 

20 

25 

35 
4 

that is, 

f(t) = f(t; x) = ;i [Jo(2-Ji:ti) -Io(2J=iXt)]. 

From the known power series expansion of lo one finds that 

oo u2k+l 
f(t;x)=,L:(-l)k 2 , u=xt. 

k=O (2k+1)! 

50 

55 
10 

75 

75 
15 

251 

100 

95 
20 

(4) 

(5) 

In particular, limt---+0 f(t; x)jt =x. Series (5) is useful for computation as long as u is not too large, but is 
subject to severe cancellation errors otherwise. TI1e number of decimal digits lost, owing to cancellation, 
is approximately 2, 6, 8, 17, and 25 for u respectively equal to 100, 500, I 000, 5000, and I 0,000. 

Alternatively, we may use the integral representation (cf. [1, Eq. (9.6.16)]) 

1 !on Io(z) =- ez cos e de, 
n o 

and write (4) in the form 

1 !on f(t; x) =- ev'iii cos e sin(.ffu cos 8)d8, 
n o 

u =xt. (6) 

Here, the integrand is a 2n-periodic even function of 8, so that integration, in effect, is over the full 
period. The fact that it is also an entire function makes the composite trapezoidal rule the method of 
choice for evaluating the integral. For the u-values considered above, there is practically no cancellation 
in calculating the trapezoidal sums, in stark contrast to the series in (5). 

With regard to the integral in (3), Gauss quadrature relative to the Laguerre weight function e·-t on 
[0, oo) would seem to be an option. One can do better, however, by noting that the integrand has poles 
±2vin, v = 1, 2, 3, .... This suggests using Gauss-type formulae that are exact not only for polynomials, 
but also for rational functions having the same poles, or at least a few of those closest to the real axis. 
Such formulae have been developed in [3] and are implemented in [5]. Motivated by experience gained 
in [5], we choose, for n = 5, 10, 15, ... , ann-point quadrature rule that is exact for elementary rational 
functions corresponding to the first m = 2 L(n + 1)/2J poles (taken in conjugate complex pairs) and for 
polynomials of degree 2n- I - m. Ifnmax denotes the smallest n for which two consecutive quadratures 
agree within a tolerance of! · 10-6, then, as a function of x, the value of nmax observed has the behavior 
shown in Table 1. 

Table 1 also shows the approximate number d of decimal digits lost, owing to cancellation errors in 
the quadrature sum for the integral in (3). (For x = 100, the error tolerance had to be lowered to ! · 1 o-3 

to be able to achieve it.) All computations were done in quadruple precision. lt is seen that values of x 
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3.5 

3 

2.5 

2 

x :c 1.5 

0.5 

0 

-0.5 '---'-----''-----'---'.---'---'--_.J._---'---'---" 
0 10 20 30 40 50 60 70 80 90 1 00 

X 

Fig. l. The function H (x) for 0 ~ x ~ 100. 

much beyond x = 1 00 are beginning to strain even quadruple-precision calculations. Results produced 
by these calculations in the range 0:::;; x:::;; 1 00 are shown in Fig. 1. 

3. Direct summation 

Summing the series in (1) directly, as is, would be too time consuming if a reasonably high accuracy 
is desired. However, we may sum the first n terms directly, where n ~ x, and then observe that in the 
remaining terms 0 < x j k < 1, so that a few terms in the Taylor expansion ofsin(x/ k) may be subtracted 
to speed up convergence and then added back for compensation. Thus, with n = Lx J, 

11 l.x 00 l.x 
H (x) = " - sm - + " - sm -~ k k ~ k k 

k=l k=n+l 

~ J X ~ 1 ( X X 1 (X )3) = ~ k sin k + ~ k sin k - k + 6 k 
k=l k=n+l 

( 
n2 11 1 ) x3 ( n4 11 1 ) 

+X 6 - L k2 - 6 90 - L k4 , 
k=! k=! 

(7) 

where the well-known formulae ((2)=n2 j6, ((4)=n4 j90 for the zeta function ((s)= I:Z:1 k-s have been 
used (cf. [1, Eqs. (23.2.24-25)]). Since x will be very large, and H(x) of the order of magnitude 1, the two 
remainder terms at the end of (7) must be calculated very accurately. As written, too much accuracy may 

685



W Gautschi I Journal of Computational and Applied Mathematics 179 (2005) 249-254 

3.5 

3 

2.5 

2 

E I 1.5 

E 
I 

0.5 

0 ----

-0.5 '---'---'--""--'----'----'----'-----''-----''-----''-----' 
9900 9910 9920 9930 9940 9950 9960 9970 9980 9990 10000 

X 

Fig. 2. The function H(x) for 9900 ~x ~ 10, 000. 
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Fig. 3. The function H(x) for 999, 900~x ~I, 000,000. 

253 

be lost owing to cancellation. A better way to compute these terms is via the Euler-Maclaurin summation 
formula (cf. [I, Eq. (3.6.28)]). Thus, 

2 n 1 

~-I: k2 
k=l 

(8) 
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and 

n4 ~ 1 1 Bo B1 2B2 SB4 

90-~ k4 "'3 (n + 1)3 - (n + 1)4 + (n + 1)5 + (n + 1)7 

28 B6 3Bs 22BIO +- + +----:-::-
3 (n + 1)9 (n + 1)11 (n + 1)13' 

where Bi are the Bernoulli numbers 

B 1 B - I B-1 0 = , I- -2, 2- 6• Bs = - 3~. B - 5 
10- 66' 

(9) 

The first seven terms in (8) and (9) will be ample to provide sufficient accuracy. Results thus produced 
are shown in Figs. 2 and 3. 

Evidently, neither the unboundedness of H from above nor the one from below can be as much as 
suggested by these calculations. To do so, in view of the (log Jogx) 112 behavior of IH(x)l, would require 
values of x so large as to not even be machine representable, let alone be such that the summation 
procedure of this subsection would be feasible. 
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a b s t r a c t

Theodorus of Cyrene (ca. 460–399 B.C.), teacher of Plato und Theaetetus, is known for his
proof of the irrationality of

√
n, n = 2, 3, 5, . . . , 17. He may have known also of a discrete

spiral, today named after him, whose construction is based on the square roots of the
numbers n = 1, 2, 3, . . .. The subject of this lecture is the problem of interpolating this
discrete, angular spiral by a smooth, if possible analytic, spiral. An interesting solution was
proposed in 1993 by P.J. Davis, which is based on an infinite product. The computation of
this product gives rise to problems of numerical analysis, in particular the summation of
slowly convergent series, and the identification of the product raises questions regarding
special functions. The former are solved by a method of integration, in particular Gaussian
integration, the latter by means of Dawson’s integral und the Bose–Einstein distribution.
Number-theoretic questions also loom behind this work.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The topic of this lecture may be somewhat peripheral to the core of today’s mathematical activities, yet it has a certain
aesthetic appeal that may well compensate for its borderline status. The principal ideas go back to Greek antiquity, specifi-
cally to the 5th century B.C. mathematician and philosopher Theodorus of Cyrene (ca. 460–399 B.C.). He was born and grew
up in Cyrene, then a sprawling Greek colony at the Northern coast of Africa (in what today is Libya), directly south of Greece.
He also traveled to Athens, where he encountered Socrates. Not much, however, is known about his life and work. From the
writings of Plato, who had been a student of Theodorus, in particular from his Theaetetus, we know about Theodorus’s great
fascination with questions of incommensurability. He was to have proved, for example, the irrationality of the square roots
of the integers n = 2, 3, 5, 6, 7, . . ., and, so Plato writes, for some reason he stopped at n = 17. This cryptic remark has
given rise to all sorts of speculation as to what the reasons might have been. One of these, probably the least credible, will
be mentioned later.

But let me first introduce the three topics mentioned in the title. First, the spiral of Theodorus, depicted in Fig. 1—a
harmonious, very pleasing, and elegant spiral. The name ‘‘spiral of Theodorus’’, though, may bemisleading, since Theodorus
most certainly did not know of this spiral; it is a product of the late 20th century! Very likely, however, he was aware of, or
even invented, a more primitive, angular precursor of this spiral, which we will call the ‘‘discrete spiral of Theodorus’’ (cf.
Section 2) to distinguish it from the spiral in Fig. 1, which may be called the ‘‘analytic spiral of Theodorus’’.

✩ Lecture presented February 9, 2009 at Purdue University, and February 26, 2009 at the University of Basel.
E-mail address: wxg@cs.purdue.edu.

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.11.054
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Fig. 1. Spiral of Theodorus.

The second topic – numerical analysis – has to do with the summation of slowly convergent series, in particular the series
∞−
k=1

1
k3/2 + k1/2

. (1)

It was in fact this series that gave the impetus to my interest in this area. I was visiting Brown University, early in the
1990s, where I was to give a colloquium lecture. Before the talk, I dropped by Prof. Philip Davis’s office to chat a little about
the newest mathematical gossip. I knew Prof. Davis well from our days at the (what was then called) National Bureau of
Standards in Washington, DC. At one point during our conversation, he pulled out a crumpled envelope from his waste
basket, scribbled the series (1) on the back of the envelope, and handed it to me with the words ‘‘compute it!’’. I responded
that I couldn’t do it on the spot, but promised to look at it once I was back home. (I already had an idea of how to go about
it.) A few days later, I sent him back my answer,

∞−
k=1

1
k3/2 + k1/2

= 1.860025079221190307180695915717143324666524121523451493049199503 . . . (2)

if not to sixty-four digits, then at least to fifteen (or maybe twenty). This must have impressed Prof. Davis enough to let me
in on what was behind this series, and what he was working on at the time: preparing for the Hedrick Lectures he was to
give at the 75th anniversary meeting of the Mathematical Association of America. The theme of these lectures was spirals,
not only those in mathematics, but also spirals as they occur in nature, in celestial mechanics, and elsewhere. An expanded
version of these lectures later appeared in book form [1].

The third topic – special functions – finally involves Dawson’s integral

F(x) = e−x2
∫ x

0
et

2
dt, (3)

probably better known with the opposite signs in the exponents of the exponentials, which then becomes the familiar
Gaussian error function.

The theme of this lecture is to show how these three seemingly disparate topics hang together.

2. The discrete spiral of Theodorus

As is well known, in the mathematics of Greek antiquity, numbers and algebraic expressions were thought of differently
than they are today. A number like 3 was viewed not so much as a numerical value but as a geometric object: a straight line
that has three units in length. Likewise,

√
2 was viewed as the length of the diagonal of a unit square. Since Theodorus was

concerned with square roots of successive numbers, he must have viewed them also in geometric terms. Almost inevitably,
then, he must have arrived at the construction indicated in Fig. 2. Here, the points T0, T1, T2, . . . (‘‘T ’’ for ‘‘Theodorus’’) are
constructed as follows: T0 is the origin, and T1 on the real axis a distance of 1 away from T0. Thus, the distance |T1T0| is
1 =

√
1. From T1 one proceeds in a perpendicular upward direction a distance of 1 to T2, so |T2T0| =

√
2. Then again,

perpendicularly, one proceeds a distance of 1 to T3 and has |T3T0| =
√
2 + 1 =

√
3. Continuing in this manner, the points

T4, T5, T6, . . . so obtained have distances from the origin that are |TnT0| =
√
n, n = 4, 5, 6, . . .. One can therefore interpret

the successive square roots
√
n geometrically as being the radial distances of the vertices Tn of the spiral-like construct of

_, 

_, 
~ 

-< 

~ 
~ -< _, 

690



1044 W. Gautschi / Journal of Computational and Applied Mathematics 235 (2010) 1042–1052

Fig. 2. Discrete spiral of Theodorus.

Fig. 2. It is natural to call it the discrete spiral of Theodorus. (It is also known as the ‘‘Quadratwurzelschnecke’’, a term given it
by Hlawka in [2].)

It is convenient to view this spiral as a curve in the complex plane, represented parametrically by a complex-valued
function

T (α) ∈ C, α ≥ 0.

We want this function for integer values of the parameter to produce the vertices of the spiral, T (n) = Tn, n = 0, 1, 2, . . ..
These are uniquely defined by the relations

|Tn| =
√
n

|Tn+1 − Tn| = 1


n = 0, 1, 2, . . . (4)

with T1 = 1. Linear interpolation between integer-valued parameters then defines T (α) for all α ≥ 0.
Why did Theodorus stop at n = 17? The graph in Fig. 2 gives a clue: The line from T17 to T0, whose length is

√
17, can

be drawn without any obstruction. Not so for the line from T18 to T0, and all subsequent lines, which intersect part of the
figure already drawn. Since legend has it that geometers in antiquity drew their lines in sand, such intersections become
messy, and that’s why Theodorus stopped at 17. As I indicated before, se non é vero, é ben trovato! [‘‘If it’s not true, it’s a good
story!’’]

3. The analytic spiral of Theodorus

3.1. Definition and properties

Davis in [1] posed the problem of interpolating the discrete Theodorus spiral by a smooth, if possible analytic, curve. This
is an interpolation problem involving an infinite number of data points, a problem of the type Euler already faced in 1729
when he tried to interpolate the successive factorials on the real line. Ingeniously, Euler discovered the gamma function
(now also called the second Eulerian integral) as a valid analytic interpolant. In addition, he derived a number of properties
of the gamma function involving product representations, including an infinite product formula for the reciprocal of the
gamma function. Davis, who knew Euler’s work very well (cf. [3]), used it as a source of inspiration and came up with an
interpolant, also expressed as an infinite product,

T (α) =

∞∏
k=1

1 + i/
√
k

1 + i/
√
k + α − 1

, α ≥ 0. (5)

Since the general term of the product is ∼ 1 + k−3/2 as k → ∞, and the series
∑

∞

k=1 k
−3/2 converges (absolutely, though

slowly), the same is true for the infinite product, as follows from well-known theorems.
Simple calculations will show that the function in (5) satisfies (cf. also (12))

|T (α)| =
√

α (6)

and the first-order difference equation

T (α + 1) =


1 +

i
√

α


T (α). (7)

'• 
T, 

r,. 

r, 

'· 
~ TM, 

~ 

~ 
~ ~ 

691



W. Gautschi / Journal of Computational and Applied Mathematics 235 (2010) 1042–1052 1045

As a consequence of (6) and (7) one also has

|T (α + 1) − T (α)| =

 i
√

α
T (α)

 = |i| = 1. (8)

The relations (6) and (8), for integer values α = n, coincide exactly with the analogous relations (4) for the discrete spiral
of Theodorus, and since T (1) = 1, the function T (α) does indeed interpolate the discrete spiral of Theodorus.

The arc T (α), 1 ≤ α < 2, may be considered the ‘‘heart’’ of the spiral; it completely determines the entire spiral, the
infinite outer part corresponding to 2 ≤ α < ∞ by repeated forward application of (7), and the inner part corresponding
to 0 < α < 1 by a backward application of (7). In the limit as α ↓ 0, one gets T (0) = 0.

Recall that Euler’s gamma function also satisfies a first-order difference equation, the much simpler y(α + 1) = αy(α).
Harold Bohr and Johannes Mollerup in 1921 proved the beautiful result that this difference equation has no other solution,
with y(1) = 1, than the gamma function, if one requires it to be logarithmically convex; cf. [4]. Davis posed the question of
whether his own function T (α) in (5), as a solution of the difference equation (7), has a similar uniqueness property. Thiswas
answered in 2004 by Gronau [5], who proved, among other things, that T (α) is the only solution of the difference equation
(7) with T (1) = 1, if one requires |T (α)| to be monotonic and arg T (α) monotonic and continuous. In the same way as the
Bohr–Mollerup result reinforces the legitimacy and importance of the gamma function, the Gronau result does the same for
Davis’s function.

3.2. Some number theory

An interesting number-theoretic question regards the distribution of the angles ϕn = ̸ T1T0Tn+1 in the discrete spiral of
Theodorus. From the geometry of Fig. 2, it is easily seen that

ϕn =

n−
k=1

sin−1 1
√
k + 1

, n = 1, 2, 3, . . . . (9)

Considering ϕn mod 2π , Hlawka in [2] proved that the sequence {ϕn}
∞

n=1 is equidistributed mod 2π . In his book [6], Hlawka
gives a very elegant proof based on an analytic equidistribution criterion of Fejér (cf. [7, Part II, Probl. 174, p. 281] and
[8, pp. 843–844]).

The author, when preparing this lecture, wondered whether a similar equidistribution result holds for the angles
ϕn(α) = ̸ T (α)T0T (α+n), 1 < α < 2, in Davis’s analytic spiral of Theodorus. These are, from (13),ϕn(α) = ϕ(α+n)−ϕ(α),
and by analogy with the discrete spiral one suspects that

ϕn(α) =

n−
k=1

sin−1 1
√
k + α

, n = 1, 2, 3, . . . , (10)

which for α = 1 in fact reduces to (9). We shall prove (10) in Section 3.3. The answer to the question of equidistribution was
provided by Harald Niederreiter, a former Ph.D. student of Hlawka, and communicated to the author by email on February
3, 2009: The sequence {ϕn(α)}∞n=1 is indeed also equidistributed mod 2π for any fixed α with 1 < α < 2 (in fact, for any
α > 0), and the proof is a simple extension of the proof given by Hlawka in [6].

3.3. Polar representation

When dealing with spirals, it is useful to have a polar representation thereof. For the spiral in Fig. 1, this can be
nicely obtained by logarithmic differentiation of T (α). Since T (α) is a product, its logarithmic derivative is the sum of the
logarithmic derivatives of the factors,

T ′(α)

T (α)
=

∞−
k=1

1 + i/
√
k + α − 1

1 + i/
√
k

d
dα


1 + i/

√
k

1 + i/
√
k + α − 1



=

∞−
k=1

(1 + i/
√
k + α − 1)

i
2

(k + α − 1)−3/2

(1 + i/
√
k + α − 1)2

=
i
2

∞−
k=1

1

(k + α − 1)(
√
k + α − 1 + i)

=
i
2

∞−
k=1

√
k + α − 1 − i

(k + α − 1)(k + α)
.
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Decomposing the last series into its real and imaginary parts yields

T ′(α)

T (α)
=

1
2

∞−
k=1

1
(k + α − 1)(k + α)

+
i
2

∞−
k=1

1
(k + α − 1)3/2 + (k + α − 1)1/2

=
1
2

∞−
k=1


1

k + α − 1
−

1
k + α


+

i
2
U(α)

=
1
2α

+
i
2
U(α),

where

U(α) =

∞−
k=1

1
(k + α − 1)3/2 + (k + α − 1)1/2

. (11)

Now integrating from 1 to α gives

ln T (α) = ln(α1/2) +
i
2

∫ α

1
U(α)dα,

which by exponentiation yields the desired representation,

T (α) =
√

α exp


i
2

∫ α

1
U(α)dα


, α > 0. (12)

Thus, in polar coordinates (r, ϕ), the analytic spiral of Theodorus has the parametric representation

r = r(α), ϕ = ϕ(α) where r(α) =
√

α, ϕ(α) =
1
2

∫ α

1
U(α)dα. (13)

In terms of this representation, we can rewrite (10) (multiplied by 2) as follows:∫ α+n

1
U(α)dα −

∫ α

1
U(α)dα = 2

n−
k=1

sin−1 1
√
k + α

.

We know this to be true for α = 1. To prove it for general α, it suffices to prove that the derivatives with respect to α of the
two sides are equal,

U(α + n) − U(α) = −

n−
k=1

1

(k + α)
√
k + α − 1

.

This, however, follows readily from the definition of U in (11).
We note that the tangent vector to the spiral at α = 1 is T ′(1) =

1
2 +

i
2U(1), so

U(1) =

∞−
k=1

1
k3/2 + k1/2

is precisely the slope of the tangent vector to the spiral at α = 1 where it crosses the real axis for the first time.
We have come halfway to the mysterious series introduced at the beginning of this lecture. As a universal constant, like

π , with a solid geometric meaning, it deserves to be given a name, and to be calculated to high precision; we name it, as
Davis already did in [1], the ‘‘Theodorus constant’’, and denote it by

θ =

∞−
k=1

1
k3/2 + k1/2

(14)

(‘‘θ ’’ for ‘‘θϵωδoρoσ ’’).
There is, of course, another number-theoretic problem awaiting attention: the arithmetic nature of the number θ . A

solution, however, seems far beyond sight at this time.
We now proceed to the next topic on our agenda, the computation and identification of the function U(α) in (11) and its

integral
 α

1 U(α)dα for 1 < α < 2. This requires two digressions, one on an appropriate summation procedure, the other
on Gaussian quadrature.

693



W. Gautschi / Journal of Computational and Applied Mathematics 235 (2010) 1042–1052 1047

4. Two digressions

4.1. Summation by integration

There are several ways to convert a problem of summation, especially the summation of slowly convergent series, to a
problem of integration. Here we consider a procedure proposed in 1985 in a joint paper with Milovanović [9] that applies
to a special class of series in which the generic term is the Laplace transform of some known function f ,

s =

∞−
k=1

ak, ak = (Lf )(k). (15)

Then

s =

∞−
k=1

(Lf )(k) =

∞−
k=1

∫
∞

0
e−kt f (t)dt,

and interchanging summation and integration yields

s =

∫
∞

0


∞−
k=1

e−kt


f (t)dt =

∫
∞

0

t
et − 1

f (t)
t

dt.

Thus
∞−
k=1

ak =

∫
∞

0

f (t)
t

ε(t)dt, f = L−1a, (16)

where

ε(t) =
t

et − 1
, t ∈ R+. (17)

In statistical mechanics, (17) is known as the Bose–Einstein distribution; it is also the generating function of the Bernoulli
numbers.

Changing the minus sign in the denominator of (17) to a plus sign and replacing t in the numerator by 1 gives another
distribution important in statistical mechanics: the Fermi–Dirac distribution. In our context it arises when the series in (15)
contains alternating sign factors.

How does this apply to the Theodorus constant? Here,

ak =
1

k3/2 + k1/2
=

k−1/2

k + 1
.

Since

k−1/2
=


L

t−1/2

√
π


(k),

1
k + 1

=

Le−t (k),

the convolution theorem for Laplace transforms yields

ak =


L

t−1/2

√
π


(k) ·


Le−t (k) =


L

1
√

π

∫ t

0
τ−1/2e−(t−τ)dτ


(k), (18)

where the integral on the right is the convolution of t−1/2 and e−t . Thus,

f (t) =
1

√
π
e−t

∫ t

0
τ−1/2eτdτ =

2
√

π
e−t

∫ √
t

0
ex

2
dx =

2
√

π
F(

√
t),

where F(x) is Dawson’s integral (3). There follows, from (16),
∞−
k=1

1
k3/2 + k1/2

=

∫
∞

0

f (t)
t

ε(t)dt.

By writing t =
√
t ·

√
t in the denominator of the integrand and associating one square root with f and the other with ε, we

obtain
∞−
k=1

1
k3/2 + k1/2

=
2

√
π

∫
∞

0

F(
√
t)

√
t

w(t)dt, (19)
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where

w(t) = t−1/2ε(t) =
t1/2

et − 1
. (20)

We recall that F(x) is an entire, odd function of x; hence F(
√
t)/

√
t in (19) is a power series in t that converges in the

whole complex plane, and hence in turn an entire function. For the purpose of numerical integration, entire functions are
usually conducive to rapid convergence; hence the first factor, F(

√
t)/

√
t , in the integrand of (19) is a nice, benign function.

The second factor, w(t), though positive on R+, is difficult: for one thing, it blows up like t−1/2 at t = 0, and for another,
it has an infinite string of poles on the imaginary axis at the integer multiples of 2π i. Both are troublesome for numerical
integration. But in numerical analysis one knows of an effective approach for integrating such a product: one treats the
difficult factor as a weight function and applies weighted numerical integration, for example, Gaussian quadrature.

4.2. Gaussian quadrature

An n-point Gaussian quadrature formula for an integral as in (19) is a relation∫
∞

0
g(t)w(t)dt =

n−
k=1

λ
(n)
k g(τ (n)

k ), g ∈ P2n−1, (21)

which expresses the integral exactly as a linear combination of n function values provided the function is a polynomial of
degree ≤ 2n − 1. It is known that such a representation exists uniquely, and that the ‘‘weights’’ λ(n)

k are positive (if w is
positive) and the ‘‘nodes’’ τ (n)

k are mutually distinct and contained in the open interval (0, ∞). If g is not a polynomial, but
is polynomial-like, for example an entire function as in (19), then (21) will no longer be an exact equality but very likely a
good approximation, especially if n is large.

But how do we find the weights λ
(n)
k and nodes τ

(n)
k for any given n? The answer is well known in principle: we

need the orthogonal polynomials with respect to the weight function w, that is, the (monic) polynomials πk of degree k,
k = 0, 1, 2, . . ., satisfying

(πk, πℓ) = 0, k ≠ ℓ, where (u, v) =

∫
∞

0
u(t)v(t)w(t)dt.

It is known that they exist uniquely and satisfy a three-term recurrence relation

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . . ,
π−1(t) = 0, π0(t) = 1,

where the coefficients αk = αk(w) and βk = βk(w) are respectively real and positive numbers depending on w. Although
β0 is arbitrary, it is convenient to define β0 =


∞

0 w(t)dt . The nth-order Jacobi matrix

Jn(w) =


α0 β1 0
β1 α1 β2

β2 α2
. . .

. . .
. . . βn−1

0 βn−1 αn−1

 (22)

is formed by placing the first n coefficients α0, α1, . . . , αn−1 on the diagonal, the n − 1 coefficients β1, β2, . . . , βn−1 on the
two side diagonals, and filling the rest of the matrix with zeros. It is the eigenvalues and eigenvectors of this symmetric,
tridiagonal matrix that yield the Gaussian nodes and weights: the nodes τ

(n)
k are the eigenvalues of Jn, and the weights λ

(n)
k

expressible as λ
(n)
k = β0v2

k,1 in terms of the first components vk,1 of the corresponding (normalized) eigenvectors vk [10].
We are done, once we are in possession of the recurrence coefficients αk, βk. There are various numerical techniques for

computing them (cf., for example, [11, Sections 2.1, 2.2]). For our purposes here, the classical approach based on moments

µk =

∫
∞

0
tkw(t)dt, k = 0, 1, 2, . . . , (23)

suffices. An algorithm due to Chebyshev takes the first 2n moments (23), and from them generates the first n coefficients
α0, α1, . . . , αn−1 and β0, β1, . . . , βn−1 by a simple nonlinear recursion. The algorithm is elegant but highly unstable, the
more so the larger n. This drawback, however, can be overcome by running the algorithm in sufficiently high precision.
Relevant software is available; see, e.g., [12].

To show how this works for the Theodorus constant, we first note that the moments of the weight function w in (20) are

µk =

∫
∞

0

tk+1/2

et − 1
dt = Γ (k + 3/2)ζ (k + 3/2).
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Table 1
Gaussian quadrature approximations to the Theodorus constant.

n sn

5 1.85997. . .
15 1.86002507922117. . .
25 1.860025079221190307180689. . .
35 1.860025079221190307180695915717141. . .
45 1.8600250792211903071806959157171433246665235. . .
55 1.8600250792211903071806959157171433246665241215234513. . .
65 1.86002507922119030718069591571714332466652412152345149304919944. . .
75 1.860025079221190307180695915717143324666524121523451493049199503. . .

Both the gamma function Γ and the Riemann zeta function ζ are computable by variable-precision calculation. Apply-
ing the Chebyshev algorithm in sufficiently high precision to get the Jacobi matrix (22), and then well-known eigen-
value/eigenvector techniques to get the Gaussian quadrature formula, we can now approximate

∞−
k=1

1
k3/2 + k1/2

=
2

√
π

∫
∞

0
[F(

√
t)/

√
t]w(t)dt (24)

by

sn =
2

√
π

n−
k=1

λ
(n)
k F


τ

(n)
k


τ

(n)
k .

Numerical results for n = 5 : 10 : 75 are shown in Table 1. We see now how the answer given in (2) comes about. Allowing
for a sufficient amount of computer time, we could obtain it to an arbitrary number of decimal digits. Faster high-precision
computational techniques, however, can be found in [13].

5. Computation and identification

We are now in a position to deal with the computation of U(α) (cf. (11)) and
 α

1 U(α)dα for 1 < α < 2. The series in (11)
is the same as the series (14) for the Theodorus constant except that k in the latter has to be replaced by k + α − 1. From
the computation in (18), we thus find that

(k + α − 1)−1/2

(k + α − 1) + 1
=

1
√

π


L

∫ t

0
τ−1/2e−(t−τ)dτ


(k + α − 1).

It is now a matter of applying the shift property of the Laplace transform to obtain

(k + α − 1)−1/2

(k + α − 1) + 1
=

1
√

π
L


e−αt

∫ t

0
τ−1/2eτdτ


(k);

hence, the function f in (15) is

f (t) =
1

√
π
e−αt

∫ t

0
τ−1/2eτdτ =

2
√

π
e−(α−1)tF(

√
t).

We find, analogously to (19),

U(α) =
2

√
π

∫
∞

0
e−(α−1)t F(

√
t)

√
t

w(t)dt, 1 < α < 2. (25)

This again can be readily computed by Gauss quadrature, just like (24). We note, incidentally, that U(α) can be identified as
a Laplace transform itself, namely

U(α) = (Lu) (α − 1),

where

u(t) =
2

√
π

F(
√
t)

√
t

w(t) =
2

√
π

F(
√
t)

et − 1
.

As far as the integral of U(α) is concerned, we only need to integrate under the integral sign in (25) to obtain∫ α

1
U(α)dα =

2(α − 1)
√

π

∫
∞

0

1 − e−(α−1)t

(α − 1)t
F(

√
t)

√
t

w(t)dt. (26)

This, too, is amenable to Gauss quadrature but requires a little extra care in the evaluation near t = 0 of the first factor on
the right.
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6. Epilogue

6.1. The Theodorus constant to very high precision

Waldvogel [13] has calculated the Theodorus constant θ to over a thousand decimal places, using a line integral
representation in the complex plane, the trapezoidal rule, and the computer algebra system PARI. With the same package,
at the suggestion of N. A’Campo, he computed the continued fraction

θ = 1 +
1
1+

1
6+

1
6+

1
1+

1
15+

1
11+

1
5+

1
1+

1
1+

1
1+

1
1+

1
5+

· · ·

to some 300 partial denominators to look for patterns. None were found.

6.2. Summation by integration; extensions

The summation process of Section 4.1 can be generalized to series

s+ =

∞−
k=1

kν−1R(k), s− =

∞−
k=1

(−1)kkν−1R(k), 0 < ν < 1,

where R is a rational function having all its poles in the left half of the complex plane (cf. [14]). The integrationmeasures that
arise are, as in Section 4.1, the Bose–Einstein distribution for the series s+ and the Fermi–Dirac distribution for the series
s−. The special functions involved, however, are more elaborate, being based on Tricomi’s form of the incomplete gamma
function. Also, there are serious complications that arise when the poles of R are large in magnitude, in which case Gaussian
quadrature converges very slowly. Satisfactory convergence can be restored by a process called ‘‘stratified summation’’ in
[14].

6.3. The analytic spiral of Theodorus; an alternative approach

Heuvers et al. [15], apparently unaware of Davis’s work, gave the following analytic interpolant of the discrete Theodorus
spiral, expressed in polar coordinates:

ϕ = g(r), g(r) =

∞−
j=0


tan−1 1

√
j + 1

− tan−1 1
j + r2


, r ≥ 1. (27)

They proved that g(r) in (27) is the uniquemonotonically increasing solution, satisfying g(1) = 0, of the functional equation

g


1 + r2


− g(r) = tan−1 1
r
, r ≥ 1, (28)

thus anticipating Gronau’s uniqueness result.
The connection of (27) and (28) with Davis’s spiral is as follows. The angle ϕ in Davis’s spiral, as a function of r , can be

seen from (13), since α = r2, to be

ϕ =
1
2

∫ r2

1
U(α)dα, (29)

which is identical to (27). In fact, when r = 1, this is obvious, and differentiating with respect to r we get rU(r2) from (29)
and

−

∞−
j=0

1
1 + (j + r2)−1


−

1
2


(j + r2)−3/22r = r

∞−
j=0

1
(j + r2)3/2 + (j + r2)1/2

,

from (27), which by (11) is indeed rU(r2). On writing

1 +
i

√
α

=


α + 1

α
eiθ(α), θ(α) = tan−1 1

√
α

,

the difference equation (7) splits into

r(α + 1)
r(α)

=


α + 1

α
, ϕ(α + 1) = ϕ(α) + tan−1 1

√
α

,

the latter, on setting ϕ(r2) = g(r), becoming (28).
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Fig. 3. Twin-spiral of Theodorus.

6.4. Analytic continuation of the spiral of Theodorus

For complex α, Davis’s function T (α) in (5) is multivalued, owing to the square roots in the denominator. A useful
‘‘regularizing’’ transformation,

α = r2, r ∈ R, (30)

is suggested by Waldvogel in [13]. It has the effect of transforming T (α) into a function

T (r2) =
1 + i

1 + i/r

∞∏
k=2

1 + i/
√
k

1 + i/
√
r2 + k − 1

(31)

that is regular analytic in the complex r-plane cut along the lines from i to i∞ and−i to−i∞ on the imaginary axis. The part
of (31) corresponding to positive values of r coincides with the spiral shown in Fig. 1, whereas the part corresponding to
negative values of r may be considered the analytic continuation of the spiral into the second sheet of the Riemann surface
for the square root. Both parts together, shown in Fig. 3, constitute what may be called the ‘‘twin-spiral of Theodorus’’.

If T (α), α > 0, is on the original spiral (5), then

S(α) =
1 + i/

√
α

1 − i/
√

α
T (α)

is the corresponding point on the twin branch of the spiral. Therefore, by (7),

S(α) =
1

1 − i/
√

α
T (α + 1), (32)

whereas

T (α) =
1

1 + i/
√

α
T (α + 1), (33)

showing that the two points in (32) and (33) aremirror imageswith respect to the line T0T (α+1). In the special caseα = n2,
n > 0 an integer, i.e., in the case of the discrete Theodorus spiral, this was observed in [13].
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THE ASYMPTOTIC BEHAVIOUR OF POWERS OF MATRICES 

BY WERNER GAUTSCHI 

I. THE MAIN RESULTS 

1. Introduction. Let A = (a.")(v1p. = 1, · ·...:_, n) be ann X n matrix with real 
or complex numbers as elements. By A*. = A' we denote the conjugate-trans
pose of A and by tr A the trace 2:~- 1 a •• of A. The norm (or absolute value) 
N(A) of A is defined by 

(1) N(A) = (trAA*)t = (t
1 
I a.~' l2y. 

It is well known (J. H. M. Wedderburn [11] or [12; 125]; see also Hardy-Little .. 
wood-Polya [5; 36]) that 

(2) N(A +B) < N(A) + N(B), N(AB) < N(A)N(B), N(XA) = I A I N(A) 

A being a scalar and A, B two n X n matrices. 
In (2) of §1 we shall give bounds for the norms of powers Av(p = 1, 2, · · · ). 

A lower bound can readily be found: by a well-known theorem of I. Schur [7] 
there exists a unitary matrix U which transforms A to a triangular matrix D. 
The principal diagonal of D consists of the eigenvalues X1 , X2 , • • • , A,. of A, 
not necessarily all distinct, arranged in any desired order. From 

(3) U*AU = D, U*U = UU* =I 

it follows that 

and 

Hence by (1) we have 

(4) (p = 1, 2, .. ·) 

with equality for an· p = 1, 2, · · · , if and only if A is normal, A* A = AA *. 
Suppose now that 4 Cltll be transformed to the diagonal form 

x-1AX = A = diag (At , X2 , • • • , X .. ) 

Received February 9, 1952; in revised form, October 18, 1952. This paper is part of the 
thesis for the doctor of philosophy at the University of Basle, Switzerland. 
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by a nonsingular matrix X. A necessary and sufficient condition for this is 
that all elementary divisors of A are ·simple, i.e., that the minimal polynomial 
cJ>{>..) of A has no multiple roots. We then get Ap = x-1A"X, 

A"= XA"X- 1 

and, taking norms on both sides and using (2), 

N(A") < N(X)N(X-1)N(A"), 
that is, 

(5) (p = 1, 2, ... ), 

where c > 0 and only depends on A. (5) can be generalized to cover the case 
in which q,(A.) has multiple roots. We will show that the right-hand side has 
to be multiplied by pk-\ where k is, roughly speaking, the highest multiplicity 
of the roots of </>(A.). The proof is based on a simple application of Sylvester's 
interpolation formula in the general form. 

So far we have only considered norms of matrices. We.will deal now with the 
asymptotic behavior of the individual elements in the powers of matrices. 
Necessary and sufficient conditions for the existence of the infinite power 
A"'.= iimv-.. Ap and for A"' to be zero have been given by R. Oldenburger [6). 
From the point of view of topological algebra 0. Taussky [8], 0. Taussky and 
J. Todd [9] have· further investigated properties of the class of matrices whose 
infinite powers are zero. In this paper we shall be concerned in finding upper 
bounds for the elements of Ap. Matrices B,. which can serve as "majorants" 
for A" have been given by Frazer-Duncan-Collar [4; 145-147]. The authors 
assign to all elements of Bp the same order of magnitude. For certain triangular 
matrices however the order can be graduated as will be shown in 3-4 of §1 by 
elementary considerations. The result may roughly be characterized as follows: 
if D = (d.,.), d.,. = 0 (v > J.L) is a triangular matrix whose elements along the 
principal diagonal are arranged in descending order of moduli, the elements 
in the i-th row of Dp are, if not zero, in modulus at most equal to a constant 
X I d,, I", eventually multiplied by a certain fixed power of p. 

In §2 immediate consequences are deduced from Theorem 1 yielding sequences 
converging towards max. I A.. I· 

Finally I should like to express my indebtedness to Prof. A. Ostrowski for 
his valuable criticism ap.d for many helpful suggestions. . 

. 2. THEOREM 1. · Let A be a (realor complex) n X n matrix and suppose that 
not all eigenvalues A., of A are zero. Derwte by m. the multiplicity of A.. in the 
minimal polynomial of A and put 

k = max m •. 
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Then we have for a cimstant c > 0 depending only on A. 

(6) 1 < N(AJ>) < k-t 

- ( f I ~. 12P)1 - cp 
(p = 1, 2, ... ).· 

·-· . 

If all~. are zero we have N(A 11) = O(p > l, l = m,). 

Proof. Because of (4) it remains only to prove the right-hand side of (6). 
If all~. are zero, the minimal polynomial of A is ~z and A 11 = 0 (p > l).: (By 
0 we also denote matrices with zero elements.) We may therefore assume not 
all ~. to be zero. Let 

be the minimal polynomial of A with At , A2 1 • • • , ~. all distinct and put m = 
}.:;_1 m, . For any polynomial f(~) we form the s(m + 1) X m,-matrices A, 
and an (m + 1) X !-matrix A.~~ : 

1 0 . . . . 0 1 

~" 1 . . . . 0 

~= 
2 
1! ~" 

A,= (u = 1, · · · , s), A.+l = 

1 

~;-1 m - 1 X"'-2 Am-1 
1! " 

. . . . 

/(~,) 
/'(Afl) . . . . t"'·-l)c~fl> /(X) 1! (mfl- 1)! 

The elements in the (JL + 1)-th column of A,(~ · 1, · · · 1 8) are derived from 
those of the first column by applying the operation 1/JL!{d/dA,)". Putting 
together the blocks A1 , A2 , • • • , A.+1 into one row we get a square matrix 
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Let us for a moment consider det A as a polynomial of the (s + 1) independent 
variables A1 , A2 , • • • , X. , X; then, as is well known (Turnbull and Aitken {10; 63]), 
det A is divisible by the corresponding u confluent" difference-product A, 

• • •• 
det A = 0 (mod A), A = f1 (X - X.,) m. f1 (Ar - A.,) "'~"'• 

I.• 

= </>(X) f1 (X. - X.,) m, .... , 
r>IJ 

that is, 

(7) det A = 0 (mod </>(A)). 

We now expand det A in terms of its last row; this gives a relation of the type 

(8) det A = cf(X) + P(X), 

where 
1.• 

c = fl (Ar - A.,)~·m• =/: 0 

(Turnbull and Aitken [10; 63]; see also Aitken [1; 119-121]) and where P(X) is 
a polynomial with coefficients in which f(X1), f'(X1), • • • , f(X2), j'(X2), • • • 

appear linearly. On the right-hand side of (8) we replace A by the matrix A; 
since <J>(A) = 0, it follows from (7) that 

cf(A) + P(A) = 0. 

Thus we may write for any polynomial f(X) 

• 
(9) f(A) = L fa' 

cr=l 

where c;"> are matrices independent ojthe choice of f(X) and completely deter
mined by the matrix A. (Compare for this argument Turnbull and Aitken 
[10; 76-78]. Another proof and more details on formula (9) are given in Wedder ... 
burn [12; 27-30].) 

We now specialize (9) choosing f(X) = xv so that 

(10) 

If A., ~ 0 we can write 

and thus by, ~2), majorizing the polynomial L(~) by means ofits highest po~~r, 

(11) i ' ; N(f.,) < c., I A" I; 1:1 (p) < d" 1 A., lp p"'•._l (p > k), 
· • r=O T 

c .. , drr being positive constants. Sinee f., -: 0 for A., = 0 and sufficiently large 
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p, say p > p0 , it follows from (10), (11) and (2) that for a certain constant 
d>O 

• • 
(lla) N(A") < L: N(f,) < dpk- 1 L I A, 121 (p >Po). 

Since not all A .. (u = 1, · · · , s) are zero, this upper bound is positive for all 
integers p > 1. Hence the constant d can be chosen such that the last in
equality also holds for p = 1, 2, · • ·. 

If we change our notations and suppose A1 , A2 , • • • , A,. to be the n (no longer 
necessarily distinct) eigenvalues of A, we have a fortiori 

" N(Al") < dpk-1 L I A. 117 (p = 1 2 ... ) ' ' , .--1 

which, by Schwarz's inequality, is 

< nt dpk-t (~I A. 12»y. 
This completes the proof of Theorem 1. 

We may indicate an alternative, though less elementary proof of (6): adapting 
the method by which we proved (5) we can transform A to Jordan's canonical 
form, whose powers are readily calculated. The estimation of their norms can 
then be carried through similarly as before. 

Finally we may remark that the lower bound in (6) can also be attained by 
nonnormal matrices for certain values of p. Take e.g . 

D=C . ~.) 
and write 

D' = c ~ ) e'""' . ' 
it is easily seen that (compare (16) of the lemma in 4) 

(12) 
iv>/1 1 

1 +e i>/1 + + Hv-1)>/1 e -
E17 = • • • e = '>/! • 

e• - 1 

Hence if 1/t is a rational multiple of 211", for infinitely many p we have N(D21) = 2t 
while otherwise N(D17) may come arbitrarily near to 21. 

On the other hand there exist matrices for which N(A17)/(E:=t I A. j22>)i is 
of the same order of magnitude as the upper bound in (6). An example is 
D = (~ D, where k = 2, 

(13) 
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3. Notations and definitions. Let A = (a,,.)(v = 1, · · · , n; p. = 1, · · · , m) 
be an n X m matrix with real or complex elements. If A = diag (o1 , • • • , on) 
(o, ~ 0) is a diagonal matrix of order n, we write A/ A for A - 1A. A/ A is obtained 
from A by dividing the v-th row of A by o,(v = 1, · · · , n). (A) will denote the 
matrix whose elements are I a,"' I; if A1 and A 2 are any n X m matrices we write 
A1<< A2 , if every element of A1 is in modulus less than or equal to the correspond
ing element in A2 and (A2) = A 2 • Clearly (A 1 + A2) << (A 1) + (A2) and 
(A1A2)<< (At)(A2) if both products exist. By I we will denote the unity matrix 
and byE, E 1 or E 2 (square or rectangular) matrices with elements 1. We call 
a sequence of n X m matrices A,(v = 1, 2, · · ·) bounded, if for a certain constant 
c>O 

(A.)<< cE (v = 1, 2, · · ·). 

A triangular matrix is a square matrix with zeros below the principal diagonal. 
In order to state our second theorem we consider the following seven types 

of triangular matrices D to each of which we define a "p-th adjoint" diagonal 
matrix v<v>(p = 1, 2, ···): 

I. D = (d.,.) (v, p. = 1, · · · , m), l dn l > l d22l > · · · > I d,.,. I > 0. 

n<v> = diag (d~1 , • • • , d~m). 

II. D = ·(d.,.) (v, p. = 1, · · · , m), I dn I = I d22 I = · · · = J d,.,. I > 0, 

III. D = (D.,..) (X K=1 ... k)• 
' ' ' ' 

where D .. (K = 1, · · · , k) are triangular matrices of order n. > 1, all diagonal 
elements of which have the same value d., D.,..(X > K) are zero n,_ X n. matrices 
and D.,..(X < K) arbitrary n,. X n. matrices. We further assume 

I d1 I = I d2 I = · · · = I dk I > o, if 

In terms of its (scalar) elements we may write D = (d.,.) (v, p. = 1, · · · , m) 
and define D <v> to be 

D (p) d' ( m-!dp m-2dp dp ) = lag p 11 ' p 22 ' • • • ' mm • 

III'. D = ( d, ,.) (v, p. = 1, · · · , m), I du I = · · · = I d.,.,. I > o. 
D (p) d' ( m-ldp m-2dp dp ) = Iag p 11 , p 22 , • ' ' , . mm • 

IV. (
Dt 

D= 
0 
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where the block D 1 is of type III, the modulus of all diagonal elements being 
d, Dj = (d",) · (v, 11- = 1, · · · , m) is a matrix of type II such that I d,., I = d 
(IJ. = 1, · · · , m) and nod,.,. is equal to a diagonal element in Dx • Then 

n<"> = diag (pD~">, D~">). 

V. D = (D,.,J (A,te = 1, · · · , k), 

where the diagonal blocks D;..(K = 1, · · · , k) are of one of the types II, III, or IV 
and d" are the moduli of the diagonal elements in D .. such that 

dl > d2 > . . . > d,. > 0. 

As in III we suppose D>.c = 0 (A > K) and D,.. (A < K.) to be arbitrary. We 
define 

D <,> - d1"ag (D<~>> ·n<Pi • • • n<~>>) - 11 , 2~.' , ' kk • 

VI. (
Dt 

D= 
·.. 0 

where D1 can be of type I-V and D2 = (d.,.) (v,IJ. = 1, · · · , m) is a triangular 
matrix with zeros along the principal diagonal. Then 

n<~>> = diag (Df">, 0). 

4. THEOREM 2. For a matrix of type I there exists a triangular matrix G with 
elements 1 along the principal diagonal such that D"/D<"> ~Gasp ~ oo. For 
the remaining types II-VI, III' we have 

(14) (p > m), 

where cis a positive constant, m = 1, if Dis of type II-V or III', and'1m is equal 
to the number of zero diagonal elements, if Dis of type VI. 
• 

In the cases II-V, III' (14) clearly means that D" /D<"> (p = 1, 2, · · ·) is a 
bounded sequence. 

LEMMA. Let A = (: ~),where R, S are square matrices. Then A"= (:" 
where 

(15) 

i.e. if R-1 exists, 

(16) 

Proof. For p = 2 we have, using block-multiplication, 

T2 = RT + TS. 

T,) 
811 ' 
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Hence we may assume our lemma to be true for powers less than p. Then 

which is (15). 
Proof of Theorem 2. We first prove the Theorem 2 for matrices of one of the 

types I, II or III'. Since any matrix of type III is also a matrix of type III' 
this will include the proof for matrices of type III. 

The assertion concerning I, II and III' are clearly true for m = 1. We may 
therefore assume Theorem 2 to be true for matrices of order < m and of type 
I, II and III'. Let D be of order m; we divide D in four submatrices, in the 
following way: , 

(1~1.: ..... J!. ·) 
D = . . 

0 : Dm-1 

Then we have 

where by (16) 

(17) 

and for o~f> we put ~1 or p"'- 1~1 according to the types I, II or III'. It is sufficient 
to prove the boundedness (or, when Dis of type I, the convergence) of B1,/off> . 
We consider now two cases: 

(a) Types I, II. From (17) it follows that 

(18) B: = B(Dm-1 - dul)-~[( ~m-·Y - r]. 
d11 11 

F.ol' the type I, 

( Dm-l)P 0 -- ~ as 
. dn .:._ ... 

_p ~. 00. 

(For if all eigenvalues of a matrix A lie inside the unity circle,· we" have the 
eonvergent develop~ent (I- A( 1,, .· L::-tt A·,, so that 4• ~ 0 (v ~ oo).) 
Therefore · · · · · ·· 

\ ; ~.. . 
(19) 
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and since, if D is of Type II, 

(p = 1, 2, .. ·), 

the right-hand side of (18) is bounded by hypothesis. 

(b) Type III'. Since o~~>- = pm-t cf;1 , it suffices tp prove the bounde~ness of 

1 p-1 (D ) ... 4JP = --;;;:t L dm-1 
p .-=1 11 

with p = 1, 2, .... 

By hypothesis for a constant c > 0 we have 
p-1 p-1 

(20) L (D~-t} << C L (D~".!1}E. 
11"-1 ...... 1 

Put 

<D~~!) = d' ( m-2 m-3 • • • 1) = A (-r) , tag 1r. , 1r , , l..lm-t , 

d~t 

then it follows from. (20) that 

·I: <D:-1) << c I: .. A~::E << cpL\!:'~tE. 
r=1 du ... ~t 

Hence 4J; is bounded. 

Type IV. Without loss of generality we may assume d = 1; for if d r5- 1; 
write D = dD; then n<P> = d11D< 11>, D 11/D<11> = D 11/D< 11>. 

We put D11 = (~' 11 0~;) and have to show that B11jpD~111 is bounded. By 
(15) we have 

'B -- D 11- 1B + D 11 - 2'B D ·+ + B nv-t p- 1 1 1 12 ••• 12. 

Since D~ by II is bounded with 1r = 1, 2, · · · , we have for a constant c > :o ; 
(B11) << c[(D~- 1) + · .. + (D1) + I]E. 

It is therefore sufficient to prove that 

. 1 p-1 

. n·<P> E (D ~) p 1 -r•1 

is -~~unded, and. this follows at once from 
p-1 p-1 

L: (D~) << Ct L: (D~"))Et << Ctp(D~p)yi!J: ' 
r=l 

c1 being a positive constant. ! 

Type V. Our assertion for the type Vis now true in the case k = 1. For 
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k > 1 we assume it to be true for smaller values of k. Let D = (D,.«) (A,K = 1, 
, k) and write 

(
Dn 

D= 
0 

By (16) we have 

B Dp-t 
<:> = 1<~> [B + D~~BD~c-t + · · · + (D~~y- 1BD:::]. 

Dn Du 

Since D~~ 1/D~~> is bounded we have only to show that 
p-1 

cf>p = ,L: (D~~) rBD;_t 

is bounded. Put D-;:~ = 1/d1 Du ; there exists a constant c1 > 0 such that 

((D-1)"') << ~ (D<r>)E . 
11 d~ 11 1 , 

The diagonal of (Di~!) consists of d~ , · · · , d~ multiplied by certain powers of 1r. 

We enlarge (Di~~) replacing a:(i = 2, · · · , k) by d; and we write (Di~~) << 
d~ ~k~~ . Hence for a constant c2 > 0 we have 

.!_ ({D~!}rBD;_l) << ~ (Di;>)E(Di~!)E2 << E""(D~;>)E~k~~E2 1 

c2 d 1 

where 0 < E < 1, E is rectangular and ~k~~ , as well as (D~;>), is a diagonal 
matrix containing only powers of 1r along the diagonal. Thus for a constant 
c3 > 0 and an integer 8 > 0 we can write 

Er(Di;')E~i:~E2 << CaEr?r•E, 

and therefore with c., > 0 

Since the sum in brackets converges as p ~ oo, cf>p is bounded with p = 1, 2, • • • • 

Type VI. Write 
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from (16) it follows that . 

(21) 

and by the Hamilton-Cayley theorem D; = 0 (p > m). Hence the expression 
in brackets on the right-hand side of (21) is bounded with p = 1, 2, · · · and 
for a conStant c :>. 0 . ' . . -

(p > m). 

This completes the proof of Theorem 2. 
The same example as given at the end of §2 shows that for matrices of 

type II D""/D<""> is not convergent in general. In fact, (12) converges only for 
"' == 0 (mod 211"). Moreover from (13) it follows that the exponents of pin III 
cannot be reduced in general. 

We should also note that by means of Schur's transformation (3) and (4) an 
inequality of type (6) could easily be deduced from Theorem 2. The exponent 
of p however would turn out to be less favorable than in {6). 

II. CoROLLARIES 

1. Put A."" = (a~:>) (v,S£ = 1, · · • , n), 

(22) F11(A.) = N11""(~1') = [tr A.P(A"")*]112p = (t-
1 
I a~:> 1')112

p (p = 1, 2, • ~ ·} 

and wA = max, I ~. j. Then from Theorem 1 we deduce 

THEoREM 3. For every integer p > 1 we have W.t < Fp(A) and Fp(A) --+ W.t 

asp-+ oo. 

Proof. We may assume wA > 0; then by Theorem 1 

(23) W.t < ( ~ 1 ~. ,2pr,2p < FlA) < (cp"-1) 11p( t. 1 ~. l2pr/2p, 

and our second assertion follows by making p --+ oo • 

This theorem has b~n stated by A. B. Farnell [3] in the case that p runs 
through powers of 2. For the convergence of Fp(A.). he has indicated a proof 
for matri~es of second order, valid also when p runs.through all integers. In a 
way the th~rem is analogous to the fact that for an essentially bounded function,. 
integrable in the sense of Lebesgue 

N~U> = [f If lp dx J'p--+ max I J I 
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The analogy however is not perfect, since the numbers F11(A) cannot be considered 
as norms for matrices the triangular inequality being not satisfied in general. 
For from 

(p = 1 2 .. ·) 
' ' ' 

making p ~ oo, it would follow wA+B < wA + wB which is false in the 'ease 

B=C 
Where W..t = WB = 0, W..t+B = 1. 

The following corollary comes out of Theorem 3· particularly easily: 

CoROLLARY. For any square matrix A let Pi > p~ > > p~ (p. > 0) be the 
eigenvalues of AA * and put M(A) = p1 • Then 

In fact, we have 

W..t < M(A) < (?; p;y = (tr AA*)t, 

and therefore by (22) 

wA < M 1111(Aj < [tr A~'(Aj*)112p = Fp(A). 

(p~oo). 

2. As the values Fp(A) are of rather intricate structure we give a sequence 
G;.(A), equally convergent to W..t, whose elements are somewhat simpler to calcu
late. Put .. " 

Rp = max L I a!:> I, Tp = max :E I a!:> I, , ,..1 11. r•t 

(p = 1 2 .. ·) ' ' . . 
THEOREM 4. For every integer p > 1 we have Gp(A) > W.& and Gp(A) ~ w.A 

asp~oo. 

Proof. The inequality follows immedia~ly from the well-kn(:)W~ inequality 
"'.& < R 1 , applied to the matrix Ap. For any matrix C = (c,,.)(v;ll = 1, 2, · · · , n) 
we have using Schwarz's inequality 

(24), "'f I c.,. I < nt(~.l c,,. l2y < n1(t.l I c,,. l2r = n1N(C). 

We apply (24f to the matr~ c =' A Jl anc,l take v such that :E:-1 I a!:> J _-, R~' '· 
This gives· ·· · · · · · · · 

w ... < R!1p < n112PF»(A) 

and, by making p ~ ' oo, our a.Sserti6n follows from Theotem 3. 
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Since A and its transpose A' have the same eigenvalues, Theorem 4 holds 
for the sequence T!'p as well; in particular 

Hi A) = min 11p (Rp , TTl) 

tends to Cd.A as p --+ ro. 

3. It is natural to ask under which conditions the sequences Fp(A) and 
Gp(A) will monotonically decrease towards W..t • In this direction we prove 

THEOREM 5. If P~ > 0 (v = 1, 2, · · ·) is a strictly increasing sequence of 
integers, such that every p. is divisible by p,_1 (v = 2, 3, · · · ), then F •• (A), G.,(A) 
are monotonically decreasing towards wA as v --+ ro. The monotony of F •• (A) 
and Gp.(A) has been proved by A. B. Farnell [3], A. Brauer [2] respectively for 
the special case p. = 2·-1• 

Proof. We first prove that for any integer k > l 

[ FiA)Jkl<k+t> 
(25) Fk+t(A) < F.(A) F.(A) (k = 1' 2, ... ). 

In fact, applying Schwarz's inequality we have 

I a!!+l) 12 = I t a~~>a,.,. 12 < (t I a~~) II a,.l' 1)2 < t I a!~) r' I a«,. 12 • 
A•1 A-1 A.«•l 

Summing over v and JJ. we get 

.t-1 I a!!+t> 12 < Ct.. I a.,. l2)(t., I a!:> 12
), 

that is, 

F (A) < F (A) 11 <k-t:°F (A)kl<k+ 1> . k+l - 1 k 1 

which is {25). 
We now have to show that for any two integers q, p (q > p > 1) related by 

q = kp (k an integer) FQ(A) < F.(A). It is sufficient to prove 

{26) (k = 1' 2, ... ) . 

For since F:.(A) = Fk(A"), (26) implies 

(26) is trivial for k = 1, therefore using the inequality (25), (26) is seen to be 
true for k = 1, 2, · · · . 

The proof for GJ>(A) goes in a similar way. For v = 1, 2, · · · we have 

f I a!!+t> I = t l t a!~>a,.,. I < t (t I a!:> II a,.,. 1) < R1Rk. 
p•l p•l X-1 A•1 p•l 
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Choosing v such that 2::-t I a~!+u I = R,+l , we get 

G!!~(A) < G.(A)GZ(A), 

that is, 

(27) [G~:(A)]"t<Ho G~:+t(A) < G1(A) G1(A) (k = 1, 2, .. ·). 

Again, since G,.(A") = G~"(A) it is sufficient to prove G,.(A) < G1(A) (k = 1, 2, 
· · ·) which can be done in the same way as before using (27) instead of (25). 
This completes the proof of Theorem 5. 

In a second note we will extend the results obtained in this section to more 
general norms. 
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THE ASYMPTOTIC BEHAVIOUR OF POWERS OF MATRICES. II. 

BY WERNER GAUTSCHI 

This note is an addendum to our paper [3]. We will extend the results ob
tained in II of [3] by introducing more general norms, and from this we derive 
further sequences converging towards wA • The enumeration of the equations, 
theorems and sections will be continued from [3]. 

III. Generalizations 

1. To any column~vector x = (x1 , • • • , xn) of the n-dimensional complex 
Euclidean space let a number <t>(x), called the norm of x, be assigned, satisfying 
the following three conditions: 

(i) <f>(x) > 0 except for the null vector x = 0, for which <t>(O) = 0, 
(ii) <t>(Xx) = I A I <f>(x) for any complex scalar 'A, 
(iii) <f>(x + y) < <f>(x) + <f>(y). 

Furthermore, suppose that<t>(x) is bounded over the set of vectors with Euclidean 
length I x I = 1, 

(iv) <t>(x) < C <I X I = 1). 

Let a function of the vector x, if;(x), satisfy (i) and (ii) and be bounded from 
below by a positive constant for all vectors x with I x I = 1, 

(v) if;(x) > c > 0 <I X I = 1). 

Then for ann X n matrix A = (a. 11) the ratio <t>(Ax)/if;(x) remains bounded over . 
the set of all vectors x ~ 0; we may therefore define its least upper bound 

(28) _ <t>(Ax) 
flq,,!fi(A) =sup--:-;:--( ) .,,..o oy X 

as the (upper) norm of A induced by</> and if;. (Compare for this definition A. 
Ostrowski {5].) flq,.!fi (A) is a special case of the most general norm n(A) defined 
by the three properties: 

(vi) fl(A) > 0 except when A = 0, in which case fl(O) = 0, 
(vii) fl('AA) = I A I fl(A) for any complex scalar A, 
(viii) fl(A + B) < fl(A.) + fl(B), A, B being n X n matrices. 

If in particular we take if;(x) = <t>(x) assuming of course that </> satisfies (v), 
flq, = flq,,q, also satisfies 

(ix) 

Received November 5, 1952. This note is part of the author's doctoral dissertation pre
sented to the University of Basle, Switzerland. 
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since 
cf>(ABx) = cf>(A(Bx)) c!>(Bx) 

cf>(x) cf>(Bx) cf>(x) · 

We mention the following three examples, where n<t>."' can be given explicitly 
in terms of characteristic values of A (compare e.g. [1; Chapter 1], [2] or [6]): 

n 

(a) cf>(x) = 1/;(x) = Max I x. I, n</>.>/1 = Max L I a.,. j. 
P=l, • • • ,n r==l, •••,n .u=l 

" n 

(b) cf>(x) = l/l(x) = L: I x. I, n</>.>/1 = Max L I a.,. j. 
1'=1 ~=1. •••,n v=l 

(c) cf>(x) = 1/;(x) = I xI = (t11 x. l2y, flq,, >/1 = Pma:q 

where P!ax denotes the dominant eigenvalue of the matrix A* A. Since Inf ... o 

I Ax Ill x I is equal to Pmin, P!in being the smallest eigenvalue of A* A, we can 
estimate flq, in terms of Pma.x , Pmio. : 

(29) 
c c 
C Pmio. < U¢(A) < -;; Pmax • 

Indeed, from (iv) and (v) it follows that 

!:_ . < !:_ L!£1 < ¢'(Ax) < C l.4.£J < C 
C Pm•n - C j X J - cf>(x) - C j X I - C Pmax • 

Another class of examples is given by 

(d) cf>(x) = (x'Hx)t, 

where H, K denote two positive definite Hermitian matrices. A detailed dis
cussion of the norm Un,K(A) induced by this choice of c/>, if; will be given else
where [4]. 

( 
n )1/r ( " )1/r' 1 1 

(e) cf>(x) ·= L I x. I' , 1/;(x) = L I x. j'' , - + -, = 1 (1 < r < oo ). 
•-1 •=1 r r 

We will denote the corresponding norm of A by n,, •. (A). This norm can easily be. 
estimated from above as follows: put y = Ax, y = (y1 , • • • , y,.); then by Holder's 
inequality 

(v = 1, · · · , n). 

Hence summing over"= 1, · · · , nand taking the r-th root on both sides we get 

(30) ( 
n )1/r 

cf>(y) ~ .~1 I a.,. I' tfl(x), 

that is, 

(31) 
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The limiting cases r = oo orr' = oo of (31) follow from (30) by letting r ~ oo, 

r' ~ oo respectively in (30) (compare [5], in particular p. 788). 

2. The arguments by which we proved the right-hand side of (6) remain 
unchanged if we use instead of N(A) any norm O(A) satisfying (vi)-( viii). Indeed, 
the steps leading from (10) to (11) and (lla) can still be applied with 0 instead 
of N, since they only require (vi)-(viii). We thus obtain the following extension 
of (6): 

THEOREM 7. Let 0 be a rwrm for n X n matrices with the properties (vi)-( viii). 
Then under the assumptions and with the notations of Theorem 1 we have 

(32) . (p = 1, 2, ... ), 

where c is a certain positive constant depending only on A and n. 
Obviously the left-hand side of (6) with 0 instead of N is not true in general, 

since (vi)-(viii) still hold if 0 is replaced by EO for any E > 0. 

3. In analogy to (22) we put 

(33) cflp(A) = n!~~(Ap) (p = 1 2 .. ·) 
' ' ' 

where, for the sake of simplicity, we have dropped the indices cp, 1/; on the left
hand side. Then from Theorem 7 we deduce the following theorem which con
tains Theorem 4 and the corollary_of Theorem 3 as special cases: 

THEOREM 8. For any cp, 1/; as defined in 1 we have 

(34) cflP(A) ~ WA (p ~ 00 ) • 

Moreover, if cp(x) = 1/;(x) then all cfl11(A) are bounded from below by wA : 

(35) (p = 1, 2, .. ·). 

Proof. Denote by A an eigenvalue of A with I A I = wA and by x an eigenvector 
corresponding to .>... Then obviously .>..px = Apx (p = 1, 2, · · ·) and from (ii) 
and ·(28) it follows that 

w:_cp(x) = cp(Apx) < O"'·"'(Ap)lf;(x), 

(36) ( cp(x))1/p 
wA 1/;(x) ~ cfliA) (p = 1, 2, .. ·). 

Since (vi)-(viii) hold for n = 0"'·"' we can combine (36) with (32) and get 

wA(:~~D1/p < cflp(A) < (cpk-1>1/p( t I x. 12pr/2p 

whence (34) follows by making p ~ oo. 

If <P(x) = 1/;(x), then (35) follows directly from (36). 
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Again, from Theorem 8 it follows that <I>p(A) cannot be considered as a norm 
for matrices, since the triangular inequality is not satisfied in general, the reason 
being the same as that given in [3; II]. 

It is interesting to notice that Theorem 5 can also be extended in the same way: 

THEOREM 9. If p. > 0 (v = 1, 2, · · ·) is a strictly increasing sequence of 
integers such that every p. is divisible by p._1 (v = 2, 3, ···),and if we take <J>(x) = 
1/;(x), then the sequence <I>p,(A) as defined by (33) is monotonically decreasing 
towards wA as v ~ co • 

Proof. The proof is essentially the same as for Theorem .5. Since ¢(x) = 1/;(x) 
we can apply (ix) to A k+l = A· A\ which gives 

whence 

(37) (k = 1, 2, .. ·). 

Again we have to show that for any two integers q, p (q > p > 1) related by 
q = kp (k an integer) <I><l(A) < <I>p(A). Since <I>k(AP) = q;zp(A), it is~sufficient~to 
prove 

(k = 1 2 .. ·) 
' ' ' 

which follows from (37) by the induction argument. 

4. By means of Theorems 7 and 8 we now extend Theorem 3. For any real 
number r > 1let the norm Nr(A) be defined by 

(38) ( n )!/r 
Nr(A) = •~1 I a.l' r (1 ~ r :S co). 

For n = Nr obviously (vi) and (vii) are satisfied while (viii) follows from Min
kowski's inequality. Hence Theorem 7 is applicable and by (31), applied to 

. the matrix A p' we get 

(39) (p = 1, 2, .. ·). 

On the other hand n!~~·(A7>) ~ WA (p ~ co) by Theorem 8. Thus by taking 
the p-,th root on both sides of (39) and letting p ---+ co the following theorem is 
obtained: 

THEOREM 10. For any r 2::: 1 we have 

N!11>(Ap) ~ WA (p ~ co). 
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The limiting cases r = 1, oo of Theorem 10 are of particular interest, so that 
we may state them explicitly as 

CoROLLARY. Let A be ann X n (real or complex) matrix and put Av = (a;~>), 

(p = 1, 2, ... ) . 

Then the sequences Lp and Mv tend to wA asp~ oo 
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§ 1. 

Bounds of matrices with regard to an 
Hermitian metric 1) 

by 

Werner Gautschi. 

The bounds DH K• wH K' ' . ' 

1. Introduction. In various questions concerning the solutions 
of systems of equations and the errors made by rounding off, 
the following definition of upper and lower bounds D(A ), ro(A) of 
·a matrix A has frequently been used: 

D(A) = Max ve:, ro (A) = Min Vq,, (1) , , 
where q, denote the eigenvalues of A'A (cf. e.g. (8] p. 1042 ff., or 
(9], p. 787, for the special case in which qJ, z are Euclidean lengths). 
In this paper we will discuss a generalization of this def'mition 
introducing as "parameters" two positive definite Hermitian 
matrices H, K. If H, K vary independently, the generalized 
bounds DH, g{A ), wH,K(A) can in general take values in the whole 
range (0, co) (cf. § 1, section 8(vi)); to obtain appropriate values 
one has to couple H, K in some way. This can be done very 
-naturally when A is ann X n matrix, by taking K =H. The 
bounds DH, H == !JH, wH, H == wH are in fact often more favourable 
for A than (1 ), but at the same time their actual calculation is 
considerably more difficult, as is shown by the examples given in 
§ 2. If, however, A contains only a few non-vanishing elements, 
DH,K(A) can fairly well be estimated from above by means of our 
theorem 2 in § 8, section 1, which generalizes a theorem due to 
W. Ledermann (7]. We will also make use of the theorem 2 in § 8, 
section 2, to determine both lnf !JH (A) and Sup (JJH (A), where H 

H H 
runs through all positive definite matrices. In sections 2 and 8 of 
§ 1 we give the exact definitions and a few elementary properties 
of DH,K(A) and wH,K(A), while in section 4 of§ 1 a property not 
quite so trivial is proved. 

1 ) This paper is part of th~ thesis for the Dr. phil.-degree at the University 
of Basle, Switzerland. 

726



2 Werner Gautschi [2) 

· The idea of" relating lengths of vectors to a positive definite 
Hermitian matrix H has recently been applied to the solution of 
linear equations Am = b by M. R. Hestenes and M. L. Stein (6]. 
Their main prqblem is to minimize the "H-length" of the residual 
vectors r(m) =b-Am. Our definitio~ of DH,x(A}, OJH,K(A) in
volves a similar extremum problem, but\ in contrast to (6]) with 
a side condition. 

In defining the H -length of a vector we make use of the "scalar 
product" (m, y) with regard to H of two vectors m, y, as given e.g. 
in H. L. Hamburger and M. E. Grimshaw [ 4 ], p. 158. Such 
products (m, y) have also recently been used by W. Givens (2] 
to obtain theorems on the fields of values of a square matrix, 
which considerably extend the well known results due to 
0. Toeplitz (12] and F. Hausdorff (5]. 

I am very much indebted to Prof. Dr. A. Ostrowski for having 
most kindly allowed me to see through the manuscript of the yet 
unpublished ~ook (10] from which I received many suggestions. 
In particular a chapter of (10] on the bounds (I) was the starting 
point of our investigations, which rather closely follow the dis
position of. this chapter. 

2. Notations and definitions. Let A = (a11,) (p =,1, .•. , m; 
11 = 1, ••• , n) be an m X n matrix with real or complex elements 
a11,. By A*= A' we denote its conjugate-transpose and by 
A <•J (p = 1, ..• , Min (m, n)) its p'" compound matrix, i.e. the 

(;) X ~) matrix consisting of all minors of A of order p. The 

groups of p rows and columns which form the minors are supposed 
to be arranged in lexicographical order. We have to use the follow
ing rules concerning A'"': 

(AB)<jJJ = A'"'B'"', (A*)<"'= (A'"')*, (2} 

if the product A B exists ( cf. e.g. (1 ], p. 90ff). The first relation in 
(2) (the so called Binet-Cauchy theorem} is readily extended to 
more than two factors.· Further if m = nand A - 1 exists, from (2} 
(with B = A-1) it follows that 

(A-1)<•J = (A<•J)-1. (3} 

tr A will denote the trace l:a, of a square matrix A, l..t an eigen, 
value of A and ll..t I max, ll..t I min respectively the maximal, 
minimal modulus of the eigenvalues of A. 

By a: ,y etc. we denote column-vectors of a k-dimensional com
plex Euclidean space, by m* the conjugate-transposed row-vector 

727



(8] Bounds of matrices with regard to an hennitian metric 3 

m' and by I a: I the Euclidean length of a:. In order to introduce an 
Hermitian metric we define the scalar product (a:, y) of two vectors 
a:, y by 

(a:, y) == y*Ha: (H > 0), (4) 

where H is an Hennitian matrix of order k; the meaning of the 
relation H > 0 is that His positive definite. In particular (:c, a:) 
is real and ~ 0 with (a:, :c)= 0 only when x = 0. We therefore 
define 

II a: II == v'(x, a:) (5} 

as the norm of a: 'With regard to H. Sometimes we add the subscript 
Hand write II a: lla instead of Jl a: II· By routine arguments (cf. 
e.g. (11], p. 5, (3], p. 90-92, or (4], p. 4--5) the following three 
properties of II a: II are obtained: 

II a: II ~ 0 with equality if and only if a: = 0 } 
II ra: II = l r I II a: II (r any complex scalar) 
II~ + Y II ~ II ~ II + II Y II· 

(6) 

Now let A be an m X n matrix and H > 0, K > 0 be Hermitian 
matrices of orders m, n respectively; we then define the upper 
and lower bounds .QH,x(A), coa,x(A) of A by 

Dn,x(A) =Max II Am lla =(Max a:* A• HAa:)l, } . 
II z llx-t · II z Ux-t 

Wa,x(A) =Min II Aa: lla = (Mina:*A*HAa:)l· ('1) 
llclfg=l flcllx-1 

If in particular m = n and H = K we write Da, H = .QH, coH, H == 
(J)H. The definition (7) can also (partly) be expressed in terms o_f 
Euclidean lengths: Let K be transfonned to a diagonal matrix 
by the unitary matrix U: 

D = U* K U = Diag (k1, ••• , k"), U• U _:__I"' (8) 

where I" is then x n unity matrix. Since k, > 0 (11 =I, ... , n) 
D can further be reduced to I" by multiplying on the right and 

left by A = Diag (_ ~' .•. , ~ : ) : 
v k1 v k. 

. ( 1 1 ) A U• K U A = I., A = D1ag . r.-' ..• , ~ 1- • 
v k1 v k" 

(9) 

If we now apply to a: the substitution a: = U LJy we get 

11 Ax IIi = a:• A • H A a: = y* L1 u• A • H Au Ay (a: = u LJ y) 
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4 Werner Gautschi [4] 

·and by (9) 
w*Kw = y*LJU*KULJy = y*y. 

Hence II w II x = 1 implies I y I = 1 and viceversa; we therefore 
have · 

~II A.x ~~~ = ~y*By, B = LJU*A*HAULJ, (10) 
Hzllg-1 lvl-1 . 

where iJ , iJ denote the fields of values over the sets of vectors 
flclfg-1 lvl=1 

re, y with II w IlK= 1, I y I = 1 respectively. Since B is non-nega
tive definite, from (10) we see that both Max, Min in (7) actually 
exist and 

~.x(A)= ;.:as, w~,K(A) = lSO', B = LJU*A*HAULJ. (11) 

If in particular we ~e H = I m' K = I ft) so that clearly U = Ll = 
I,, we obtain the bounds defined in (1 ) . 

. Throughout this paper we denote respectively by h1, ••• , hm>O, 
k1, ••• , k,;::; 0 the eigenvalues (not necessarily distinct and 
arranged in any order) of H, K and we put h' = Max hJA, 
h" = Min hJA; k' = Max k., k" = Min k11• JA=l, ••• ,m 

p=l, .•. ,m 1'=1, ... ,1'1 V=l, ... ,tl 

8. Elementary properties of D H, g, wH, ic· If not otherwise stated 
in this section A, H > 0, K > 0 are respectively m X n, m x m, 
n X n matrices. 

(i) The following properties of DH,K' roH,K are immediate 
consequences of (6) and (7): 

DH,x(yA)=lyi·DH,K(A),roH,K(YA)=Iy lro8 ,x(A) (y any complex scalar) 

D8 ,x(A +B) ~D8,x(A) +DH,x(B), ro8 ,x(A+B) ~ro8,g{A)-D8,x(B), 

DH,x(A) = 0 if and only if A = 0 

ro8 , K (A) = 0 if and only if the rank of A is < n. 
(18) 

(ii) Obviously we can also write 

Q (A) = Max II Are IIH w (A) = Min II Are IIH (14) 
H, K z:;t:o lire llx ' H, K z:;t:o II IE llx ' 

so that for any m X n matrix C: 

II Cw IIH ~ DH,K(C) II w IlK, II Cre IIH ~ coH,x(C} lire IlK· Hence, 
. if A, B, L > 0 respectively are m X l, l X n, l X l matrices, we 
have 

(12) 
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On the other hand, for any vector a: with Ba: =fo 0 

II ABa: IIH = II A(Ba:) IIH II Ba: IlL (Ba: :J:O). (16) 
II a: llx II Ba: IlL II a: llx 

II Ba: IlL 
Suppose now that for the vector a:: = DL K (B). Then by 

II a: llx • 
(16) and (14) 

D (AB) :;;::11 ABa: IIH II A(Ba:) IIHD (B):;;:: (I) (A)!J (B). 
H,K II a: llx II Ba: IlL L.K - H,L L.K 

Similarly, if B is of rank n, from (16) we deduce wH,x(AB) :5: 
DH,L(A)wL.x(B). If B is of rank < n, then the same holds for 
AB (cf. e.g. (I], p. 96-97) and therefore wH,x(AB) = wL, x (B)= 
0. Thus we can extend (15) as follows: 

DH, x(A B):;;:: (J)H, dA )DL, x( B), wH, x(A B) :5: D0 , L(A )wL, x(B). (17) 

(iii) Suppose that m = n and A - 1 exists; then putting 
a: = A -Ly we see that 

~ II Aa: IIH = ~ IIY llo = ~ (II A-11/ llx)-1 (a: = A-Iy). 
3!:;60 II a: llx y:;6o II A-11/ llx y-¢0 II Y IIH 

Hence in using (14) we get 

DH,x(A) = (J)K,H \A-1)' 
I 

wH. x(A) = D (A -1). 
K,H 

(18) 

(iv) LetS, T be two nonsingular matrices of orders m, n respect
ively; then we have 

Do,x(A)-:-Ds•Hs, T•xT(S-1AT), (J)H,K (A)=cos•os, T*KT(S-1AT). (19) 

If in particular m = n, DH,K• wH,K do not change, if a unitary 
transformation S is applied both ro A, H and K. 

Indeed, putting a: = Ty we see that the field of values a:* A* H Ax 
over the set of vectors a: with a:* Ka: = 1 coincides with tfte- field 
of values 

y*T*A*HATy = y*(T*A*(S*)-1)(S*HS)(S-1AT)y 

taken for all vectors y with y*T*KTy = 1. Hence (19) follows 
at once from the definition (7). 

(v) Suppose that both A, H and K are respectively the "direct 
sums" of A 1, ••• , A., H 1, ••• , H. and K 1, ••• , K, i.e. that in an 
obvious notation 

A=Diag(A1, ••• ,A,), H =Diag{H1, ••• ,H,), K = Diag(K1, ••• ,K,), 
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6 \Verner Gautschi [6) 

where Aa is an ma X "'a• Ha > 0 an ma X mel arul Ka > 0 an 
nel X nel matria: (0' = 1, ... , s). Then we have 

D8 ,x {A)= Max D8 a,Ka (Aa), w8 , x(A) = Min w8 a,Ka(ACI). (20) 
.. a.--1., ... . ,1 · cr-t •••• ,, 

In fact, let Ka be transformed to a diagonal matrix by the uni· 
tary matrix Ua (0' = 1, ... , s) and put U = Diag (U1, ••• , U,), . 
so that clearly (8) holds. Put L1 = Dia.g C} , ... , 1 ) = 

v k1 vk,. 
Diag (L11, ••• , Ll,), LICI being of the same order ~KCI (0' = 1, ••• , s). 
Then obviously the matrix B. in (10) is the direct sum of 
L1CIU;A;H~C1Uaf1e~ (0' = 1, ••• , s), whence (20) follows from (11). 

(vi) For every H > 0, K > o we have 

1/b,'' . llh' y k' w(A)::;; w8 ,x(A)::;; D8 ,x(A}::;; y k" D(A), (21} 

where w(A); D(A) are the bounds defined in (1). 
Indeed, (21) follows from (14) by putting g =Am in 

h" I y I' ~ II y IIi- ~ h' l y 12, k" I a: 12 ~ II m Hi ::;; k' f a: I'· 
(vii) We have for any eigenvalue A..t of a square matria: A: 

w8 (A)::;; I A..t I~ D8 (A). (22) 

In fact, let a: be an eigenvector corresponding to A.t with 
-II a: lin= 1. Then Am= A.t t£, II At£ 118 = I A.t J, whence (22) 
follows directly from (7). 

4. For the proof of our first theorem we need the following 
LEMMA 1. Let S be an n X m matria: and T an m X n matriaJ. 

Then, if m < n, we have 

(ST)<•> = 0 (p > m). (23) 

PRooF. Put S0 = (S01), T0 =(~)· where 01, 0 1 arenx (n-m), 

(n- m) X n zero-matrices respectively. Obviously both S0 

and T0 are n X n matrices and ST = S0T0• Hence by (2) 
(ST)<•l = S~", Tf.">, and (23) follows from S~•> = Tf,•>· = o (p>m). 

LEIDIA 2. Suppose that D = Diag (kt, ••. , k,.) (k., > 0), 

L1 = Diag (. ~' ••• , ~ : ) and G = Diag (ht, ... , h,.) (h11 > 0 ), 
vk1 vk,. . 

F= Diag {. ~' ••• , . ~). Further let R = (r11.,) be an m X n 
v h,l v h,. 
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matri:c and put B = FRDR*F, C = LJ-1R*G-1.Rtt-1• Then, if 
9'(1) = I i.l,.- B 1, VJ(i.) = I i.l,.- C I are the characteristic poly
nomiala of B, C, we have 

y(l) = ).ta-•9'(.1). 

PROOF. Without loss of generality we may assume m ::;;: n. 
Put B = (bl"') (p," =I,, .•• , m), C = {cp) (p, "=I, ••. , n); by 
direct multiplication we get 

Hence 

I I a 

b11, = ~ r.- ~ r.- ~ 1cC1,. pa-;. WI 
v hp v h, CJ-1 

fll 1 
Cp= ~ -vk, :t h T-rp f'D. 

-r-1 l' 

Ill "'"k ""'k tl 

tr B = :E b1111 = :E :E hCJI r pa p• = :t :E _!I r n P' = :E c,.,= tr C. 
p-1 p-1 CJ-1 p 11-1 T-1 ~ 11-1 

We now form the p"' compound matrices BUJ}, c<tt) of B, C; 
from {2), (8) it follows that 

B(tt) = r<tt> R<tt> D<ttl(R<ttl)* r<tt> 
C(ttl = (LJ<PJ)-1(R<ttl)*(G<tt>)-1R<tt>(LJ<tt))-1 (p = 1, • • ., m). 

Evidently B<tt>, C(P) are built analogously to B, C. Therefore our 
first conclusion again is applicable and we get 

tr B<P> = tr C<ttl (p = 1, ••• , m). (24.) 

Hm < n by the lemma 1 withS = LJ-lR*, T = G-1RLJ-1 wehave 

Ott> = 0 (p > m). (25) 

Since generally (-1)tt tr A(tt> is the coefficient of .1·-~~ in the 
characteristic polynomial I i.l,. -A r of an n X n matrix A, ( cf. 
e.g. [1], p. 88), our assertion now follows immediately from (24.) 
and (25). 

THEOREM 1. Let A be an m x n matria: and H > 0, K > 0 
be respectively of order8 m, n; then we have 

DK,H(A*) = DH-t,g-t(A), (26) 
and, if m = n, 

(27) 
PRooF. Let 

G = V*HV = Diag ('ht, ••• , h.), V*V =.1,., (28) 

rv•nvr = 1., r = Diag C ~-- .. . , . ~) (29) 

vAt v ·-
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be the equations corresponding to {8), {9), applied to the matrix 
H. Then in using (8), {28) we have 

D = U*KU, D-1 = U*K-1U; G = V*HV, G-1 = V*H-1V, (SO) 
K = UDU*, K-1 = UD-1U*; H = VGV*, H-1 = VG-1V*. (81) 

According to (11) and {28)-(80) we have to examine the eigen
values of 

B = FV*AKA*VF, C = A-1U*A*H-1AUA-1. 

By means of (81) we can. write 

B = F(V*AU)D(U*A*V)F= FRDR*F 
C = A-1(U*A*V)G-1(V*AU)A-1 = A-1R*G-1RA-1, 

putting R = V* AU. If we now apply the lemma 2, our assertion-. 
follows at once. 

CoROLLARY I. For any square matrim A and H > 0 we have 

D,H(A*) = DH-t(A), coH(A*) = coH-l(A). (82) 

CoROLLARY 2. If A is an Hermitian matriaJ, then for any H > 0 

DH(A) = DH_,(A), coH(A) = coH_t(A). (88) 

§ 2. Examples. 

For the sake of simplicity in this section we only consider square 
n X n matrices A and we take H = K. As to the selection of 
examples we follow very closely the arrangement given by 
A. Ostrowski in [10] • 

. (i) Let A = (a,a,) be a matrix the only non-vanishing element 
of which is alt == a. Put H = (h,a11), B = (bp11), U = (up11), where 
U satisfies (8) and B is the matrix defined in (10). By direct multi
plication we get 

b _, 2h- 1 1 
P.~' - a I u ult:J.C uktf • r.- . r.-

v hi" v h, 

If ~y v we denote the row-vector ( ~:;.._, ... , ~u; ), B can be con-
vh1 vh,. 

sidered as the product I a P1 h11 v* v and is therefore of rarik I. 
Hence by (11) we have 

~(A) = ;;x= tr B =I a l2 hu i I u~, pt. 
11-1 p 
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II 

On the other hand, by (31 ), h1• = 1:: h, I u111 11 and so 

If in particular H is a diagonal matrix, and therefore U = I"' 
we get 

!JH (A)= I a I vh:, H = Diag (ht, ••. , h,.). 
hi: 

(35) 

Let us in this example discuss, to what extent !JH (A) is de
termined by the eigenvalues of H. Clearly all Hermitian matrices 
having the fixed eigenvalues h1, ••• , h,. > 0 are obtained by 
letting U in H = UDU*, D = Diag (ht, ••. , hfl), run through aU 
unitary n X n matrices. In the case i =I= k, from (34) Wf! can derive 
the following bounds, between which ~(A) varies: 

h" 1 h' 
h' ~ I a 12 ~(A) ~ h"' 

where the upper and lower bounds are attained by taking in (34) 
for (u,l., •.• , u1,.), (uu, ..• , uh) suitable unit vectors. Similarly, 

if i = k, from (34) we see that~~ (A) takes values in a 
I a I 

certain closed interval, the left-hand end point of which by (22) 
i~ equal to 1. 

If on the other hand we let H run through all diagonal matrices, 
(85} shows that in the case i =I= k the range of DH(A) is the whole 
interval (0, 00 ), while DH (A) for i = k is always equal to r a f. 

Evidently in this example coH(A) = 0 by (13) • 

. (ii) Let A = (ap) be a matrix all elements of which are zero 
except those lying in the i'A row, and put (au, ... , al,.) = 

= (a1, ••• , a,.) =a.. We suppose that H = Diag (h1, ••• , h,.), i.e. 
U =I,.. Then for the matrix Bin (10) we have B = AA*HAA, 

bJ', = hpp.a, ~.~~~and as in our example (i) the rank of B 
v hp. v h,. 

is equal to 1, so that 

~(A)= tr B = h, i I a, l1 =I a1 J1 + h, i:. I a, 11• (86) 
1'~1 h, 1'=1 h, 

#I 

Clearly we have always coH (A)= 0, and, by a suitable choice of 
H, !JH (A) can take values arbitrarily near to I a1 I = llA I max. 
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· (iii) If all elements of the matrix A are equal to a -:1= 0 and if 
1 1 ft 

we take H = Diag (h1, ••• , h.), we have bP" = ~ r.- . r.- I a 11 I; h~ 
vh, vh., ~-1 

and therefore· by the Cauchy-Schwarz inequality 

JJ~(A) = tr B =I a_l 2 (~h.,)(~ h~\ ~I a l2 n 2• (37) 
, .. 1 v-1 ;,J 

The lower bound for .QH(A), I a In= I A..t lmu:, is attained for 
H = I"' while .08 (A) is not bounded at all from above. On the 
other hand wH (A) = 0. 

(iv) Let A = Diag (a1, ••• , a,.), H = Diag (h1, ••• , h11). Then 
B = Diag (I a tl', •.. , I an 12 ),· so that 

JJH(A)=Maxja.,l=ll..tlmu, wH(A)=Minta.,J = IA...tlmm. (88) ., , 
(v) Let A =(a,.,) be a matrix all elements of which are zero 

except those ·lying in the i'" ro~ and k'" column, while we have 
also aile= 0. We further assume H to be a diagonal matrix. In 
applying to both A and H the same permutation to the rows and 
columns, whereby in virtue of§ 1, section 8(iv), JJ8 (A), co8 (A) 
are not changed, we ca.n make k = 1. Having carried through this 

' transformation we denote by « = (a2t .•• , a") the i'" (n- 1 )-
dimensional row-vector of A (without its first element), by 
fJ = (b1, ••• , b") the first (n-dimensioilal) column-vector of A 
(where b1 = 0) and we put H = Diag (h1, ••• , h"), A1 = Diag 

(. ~' ••• , . ~ ). For the matrix B of (10) we then obtain by 
v ht. v h. 

direct multiplication (observing that U =I.) 

B _ (~ {J* H{J o ) 
- 1 o h4A1ot*otA1 • 

Since again the (n -1) x (n- 1) matrix in the lower right-hand 
comer of B is of rank 1, it follows from (11) that 

{89) 

w8 (A) = 0 (n > 2). 
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§ 3. A generaUzation of Ledermann's theorem and the 
determination of Inf DH, Sup wH. 

H>O H>O 

11 

1. The reason we succeeded to calculate directly D8 , w8 in 
the examples given in § 2 was that the matrices A contained a 
sufficiently large number of zeros. We now prove a general 
theorem which in similar calies always yields an upper bound for 
D 8 , K (A) and which is a generalization of a theorem due to 
W. Ledermann [7]. More precisely: 

.THEoREJrl 2. Let A = (a/11'} be an m X n matritc and denote by 
«p its p.11' rO'W-vector; then, if H = Diag (At, •.. , hm) (hp > 0), 
K = Diag (~, ... , k.) (k., > 0) and if every column-vector of A 
contaim at most s non-vanishing elements, me have 

• 
Di,K (A)~~ hPa II «p., "~-'• (40) 

a-1 
where the sum on the right-hand side has to be taken over the a largest 
numbers· hp., II rx11., ~~~~ (a = 1, •.• , a) among h14 II «p II~-~ (p. = 

1, ... , m). 

PROOF. Our proof is essentially the same as that given for the 
case H =I"" K =I" by A. Ostrowski in (10]. 
·Without loss of generality we may assume that 

ftJ. II «1 11~-' ~ "• II «a II~-~ ~ ... ~ Am II «,. Jl~-'· ( 41) 

Indeed, let a permutation P be applied to the rows of A; if we 
further permute the rows and the columna of H according to P, 
by {19) (with T =I.) D8 ,K(A) does not change and the numbers 
hp II «p ll~-~ (p. = 1, ••. , m) are arranged as required. 

Let Max II Am IIi be attained for the vector a: = (a:1, ••• , a:") 
ll•llg-1 

and put y = Aa:, y = (y1, ••• , y.). For every p. (p. = 1, •.. , m) 
replace the coordinates m, of a: for which a/11' = 0 by zeros and deno
te the vector so obtained by mfJ'l. Then we have .. .. 

Di,K (A) = II y Ui- ~ hi' I Yp 12 = ~ hi' I «p z(#J 11• {42) 
p-1 p-1 . 

We further put a:fJ'J = (a:({'J, ••• , a:!f'>) (p. = 1, ••. , m). Since by 
the Cauchy-Schwarz inequality 

I . ,. ( fl 1 )' I rx~tP, 11 = ~ aP.,aff> ~ ·~ ;.;... I a14, I ~. I m<f> I ~ ,_1 ,_1 'V k., 

s: ( i ~ I aP, 1') ( f k., I a:<f> 1') = II «p Jl~-~ i k, I rJt> 1•, 
1'-1 , . tr-1 11-1 
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from ( 42) we get 

"' . 
~.K (A)~ ~ hp II «p IIi-· ~ k,l a:~~ 12 = 

p-1 fl-1 

- i:, k, [ i; I a:~> 12 k~' II «p IIi-•]· (48) 
fl-1 p-1 

If m~Pl =1= 0 then 
m~l = m,. (m~l =1= 0) (44) 

and a11, =I= 0. From this and the hypothesis it follows that for any 
fixed " at most s of the m~l are =1= 0. Therefore taking the sum in 
brackets on the right-hand side of ( 48) only over the terms with 
m!P> =I= 0 and using ( 44 ), ( 41) we see that 

"' , 
~ I a:~1 P' h~' II «11 IIi-• ~ I m, 12 ~ ka II «a IIi-• (, = 1, ... , n),. 

p=1 a-1 

whence by ( 48) 

~.K(A) ~ t~1k,l m,12 ) c~1ha II «a IIi-·)· 
• 

This proves our as~ertion, since ·~ k,l a:, 12 = II m IIi= 1. 
, ... 1 

REMARKS. The theorem of Ledermann is obtained by taking 
H · Im, K =ln. If in particular we apply (40} with H =K to our 
examples (i), (ii) and (iv) we obtain respectively as upper bounds 

k, jajl1, hill«ll~-~, Maxla,.j 2, which all coincide with the corres-
hk 11 

pending .Q~. 
Even· if s = m the theorem 2 is often useful. Take e.g. 

A= ( ~ ! : ), 
0 1 8 

where the elements of the second column are comparatively small. 
In order to get favourable bounds for DH(A) in applying (40}, we 
choose h2 relatively small. With H = Diag ( 4, 1, 20) we obtain 
~(A) ~ 68,8, while H = I ~ves D2(A) ~ 158. 

2. We now use our theorem 2 to give a re(mement of (22): 

THEOREM 8. For any n X n matria: A we have 

Inf DH (A)= Jl..t lmu, Sup COH (A) = ll~ lmin. (45) 
H>O H>O 

If in particular A has only simple elementary divisors both Inf and 
Sup in ( 45) are attained for suitable matrices H > 0. 
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PROOF. Since for a nonsingular matrix jl,._tlmax = 1/Jl,. lmiu 

and by (18) w8 (A)= DH ~A-I)' it is sufficient to prove the re· 

lation concerning Inf DH. Let A be transformed to Jordan's 
canonical form by the nonsingular matrix S: 

S-1AS =A+ C, 
where A is a diagonal matriX the elements of which are the eigen· 
values of A, and C denotes a matrix consisting of zeros except 
possibly some elements cpv = 1 with , = p + 1. If in (19) we 
take T = S we have by (22), (12) 

ll_. lmax :5: !JH (A) = !Jg (A + C) :5: !JK (A) + !JK (C), (46) 

where K = S*HS. It suffices to show that for a suitable choice of 
K the sum on the right· hand side of ( 46) is arbitrarily near to 
ll.t lmax. Take K = Diag (k1, ••• , k"); then by (38) DK (A) = 
= I A.t lmax; if on the other hand Yv is the ,,. row·vector of C, 

then II Yv IIi-·= {1/~~:<rv ;>or Hence by the theorem 2 

n2 k., 
MK (C) ~ •-~~~ ktl+l 

which obviously can be made as small as we please. 
If all elementary divisors of A are simple we have in ( 46) C = 0, 

.Og(C) = 0, so that DH(A) attains the value ll.t lmax for a suit· 
able matrix H > 0. 

It is natural to ask whether we could in ( 45) take lnf, Sup only 
over the set of all diagonal matrices H > 0. This is however not 
true as the followmg example shows: Take 

( 
0 i 1 ) 

A = i 0 0 (iZ = 1), 
1 0 0 

where ll.t lmax = 0. If H = Diag (h1, h1, ha), it follows from § 2, 
Ex. (v), that 

I.Q1 = y hs + ha 
.08 (A) = Max (.01, .01), . ~ 

where 1./ -.-G-1-....,1-) 1/ht(hs+ha) .a. = y ~ - + - = y . 
I 1 ha h.ha 

But by the inequality of the arithmetic and geometric mean 

. h1 +ha 
.01.01 = . ~ ~ 2, 

vh.k8 

so that certainly .O~(A) ~ -v2" for all diagonal matrices H > 0. 
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. The second statement in theorem 3 can be made more precise 
by the following 

THEOREM 4. In order that for some matm H > o 
DH(A) = lA..« lmax (47) 

it i3 necessary and sufficient that the elementary divisors correspond
ing to the eigerwalu.es of A with maa:imal modulus are simple. 
Similarly, if A is a non-~ngular matrix, we have 

coH(A) = j.t..« lmin (l.t..« jmin > 0) (48) 
for some H > O, if and only if all elementary divisors associated 
'With the eigenvalu.es of A of minimal modulus are simple. 

PROOF. Necessity: let .t be an eigenvalue of A of either maximal 
or minimal modulus having multiple elementary divisors. It the_n 
suffices to show that, given a matrix H > 0, there always exists 
a vector a: for whicli 

II Aa: IIH { < I .a .. 'min' if p. I = I .a .. lmin 
If IC IIH > J A..t lmax, if I A I = I A.4 lmu. 

(49) 

From Jordan's canonical form of A it is easily seen that under 
our hypothesis on A there exist two linearly independent vectors 
ftt, u1 such that AUt = lftt, Au1 = lu1 + f.tt· Put v1 = f.tt, 
v1 = «Ut + u1; in order to make v1, v1 orthogonal with respect to 
H, using the notation (4) we must have 

(v1, v1) = (otu1 + u1, ttt) = «(Ut, u 1 ) + (u2, u1 ) = 0, 
ot =- (ua, Ut)/(Ut, Ut)· 

Clearly Av1 = lv1, Av1 = otlf.tt + AUz + u1 = lv1 + v1, and so the 
vectors w1 = v1 /ll v1 IIH, w1 = v1 /.ll v1 IIH satisfy 

Aw1 = lw1 ( I ( ) ) Awa = Awz + Pwt II wl IIH = II Wz IH = 1, Wz, wl = 0 , (50) 

where P = II v1 IIH / llv2 IIH > 0. We now take 

a: = YW1 + 'lDa (51) 

and determine the scalar r in such a way that ( 49) holds. In fact, 
by (50) 

Aa: = yAw1 + lw1 + Pw1 = .ta: + /Jw1, 

ll Aa: IIi= a:*A*HAa: = (la:* + fJw{)(AHtc + {JHw1 ) = 
=l.t 11 Jla: IIi+ 29t(PAw{Ha:) + pa. 

Substituting the expression (51) for a: in w{Ha: we obtain 

II Am IIi _ 1 P { } 
II a: IIi - I A I + II m IIi 29t(rl) + p <P > o). 
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Now (49) certainly holds, if in the case I A I =I A4 lmln we choose 

y such that Bl(yA) < p and y = 0 if I A I = I A4 1~. 
2 

Sufficiency: suppose that all eigenvalues with maximal modulus 
have simple elementary divisors. Let A be transformed to Jordan's 
canonical form S-1 A S = I = Diag(J 1, I 1 ), where I 1 is a dia
gonal matrix containing tho. eigenvalues A with I A I =I l 4 Jmax. 
By (19) we have .QH(A) = .QK(I) (K = S* HS). To show that for 
a suitable matrix K > 0: !Jg(]) = I A4 !max, take K = Diag 
(K1, K1 ), where K1, K 1 > 0 are matrices of the same order as I 1, 

/ 1 respectivelyandK1 is a unity matrix. Since !Jg1(]1) =I A4 lmax, 
from (20) we get · 

!Jg(J) =Max {I A.t Jmax, Dg,{IsH· 

On the other hand I A1.1max < I A"' lmax, whence, by theorem 8, 

K1 can be chosen such that Dx,(I1) < I A4 Jmax. 
A similar argument shows that ( 48) holds for some H > 0, 

if all eigenvalues of A with minimal modulus are simple. 
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SOME REMARKS ON SYSTEMATIC SAMPLING1 

BY WERNER GAUTScl!t 

University of California, Berkeley 

1. Introduction and summary. Consider a. finite popula.tion consisting of N 
elements Y1 , Y2 , · · · , YN • Throughout the paper we will assume that N = nk. 
A systematic sample of n elements is drawn by choosing one element at random 
from the first k elements Y1 , · · · , y,. , and then selecting every kth element 
thereafter. Let Y•i = Yi+<i-UT~(i = 1, ... , k;j = 1, ···, n); obviously sys
tematic sampling is equivalent to selecting one of the k "clusters" 

C, = {Yu ;j = 1, .. · , n} 

at random. From this it follows that the sample mean iii = 1/n :Ei-1 Yii is an 
unbiased estimate for the population mean ii = 1/N:E~ .... :Ei-1 Y•i and that 
Var iii """ 1/k :E~-~ (jj; - '[i)2• We will denote this variance by V!!' indicating 
by the superscript that only one cluster is selected at random. V!!' can be 
written a.s 

(1) 

k 
V(1) 82 1 V' 81 h 

• 11 = - -k£..J ;, were 
i-1 

82 1 ~ ( - )2 ; = - £..# Yii - Y• · n 1-1 

It is natural to compare systematic sampling with stratified random sampling, 
where one element is chosen independently in each of then strata {Yt, · · · , yr,}, 
{ Yll+1 , • • • , y~}, · · · , and with simple random sampling using sample size n. 
The corresponding variances of the sample mean will be denoted by V!!> V!:! 
respectively. 

We consider now the following generalization of systematic sampling which 
appears to have been suggested by J. Tukey (see [3], p. 96, [4], [5]). Instead of 
choosing at first only one element at random we select a simple random sample 
of size s (without replacement) from the first k elements and then every kth 
element following those selected. In this way we obtain a sample of ns ele
ments and, if it, i,., · · · , i. are the serial numbers of the elements first chosen, 
the sample mean 1/ s('[i;1 + · · · + 'fi;.) can be used as an estimate for the pop
ulation mean. This sampling procedure is clearly equivalent to drawing a simple 
random sample of sizes from the k clusters C;(i = 1, · · · , k). It therefore fol
lows (see, for example, [2], Chapter 2.3 to 2.4) that the sample mean is an un
biased estimate for the population mean and that its variance, which we denote 
by v!;> J is given by8 

Received· June 12, 1956. 
1 This investigation was supported (in part) by a research grant (RG-3666) from the 

Institutes of Health, Public Health Service. 
t Now at Ohio State University 
a This formula is not new, but appeared already in [6} and, more recently, in [5}. 
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(2) v<8> = k - 8 _1_ ~ < _. _ -)2 = ! k - 8 v<l) 
811 ks k - 1 f.:J. y. Y 8 k - 1 ' 11 • 

Again, it is natural to compare this sampling procedure with stratified random 
sampling, where a simple random sample of size 8 is drawn independently in 
each of the n strata { Yt , • • • , Y~t:} , { Yk+t , • • • , Y21t:}, • • • or with simple random 
sampling employing sample size ns. We denote the corresponding variances 
of the sample mean (which in both cases is an unbiased estimate for the popu
lation mean) by v!:>, V~::> respectively. From well-known variance formulae 
(see, for example, [2], Chapters 2.4 and 5.3) it follows that 

(3) 

v<•> _ 1 k - 8 v<l) 
&t - S k _ I st, 

y<n•> = N - n8 y<n> = ! k - 8 Vr<ann> . 
ran 8(N - n) ran 8 k - 1 

Thus the relative magnitudes of the three variances V!;>, V!:>, V~::> are the same 
as for V!!>, V!!>, v~:~, of which comparisons were made for several types of 
populations by W. G. Madow and L. H. Madow [6] and W. G. Cochran [1]. 
Some of the results will be reviewed in Section 3. 

The object of this note is to compare systematic sampling with 8 random 
starts, as described above, with systematic sampling employing only one ran
dom start but using a sample of the same size ns. To make this comparison we 
obviously have to assume that k is an integral multiple -of 8, say k = l8. The 
latter procedure then consists in choosing one element at random from the first 
l elements { Yt , · • · , Yz} and selecting every lth consecutive element. We de
note the variances of the sample mean of the two procedures by v~·>, VI1> re
spectively, indicating by the subscript the size of the initial "counting interval." 
(In our notation V!;> = v~·>.) We shall show in Section 4 that v:l) = v~·> in 
the case of a population "in random order," but v?> < v~·> for a population 
with a linear trend or with a positive correlation between the elements which 
is a decreasing convex function of their distance apart. Some numerical results 
on the relative precision of the two procedures will be given in Section 5 for the 
case of a large population with an exponential correlogram. 

2. Acknowledgment. I wish to express my debt to Professor W. Kruskal for 
having brought the question treated in this note to my attention. 

3. Cochran's approach. Extension of Cochran's results to systematic sampling 
with multiple random starts. Instead of considering a particular single popula
tion {y1 , 112, · · · , YN} we assume, following Cochran [1], [2], Chapter 8, that 
the y/s ar~ drawn from an infinite population having some specified properties. 
We are then interested in comparing the expected yariance E(V I Yt, · · · , YN) 
rather than (VI y1 , • • • , YN) for the sampling procedures under consideration. 
More specifically, we consider the following three types of populations. 

(i) Population in random order. The variates y;. are assumed to be uncor-

744



SYSTEMATIC SAMPLING 387 

related and to have the same expectations. The variances may change with i 

Ey, = p., E(y, - JL)2 = u~ (i = 1, · · · , N); 

E(y; - p.)(y; - JL) = 0 (i ~ j). 
(4} 

It is not difficult to show ([2), Chapter 8.5) that in this case 

(5} EVCl> - EVen - Even> - N- n u2- k- 1 u2 
"" - -' - ran - N n - -k- n' 

where u2 = .!:f-1 u~/N. 
(ii) Population with a linear trend. We assume that the yls are uncorrelated 

variates whose expectations change linearly in i, more precisely 

(6) Ey, =a+ {3i, Vary,= u2 (i = 1, 2, · · ·, N), 

Cov (y,, y;) = 0 (i ~ j). 
Applying standard linear regression theory (~, for instance1 '[7}, Chapter 
14.2) to the sum of squares in (1), it is easily found that 

(S) CI> _ N - n 2 a2 k2 - 1 _ k - 1 2 a2 k2 - 1 
EV"" - Nn u + P 12 - -;;:;c u + P 12 . 

In a similar way we obtain 

(9) 

Thus 

(10) 

EV'l) = k - 1 2 + a2 k2
- 1 

"' nk u P 12n ' 

r,ryCn> = k - 1 .2 + dA (k - 1)(nk + 1) 
1'.! ran nk CT p 12 • 

Evc1> ;5; EV'1> ;5; EVen> 
"' - 1111 - ran , 

with equality only if n = 1. 
(iii) Population with 8erial correlation. It is assumed that two elements Y• , 

y i are positively correlated with a correlation which depends only on the "dis
tance" z = I j - i I and which decreases as z increases. The mean and variance 
of all the y, are supposed to be constant 

Ey, = #L, E(y, - IL)2 = CT2 

E(y, - JL)(YH• - JL) = p~u2, 
(11) 

(i=12··· N) 
' ' ' ' 

where p,1 ~ p,2 ~ 0 for z1 < Z2. For this type of population Cochran [1] ob
tained the following results relevant to our purpose: 

(1) k - 1 2 {· 2 ~1 
( ) EV., = ---,r- CT 1 - N(k - 1) {:j N - z P• 

(12} 2k n-1 } 

+ n(k _ I)~ (n - z)Pk• , 
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(13) EV!P ~ Ev;:; , 
(14) EV!!> ~ EV!!>, 
(14) applying if, in addition, P• is convex downwards. 

In virtue of (2) and (3) all the results (5), (10), (13) and (14) carry over im
mediately to the more general sampling procedure discussed in Section 1 and, 
moreover, the relative sizes of the variances v!;>, v!:>, v~::> remain the same 
as those of V!!>, V!!>, v;:~ . Numerical results of the relative precision 

EV!!> I EV!!> 
were given by Cochran [1] for populations with a linear and exponential cor
relogram. 

4. Comparison of systematic sampling and systematic sampling with multiple 
random starts. 

(i) Population in random order. From (5), replacing k by land n by ns, we 
obtain 

EVil> == l - 1 (l = l - 1 fl. 
lns N 

On the other hand, by (2) and (5), remembering that k = 8l, 

EVia> = ! k - s k - 1 (l = l - 1 cr'. 
sk-1 k n N 

Thus 

(15) 

(ii) Population with linear trend. By (2) and (8) 

EV<l> = l - 1 2 + {32 (l - 1)(l + 1) 
1 Nu 12 ' 

Ev<•> = ! k - s [k - 1 2 + r:~2 k2 - 1] = l - 1 2 + dl.(l- l)(ls + 1) 
" sk-1 nk u "' 12 N u P 12 • 

Hence 

(16) 

with equality only if s = 1. 
Both these results are, of course, to be expected intuitively. The comparison 

of vp> and Vka> is, perhaps, mostly relevant for a population with a convex 
decreasing correlogram, since in this case Evfi> turns out to be the smallest 
among all the variances EVf1>, Ev~·>, EV!:>, Ev;::>. 

(iii) Population with serial correlation. From (12) and (2), 

V <l> l - 1 2 { [ 2 ~~~ (N ) 
E ' = -r u 1 - N(l - 1) ~ - z p, 
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(17) 2l •u-1 ]} 
- ns(l _ 1) t; (ns - z)Plz 

l- 1 2 
= 7\T u f1- Ld, 

V <•> l - 1 2 { [ 2 ~1 
( ) E 1c = ~ (/' 1 - N(k _ 1) {:j N - z Pz 

2k n-1 ] 
(18) - n(k _ 1) t; (n - z)pkz 

=l-1u2{1-L2}. 
N 

It is easy to check that both Lt and L2 are linear forms in the p/s in each of 
which the sum of coefficients is equal to 1. Hence, in order to show that EVil) ~ 
EVk'>, it is enough to prove that 

(19) 

L being a linear form of the p.'s whose sum of coefficients is zero. If in addition 
to the monotonicity the Pz are assumed to be convex, the following lemma, 
which is analogous to the lemma proved in [1], is applicable to forms of this 
type. 

LEMMA. Let S be the set of p = {Pt , P2 , • · • , Pm} for which 

(20) 

and 
(21) 

Pt ~ P2 ~ • • • ~ Pm ~ 0 

(JJ. = 2, 3, · · · , m - 1). 

Let a1 , · · · , am be constants such that L:.:'-1 a,. = 0 and put A i = L:!-1 a,. . Then 

if and only if 

(22) 
i 

B;=LAi~o 
i-1 

for all peS 

for j = 1, 2, · · ·, m - 1. 

Moreover, if in addition to (20) and (21) strict inequality holds in (22), then L > 0 
unless Pl = · · · = Pm • 

PRoOF. Writing a,. = A,. - A,._1(JJ. = 1, · · · , m; A0 = O) and using the fact 
that Am = 0, we find 

m m m-l 
L = L A,.p,.- L A,._lp,. = - L A,.dp,.. 

~t-1 ,._1 ,._1 

Similarly, 
m-1 m-2 

L A,.dp,. = - L B,.d2pp. + Bm-1(Pm- Pm-1)• 
,._t ,._1 
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Thus 
m-2 

(23) L = L B,ll2p11 + B,._1(Pm-1 - Pm)• 
,...1 

Since, by hypothesis, the coefficients of all the B, are nonnegative, the suffi
ciency of (22) is clear.·On the other hand, if B,._t < 0, we could choose the 
p11 linearly decreasing. and obtain L < 0. If B1 < 0, 1 :::= j ~ m - 2, L could 
be made negative by taking, for example, 

{
j + 2- p., 

p,. = 
1, 

1 ~ p. < j + 1, 

j + 1 :::= p. :::= m. 

Thus (22) is also a necessary condition. If all the B 1 are positive, then L = 0 
implies ll2p11 = O(p. == 1, · • · , m - 2), Pm-1 = Pm • This in turn implies that 
P-2 = P-1 , P-a == Pm-2 , • • • , P1 = PI • 

THEoREM. For any population in which 

Pl ;;:::; PI ~ • • ' ;;:::; PN-J > 0, 

ll2P.-t = P•+l - 2p. + 1!•-:1 > 0 (z == 2, · · · , N - 2) 

we have 

(24) 

with equality only if 8 == 1 or Pt = · · · == PN-1 • 

PROOF. There is nothing to prove if 8 = 1. If 8 > 1 we apply the above 
lemma (with m == N - 1 and L given by (17), (18) and (19)) and show that 

(25) B 1 > 0 j = 1, 2, · · · , N - 2. 

We notice that 

N 1 [N-1 fU-1 J 
-2 Lt = -l -1 L (N - z)p. - l2 :E (n8 - z)pr. 

- -1 •-1 

N 1 [N-1 n-1 J 
-2 L'1. == lB _ 1 :E (N - z)p. - (l8)2 :E (n - z)p<'->• • 

•-1 •-1 
To prove (25) it is enough to show that the sums B 1 are positive for the form 
NL/2 = NLt/2 - NL,/2. We compute these sums separately for NL1/2, NL,/2 
and then take their differences. Put4 

(26) 
j = vk + ul + ~ = (v8 + u)l + ~' where 11 = 0, 1, · · · , n - 1; 

q = o, 1, . . . , 8 - 1; ~ = 0, 1, . • • , l - 1. 

"We use the Greek letters ,, v, :\ to indicate their range n - 1, 8 - 1, l - 1, respec
tively; v, :\.should not be confused with the variance symbol and the parameter to be in
troduced in Section 5. 
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By elementary computations the sums B~1> for NL1/2 are found to be 

BP> = - 1- {I - II} 
1 l- 1 ' 

where 

= t[(vs + u)l + >.][(vs + u)l + ). + 1][3N - (vs + o)l - ). - 21 

II = l2 [z ''f-1 i(2ns - i - 1) + (>. + 1) (vs + o}(2ns - vs - u - 1)] 
~1 2 2 

l2(vs + u) . = 6 [l{vs + u - 1){3ns - vs - u - 1) 

391 

+ 3(>.+ 1)(2ns - vs - u - 1)]. 

Similarly the sums B~2> for NL2/2 are obtained as 

B~2> = 1 {I - III} 
1 Zs-1 ' 

where 

III = (ls)2 [zs ~ i(2n -2i - 1) + (ul +). + 1) v(2n -2v - 1)] 

v(ls)2 
= - 6- [ls(v - 1)(3n - v - 1) + 3(ul + ). + 1){2n - v - 1)]. 

We have to show that 

(1) (2) 1 z 
B; = B; - B; = 6 (l - 1)(ls - 1) 

[ 6II 6IIIJ · (s - 1)61 - (ls - 1) -l + (Z - 1) -l- > 0. 

Mter some elementary algebra the expression in brackets is found to be a poly
nomial j(u) in u of third degree with the following coefficients 

0'3: l2(l - _1) 

u2 : -3l(l - 1)[(n - v)ls - (>. + 1)] 

(27) u1: Z{ (l - 1)[3s(n - v)(sl - 2(>. + 1)) - sl + 3s>. + 28 + 1] 

- 3).(). + 1)(8 - 1)} 

u0 : (s - l){vls(l - l)(ls - 1) + >.(>. + 1)[3ls(n - v) - (>. + 2)]}. 
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We notice that the second derivativef"{u) vanishes at 

u* = (n - 11)s - X t 1 

which is ~ 8 - 1 whatever be the values of 11, X specified by (26). For any of 
those values f(u) is therefore concave between u = 0 and u = 8 - 1 so that 
it is enough to show f(O) > 0, f(s - 1) > 0. Now, if u = 0 then not both 11, X 
can vanish. Hence, f(O) > 0 follows immediately from (27). On the other hand, 
f( 8 - 1) / ( 8 - 1), after some slight rearranging, can be written as 

f~ ~ :) = 3(n - 11)sl[(l - 1){l - 2(X + 1)) + X(X + 1)] 

(28) + l{l(l - 1)((s - 1)2 - 8) + 3(s·- 1)(X + 1)(1 - 1 - X)} 

+ X{3sl(l- 1) - (X+ 1)(X + 2)} + l(l- 1){2s + 11s(ls- 1) + 1}. 

The expression in brackets is a polynomial of second degree in X with a positive 
leading coefficient and with roots X = l - 2, X = l - 1. It is therefore non
negative for X = 0, 1, · · · , l - 1. It is easily verified that the quantities in the 
three braces are nonnegative for l > 1, s > 2 and X, 11 satisfying (26). Further
more, the last term is positive. It remains to consider (28) for the particular 
cases = 2. We have 

f(l) > 6l[(l - l)(l - 2(X + 1)) + X(X + 1)] 

+ l{3(X + l)(l - 1 - X) - l(l - 1)} 

+ X{6l(l- 1) - (X+ l)(X + 2)} + 5l(l- 1). 

The right-hand side is a polynomial ~(X) of third degree, 

~(X) = -X3 + 3(l - l)X2 - (3l2 - 6l + 2)X + l(l - 1)(5l - 4), 

whose second derivative ~"(X) vanishes at X = l - 1. It is easy to verify that 
~(X) has its relative minimum at X = l - 1 - v'3/3. Hence ~(X) > 0 for X = 
0, 1, · · · , l - 1 follows from 

~(l - 2) = ~(l - 1) = 2l(2l - 1)(l - 1) > 0. 

This completes the proof of our theorem. 
For populations with serial correlation the result (24) is to be expected also 

on intuitive grounds; in fact, the systematic sample is spread more evenly 
through the population than the sample with multiple random starts which 
may contain elements very close together, giving about the same information. 
Our proof, however, does not make clear why (24) only holds for populations 
with a convex correlogram. That (24) does not generally hold for any monotone 
decreasing correlogram can readily be seen by trying to apply Cochran's lemma 
[1] to the linear form (19). It turns out that, for example,. the sum of the first 
l coefficients of NL/2 is equal to 
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_z2 
2(ls _ 1) [(2n ..,.. 1)s - 1] < Ot 

One might suspect that EV~l) ~ Ev~·> for all populations with a concave 
decreasing correlogram. However, according to our theorem Ev;n < EV~'> for 
the example of a linea.r correlogram, so that the conjecture is not generally 
true. 

5. Asymptotic results in the case of an exponential correlogram. We assume 
that p, = e-~"(z = 1, · · · , N - 1) and that both l and n are large. For n, k 
large Cochran [1] showed that the expression in braces of (12) is approximately 
equal to 1 - 2/"Ak + 2/(tl'" - 1). Since the corresponding expression 1 - Lt 
in (17) is obtained by replacing k by land n by ns, we :find 

(29) 

On the other hand, replacing l by k = ls, s by 1 in the brace of (17), we obtain 
1 - L2 of (18). Thus 

2 2 
1-L~~l-}.ls+il",,_ 1 • 

Introducing p = e-u, we see that the relative precision of systematic sampling 
over systematic sampling with multiple random starts 

2 2/ 
V <•> 1 + -- + ~;__ 

RP = ~ ~ s log p 1 - p• 

EVJI> 1 +~+~ 
log p . 1- p 

depends, apart from s, only on the correlation p of elements of a distance l 
apart. Clearly lim,,o RP = 1; also, expanding numerator and denominator in 
power series, it 'is readily seen ,that lim,tt RP = s. The numerical values in 
Table 1 show that the limit as p ! 0 is approached rather slowly. 

6. Concluding remark. When the statistician has a choice between systematic 
sampling and systematic sampling with multiple random starts, he is more 

TABLE 1 
Relative precision RP of systematic sampling over systematic sampling with 

multiple random starts for an exponential correlogram 

p 
!I 

.01 .os 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 I 0.9 --
2 1.34 1.53 1.66 1.80 1.87 1.92 1.95 1.97 1.99 2.00 2.00 
5 1.56 1.98 2.34 2.92 3.43 3.88 4.25 4.55 4.76 4.92 4.99 

10 1.63 2.13 2.58 3.40 4.26 i 5.19 6.23 7.32 8.39 9.31 I 9.85 
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likely to use the latter procedure because its variance can be estimated from 
the sample and the estimate js unbiased whatever be the form of the popula
tion. On the other hand, as we have seen in Section 5, systematic sampling is 
considerably more precise in the case of a population with an exponential cor
relogram. Thus, it may be worth while to try to find an estimate for the vari
ance of systematic sampling which is at least consistent in some sense if the 
underlying assumption of an exponential correlogram is realized. In view of 
(17) or (29) this would involve estimating the correlation between the elements 
as well as cr1. 
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SOME REMARKS ON HERBACH'S PAPER, "OPTIMUM NATURE OF 
THE F-TEST FOR MODEL II IN THE BALANCED CASE"1 

BY WERNER GAUTSCHI t 

Indiana University 

1. Summary. The purpose of this note is to present a lemma which will settle 
a question of completeness left open in Section 6 of the above mentioned paper 
[5]. We give two applications of the lemma, 

(i) by proving that, in addition to Herbach's results, also the standard F-test 
for u~ = 0 is a uniformly most powerful similar test, 

(ii) by pointing out that the standard form introduced in [5] together with 
our lemma provide convenient tools to prove that in a balanced model II design 
(with the usual normality assumptions) the standard estimates of variance com
ponents are minimum variance unbiased. This result is well known ( [2], [3]) and 
it has in fact been pointed out by Graybill and Wortham [3] that a completeness 
argument may be used to demonstrate the minimum variance property of the 
usual estimators for the variance components. The present lemma shows that 
the estimators do indeed have the necessary completeness property. We will 
follow Herbach's notation throughout. 

2. A completeness lemma. The following lemma guarantees completeness for a 
certain class of probability densities to which the results of Lehmann and 
Scheffe do not apply directly. It takes care of a difficulty mentioned in [5], Section 
6, which is caused when g( 8) does not equal one of the 8i ( i = 2, · · · , r). If 
g( 8) does, the product-densities could immediately be reduced to the exponential 
form considered by Lehmann and Scheffe in [7], Theorem 7.3. Our lemma is 
more general than the Lehmann and Scheffe Theorem 7.1 [7] in the sense that 
we allow instead of their g:,(x") to have g:' ,B"(x") which, however, we assume 
to factor into h~~(x")h:,(x") with h;, (x") > 0 and {hB"(x") d~z"} strongly com
plete. It is of course more special in that we take both ~z" and ~z'lz" as Lebesgue 
measure and for g~~(x'), g:, ,B"(x") specific functions. Our proof is modelled 
along the same lines as the one given by Lehmann and Scheffe in [7] p. 221. 

LEMMA: Let 

~t = { p; ; 8 e 1>}, t = ( ~ , · · · , tr), 8 = ( 82 , • • • , Or) 

Received October 8, 1951; revised January 27, 1959. 
1 This is a cut-down version· of a paper in which the author independently considered 

standard forms for model II designs. He acknowledges, however, the priority of Dr. Her
bach's approach (see [4] as compared to [1]) and restricts himself to giving some results 
supplementing those of Herbach. 

t Werner Gautschi died on October 3, 1959. Editor. 
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be two families of probability measures on the Borel sets of the Euclidean space 
Er-1 and the real line E1 respectively, having the densities 

(1) 

(2) 

pe(t) = c(8)h(~' ... 'tr)/2t2+ .. ·+Brtr 

Pe1oe(t1) = c(81, 8)eu<ll>tf+B1 t 1 

with respect to Lebesgue measure. If m1 is the real line and ID a Borel set in Er-1 
containing a non-degenerate ( r - 1) -dimensional interval then the family of product 
measures~ = {P:~.II X P: ; {81, 8) E ID1 X ID} is strongly complete (in the sense 
of Lehmann and Scheffe [7]). · 

PRooF: Suppose 

(3) 

Let N be the set of parameter points (81, 8) for which I~ 0. If Ne denotes the 
8-section of N, i.e. Ne = {81 ; (81, 0) EN}, then L81 (Ne) = 0 except possibly for 
8 E No, where L8(No) = 0. 

According to Fubini's theorem we may write 

I = I Pe1At1)<P(t1, 8) d~, 

where cp(t1, 8) = f f(tt, t)pe(t) dt. Since pe1 ,e(tt) > 0, for fixed 0 E No the ex
ceptional set of points t1 for which the integral defining <P(t1, 0) does not exist 
has Lt 1-measure zero. Furthermore, if 0 E No, we can, in virtue of (2), rewrite 
(3) as 

I ee1e1 [ eulll>ti <P(t1 ' 0) J dtl = 0 (a.e. L 61 ), 0 E No. 

From the unicity property of the bilateral Laplace transform (see, for instance, 
[8], Ch. VI, Theorem 6b) it follows that 

<P(t1, 0) = 0 (a.e. Lt1 ), 0 E No. 

Thus, if S denotes the (measurable) set of points (t1 , 0) for which <Pis either 
not defined or ~0, almost every 0-section of S has L 11-measure zero,. hence 
LttXB(S) = 0. 

This in turn implies that almost all trsections of Shave L 11-measure zero, i.e. 

<P(tl , o) = 1 f<~ , t)pll(t) dt = o (a.e. L8 ) if t1 E Nt, 

where L 11 (Nt) = 0. Since the family of probability densities p11 (t) is strongly 
complete (Lehmann and Scheffe [7], Theorem 7.3) we conclude 

2 L with a superscript denotes Lebesgue measure. The superscript indicates the space 
on which the measure is taken. 
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f(tt' t) = 0 

from which f(tt, t) = 0 (a.e. ~) follows immediately. 

3. Applications. (a) Tests of hypotheses in balanced model II designs. Consider the 
balanced two-way classification ( [5], Section 6) and the hypothesis w: u!b = 0. 
The statistic 

Ta = Sa, 

is not only sufficient under w but also complete on w. In fact, if we let 

01 -- vN#L 0 1 0 1 
A.2 + A.a - ;\.4 ' 2 = - 2A.2 ' 3 = - 2A.a ' 

1 
04 = - 2A.4' 

the densities of Tt and T = ( T2, T3 , T4) are easily recognized to have the 
form given in our lemma. Proceeding therefore in the same fashion as in [5], 
Section 6, we would find that also the standard F-test of the hypothesis w:u!b = 0 
is a uniformly most powerful similar test. The same situation prevails in higher 
order classifications. As is well known, in a complete n-way classification F-tests 
exist for the non-existence of anyone of the (n - 1)st or (n - 2)nd order inter
actions. All these tests are uniformly most powerful similar tests. 

(b) Point estimation in balanced model II designs. To fix the ideas consider 
the standard form for the balanced two-way classification. A sufficient statistic 
for the parameters involved is 

(4) T1 = Zm, 112 = s2 , ••• , Tr, = Ss. 

If we let 

(J - VN#L ()2 = 1 
Os = 1 

1 - -2A.2' 
... 

' A.2 + A.a - A4' 2A.s ' 

the densities of T1 and T = ( T2, · · · , T5) are again of the form given in our 
lemma and thus the statistic ( 4) is complete on n. Unbiased estimates for the 
variance components, in terms of ( 4), are 

.2 1 [Ta T4] 
O"b = [[( -;;;;- Pab ' 

a! = ___!_ [T2 _ T4] , 
J[( Pa Pab 

(5) 

\'\rhere Pa == I - 1, Pb = J - 1, Pab = (I - 1)(J - 1), lie = IJ(K - 1) and 
are therefore minimum variance unbiased estimates ([6], Theorem 5.1). On the 
other hand the standard estimates in terms of the various mean squares have 
the same distribution as those in ( 5) and must consequently be of minimum 
variance among all unbiased estimates based on the original observation vector X. 

Higher order layouts could be treated in a similar manner. 
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Werner Gautschi∗

1927–1959

On October 3, 1959, mathematics in Basel suffered a great loss. Dr. Wer-
ner Gautschi, associate professor1 at Ohio State University, died unex-
pectedly of a heart attack at the age of only 32 years. A promising academic
career has thus come to a bitter untimely end.

Werner Gautschi was born in Basel on December 11, 1927, together with
his twin brother Walter, with whom later in life he would intimately share
both a vocation to mathematics and a love of music. After attending the

∗English translation by Walter Gautschi of A. Ostrowski, ”Werner Gautschi, 1927–
1959”, Verh. Naturf. Ges. Basel 71, Nr. 2 (1960), 314–316.

1The original erroneously has “assistant professor”. (Translator’s note)
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primary schools and classical ”Gymnasium” in Basel, he enrolled 1946 at the
University of Basel. During the years 1948–1950, the undersigned had the
pleasure of having him as an assistant, and to the devoted collaboration of
the young student, who already then proved to have a rare acumen in the
assessment of mathematical reasoning, I owe valuable furtherance of my own
work.

Since in 1950 one could think again of going abroad, as used to be the cus-
tom, he went for a year to Cambridge, England. In 1952 he graduated from
our university summa cum laude with a fine piece of work on the so-called
matrix theory. Since he already expected to first enter an academic career
in America, the thesis, from the start, was written in English and eventually
appeared in two parts in America, in the Duke Mathematical Journal, and
another part in Holland, in the Compositio Mathematica.

In 1953, Werner, with a fellowship of the Swiss National Foundation,
went to the USA where, first in Princeton, he began to familiarize himself
with the workings of electronic computers. But soon, he became attracted to
mathematical statistics, which at the time was flourishing in Princeton. In
the following years he in fact occupied himself almost exclusively with this
discipline. He had to begin here almost from scratch. Indeed, during his
student days there were no courses offered in actual mathematical statistics,
neither in Basel nor in other Swiss universities, and the only Swiss instructor
in this field had to concern himself, in Zurich and Geneva, with the more
elementary parts of the subject.

In 1954, Gautschi moved to Berkeley, where around Jerzy Neyman a
circle of researchers had been formed who were passionately interested in
mathematical statistics and where the probably most intense mathematical-
statistical activity, world-wide, had been developed. There, he had the for-
tune to be given the opportunity of collaborating with a group of researchers
led by the famous statistician Blackwell, today probably the most important
“black” mathematician.

In 1956, he began to set his sights on starting an academic teaching career.
After a year as an instructor at Ohio State University, in 1958 he went to
Bloomington, Indiana as an assistant professor, only to return again to Ohio
in 1959.

Two publications authored by Gautschi in the Annals of Mathematical
Statistics give only a most fragmentary picture of the struggle with problems
of statistics the last years of his life were devoted to. As late as June of
1959, he reported to the undersigned about a new turn he has given to the
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investigations on the classical problem of the so-called Bernoulli distribution.
He must have worked on the elaboration of this result when his life came to
such an abrupt end.

While scientific work has given Werner Gautschi’s life the decisive direc-
tion, he has found in music an other dimension of his life. He often used to
play four-hand piano with his brother Walter. It was also through mutual
musical interests that he first got to know his future wife Erika, b. Wüst.
The marriage brought forth a son Thomas, born only after his death.

To all who have known him, the memory of a man of unassuming de-
meanor and open to all that is humane, and of a devoted scholar and teacher,
will remain alive.

A. Ostrowski
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Werner Gautschi, 1927-1959 

BY J. R. BLUM 

Sandia Corporation 
Werner Gautschi was born on December 11, 1927, in Basel. A serious heart 

ailment suffered as a young boy prevented him from participating in many of 
the usual childhood activities and led to an early devotion to mathematics and 
music. In 1946 he entered the University of Basel and remained there untill952, 
with the exception of three terms at Cambridge University during 1950-51. 
He graduated summa cum laude from the University of Basel in 1952, with a 
dissertation written under the direction of Professor A. Ostrowski. 

An early interest in Statistics and Computing brought him to the United 
States in 1953 in order to study these fields. He spent his first year here at the 
Institute for Advanced Studies, where he did computational work on eigenvalues 
and norms of matrices. In 1954 he joined the Statistical Laboratory at Berkeley 
for a two year period. Aside from his studies, research, and teaching, he made 
many valuable suggestions to Erich Lehmann who was writing Testing Statistical 
Hypotheses and to Henry Scheffe who wa.s writing The Analysis of Variance. 

In the fall of 1956 he joined the faculty of Ohio State University and in the 
fall of 1957 he came to Indiana University for a two year period. During the 
summer of 1958 he returned to Switzerland where he married Erika Wtist and 
brought her back to the United States. In the summer of 1959 he rejoined Ohio 
State University where he remained until his death on October 3, 1959. A son, 
Thomas, was born on January 25, 1960. 

The death of a good man is a loss to all of us. Werner Gautschi was a good man, 
a fine scientist, and a sensitive pianist. His many friends and colleagues mourn 
him and remember him. 

Bibliography of Werner Gautschi 
{II "The asymptotic behaviour of pmvers of matrices," Duke Math. J. Vol. 20 (1953), pp. 

127-140. 
[2] "The asymptotic behaviour of powers of matrics II," Duke Math. J. VoL 20 (1953), 

pp. 375-379. 
{31 "Bounds of matrices with regard to an Hermitian metric," Cornpositio Math. Vol. 12 

(1954), pp. 1-16. 
{41 "Some remarks on systematic sampling," Ann. Math. Stat. Vol. 28 {1957), pp. 385-394. 
{51 "Some remarks on Herbach's paper, 'Optimum nature of the F-test for model II in the 

balanced case,"' Ann. Math. Stat., Vol. 30 (1959), pp. 960-963. 

Received April 7, 1960. 
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Recording

Music, as Professor Ostrowski wrote in his obituary, was “an other dimension” of
Werner’s life. A tribute is paid here to this dimension of Werner’s life by providing
a link,

Champaign,
The performers, Werner

Uni Sprengling Thomas – Violin
Howard Osborn – Viola
Peter Farrell – Cello
Thomas Frederickson – Double Bass
Werner Gautschi – Piano

33
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springer.com

(type in the ISBN of Vol. 3, 978-1-4614-7131-8, and click on Trout.wma) to

Illinois in May of 1959, five months prior to Werner’s death.
a recording of Schubert’s Trout Quintet. The recording was made in

himself, a fellow mathematician, and members of the University of Illinois Music 
faculty, are
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