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Part I

Commentaries

In all commentaries, reference numbers preceded by “GA” refer to the numbers
in the list of Gautschi’s publications; see Section 4, Vol. 1. Numbers in boldface
type indicate that the respective papers are included in these selected works.
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Linear recurrence relations

Lisa Lorentzen

Walter Gautschi is a giant in the field of linear recurrence relations. His concern
is with stability in computing solutions {y,}>2, of such equations. Suppose the
recurrence relation is of the form

Yn+1 + An¥Yn + bnyn—1 =0 for n=1,2,3,.... (21.1)

It seems so deceivingly natural to start with values or expressions for yy and y;, and
then compute ya, ys,... successively from (21.1). However, this does not always
work. Yet, in every new generation of mathematicians or users of mathematics,
along come some incorrigible optimists with a naive trust in this method. We are
happy, of course, for every new optimist in the field; mathematicians do not get
far without optimism, stamina, creativity, and enthusiasm. But the new ones can
definitely benefit from some sensible guidance. And what they should do, is to
start with Walter Gautschi’s STAM Review paper [GA29] on three-term recurrence
relations from 1967. This is what most people do, and this is what I did when
I started my study of continued fractions. Continued fractions and recurrence
relations indeed share a substantial intersection which, however, calls for some
degree of alertness.

So what can go wrong if one computes a solution as described above? Several
things, says the Master. But the worst scenario occurs if one tries to compute a
solution {f,}22, of (21.1) which happens to be minimal. A sequence {f,} is a
minimal solution if (21.1) has a second solution {y,} for which f,/y, — 0. This
second solution is then called a dominant solution. The solution space of (21.1) is
obviously a two-dimensional vector space, so a small error in the initial data, for
example a rounding error, changes {f,} to some dominant solution {af, + Sy.},
B # 0, with totally different asymptotic behavior. The discrepancy between f,
and af, + By, may be catastrophic after only a few computational steps, as so
convincingly demonstrated by Gautschi.

Not every such recurrence relation has a minimal solution, and one may think
that the subspace of minimal solutions is so small —if it exists at all — that the chance

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with 3
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5_1,
© Springer Science+Business Media New York 2014



4 Lisa Lorentzen

of encountering one is also minimal. But that is not at all the case. On the contrary,
as so often in mathematics, special cases are often the most interesting ones. A
number of important sequences of special functions are indeed minimal solutions of
linear recurrence relations. And here we are at the heart of the problem: how can
we compute minimal solutions stably and efficiently?

For recurrence relations of the form (21.1) the answer can be found in continued
fraction theory: the continued fraction

—b b b b b b
1 2 3 =22 %28 (21.2)
—a1— —a2— —az— ai— a2— az—
has approximants
b1 by by Ap
a— ag—  an By’

where {A,_1}52, and {B,_1}52, are solutions of (21.1) with initial conditions
A_lzl, A():O, B_1:O, B():l

Gautschi observes the following connection between the continued fraction (21.2)
and minimal solutions of (21.1), and attributes it to Pincherle, who proved it in
an obscure 1894 paper written in Italian: there exists a minimal solution {f,} of
(21.1) satisfying fo # 0 if and only if the continued fraction (21.2) converges to a
finite limit. In that case, moreover,

n _bn bn
Ty i = f e +1 ey, TL:172,37..., (21.3)

fn—l ap— Ap4+1—
provided f,, # 0 for all n.
This immediately suggests a stable way to compute minimal solutions, namely
to compute the continued fractions r,,r,—1,...,71 in (21.3) and then f,, from

fn =TnTn—-1"" 'r1f07

assuming fy is known. For more details, see also Section 11.1, Vol. 2.

But things are not always as easy as they may look on paper. It took a Walter
Gautschi to sort out the problems and work this simple idea into useful, reliable
algorithms. As always, it is the stability analysis, controlling the error, that takes
ingenuity. Via some very nice twists and tricks — see, e.g., Gautschi’s treatment in
[GA29, Sec. 7] and [GA35] of the three-term recurrence relation satisfied by Jacobi
polynomials of purely imaginary parameters and argument — his algorithms work
like a dream; these are not just algorithms on paper.

But what if fy is unknown? Also this problem was handled by Gautschi: he
replaced the condition “fo known” by “>~° - A,y,, known”, with known coefficients
An — a situation one often meets in the theory of special functions. Also this was
incorporated into his algorithms. Of course, Walter Gautschi has also treated linear
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recurrence relations of other forms (for example, see [GA150]) with the same care,
and he has applied them to compute important sequences of special functions,
orthogonal polynomials and interesting integrals. What is so very nice about his
algorithms is that they come with such a very careful and convincing stability
analysis. He has forever changed the way one looks at recurrence relations and
continued fractions.

People do not only read his books and papers — they really use his results.
His contributions to the Handbook of Mathematical Functions by Abramowitz and
Stegun are frequently consulted, both his Chapter 7 on the error functions and
Fresnel integrals and Chapter 5 which he wrote with W.F. Cahill on the exponential
integral and related functions. Not to mention his algorithms for the complex error
function, the incomplete gamma functions, the Fresnel integrals etc. in the NAG-
library and other places (cf. Section 6.1, Vol. 1). To me, the very fact that so many
people talk with ease about minimal solutions and stability analysis as if they had
known about it all their lives, is particularly gratifying. And this happens not
only in conferences on recurrence relations, but on special functions, orthogonal
polynomials, continued fractions, and applied mathematics, to mention just a few.

You know your ideas have made a deep impression when fellow mathematicians
begin to name concepts after you. And in the literature one finds references to
the “Gautschi algorithm” number so and so, the “Gautschi method” for stability
analysis, and even (more amusingly) the “Gautschi-type method” as if there were
some people out there of “Gautschi-type”. I think one would have a hard time
finding anyone like Walter Gautschi. After the very sad death of his twin brother,
Walter is unique. His clear mind and his creativity penetrate all his work, and
also his oral as well as written presentations. So I end this short exposition with a
serious advice: dig in and enjoy.



22

Ordinary differential equations

John Butcher

These days everyone talks about “impact” as something that can be measured in
terms of citations within a year or two, but the impact of many important con-
tributions to science can be looked at in other, more perceptive, ways. I believe
this is especially true of [GA14]. This paper is forward-looking to the extent that
its importance has become recognised more and more as time has passed. In my
opinion the impact of this contribution has been tremendous. Over the years it has
become known as a pioneering paper in the fitted type of approach to the solution
of initial value problems. It has been referenced directly soon after its publication
but even more so in recent years. It is related to exponential integration, to ex-
ponential fitting, and to modern approaches to the solution of highly-oscillatory
problems. The ideas and results in the original paper have been rediscovered inde-
pendently by later authors, but the depth and scholarship in Gautschi’s exposition
are unmatched. Here are the key definitions near the start of the paper.
A linear functional L in C®[a, b] is said to be of algebraic order p if

Lt" =0 (r=0,1,...,p);
it is said to have trigonometric order p, relative to period T, if
L1 = Lcos (r#t) = Lsin (r35t) =0  (r=1,2,...,p).

On this foundation, the paper goes on to analytical questions concerned with the
existence of trigonometric methods, the actual construction of methods, especially of
Adams and Stormer types, numerical investigations, and the sensitivity of numerical
results to the value of 7' in relation to the exact period.

The chapter [GA15] from Survey of numerical analysis, McGraw-Hill, New York
(1962), written in collaboration with H. A. Antosiewicz, surveys the state of knowl-
edge, at the time, of numerical methods for ordinary differential equations. This
work set the standard for theoretical expositions on this subject, appearing as it
did, a short time prior to the monograph of P. Henrici. Although the work of

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with 7
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5_2,
© Springer Science+Business Media New York 2014



8 John Butcher

Curtiss and Hirschfelder had appeared several years earlier, it was not yet known
and appreciated in the mathematical community. However, a cautionary example

problem,
dy 0 1 1
@: (10&2 9a>y7 y(O): (_a)7

is presented which, for a > 0, leads to approximations to the solution exp(—ax)y(0)
being eventually, but inevitably, overshadowed by terms which grow like exp(10azx).
After stiffness had become a recognised phenomenon, it would have become more
illuminating to consider a < 0; in this case the difficulty would not have been that
the required solution is buried amongst dominant alternative solutions, but that
the required solution has now become dominant even though its dominance is lost
in computations with classical explicit methods.

Looking now at [GA54], we are reminded of a crucial time in the history of
Runge-Kutta methods. This review paper acknowledged recent work, by Fehlberg
and others, in constructing embedded methods for the purpose of step-size control.
It appeared at a time when Henrici’s monograph was becoming recognised as a
model for exposition in numerical analysis and took the rigorous mathematical style
a step further. But global error bounds based on very reasonable assumptions, such
as the Lipschitz condition, do not necessarily give tight error bounds. This beautiful
paper viewed retrospectively, encapsulates all these ideas.

Paper [GA56] contains short and elegant proofs of the asymptotic behaviour of
the coefficients in Adams and other integration formulae.

For a linear k-step method (p, o), where p is given, with zeros satisfying 1 = (; >
|Ca] > |¢3] > - -+ > |(k], there is a unique choice of o to give order p = k+1. The aim
of the paper [GAT3] is to determine the method for which |(;| < 7,4 =2,3,...,k,
0 <~ < 1, that has minimal global error constant. It is shown that in the optimal
solution, (; = —v, i = 2,3,...,k. Ramifications of the result are studied in detail.

Somewhere between the appearance of the first and last paper surveyed here, 1
met Walter Gautschi in person. I was once his guest at Purdue and met him from
time to time at conferences. I have come to know him as a kind and courteous
person as well as a scholarly, knowledgeable, and original mathematician.
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Computer algorithms and software packages

Gradimir V. Milovanovié¢

During the preparation of the Handbook of Mathematical Functions, under the
direction of Milton Abramowitz at the Bureau of Standards (now the “National
Institute of Standards and Technology”), Walter Gautschi, then a young research
mathematician, joined this project in 1956. This was the starting point of a period
of intense work with special functions. During the 1960s, in addition to theoretical
work in several domains of special functions (see Section 6, Vol. 1), Walter developed
a number of computer algorithms evaluating special functions: the gamma func-
tion and incomplete beta function ratios [GA22], Bessel functions of the first kind
[GA23], Legendre functions [GA24], derivatives of e®/x, cos(z)/x, and sin(z)/x
[GA27], [GA38], regular Coulomb wave functions [GA28], [GA33], the complex error
function [GA36], repeated integrals of the coerror function [GAG60], and incomplete
gamma functions [GAG9].

In 1968 Gautschi began to write computer algorithms for Gaussian quadrature
formulas, the first being the one in [GA32]. This opened the door for extensive
work on orthogonal polynomials and their applications (see Sections 11, 12, 14, 15
in Vol. 2), but also for developing related software. The first major software package,
ORTHPOL, appeared in 1994 as Algorithm 726 in [GA141]. It contains routines,
written in FORTRAN, that produce the coefficients in the three-term recurrence
relation for arbitrary orthogonal polynomials as well as nodes and weights of Gauss-
type quadrature rules. A more specialized package, GQRAT [GA159], produced Gauss
quadrature rules which are exact for a combination of polynomials and rational
functions. They are useful for integrating functions that have poles outside the
interval of integration.

The package ORTHPOL, as well as the subsequent package 0PQ of MATLAB rou-
tines, both made available on the internet (http://www.cs.purdue.edu/archives/
2002/wxg/codes), led to a significant boost in the computational use and applica-
tion of orthogonal polynomials. The companion package SOPQ, also available on the
internet, contains symbolic versions of some of the more important routines in 0PQ.
They can be used for high-precision work in orthogonal polynomials and Gaussian

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with 9
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5_3,
© Springer Science+Business Media New York 2014



10 Gradimir V. Milovanovié

quadrature. A similar package in MATHEMATICA is OrthogonalPolynomials [1]
(see also [2]).

A very comprehensive account of computational methods and software in MAT-
LAB is provided in [GA179]. It illustrates the use of the OPQ routines in an elegant,
interesting, and methodical way.

References

[1] Aleksandar S. Cvetkovi¢ and Gradimir V. Milovanovi¢. The Mathematica package
“OrthogonalPolynomials”. Facta Univ. Ser. Math. Inform., 19:17-36, 2004.

[2] Gradimir V. Milovanovié¢ and Aleksandar S. Cvetkovié. Special classes of orthogo-
nal polynomials and corresponding quadratures of Gaussian type. Math. Balkanica,
26(1-2):169-184, 2012.
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History and biography

Gerhard Wanner

24.1. Euler

The ICTAM Congress 2007, held in Ziirich, happened to be in the year of Euler’s
300th anniversary. It was then clear to the organizers, that one of the invited
talks should be dedicated to Euler and Euler’s work. Fortunately, Walter Gautschi
accepted this invitation and presented a fascinating talk on Euler’s life, his person-
ality, an overview of his work and some selected topics in more detail. This took
place in the largest lecture hall (the “Turnhalle”), filled up to the last seat. I still
remember the total silence in the audience, when Gautschi ran a video of an Euler
gear transmission, turning, as he said, “without any noise”. An expanded version of
this talk [GA187] was prepared for the proceedings of the congress and, by mutual
agreement between the publishers, also appeared in STAM Review 2008, followed
by a Chinese translation. Two particular items from this talk, Euler’s treatment of
slowly converging series and Euler’s discovery of the convergence to a wrong limit
of interpolatory polynomials for the logarithm, a phenomenon which 100 years later
became known as ¢-theory, led to two separate publications, [GA183] and [GA186].

24.2. The Bieberbach conjecture

An extraordinary story is told in [GA101], where Gautschi, who had worked all
his life on numerical analysis, quadrature, and orthogonal polynomials, suddenly
had the occasion to complete, in a couple of days, Louis de Branges’s proof of
a long-standing conjecture in pure mathematics. This conjecture, an inequality
for the Taylor coefficients of a 1-1 holomorphic mapping from a circle to a simply
connected domain, was formulated by Bieberbach in 1916 during his early work on
the Riemann mapping theorem. During many decades, this conjecture had resisted
the efforts of the foremost experts in complex analysis. Louis de Branges finally
managed to reduce this conjecture to inequalities for integrals of Jacobi polynomials
and thought that Walter Gautschi, with his algorithms and computers, could help to

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with 11
Commentaries, Contemporary Mathematicians, DOI 10.1007/978-1-4614-7132-5_4,
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verify them. Gautschi not only did a lot of computer computations, but eventually
found out that the inequalities had been proved a decade earlier by R. Askey and
G. Gasper. I remember that P. Henrici, who lectured on this proof in January of
1985 in Stockholm on the occasion of Dahlquist’s 60th anniversary, concluded his
talk with the observation that a mathematician cannot know everything, but that
“it is always important to know where to ask”.

24.3. Survey articles

Walter Gautschi, with his broad knowledge of numerical analysis and his many
personal contacts with leading experts, was (and is) in excellent position to write
extraordinarily clear survey articles. Even when he wrote on a particular scientist,
his narrative always turned into a beautiful and clear exposition of the underlying
mathematics. We therefore collect them together: the article [GAT4] on Gauss-
Christoffel quadrature, the article [GA143] on Philip Rabinowitz and numerical
integration, the papers [GA144] on 2d-iterations and numerical quadrature and
[GA189] on asymptotics and estimation of zeros of special functions summarizing
work of Luigi Gatteschi, and finally [GA170], the interplay between classical analysis
and numerical linear algebra as a special tribute to Gene H. Golub. The same
subject is dealt with in Gautschi’s commentary [GA184], written for the edition of
the selected works of Gene H. Golub.

Finally, in [GA201], Gautschi tells the story of how he came into scientific
contact with G. V. Milovanovi¢ (we all have experienced, as referees, receiving a
paper which immediately could be simplified and improved; authors then often react
angrily, but in other situations such as the one described here, this was the starting
point of a long friendship and collaboration). Gautschi’s paper then continues with
a description of Milovanovié¢’s work on Gaussian integration with unusual weight
functions, and moment-preserving spline approximation.

24.4. Biography

The biography, which Gautschi wrote, was for his esteemed teacher Alexander
M. Ostrowski [GA196], one of the great mathematicians of the 20th century. This
paper is an extended version of an earlier paper [GA171] (not reproduced in these
volumes) written in Italian. This account of Ostrowski’s life and work, carefully
written by one of his last students, is highly interesting and needs no further
comment.
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Miscellanea

Martin J. Gander

Here, five “miscellaneous” papers of Walter Gautschi are commented on, [GA96,
GA124, GA125, GA175, GA197], preceded by some personal reminiscences.

I encountered Walter Gautschi’s work several years before I encountered him in
person. I was a PhD student at Stanford and taking a course given by Gene Golub
on orthogonal polynomials and quadrature. Several faculty members were also
taking this course, among them Andrew Stuart, who became my PhD supervisor,
and Alan Karp. During the lectures, Alan Karp posed an interesting problem of
computing Gauss quadrature nodes and weights for difficult weight functions arising
in radiative transfer. I immediately put to work what I had learned in class, and
failed, since all the methods we had seen were becoming rapidly unstable, and it
was not possible to compute the recurrence coefficients of the required orthogonal
polynomials to sufficiently high accuracy. So I started to search the literature and
came across a paper of Walter Gautschi, [GA141], which describes precisely the
problems I was working on, and also proposes an ingenious discretization procedure,
which allowed me to replace the unstable approaches I tried before by orthogonal
transformations, which are naturally numerically stable. This procedure allowed
us to compute very effectively high-order Gauss quadrature rules for all important
weight functions in this application, and led to the short paper [3].

I met Walter Gautschi for the first time on Sunday, April 26, 1998, when he
came for a seminar to the Ecole Polytechnique in Paris, where I was doing my
postdoc. We hit it off immediately, and when our twins were born in Montreal,
this added a further common bond, since Walter Gautschi also had a twin brother,
Werner Gautschi, a very talented mathematician as well, who unfortunately passed
away too early in life. When I moved to Geneva for a full professorship, I invited
Walter Gautschi to give a talk at our mathematics colloquium, and, happily, he
agreed to come. He gave a very well-received talk about “The spiral of Theodorus,
numerical analysis, and special functions”. To my delight, I found this talk again in

C. Brezinski and A. Sameh (eds.), Walter Gautschi, Volume 3: Selected Works with 13
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one of the papers I was assigned to study more closely in this tremendous enterprise
of commenting on the selected works of Walter Gautschi. I will do this, however,
in chronological order, so the Theodorus paper will come last.

25.1. The FG algorithm

This paper, [GA96], which is joint work with Bernard Flury from the University
of Bern, appeared when I was still in high school! It is very atypical for the work
of Walter Gautschi I am familiar with, dealing with a topic from numerical linear
algebra. For a given set of symmetric positive definite matrices Ay, Ao, ..., Ak, the
authors present an iterative algorithm to compute an orthogonal transformation
B such that the matrices BTA;B, BT A3 B, ..., BT A, B are as close to diagonal as
possible. In order to measure this “closeness”, they introduce (and motivate) the
function

k
CI)(Al7 Ao, Aping, ... 7nk) = H[det(diagAi)]”’i/[det(Ai)]"i7
=1

where the n; are given numbers. The best choice of B is one for which
®(BTAB,BTA3B, ... BT A,T;ny,...,n;) — min.

In order to compute an approximate minimizer, the authors introduce the
FG(Flury-Gautschi) algorithm, which consists of an outer iteration F and an
inner iteration G. The algorithm is described in pseudocode, and the authors prove
convergence of the algorithm. In the case k = 1, their algorithm reduces to the
Jacobi method. In addition to the convergence of the two procedures, the authors
also analyze under which conditions the solution is unique, and they give several
hints for improving the algorithm.

Unfortunately, there was no implementation of the algorithm given in the pa-
per'. Because of my interest in the algorithm, and since several details of the
implementations were only addressed by comments, I decided to implement the
algorithm myself in Matlab (see http:/www.unige.ch/~gander/FG.php)% The al-
gorithm was tested on the same example as given in the paper. It took quite a while to
obtain the same results, because the implementation of the stopping criterion, based,
as it was, on a comparison of eigenvectors becoming close, is tricky since normalized
eigenvectors are only unique up to a sign and also come numerically in an arbitrary
order. The current implementation now faithfully reproduces the authors’ Fortran
results. Their implementation on a CDC 170/855, in 1986, took 0.07 seconds of
CPU time for this example to be executed. In Matlab on my Thinkpad T60, in

'With the help of Walter, we later found the Fortran implementation in [2].
2Many thanks to Hui Zhang, who also implemented the algorithm independently, so we could
compare.
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2012, the same example takes 0.03 seconds of CPU time. One wonders where all
the computing power has gone these days>.

Another test, which illustrates why the identity matrix as an initial guess of B
can fail in the F-algorithm, is to simultaneously diagonalize a stiffness and a mass
matrix (where this is actually possible)*. Specifically, the matrices

210 0 4100
1 210 1 41 0
A= 01-21"42_0141
0 0 1 -2 00 1 4

give rise to an infinite loop when the initial guess of B in the F-algorithm is the
identity matrix, and one needs to use an alternative random initial guess.

I could imagine that such an algorithm would find many users if it were gen-
erally available in Matlab, since the simultaneous diagonalization of matrices is an
important task.

25.2. Slowly convergent series

The relevant paper on this topic, [GA124], as well as the paper [GA125] in the
next subsection, are more in the core area —numerical quadrature — of Walter
Gautschi’s research interests. The problem is to sum the series

o0 o0

So=Y_k'r(k), Si=> (DM Er(k),

k=1 k=1
where r(k) is a rational function. By using a preliminary partial fraction decom-
position, Walter shows that it suffices to consider r of the form

1
rls) = (s +a)™’
Such series can be transformed into integrals by writing the fraction as a Laplace
transform and then changing the order of summation and integration. The result
is a weighted integral of an entire function; it then remains to determine Gauss
quadrature rules for the respective weight function. With the hand of the master,
Walter determines the three-term recurrence coefficients for the required orthogonal
polynomials, which, as I experienced myself, are not always easy to compute to high
precision. From these, one can easily obtain the required Gauss quadrature rules.
He then illustrates the resulting fast summation procedure in the case of five infinite
series, of which the first was communicated to Walter by Professor P. J. Davis who
came upon it in his study of spirals, a topic we will again encounter in the fifth

paper.

Ra >0, m>1.

3Compilation would make this certainly much faster.
4Many thanks to Ivan Graham for suggesting this useful example during a conference in
Uriimgqi in August 2012.
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25.3. Slowly convergent series occurring in plate contact problems

This paper is a continuation of the previous paper, and it appeared in the same
journal, right after the previous one. The subject is again the fast summation of
infinite series, this time of the form

oo

Z (2k + 1)"P22k+1
k=0

where z is complex with |z| <1 and p = 2,3, and also of the more difficult forms

oo

Z o+ 1) » cosh((2k + 1)z) Z 2% +1)" Slnh((2k’+ 1)x)

cosh((2k + 1)b) ’ nh((2k +1)b) ’

k=0 =0

where 0 < x < b. Such series occur in the mathematical treatment of unilateral
plate contact problems. After treating some special cases, Walter again uses the
device of introducing a Laplace transform, but now only for part of the general
term of the series. Interchanging summation and integration, as in the earlier
paper, leads to a weighted integral with a weight function similar to the one in
the previous paper. There are, however, cases for the parameters where Gauss
quadrature is no longer effective, and Walter shows how a further transformation
leads to an integral which can be effectively evaluated using a backward recursion
scheme. Faithful to his working style, he gives the needed recurrence coeflicients
to high accuracy, and then shows two fully worked out examples to illustrate the
technique.

25.4. The Hardy-Littlewood function

In the short 6-page note [GA175], Walter Gautschi gives a summary of his confer-
ence presentation at the birthday conference for Olav Njastad. The topic was the
summation of the series

= sin(x/k)/k, (25.1)
k=1

which is important in the study of the polygamma functions. Walter first shows
how the summation can be performed using orthogonal polynomials and polynomial /
rational Gauss quadrature (cf. Section 15.4, Vol. 2), again applying the Laplace trans-
form device. In a first approach, he obtains a formulation in terms of modified Bessel
functions of order zero, the power series expansion of which, however, is only suit-
able for relatively small positive values of x, because otherwise severe cancellation
errors make the approach numerically useless. As an alternative, Walter rewrites
the expression obtained by using an integral representation of the Bessel function, in
which case the trapezoidal rule can be used effectively and without cancellation. He
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then also uses rational Gauss—Laguerre quadrature directly in the original formu-
lation, and with this approach the range of xz-values can be substantially enlarged
before cancellation problems set in. Walter finally shows a completely different
approach, based on direct summation of the first n &~ x terms combined with an
acceleration procedure, which is very effective for large values of x.

As it turned out, this short paper became the major inspiration for a recent pub-
lication by Kuznetsov [5] on asymptotic approximations to the Hardy-Littlewood
function. Kuznetsov’s goal was to find a value of = for which H (x) in (25.1) satisfies
H(z) < —7m/2, in order to provide an explicit counterexample to a conjecture of
Clark and Ismail. (The value of z found was extremely large, of the order 102'!)
Kuznetsov in his paper says “This turns out to be a surprisingly hard problem”,
and then goes on to use and extend the techniques introduced by Walter in order
to solve it.

25.5. The spiral of Theodorus

On May 22, 2003, Walter Gautschi visited us in the Section of Mathematics at the
University of Geneva, and gave a colloquium lecture precisely on the topic of the
paper [GA197]. It was a fascinating lecture, I remember it very well. Like the paper,
it started with an intriguing spiral, the spiral of Theodorus, shown in Figure 25.1.
As one can see, the spiral is constructed starting at the point (1, 0) by always moving
in the direction orthogonal to the current position vector, and going precisely a
distance of length 1. This gives for the second point (1, 1), with a distance V2 from
the origin (just use Pythagoras), for the third point a location with distance /2 + 1
from the origin (use Pythagoras again), for the fourth point a distance /3 + 1, the

-3+

Fig. 25.1. The spiral of Theodorus
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general point numbered n having a distance y/n from the origin. The distribution
of the angles in the spiral of Theodorus has interesting number-theoretic properties
(see [4], where the spiral is given the name “Quadratwurzelschnecke”?).

Using complex variables, one can also describe this spiral for & = 1,2, ... by the
recurrence relation

T(a+1) = (1 + ﬁ) T(a), T(1)=1, (25.2)
which gives T'(2) = 1+, T(3) = (1 + 5)(1 +1i) = 1 — 75 +i(1 + 75), etc. The
spiral of Theodorus is thus obtained by applying a Forward Euler Method (with
step 1) to the differential equation

, i
T () = \/aT(aL (25.3)
which has as a solution the circle, the dynamics of which, however, slows down
more and more as one moves along the circle.

The problem treated by Walter Gautschi, however, is a different one. Professor
Davis [1, p. 33ff] had been wondering if it is possible to interpolate the spiral of
Theodorus by a smooth, if possible analytic, curve. This problem is similar to a
problem Euler faced when he tried to interpolate the factorial function, which led
to his discovery of the gamma function. Davis, inspired by Euler’s work, found the
following interpolant:

o 14k
T(“>—g1+i/m’ @ =0

This product also satisfies the recurrence relation (25.2), and can be evaluated for
any value a > 0. It therefore produces a continuous (in fact, analytic) version of
the Theodorus spiral.

Unfortunately, the product is very slowly convergent, and thus not suitable for
numerical evaluation. This is where Walter Gautschi comes in: using logarith-
mic differentiation, he derives a polar representation for the continuous spiral of
Theodorus, in which there now appears a slowly convergent series. For a particular
point on the spiral (where it crosses the positive real axis for the first time), the
series is given by

> 1
232 1/2 7
k:lk/ + kY

the so-called Theodorus constant, and it is with this series that Davis had aroused
Walter’s interest in this problem. Using again Laplace transforms (cf. Section 25.2),
Walter shows how the summation of the series can be transformed into a problem

Ssquare-root snail
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of integration, which can be solved very effectively by Gaussian quadrature — “an
absolute gem of numerical analysis” according to Davis [1, p. 42].

With regard to identifying T'(«) in terms of known special functions, however,
Davis writes [1, pp. 41/42]: “Computation is one thing, and the identification of
T(«v) is another matter, and it still eluded me. The Spirit of Euler infused me
constantly, but contributed nothing toward the solution. The mistake I made was
that I had been consulting the wrong Swiss mathematician. I should have consulted
the Swiss-born-and-trained American mathematician, Walter Gautschi, who .. .in
the course of this work ... also identified T'(a).”

The analytic Theodorus spiral can also be continued backward into a second
sheet of the Riemann surface, as was proposed by J. Waldvogel [6], and Walter
concludes with a figure of what he calls the twin-spiral of Theodorus, a very well-
chosen name, given the context, and one which I will later also explain to my
children.

One could ask what the differential equation might be that describes this twin
spiral. Tt is certainly not equation (25.3), since this one only gives a circle. Some-
thing to think about!

25.6. Epilogue

My most recent meeting with Walter Gautschi was at the conference in honor of
Claude Brezinski’s 70th birthday in Sardinia, in the fall of 2011. As always, we had
very nice discussions, Walter and I, and Walter gave a lovely presentation about a
real problem from applications [GA204], solved in a very elegant way, how could it
be different, using Gauss quadrature. I hope we will meet many more times in the
future.
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Computation of Successive Derivatives of f(z)/z*

By Walter Gautschit
1. Introduction. It is sometimes necessary to calculate derivatives of the form
_ 4 (f (2)> - .
(1.1) dn(z) = JZI (T (n - 0} 11 21 )1

where f is a function whose derivatives can be formed readily. Analytic differentia-
tion in (1.1), while elementary, is obviously tedious, and the resulting expressions
are of doubtful practical value. In the following we present a simple and effective
recursive algorithm to generate these derivatives. As an example, we consider the
cases where f(z) = ¢, f(z) = cosz, and f(z) = sin 2.

Our main observation may be paraphrased in the following surprising way. The
calculation of a large number of derivatives (1.1) at a fixed point z is a stable process
if the function g(¢) = f(¢)/¢ has a pole at ¢ = 0, and an unstable process if g(¢) is
regular at ¢ = 0.

2. The Recurrence Relation. Let z # 0 be arbitrary complex, and let f(¢) be
analytic in the circle | ¢ — z| < r, r > | z|, which includes the origin { = 0. Our
point of departure is the identity

fiz) —700) !
e = fo f(tz) dt.

Differentiating n times gives

n n! ! 7 p (n+1)
(2.1) (@) = (=" Z57(0) = [ 67" (e) a.
Denoting the integral on the right by I, , integration by parts yields

(n)
L+"r,=1"@ ,
z 2
hence, together with (2.1), the recurrence relation

(n)
(22) b + 2 =120 oy,

We note that (2.2) represents a linear inhomogeneous first-order difference
equation for d, . Computational aspects of such difference equations were discussed
at léngth in [1]. It was noted there, that a naive application of (2.2) in the forward
direction is accompanied by an undesirable build-up of rounding errors whenever
the quantity

_ dih
Pn d.

Received September 10, 1965. )
* Work performed under the auspices of the U. S. Atomic Energy Commission.
t Present address: Purdue University.
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becomes large in absolute value for some n. Here, h, denotes the solution (nor-
malized by hy = 1) of the homogeneous difference equation that corresponds to
(2.2), i.e.

he = (—1)" 2
z

Numerical instability is particularly prominent if limsw [ pa| = ®, or, equiva-
lently, if

dn
2.3 — = Q.
(23) lim
By (2.1) we have

dn n er ! n p (n+1)

(2.4) 23 =10 + (-1" 2 '[ £ " (t2) dt.

The second term on the right, disregarding the sign, we recognize as being the nth
remsainder (in integral form) of the Taylor expansion of f(0) about z. Because of the
analyticity assumption made at the beginning of this section, this remamder tends
to zero, as n — o, and so

_i0)

@9 i 2 - 55

In particular, if f(0) = 0, then (2.3) holds, and we have numerical instability. On
the other hand, if f(0) ¢ 0, then

and | p. | is bounded for all n, provided d.(z) does not vanish for some n. Hence,
no serious numerical difficulties should attend the use of (2.2), unless | f(z)/f(0) |
is very large, or | p, | reaches a large peak prior to converging to the limiting value
[ f(2)/£(0) |.

An alternate proof of (2.5) can be given using Cauchy’s formula for the nth
derivative of an analytic function,

_ nl f(8) dr
(=) = 5 0. @ ~

If f(0) = 0, we may take for C a circle about z containing the origin and contained
in the circle of analyticity of f. If f(0) ¢ 0, we must add to C a small contour Co
encircling the origin in the negative direction. Taking for Co a small circle, and
letting its radius tend to zero, we arrive at

da(2) = (=D 2550 + f&) &

ZmH c & =™y’
Hence,
, (—=1)" 2 \"" 1)
(26) 23 = 50 + 5§, (r—::) £ a
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Since f(¢)/¢ is bounded on C, and

z
Ff=a<n

it is clear that the integral in (2.6) tends to zero, as n — o, and so we again ob-
tain (2.5).

We may summarize as follows: Lel f be analytic in a circle about z which includes
the origin in ils interior. Then the generation of a large number of derivatives (1.1),
using forward recursion by (2.2), is in general numerically stable if f(0) # 0, but
highly unstable if f(0) = 0.

We observe, however, that forward recursion by (2.2), even in the case f(0) = 0,
may still be adequate, if only a relatively small number of derivatives are required.
In fact, the recursion should be adequate as long asn < |z |.

3. Recursive Algorithm in the Case f(0) = 0. We take advantage of a remark
made on p. 25 of [1]. Since | ps | — ©, we may apply the recursion (2.2) in the
backward direction, starting with n = » sufficiently large, and using zero initial
value,

@1 &= ("6 —d)m  (n=sr—1,---,1), da¥=o.
Then, for n 2 0 in any bounded set, we will have
" —d, as v .

Moreover, the relative error of d, is given by

M __

(32) G =t _ pn.
dn P
It remains to estimate a reasonable starting value » for n, given, say, that the

results forn = 0, 1,2, --- , N are to be accurate to S significant digits. According
to (3.2), we must require that | p./p, | < eforall 0- < n < N, where

e=%$107°%
that is, ,

!

(33) Yl |®se =012 N

In addition to the analyticity assumption introduced earlier, we now assume that
I ™ is uniformly bounded, and bounded away from zero on the segment from 0 lo z as
n — . Then it is clear from (2.1), where now f(0) = 0, that | d,/d.| < 1 for v
sufficiently large. Hence, it appears reasonable to replace | d,/da | in (3.3) by 1,
and to require

!
(34) Zleftse  (n=012 M)
Denote the expression on the left by p, . Clearly, {p.} is a sequence of positive

numbers which initially decrease, until n is near |z |, and from then on increase
rapidly to . (The case |z] < 1, in which p, increases from the beginning, is of
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F1aure 1. Behavior of pa = n!|z |~/s!

little consequence for the following.) Denote by no the integer n > 0 for which
P is near to po “for the second time” (see Figure 1), hence |z [*/n! near 1. Then,
(3.4) is implied by ps < ¢, if N < no, and by py < ¢if N > no. We may replace
(3.4) therefore by

vl vl

!z|"§€ (N_S_no), I_V_!Izr‘”_s_e (N > ng).

Using Stirling’s formula, these conditions are adequately approximated by

(M)’ e (N =), (ﬂﬂ)’( N )N Se (N> mn).

14 v elz\

We note, incidentally, that again by Stirling’s formula,
e lelzll, e=271828---.

The first inequality, upon taking logarithms, can be written in the form

(3.5) p Ivz ke (e ]vz }) 23 Isz I

where

$=S8In10 + In2.
Similarly, the second inequality amounts to

NETEED

whieh can be written in the form

v N v v s

Since certainly v > N, and moreover N = ¢{z | (N now being larger than no, and
no & e|z|), the first term on the left is 20. Hence, (3.6) will be satisfied if we

require

v

In

(3.7) fv

2|«

v
N

28



COMPUTATION OF SUCCESSIVE DERIVATIVES OF f(z)/z 213

Both conditions (3.5), (3.7) now have the form ¢ In¢ 2 c. Denoting by ¢(y) the
inverse function of y = ¢In ¢ (¢ = 1), we obtain our final estimate of » in the form

(38) v2el|z|t (e ‘s“) (N Sm), v m(%) N > no).

We note that in (3.8) the function ¢(y) need only be available to low accuracy.
Formulas giving 1% accuracy, or better, may be found in {2].

The algorithm just described may still be unsatisfactory, numerically, if | z |
is relatively large. The recursion (3.1) then is likely to suffer from loss of accuracy,
due to cancellation of digits, particularly for n near 1. For such n, indeed, z/n in
(3.1) will have large absolute value, yet d'”); has normally the same order of mag-
nitude as d,"”. The difficulty may be resolved by epplying (2.2) in forward direction
as long as n < |z |, and using the backward recurrence algorithm described above for
the remaining n with |z2| < n < N.

4. Examples. Consider first f(z) = ¢*, and let
d (e
du(Z) = d—z—" (;) «
Then (2.2) gives immediately

(4.1) bW@) +2da) =L (=123,

Our theory of Sections 2 and 3 clearly applies. Since f(0) = 1, it follows that (4.1)
is numerically stable in the forward direction. We note, incidentally, that

(4.2) da(z) = (--l)"z-:l—i1 ee.(—~2),
where
(43) enlz) = 2 0

is the nth partial sum of the exponential series.
Likewise, if f(z) = cosz, and

_d" fcosz
) = 5 (22).

we obtain
(44) @@+ () = me) (n=123,-),

where {r,(z)}a=1 = {—sinz, —cosz, sinz, cosz, - - - }. Like the previous recursion,
(4.4) is numerically stable. On the other hand, if f(z) = sin z, and
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then
(4.5) 8»(2) + gsu—l(z) = 0’.‘(2) (n = ly 2: 31 *e '):
{0a(2)}a=1 = [cOs2, —sinz, —cosz, sinz, --- }, is numerically unstable, and the

algorithm of Section 3 should be applied, including the device mentioned at the
end of Section 3.
In terms of (4.3), we may also write

ca(z) = (—;—:,%? [“en(—12) + € “ea(i2)],
sa(2) = (—%z-;—‘)—;ri’ [eea(—iz) — & “eq(i2)],

as follows readily from (4.2) and Euler’s formula.

The functions s,(z) have found wide applications in diffraction theory, and are
extensively tabulated (see {4]). The generation of d. , ¢. , and 8, , may also be useful
for the analytic continuation of the exponential-, cosine-, and sine-integrals, re-
spectively. ALGOL procedures generating d,.(z), c.(z), and s.(z) for real z may
be found in [3].
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COMPUTATIONAL ASPECTS OF THREE-TERM RECURRENCE
RELATIONS*

WALTER GAUTSCHI{t

Introduction. Recurrence relations are one of the basic mathematical tools of
computation. There is hardly a computational task which does not rely on
recursive techniques, at one time or another. The widespread use of recurrence
relations can be ascribed to their intrinsic constructive quality, and the great
ease with which they are amenable to mechanization. On the other hand, like
most recursive processes, recurrence relations are susceptible to error growth.
Each cycle of a recursive process not only generates its own rounding errors, but
also inherits the rounding errors committed in all the previous cycles. If con-
ditions are unfavorable, the resulting propagation of error may well be dis-
astrous. It is this aspect of recurrence relations—the possibility and the preven-
tion of numerical instability—that will be of concern to us.

The problem of numerical instability has been studied extensively for differ-
ence equations arising in the numerical solution of ordinary and partial dif-
ferential equations. In the seemingly much simpler context of a single linear
difference equation, the problem has received only sporadic attention, even
though such difference equations, particularly of the second order, occur promi-
nently in many branches of pure and applied mathematics. We mention, e.g.,
the recurrence relations satisfied by large classes of special functions of mathe-
matical physics and statistics, the three-term recurrence relations that lie at the
heart of continued fraction theory and the theory of orthogonal polynomials,
and the miscellaneous recurrence relations one encounters when constructing
series expansions, asymptotic or otherwise, to solutions of linear differential
equations. We believe, therefore, that a systematic review of some of the compu-
tational problems attending recurrence relations might be of value. In the follow-
ing we attempt to present such a survey, restricting attention to the special case
of three-term recurrence relations.

The kind of instability we are concerned with, may be described as follows.
Consider a three-term recurrence relation of the form

(01) Ynt1 + AnYn + bnyn—l = O; n = 1) 2: 3: Tty

where a. , b are given sequences of real or complex numbers, and b, % 0. The
general solution of (0.1) can be spanned by any pair f. , g of linearly independent
solutions. We are interested in the special case where there exists such a pair
having the property

(0.2) lim 2% = o,
. n-»>00 gﬁ
* Received by the editors February 17, 1966, and in revised form July 18, 1966. v
t Computer Sciences Department, Purdue University, Lafayette, Indiana, and Argonne
National Laboratory, Argonne, Illinois. This work was performed in part under the auspices
of the United States Atomic Energy Commission.
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THREE-TERM RECURRENCE RELATIONS 25

Serious problems then arise if one attempts to compute the solution f, or any
constant multiple of f, .
To see this, we first note that (0.2) implies

(0.3) lim Fn _ 0

: n>w Yy
for any solution y. not proportional to f, . Such a solution, indeed, is represent-
able in the form y. = af, + bg, , with b # 0, and therefore

. In/Gn
2 = lim —22 =,
n>0 Yn nl-{g b+ a(fa/gx)

If we now generate f, by (0.1), using only approximate-initial values y, = fo,
y1 = fi (due to rounding, for example), but recurring with infinite precision, we
obtain a solution y, which, in general, is linearly independent of f, . Therefore,
by (0.3), we will have

Yn — fn
fn

i.e., the relative error of ¥ , the intended approximation to f, , becomes arbitrarily
large. Therefore, this straightforward method of computing f. is utterly in-
effective.

Observe that the set of all solutions f, of (0.1) having the property indicated
in (0.3) forms a one-dimensional subspace of the space of all solutions. (There
can be no two linearly independent solutions f, , f»” enjoying this property, since,
otherwise, fu/fa and f.'/f» would both have the limit zero, as n — o, which is
absurd.) We call the solutions of this subspace minimal at infinity, or briefly
minimal.! A nonminimal solution will be referred to as dominant. Each dominant
solution is asymptotically proportional to g, . Note that, in contrast to dominant
solutions, a minimal solution is uniquely determined by one initial value.

To illustrate the difficulty of calculating minimal solutions, consider the prob-
lem of generating Bessel functions of the first kind, J.(z), for fixed z, and »
=0,1,2, .7 As is well-known, these functions (of n) obey the three-term re-
currence relation :

— ®© a8 7N —> o,

| 2
(0-4) Yntr — —;‘z Yn + Yn—1 = 0.

From tables of Bessel functions we find, e.g., that forxz = 1, J¢(1) = .7651976866,
Ji(1) = .4400505857, accurate to ten figures. Generating the next 99 values of
Ja(1) on a digital computer by straightforward recursion, we obtain the results

1 The notion of a minimal solution appears to have first been introduced by Pincherle in
connection with his generalization of continued fractions [44]. Pincherle called it ‘‘dis-
tinguished”’ solution (soluzione distinta). In the theory of linear differential equations the
term ‘‘principal’’ solution is also in use [24]. The minimal solution can often be identified
with a solution ‘“‘of type II" in a terminology of Schifke [51].

2 This example is well known, and has received considerable attention in the literature.
See the references in §5.
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TABLE 1

n “In(1)” # “In(1)”

0 7.651976866 (—1) ' 9 —4,645246881 (—4)
1 4.400505857 (—1) 10 —8.332374506 (—3)
2 1.149034848 (—1) 11 —1.661829654 (—1)
3 1.956335358 (—2) 12 —3.647692865 (0)
4 2.476636684 (—3) 13 —8.737844579 (1)
5 2.497398891 (—4)

6 2.076220699 (—5) 20 —2.818590869 (12)
7 —5.934052751 (—7)

8 —2.906988084 (—5) 100 —2.586550446 (175)

shown in Table 1.* (The numbers in parentheses denote powers of 10 by which
the preceding numbers have to be multiplied.) Obviously, there is little resem-
blance with the true values of J,(1), which are known to decrease steadily with
increasing n, and to approach zero very rapidly as n — «. In fact, since J;(1)
came out to be negative, all digits shown, for » = 7, including the sign and the
exponent, must be illusory.

The disastrous build-up of errors, in this example, is due to the fact that with
fa = Ja(z), also g. = Y.(z), the Bessel function of the second kind, is a solution
of (0.4) and, moreover,

Jo _ _@/2)"
Gn 2(n!)?

Therefore, J,(z) is indeed highly minimal at infinity.

Methods of calculating minimal solutions of three-term recurrence relations,
including applications, constitute the main theme of this paper. In §1 we begin
with a brief survey of continued fractions, emphasizing computational methods.
The relevance of continued fractions is contained in a result due to Pincherle
which expresses ratios of a minimal solution in terms of continued fractions. In
§2 we recall some classical results from the asymptotic theory of linear dif-
ference equations which will find repeated use in the later parts of the paper.
§3 brings a first algorithm for calculating a minimal solution, based on the result
of Pincherle. The problem considered is to calculate a minimal solution f, known
to satisfy

as N — o,

(0.5) ' Z:()xnjm = s, s # 0.
The special case Ao = 1, A\w = 0, m > 0, amounts to prescribing fo . Considera-
tion of an infinite series (0.5) has the distinct advantage that the resulting
algorithm does not require the computation of f, for any value of n. Our first
algorithm is mathematically (though not computationally) equivalent to the

3 Computation was performed on the CDC 3600 computer, which in floating point arith-
metic allows precision of about 12 decimal digits.
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backward recurrence algorithm of J. C. P. Miller. While this algorithm is widely
regarded as just a ““trick of the trade,” our presentation will show that it derives
naturally from rather elegant results of classical analysis. In §4 two alternate
algorithms are described which are more flexible, but more elaborate, than the first
algorithm. The remaining paragraphs discuss a number of applications, mostly
to the computation of higher transcendental functions such as Bessel functions
(§5), associated Legendre functions (§6), regular Coulomb wave functions
(§7), and other miscellaneous functions (§§8-10). §11 contains an application
to a Sturm-Liouville boundary value problem on an infinite interval.

The extent to which our algorithms are affected by rounding errors will not be
discussed in detail. Our experience seems to indicate, however, that none of the
algorithms is sensitive to rounding, unless the series (0.5) is subject to cancella-
tion of terms. The rigorous analysis of error propagation is an interesting, though
difficult, outstanding problem in this area. A significant contribution in this
direction is due to Olver, who recently analyzed the error accumulation in
Miller’s algorithm [38].

In principle, there are other stable procedures that could be used to calculate
minimal solutions of (0.1). For example, we could set up the boundary value
problem of finding the solution y, of (0.1) which satisfies

Yo = fo, yv = fn

for some sufficiently large N.* Clearly, this amounts to solving the linear system
of equations

(0 1 (] [—buo
bg 42 1 0 Yo 0
O S E I
0 - ay— 1 .
L ‘ by-1 an-1) \Yn—) L ~fn

whose matrix is tridiagonal. Any of the standard methods, such as triangular
decomposition methods, may be used to solve (0.6). Unfortunately, the pro-
cedure requires two values, fo and fy, of the desired solution to be known in
advance. Either one may be difficult, or time-consuming, to obtain.

The problem of computing minimal solutions is clearly not peculiar to three-
term recurrence relations. It may equally arise in connection with other func-
tional equations, such as linear homogeneous difference and differential equa-
tions of arbitrary order, and systems of such equations. Whenever the space S
of all solutions is the direct sum S = S; @ S: of two subspaces S; and S, , and
every solution & € S; dominates, in some appropriate sense, over every solu-
tion s; € S, we may consider S, as the set of minimal solutions with respect to

¢ The author is indebted to Dr. M. E. Rose for pointing this out.
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the decomposition S = S; @ 8;. (There may be several such decompositions.)
The problem of computing minimal solutions in this sense has not been thor-
oughly studied, though the work of Clenshaw [7] and Schifke [51] suggests that
effective computational methods may exist also in this more general context.

1. Three-term recursion and continued fractions. It is well-known that the
concepts of three-term recursion and continued fraction are closely related. To
every continued fraction we may in fact associate a three-term recurrence
relation, namely the fundamental recurrence formula for the numerators and
denominators. Vice versa, every three-term recurrence relation may be inter-
preted as the fundamental recurrence formula for some continued fraction. The
first point of view is useful for computing continued fractions, the second for
computing the minimal solution. We begin by considering several methods of
calculating a continued fraction.

Suppose we are given the continued fraction
Q Qy O3

where the partial numerators @, and partial denominators b, are real or complex
numbers. Denote its nth numerator and nth denominator by A, and B, , re-
spectively, so that

(1.1)

a  a @n _ 4a
(1-2) bhf bt b B
The value of the continued fraction (1.1), if it exists, is defined as the limit
limy. An/Bx . The quantities A, , B, satisfy the fundamental recurrence formulas
(see, e.g., [59, p. 15])
A, = bnAn—-_l + @l n -2 y

(1.3) n=123--,
Bn = ann-—l + aan—-2,

where
(14) A, =1, Ay = 0; B_, =0, By = 1.

This shows that a, = A._1 and B, = B, constitute a pair of linearly independ-
ent solutions of the three-term recurrence relation

(1.5) Ynt+r — bnyn - AnlYn-1 = O, n = 1) 27 3, tt 'b'

A first method of computation flows directly from these fundamental recur-
rence relations. Thus, one generates the A’s and B’s recursively, by means of
(1.3) and (1.4), and concurrently the ratios A./B,, until the latter converge
within the required tolerance. As A, and B, are likely to grow rapidly with =,
some care must be exercised if this method is used on a digital computer. Initial
scaling, and possibly repeated subsequent scaling, may be necessary to avoid
overflow.

A second method, which avoids the necessity of scaling, consists in evaluating
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the finite continued fraction in (1.2) “from tail to head.” Thus, formally, we
set

w _ G G e
(1.6) Je = B bt - 1sksmn,

and generate these quantities recursively by

(1.7) 7" = 7 :kf("), k=mnmn-—1,-.--,1,
k

using as initial value
(1.8) & =o.

Then, /' = A./B. . To obtain the value of the continued fraction, the backward
recursion (1.7) will have to be carried out repeatedly, with increasing values
of n, until successive values of f;' agree within the accuracy desired. While
certainly an inconvenience, the repetitive nature of this process nevertheless
provides some self-checking features not possessed by the previous method.

A third method of computation, finally, exploits the connection between con-
tinued fractions and infinite series, expressed by the relation

—-' —prz“‘ Pk y

B, =
where
1
1+ (@r1/O b)) (1 + i)’
1
14 (a2/b1bs)

(This result may be obtained from Theorem 2.1 and formula (2.6) in [59],
by an appropriate equivalence transformation. See also [56]; the formula defining
px in this reference contains a typographical error.) Clearly, these relations can
be modelled into a recursive algorithm to generate successive approximants of
a continued fraction. Let, indeed,

1+ pppr =

pr=a/b, 14 p=

u = 1, ur = 1 4+ o, k=2,
Uk = PPzt Pk, k=1,
k
wk=zvi, k=1,
i=1
so that wy = Ax/Bi . Then
1
Uk+1 =-——-—-a—-,
L+ g %
(1.9) k Tkt k=1,2,3,-,

Upt1 = vk(ulrl—l - 1):

W1 = W + e+,
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the initial values being
(1.10) Uy = 1, N =W = 5.

None of the disadvantages noted in the previous two methods are present
here.

We have seen that the continued fraction (1.1) leads naturally to the three-
term recursion (1.5). Suppose now, conversely, that we are given a three-term
recurrence relation

(1.11) yn+1 + anyﬂ, + bnyn_1 = O’ bn # 0, n = 1, 2’ 3’ et .
Define a. , 8. to be the special solutions of (1.11) with initial values
(1.12) Oy = 1, oy = O; Bo = 0, 51 = 1.

Then, evidently, A, = a1 and B, = B.41 are the numerators and denominators,
respectively, of the continued fraction
(113) —b b b

—0— —ay— —a3—

which is equivalent to the continued fraction

b b b
a1— Gp— Qz3—

s o

(1.14)

We may formally arrive at this continued fraction also in the following way.
Let us introduce the ratios

1y = o n=012--.
Yn
Dividing (1.11) by y. then gives
Tn <+ Qn + Dn = O’
Tn—1
from which
Tl = —b
T 1

Applying this formula repeatedly, with n successively increasing, we get

Yn - bn bn+1 bn+2
Yn—1 An— QApy1— an+2 -

( 1.15 ) Tp— =
In particular, whenn = 1,

—_— T ey ———— e 0 0 s

This derivation indicates that the continued fraction (1.14), and similarly
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the continued fractions in (1.15), are related to ratios of consecutive values
for some solution y, . The argument, however, neither insures us of the con-
vergence of these continued fractions, nor does it tell us for what particular solu-
tion the ratios are to be formed. These matters are clarified by the following
theorem.

TaroreEM 1.1 (Pincherle [45)). The continued fraction (1.14) converges if and
only if the recurrence relation (1.11) possesses @ minimal solution f, , with fo # 0.
In case of convergence, moreover, one has

(1.16) Jn _ Zbe bar uns n=123,-",

f n—1 An— Opt1— Qpy2—
provided fn, % 0 forn = 0,1, 2, -+ .
Proof. (a) Assume the continued fraction in (1.14) converges. Then so does
the equivalent continued fraction (1.13). Therefore

. [0 2
lim =% = ¢,

n—>x Pn

where o, , 8, are the solutions of (1.11) defined by the initial values (1.12), and
¢ is some constant. Let

(1.17) fo = ctn — CBn .
Take any other solution of (1.11), say ¥» = aas + b8 . Then ac + b > 0, and
hm i’-" E lim ®n — cﬁ” = lim (an/ﬁn) - C _ O,

n>0 UYp n->0 A0, + bB,, n-—>00 a(a,,/ﬂn) + b -

This shows that the solution f, defined in (1.17) is a minimal solution of (1.11).
Moreover, fo = ap # 0.

(b) Assume now that (1.11) possesses a minimal solution, f, say, for which
fo # 0. Then

fn = foan + len y n 2- 0.

We note that 8, is not a constant/ multiple of f,, since fo 5% 0. Therefore, f.
being minimal,

1imft‘=f01im5‘ﬁ‘+f1 =0,

n-»90 Bn n->0 Bﬂ
and so
N o
lim =% = —JLI.
n->c0 Bn f()

This establishes convergence of the continued fraction (1.13), and thus of that
in (1.14), and also proves (1.16) for n = 1.

To prove (1.16) for general n > 1, we need only observe that zm = fatm-,
considered as a function of m, is a minimal solution of

Zm41 + Apym—12m + b'n+m—lzm—-1 = O; m = 1, 2; 3, et
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Since by assumption, zy = f,—1 # 0, the portion of Theorem 1.1 already proved

yields
21 fn = ""bn bn+1 bn+2
2o f n—1 Apn— Apt1— Qpi2—
as asserted. This completes the proof of Theoreml.1.
Consider again the three-term recurrence relation

(1.18) Yni1 + @ulYn + balYn1 = 0: ba # 0’

but assume, for simplicity, that the coefficients a,, b, are defined, and (1.18)
holds, for all integers n = 0, &1, 2, --- . Let » be an arbitrary integer, and
let 7,” denote the solution of (1.18) having starting values

(1.19) 2" =1, 2% =0

at n = v and n = v 4 1, respectively. Then the following duality theorem holds.
TueoREM 1.2. The function 1. satisfies, for fized v and variable n, the three-
term recurrence relation

(1-20) ns:z-l + an"’"(,’) + bn‘ng:’—)-l = 0’ n = 0, :b]., :Ez, ttty
and for fixed n and variable v, the three-term recurrence relation

»w o, G - 1 y—
(1-21) ﬂn()+i)‘nn( 1)+b 17711( 2)=0’ V=0,:‘:1,:1:2)"‘.

Proof. The first part of the theorem follows from the definition of 7,”. To
prove the second part, we first observe that (1.21) holds true for» = n — 1,
n, n + 1. For example, when v = n, using (1.19) and (1.20), we have

1 (n—2)

(n—2)
b Nn

) 4 On_ (a—D) 1 o2
,””(" + on N n + = ]_ + ( Apn—1 115:.‘_1 b”_l‘r)n_z
bn bn—l

=14+0-1=0.

The verification for » = n & 1 is analogous. Assume now (1.21) to be true for all
integers n, v satisfying |n — v| < k, where k¥ = 1 is some integer. We show
that (1.21) then also holds for [n — »| = k 4+ 1. We consider the two cases
n—v=k+4+1,n—v = —(k+ 1) separately. In the first case, we use (1.20)
in the form
ﬂnm = —a»—mgﬂl - bu—lﬂs::z?’

and observe that (1.21) can be applied to both terms on the right, since
|n —1—v|=Fkand|n—2—»|=Fk—1<k Weobtain

Ay (1 1 —2) Qy (1) 1 —
M = —an (-—-"175;"—-1) — = na ) — ba1 (——"nsf-—zl - =
bv bv—-l bv bv——l

a (-1 -1 1 2) —2)
= —= (—a»—lﬂnv—l - bn—l'ﬂs::—z ) —— ("’an—l'ﬂs::l - bn—lﬂs:—-z )
bv bv—-l
— __gl_’ -1 1 7 (v—2)
bv " bv—l " !
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having again used (1.20). The second case is verified similarly, using (1.20)
in the form

€3]

) )
Nn = - (an“-lﬂs:‘-i-l + 775:‘4-2 .

bn+1

Since we already established (1.21) for | n — » | < 1, it now follows by induction
that the result holds for |[n — »| = k,k = 0,1, 2, 3, - - - , that is, for all integers
n, v. Theorem 1.2 is proved. '

We note that relation (1.21), for » > n, can also be obtained from the
known fact (cf. [43, vol. I, p. 3]) that 2%, and 7, are the numerators and
denominators, respectively, of the continued fraction

’ ’ '

! a Gpt1 Ay—1

bp—1 + — " cen

7 79

bn,+ bn+1+ v—1

where

K a, ’ 1
bm—l = -—_’f 5 a/m = e,

bm bm

Alternatively, Theorem 1.2 may be obtained, as a special case, from the known
result that “multipliers” of a linear difference equation satisfy the adjoint
difference equation (cf. [35, §12.6]).

2. Some results from the asymptotic theory of linear second order difference
equations. In applications of Theorem 1.1, it is in general easier to recognize a
given solution of a three-term recurrence relation to be minimal than to establish
convergence of the corresponding continued fraction. One is aided in this by
classical results from the asymptotic theory of difference equations, notably by a
theorem of Poincaré, and by refinements and extensions thereof due to Perron
and Kreuser. For convenience of the reader, we are recalling here these theorems
for the special case of a second-order difference equation

(2.1) Yntl + Aaln + bnyn—l == 0, n = 1: 2, 31 :
We assume, throughout, that
(2.2) b 5= 0, n=1,23, .

We begin with the case where the coefficients a, and b, in (2.1) have finite
limits
(2.3) an — @, b, — b, n— o,

not excluding that b = 0. One then calls (2.1) a Poincaré difference equation,
and calls

(2.4) &) =8 +at+b

the characteristic polynomial of (2.1). As may be expected, the solutions of
(2.1) behave similarly, for large n, to the solutions of the difference equation
(2.1) with constant coefficients a. = a, b, = b. This is borne out by the following

two theorems.
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Tueorem 2.1 (Poincaré [46]). If the characteristic polynomial (2.4) of (2.1)
has zeros t, , ty of distinct moduls,
(2.5) la| > &l

then for every nontrivial solution y, of (2.1) we have

(2.6) lim 4»1

n>0 Yn

= i, r=1,0rr = 2.

THEOREM 2.2 (Perron [41]). Under the assumption of T heorem 2.1 there exist
two linearly independent solutions y,1 and yn 2 of (2.1) such that

(2.7) lim Y4 — g r=1,2

n->0 yn,r
Theorem 2.2 implies that
f'n, = Yn,2
is a minimal solution of (2.1). To see this, choose r; and 72 such that
Itzi < 1'2< T1< Itll)

which under the assumption (2.5) is certainly possible. By (2.7) we then have,
for n sufficiently large,

+1,1 +1,
%—- = T1, y;” s 7, n = N,
n,1 n,2
Hence
n—n n—n
[Ynal Z2 1" Yngals | Ynz| £ 20" Yno2 |,
and
Yn2| < (E T Ym2 n 2 n
Ynil — \1 Ynot |’ ' =
This shows that
lim Y2 =
n—>w yn,l ’

from which the assertion follows.

We also note that in (2.6) one hasr = 2 for the minimal solution, and r = 1 for
any other solution.

We shall require a generalization of Theorem 2.2 relating to a difference equa-
tion (2.1) whose coefficients satisfy

(2.8) an ~ an’, b ~ bn”, ab # 0; o B real; n— .

The asymptotic structure of the solutions now depends on the Newton-Puiseuz
diagram formed with the points Py(0, 0), P1(1, &), Ps(2, 8). This is the broken
line PoPyP, , if Py is above the straight line joining P, with P, ; otherwise it
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P
(1)
(o) P2
Py B
0 | 2
F1a. 1. Newton-Puiseuz diagram for difference equation (2.1), (2.8)

is the line segment P,P, . We denote by ¢ the slope of P,P; , and by 7 the slope of
P,P, (Fig. 1),s0thatec = o, 7 = 8 — «.

Tureorem 2.3 (Perron [42], Kreuser [29]). (a) If the point Py is above the line
segment PoP; (i.e.,0 > 1), the difference equation (2.1) has two linearly independent
solutions, Yn,1 ond Yy 2 , for which

b

(2.9) Ynt1,1 ~ ___ana, Ynt+1,2 ~ 2 n‘r, n— o,
Yna Yn,2 a
(b) If the points Py, Py, P are collinear (i.e., 0 = 7 = &), let &y, tz be the roots
of £ +at+b=0,and || = |t| Then (2.1) has two linearly independent
solutions, Yo, and Y, s , Such that

(2.10) :'Z_y'ill_l ~ Hn® y;” ~ tn°, n— o,
n, n,2
provided |ty | > |t |. If | t| = | & | (4n particular, if t, , & are complex conjugates)
then
. I Yn l 1/n
(2.11) llIil_)s;lp el = [t1]

for all nonirivial solutions of (2.1).
(¢) If the point Py lies below the line segment P,P; then

(212) lim sup[ [ ]"n — /TP

000 (nl)ﬂﬂ

for all nontrivial solutions of (2.1).

An argument similar to the one following Theorem 2.2 will show that in both
case (a) and the first part of case (b) the solution f, = ¥, 2 is a minimal solution
of (2.1). Furthermore, in the first part of case (b),

(2.13) l,:ﬂ%% = i, r=1lorr = 2
where r = 2 for the minimal solution, and r = 1 for any other solution.

The second part of (b), and part (¢) of Theorem 2.3 are somewhat inconclusive
for our purposes, as they do not permit distinguishing two solutions with distinct
asymptotic properties. In this connection, the example given later in §9 is of
interest.

Proofs of Poincaré’s theorem may be found, e.g., in [21], [35], [37]. An elegant
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proof of Perron’s theorem is given in [14], and reproduced in [34]. Far-reaching
generalizations, and simplified proofs, of all these theorems, including Kreuser’s
‘theorem, were recently obtained in [51].

3. A first algorithm for computing the minimal solution. We assume now that
the recurrence relation

(3.1) Yns1 + AnYn + balyna = 0, n=123--,
has a nonvanishing’ minimal solution, f,. We wish to calculate f. for
n=0,1,2,---,N.Inorder to specify f, uniquely, we can impose one condition,

for example prescribe the value of f, . For later applications, we consider the more
general normalization

(3.2) D Anfm = s, s # 0,
m=0

where s and o, A1, - - - are given quantities, and the series is known to converge.

We do not exclude that N\, = 0 for all m > 0, in which case (3.2) amounts to

prescribing fo .

In a sense, (3.2) represents the most general linear condition that may be im-
posed. A class of nonlinear conditions will also be considered briefly.
To introduce the algorithm, let

(33) Tn = fn‘i’l Sp = ‘1“ Z >\mfm-
f n n m=n+1
Suppose first that r,, s, are known for some value n = v = N. The desired
solution f, ,» = 0(1)N, can then be obtained as follows.
From Theorem 1.1 we know that

(3.4) oy = _bn bn+1 bn+2 _— n = 1’ 2, 3’ -

Hence, we can generate the ratios 7, for 0 < n < » as in (1.6)-(1.8) by

-bn
Qn + 12’

(3.5) Tp—1 = n=vwv—1-+--,1

Similarly, we have

Sp—1 = Z )\mfm = f——l (Anfn + Z Amfm)

”—1 m=n m=n-+1
= )\n Tn—1 + Tn—1 ( -‘Z ‘ Amfm)
so that
(3.6) Sp-1 = 1',._1()\,. + 8,‘), n=yv— ]_’ ceey 1.

Hence, also the quantities s, for 0 £ n < v, and thus in particular s, , can be ob-

8 The assumption of f, to be nonvanishing is no serious restriction from the practical
point of view. This is further discussed at the end of this paragraph.
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tained recursively. Using (3.2) we now have

S = }‘ i >\mfm = ']‘L' (S = >‘0f°)a

0 m=1 Jo
and so
s

Ao+ 80‘

This gives us the initial value of the desired solution. The remaining values can
now be obtained immediately from

fn=rn—1fn—1, n=1,2,“',N.

The actual algorithm follows this procedure very closely, except that for the
infinite continued fraction, and the infinite series, representing r,—; and s, , re-
spectively, we now substitute truncated continued fractions, and truncated series.
More precisely, we define

Jo =

—'bn bn+1 bv

(3.7) B =0, = cee 2 1 <0<y,
Qpn— Qpy1— O
and
- ) )
(3.8) s =0, 87 = D Nt e, 0n<nm
me=n-1

One then verifies readily that the formulas (3.5), (3.6) continue to hold if 7, is
replaced by ., and s, by s, throughout. Hence the following set of recursions
arises naturally,

» ') —b
rvv =0’ Tny-*l='—"""‘”—1'."(°;s’

N a’n+rn nzv’y_l’...’l,
» » ) »

(3.9) & =0, sp21="Tna(n+ "),

») S ) )+
fo = Nt W’ fa =iy, wm=12 --- N.

While our initial procedure gave us the exact values f, of the minimal solution,
the quantities f," now derived are at best approximations to f, . It remains to
successively improve f,*’ by repeating (3.9) for a sequence of increasing values of
v. The complete algorithm for computing the minimal solution may thus be de-
fined as follows:

Step 1: Select an integer » = N, and let ¢,”” = 0,n = 0,1, --+ , N.

Step 2: Calculate f,”,n = 0,1, -+, N, according to the formulas in (3.9).

Step 3: If the N + 1 values of f,* obtained in Step 2 do not agree with the
current values of ¢,” to within the desired accuracy, then redefine ¢, by
¢ = f.,n = 0,1, --+ , N, increase » by some fixed integer, say 5, and repeat
Step 2; otherwise accept f,* as the final approximationstof, ,n = 0,1, --- , N.

We note that in the special caseXo = 1,\y = Ng = -+« = 0, all 8,*’ vanish, so

that the recursion for sv; in (3.9) may be omitted. Moreover, s = f, , and there-
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fore fo” = f, . In this case, the value of Jo must be known before the algorithm
(3.9) can beapplied. The use of aninfinite scries (3.2), instead, has the remarkable
advantage of not requiring any value of f, to be known in advance.

Our derivation of (3.9) also demonstrates that f," = f, if instead of zero initial
values in the first two recursions we select initial values r,"” = r,, §,% = s, .
While these quantities in general are not known beforchand, they may sometimes

be approximated closely when » is large. This suggests to modify (3.9) by defining
(3.10) r" = p,, 8" =o,,

where p, and o, are suitable approximations to r, and s, , respectively. The better
these approximations are, the faster we expect our algorithm to converge. We
return to this point later.

We may give (3.9) a somewhat different interpretation as follows. Consider
the solution 7, of the difference equation (3.1), defined by “initial” values

(3.11) 7 =1 4% =0

atn = yand n = » + 1, respectively. The values of 9,” for 0 £ n = » may be ob-
tained by applying (3.1) in the backward direction, starting at n = ». Then we
assert that

(3.12) fn(l') = ____'E_____nn(v), O é n _é N.

v
Z Am ﬂm(y)

m=0

To verify this, we observe, first of all, that the quantities 7\, defined in (3.7)

are consecutive ratios of the solution 7,",

)
(3.13) reky =T 1<n<v+ L

n—1

This is trivial forn = » + 1, and for n < » follows from the fact that the ratio
2 /a2y satisfies the same nonlinear recursion (3.5) satisfied by 7, . Inserting

(3.13) into (3.8), we find
5,9 = 1 > Anmn®,
ﬂn(y) m=n-+1
and using this for n = 0, we obtain

)
» 8 smo s »
fO = F= = N0 .

Tt 8P Reme® + 9e@s® o 3
Aono g + Z Am "lm(V)

m=1

This proves our assertion (3.12) for » = 0. To prove it for n > 0, we need only
observe that in view of (3.13), the quantities f,*’ in (3.12) satisfy f,*/f
= r¥ , as required by (3.9).

The algorithm of generating the 7,” and using (3.12) is often referred to as
Miller’s backward recurrence algorithm. It was first proposed as a computational
scheme by J. C. P. Miller in connection with the tabulation of Bessel functions

(see [5, p. xvii]). An error analysis has recently been given by Olver [38].
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While algorithm (3.9) and Miller’s algorithm are mathematically equivalent,
they have different computational characteristics. In many cases, e.g., the quanti-
ties 1. grow rapidly as » increases, and may cause “overflow” on a digital com-
puter. In contrast to this, the quantity 7, in (3.9) converges to a finite limit as
» — oo, and so does s, if the algorithm converges at all.

We now use (3.12) to discuss convergence as v — o« of the algorithm (3.9).
Let g, denote any solution of the difference equation (3.1) other than f, , so that

(3.14) lim In _ 0.

n—>90 gn

Clearly,
1 = s + 8%,
for some constants a”, b®. By (3.11), we must have
a”fr1 + %g,0 = 0,
a®f, + %, = 1.

The first of these relations gives b = —(f,41/g,11)a®, so that

2 = o (fn _Jmn gn) .

gv+1
Substituting in (3.12), and simplifying, we obtain
(-

(3.15> fn(y) — - - gl'+1f n _ .

1 - = Z )\mfm - AL Z)\mgm

8§ m=p+1 8Fv41 m=0

In view of (3.14) and the convergence of the infinite series in (3.2), it is clear
that lim,.. fa” = fu if and only if

(3.16) lim 71 3" Agn = O.

y->00 g,,+1 m=0

We have proved the following theorem.

TurorEM 3.1. Suppose the recurrence relation (3.1) has a nonvanishing minimal
solution, fu , for which (3.2) holds. Let g. be any other solution of (3.1). Then the
algorithm (3.9) converges in the sense

lim £, = fa

y—>0

if and only if (3.16) is satisfied.
Condition (3.16) holds, e.g., if the N’s are uniformly bounded, and

+1
g” —_ tl;

g A
ol > el, |tl<i.
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If all but a finite number of the \’s are zero, then (3.16) is a consequence of
(3.14). Theorem 3.1, in this case, has been noted previously in [16].

It is useful to observe that convergence of the algorithm (3.9), in the sense of
Theorem 3.1, implies that

(3.17) " -1, 8.7 — 8., v — o,

where r, , s, are the quantities defined in (3.3). The first of these relations follows
directly from (3.4) and (3.7). The second follows by induction on n. Indeed, if
n = 0, we have from the third line in (3.9),

(v
W s — o fo s — NoJfo
S = —
’ Jo fo
Assuming now s{2; — s,_1 , we get from the second line in (3.9), and from (3.6),
that

= 8o, y —> 0,

( Spn—1 Sn—1
Sny)::':‘T_Xn__)L-”xn:s”, y — 0,

r n—1 Tﬂ—l

In case of convergence of the algorithm (3.9), we may obtain from (3.15) the
following approximate expression for the relative error, valid for » sufficiently

large,

fn(v) ""'fn .1 - fv+1 - fv+1 gn
3.18 —_— = A Sm AnQm — == =
( ) fn s m==zv+l Im + 8Gv+1 mZ-% d grt1 Jn

It is interesting to examine what effect the modification (3.10) of algorithm
(3.9) will have upon the relative error (3.18). We assume that

P = rv(l + ép), 0y = 8.,(1 + 1’”)’

where 7, , s, are defined by (3.3), and ¢, , 1, are small numbers. Then a simple
computation will show that in place of (3.15) we now have

-1
1+€yfﬁ1€:¢(1_p,_€”_>

o _ goi1 fn Jv+1
f" - f" ) ¢ f+ —1 v .
1+1ﬁ E Afm + vv1<1“‘Pv“g—v") megm
S m=p+1 SJv41 gr+1 m=0

Since | p,gs/gs+1 | is usually substantially smaller than 1 (at least for large ») we
see that the modification (3.10) reduces the relative error of f,* effectively by a
factor of | ¢, |, or | 9, |, whichever is larger. Hence, our statement made earlier that
the convergence of £, to f, is faster the better p, approximates r, , and o, approx-
imates s, , is clearly vindicated.

It is tempting to try a substitution of the type

(3.19) Fn = eufn, cn # 0,

to exert influence upon the convergence criteria (3.14) and (3.16). We note, how-
ever, that these criteria are invariant with respect to any linear substitution of the

form (3.19).
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We now briefly consider the case in which condition (3.2) is replaced by a non-
linear condition of the form

(3.2p) D Anfu® = s, s # 0,
m=0
where p is some real number. It must be noted that this condition specifies the
minimal solution only to within a constant factor ¢ satisfying ¢’ = 1.
Algorithm (3.9) extends readily to the case of general p, if we define i, as be-

fore, and let

14
(

82 =0, 2= 2 MNP, 0= n <o

m=n-+1

We obtain
o) ) —b

rvv =0, ’r‘n,’—l.:—'ﬁz')';

a’n+7ﬂn nzy,y_l,...’l’

(3°9p) sv(") = 0, 85:-21 = [ry-zl]p()\n "I" sn(l’))x

» s e 5 ) o)
v vV 14 14
Jo =[W] ’ foo = raafa, 'n=1:2y"':N-

The nonuniqueness of f, is reflected in the multivalued definition of f,*.
Ag in the proof of Theorem 3.1, one shows that (3.9p) converges as » — o« if
lim A, = 0, t=12,-,p,

y->0

where

@ _ () ¥ ip i

We conclude this paragraph with some practical remarks concerning the
algorithm (3.9).

The effectiveness of the algorithm is clearly enhanced if good estimates of the
initial value of v are available. Such estimates can sometimes be obtained from
(3.18), and from known asymptotic properties of the solutions f, and g, . (See
§85, 7 for examples.)

It is worth noting that the storage requirements on a digital computer do not
depend on ». It suffices to store permanently only those N quantities . which
are needed to build up the final results f,”. All the other ,*’, as well as the s,,
can be generated in temporary storage cells.

The assumption

fn—l#oy ’ﬂ=1,2,3,"°,

in Theorem 3.1 is ordinarily fulfilled in practice, if for no other reason than round-
ing errors. Nevertheless, one might think, in view of lim,. r = fa/ fa- , that
the case of f._1 nearly equal to zero for some n = 1 might cause numerical diffi-
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culties. By the following, admittedly superficial, considerations we wish to show
that the presence, or proximity, of such zeros need be of no great concern.
Suppose, indeed, that f,—; is very small in modulus, compared to fn . For
definiteness, let n > 1. Then, by (3.3), | 7._1 | is very large, and so is | 7\, |, when
v is sufficiently large. From the first line in (3.9) it follows that | @, + 7,*’| must
be very small compared to | b, |. Since neither a, nor 7, will normally be small,
this means that many digits will cancel when the sum a, + 7, is formed, and so

) is not only very large, but also very inaccurate in terms of significant digits.

Consequently, rv2, will be very small, and also inaccurate. However, r.’;

= —bn_s/(Gns + 152 (if n > 2) will again be accurate, since a,_» in the denomi-
nator picks up lost accuracy, 7.2 being normally much smaller than a._s . Later
on, in the formation of the final results, fo2; = 725, will come out very small
and inaccurate, as one must expect. The really questlonable point is the computa-
tion of £, = rf,”_)l ), since rY is large and f{7 is small, and both are inac-

curate. We note, however, that

(v)
o G ) ) ) —bnoy fS n—-2 —bu—1fn-2
fn = Tp—1Tn—2 n—2 = Tp—1 = ) Py
Ap—1 + rn—-l 1 + (an—l/rn-—l

which shows that the largeness of r{"; saves £ from becoming inaccurate, even
though (%, is. A similar reasoning applies to sty , s, .

More serious is a possible loss of accuracy in the calculation of fo, as this
would affect all subsequent f,*. It could indeed occur that I N + ™| is small
in comparison with | \o |, so that many digits cancel when \o + s is formed. The
resulting value of fo” would then be quite inaccurate. The same difficulty might
arise if Ny = 0. Suppose, indeed, that N\, (p > 0) is the first nonvanishing co-
efficient in the series (3.2),

XP#O, km=0’ 0§m<p’

and that [\, + s,’| happens to be very small compared to | A, |. Then &, is
necessarily inaccurate, and this inaccuracy will be transmitted to all subsequent

sfﬁl , and finally to fo( ), in view of the relations s\, = rﬁ,’flsn(") =p —1,
P — 2, , 1, and £ = s/5%.
Now for large v,and p = 0, we have
1
A + 8, >\+ fom~ (s = N\pfp) = —,
i i fp m=p+1 f pfp fp

so that [(A, + 8,"7)/\, | is small if | s/(A,f,)]| is small. Hence, dangerous cancel-
lation occurs when s is small in absolute value compared to the first nonvanishing
term Npfp in (3.2), i.e., when cancellation occurs in the series (3.2) itself. For this
reason, some care must be exercised in the selection of the identity (3.2).

4. Second and third algorithm for computing the minimal solution. The effec-
tiveness of our first algorithm (3.9) is somewhat limited if no reasonable estimate
of the starting value » of n is known a priori. The recursions in (3.9) must then
be repeated with increasing values of », until sufficient agreement is obtained
between successive results f,*’, foralln = 0, 1, - - - , N. This disadvantage can
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be removed, at the expense of a more complex algorithm, by making use of the
duality theorem 1.2, or, alternatively, by evaluating a sequence of continued
fractions (3.4). The corresponding algorithms will now be developed. The first
of these, though not in the form given here, is due to Shintani [52].

As was noted in the previous paragraph, we can obtain 7, , s, recursively, for
0 < n < N, and hence also f, for 0 £ n < N, once ry , sy are known. In the fol-
lowing we derive a method for calculating ry , sy recursively. If f, is known, the
s, will not be required, and the algorithm then reduces to one suggested by G.
Blanch ([4, p. 405 {f]) in connection with Bessel functions.

As for ry , we may simply evaluate the continued fraction
(4.1) _ —by+1 byis by

'y = ey
ANy1— Any2— ONy3—™

by either the first, or third method described in §1. In the first case we have

. A k
42 = i Ak
(4.2) =B

where
A__1 == 1, Ao == O; B__1 = 0, Bo == 1;
(4.3) Ay = onsedia — byl

k=1,2,3,:--.
B = ay4xBi-1 — baprBi-z,
In the second case we have
(44) ry = lim wy ,
k>0
where the w’s are generated as follows:
b
U = 1, ’01=w1=—ﬂ;
an41
Uptr = 1
(4.5) GAER g (basios1/Ank Anhr) s
Vet = V(U — 1), k=123,

Wrt1 = W -+ Vrt1,

For the computation of sy , we make use of the fact that
(4.6) sv = lim sx®,
where sy is defined by (3.8). The quantities sy, v = N, may be obtained re-
cursively as follows. From the definition (3.8) of s,*, and from (3.13), we note
that

14

( 4_7) nN(r) sN(v) — Z }\mnm(v).

m=N-+1
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Hence, using (1.21), we can write

( - o 1 -2
n~ V)SN(V) = Z Am li"": Nm g Nm ’ :I
bv bv—-l

m=N-+1

a -1 -1 —1)
= ___b_v N~ g SN g + )\vﬂv ’ )
1 4

oy

1 o969 (= .
— = (" s N5 A0

b»—l
Since (
1) —2
ﬂv(v_ = "lvil) = 0:
—2 (v—2 (v—2
ﬂv(v ) = _at'-—lﬂy:l) - bv—lﬂvfﬂ) = "“'bv—l_,
we get
o). W Oy —D_ (=D 1 o9 69
(4.8) o Sw . = —= xSy — 1y Sn A,
bv bv——l
or, alternatively,
» ;- | G - 1 o2 69 A
sy = —px =8y 4+ —px SN +—:—,,)',
bv bv—l N~

where we have set px” = 5% /™. Taking into account the recursive relations
for px”, nx", which follow from (1.21), we arrive at the following algorithm for
generating sy :
(N—1) _ W) _ (N—1) _
px =0, 7w =1 = 0,

SN(N) - sN(N—l) — O,
N(v—-l) T 1
_‘_"_Z + 1 P (v—2)
4.9 b, | by Y
(49) g -1 v=N+1,N+2,---.
i = =% P 1 "
N = = i N
bv bv—-—l
(v—2)
) 6= | & -1 , PN (—2) P
s = — — 8 — s —
N PN [bv N + bos N ]+ ﬂN(")

This, together with (4.2) [or (4.4)] and the remarks at the beginning of this
paragraph constitutes our second algorithm for computing the minimal solution
of (3.1).

As noted previously, the quantities 7 may grow rapidly, as v increases, and
may cause overflow on a computer. However, if 7y is large, just short of over-
flowing, it is normally permissible to replace the term \,/7x" in the last relation
of (4.9) by zero, and to continue the recursion for sy in the truncated form.

To develop the third algorithm, let

(4.12) Gn = 1 > Mnfm = Zgo AmlalL ** Tm—1,

0 m=0
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where as before 7,1 = fa/fn1 . Denoting the product of the first n of the r’s by
Pn , We obtain
Po = 1: DPn = ThnaaPn-1,

(4.13) n=1,23-".
Qo = No, @n = Gn-1 + NaDn,

Each 7,—; in (4.13) will be computed from the continued fraction

- bn bn+1 bn+2

Op— Opp1— Qui2—
by applying either (4.2), (4.3), or (4.4), (4.5), with N replaced by n — 1. From
(4.12), and the identity (3.2), it follows that

Tn—1 =

= lim ¢, = s
7 n>% " fO |
Hence we continue generating the g, in (4.13) until they meet some specific
criterion of convergence. Thereafter, we may obtain as many of the final answers
as desired by means of

(414) f0 = S/Qy fn = p"f“: n=123,---.

If the ¢. converge too rapidly, it may occur, of course, that some of the later
Pa required in (4.14) are not yet available, and must be generated by continuing
the first recursion in (4.13). It should also be noted that the g-recursion in (4.13)
can be omitted if f; is known in advance.

An obvious disadvantage of the third algorithm is the fact that a rather large
number of continued fractions have to be evaluated, in contrast to just one con-
tinued fraction in the first two algorithms. Even though some of thesecontinued
fractions (especially the later ones) may converge quite rapidly, the expenditure
of computation in the third algorithm is in general higher than in the first and
second algorithm.

In spite of these shortcomings, there might be situations in which the third
algorithm is more convenient than the others. Suppose, e.g., that we are to evalu-
ate an infinite series

[

Zamfm.

m=0

Not knowing the number of terms required, for given accuracy, one normally ac-
cumulates terms until, say, for the first time

n—1

Ianfnl § € Zoamfm .
v _
Since this is equivalent to
n—1
| anpn | S € Z=°ampm ,

we could make use of this condition to terminate (4.13) at the proper time.
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We also observe that the third algorithm converges under the sole condition
that f. be minimal; no additional condition, such as (3.16), is required.

6. Bessel functions of the first kind. Bessel functions J.(z) of the first kind,
and Bessel functions Y,(2) of the second kind, obey the same recurrence relation

2
(51) Yat1r — ‘f Ya + Yam1 = 0.

It was the computation of modified Bessel functions I,(x) that led J. C. P. Miller
to invent his backward recurrence algorithm [5, p. xvii]." Various authors, since
then, observed that this algorithm can be used effectively to generate other
Bessel functions as well, including Bessel functions of the second kind ([15], [54],
[47], [22], [26], [39 §9.12, Exps. 1 and 7], (2] [32], [33]). To our knowledge the use
of ratios of Bessel functions, and thus of a procedure resembling closely our
algorithm (3.9), was first suggested by C. W. Jones [27], and is further des-
cribed in [9], [40], [10]. The ideas involved are extended here in a natural way
to Bessel functions of a complex argument. Some new technical details are also
included, such as the estimation of the initial value of » in our first algorithm.
Consider

(5.2) fa = Jaa(2), gn = Yarn(2), n=2012---,
where 0 £ a < 1, and 2z = z + 7y is a complex number not on the negative real
axis. Since Jo1n(2) = Jain(2), we may assume y = 0. As follows directly from
(5.1), both functions in (5.2) satisfy the three-term recurrence relation

2
ﬂ"zﬂ’b)yn+yn—l=o, n=1’2’3’. .,

(5~3) Ynt1 —
However, their asymptotic behavior for large n is quite different. We have, in
fact,

—a atn a+n
(5.4) Ja+n(z) ~ \jzwn <;in) y Ya+n(z) ~ — ¢ % (gg) y N — 0,
Therefore, f, is the minimal solution of (5.3), and the dominance of every other
solution over f, is extremely pronounced: f./g, tends to zero about as rapidly as
| 2 |*/(2n)!, whenn — .

It may be noted that this behavior also follows from the general asymptotic
results of §2. In fact, the Newton-Puiseux diagram (see Fig. 2) for equation
(5.3) has two sides with slopes +1 and —1, respectively. Hence, by Theorem
2.3(a), there are two solutions, y,,1 and y.2 , of (5.3) with different asymptotic
‘behavior, viz.,

Yoty 20 Yntrp 2

) H
Yni 2 Yn,2 2n

¢ As pointed out by Logan [30], the idea of reversing recurrence schemes to control the
oropagation of errors can be traced back to Lord Rayleigh, who already recommended that
spherical Bessel functions be calculated in the direction of decreasing order [48, p. 38(f].

n — o,

54



THREE-TERM RECURRENCE RELATIONS 47
P

m (-0

Po P2
1 1 1
(0] | 2

Fia. 2. Newton-Puiseux diagram for (5.3)

Since limy. Join(2z) = 0 for any fixed z, we may readily identify yn 2 = Jasn(2)
and Yoy = Yoia(2).

In view of the marked predominance of Y,y over Joyas , it is virtually impos-
sible to generate J,+, directly by means of (5.3). Algorithm (3.9), however,
appears to be very effective. In fact, various infinite series of the form (3.2) are
available for bypassing the calculation of initial values. Moreover, rather close
estimates can be derived for the initial value » of the recursion index n, thus
eliminating the need for many repetitions of the backward recurrence process, as
well as the risk of doing too much unnecessary computing.

We first discuss the selection of a suitable infinite series (3.2). We may choose
from a family of candidates furnished by Sonine’s formula [13, p. 64], which
may be written in the form

gf /z)a wa

I'l+ a)’

The parameter v will presently be specified to suit our purpose; C»*(y) are the
Gegenbauer polynomials, i.e., the coefficients in the expansion

(5.5) > E T ) Turn(e) =

(1 -2yt 4+ )™ = ;Dcm“(fy)t"'.
It is readily seen that
Co'(—7) = (= 1)"Cu’(v),

T (2a + m)

C.'(1) = W ’

(5.6)
m I'(a 4+ m)

Cgm—l(o) = O, C;m(o) = (— 1) m ’

m > 0,
while, of course, Cy*(y) = 1.

In accordance with our remark at the end of §3 we should try to select v in
such a way that

8 (2/2)%"™

ﬁ) a I'(1 4+ a)Ja(2)

cannot become very small in absolute value. Now, if |z| is small, then
Jo(2) ~ (2/2)*/T(1 + a), so that | s/fo| ~ 1. For large | z|, we have J.(2)
~ (72/2)"* cos (z — ar/2 — 7/2), and again, | s/fs | cannot be small if z is real.
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However, if 2 = z 4 4y, and y > 0 is large, then | cos (z — ar/2 — 7/2)| ~ €'/2,
and so

i ~ 2'\/; _,__z_l)ﬁ-”z e——(l+‘y)u

Jo r(l+a)\ 2 )
To prevent this from becoming exponentially small, we must require vy < —1.
For convenience, we choose ¥ = —1. In view of the first two relations in (5.6),

identity (5.5) then becomes

= m @+ mT(2a 4+ m) _(2/2)%7*
;o (=) a mll'(2a) Jotn(z) = r(l1+ a)’

or finally, noting that aI'(2a¢) = T'(1 + 2a)/2,

2 wm (@ + m)T' (20 + m) - (z/z)“e’__"’
(6.7) Ja(2) + 22;;1 (=) mIT(1 + 2a) Jon(2) = F'l+ a)°

The coefficients

(58) Ay = 2(— ) Lo+ mI0(2 + m)

mT(+2 0 ™= b33

are best obtained recursively as follows,

L =1,
: m -+ 2a
lm+1=mlm, m=1,2,3,"',

Am = 2(— 2)"(a + m)l,.

In the special case a = 0, we simply have N\, = 2(—1)™.

If z = z is real and positive we could choose the real or imaginary part of (5.7)
as our normalization identity. We find it more convenient, however, to use (5.5)
with ¥ = 0. By virtue of the last relations in (5.6), this identity can be written
in the form

‘ 2 (a+2m)T(a+ m) . (z/2)°
(59) Ja(-”) + ;1 m!I‘(l F a) Ja+2m(x) = m.
The coefficients
_ I'(a + m) _ .
(5.10) Aem = (@ + 2m) mT(A+ a)’ m=1,2,3, )
are obtained recursively by means of
l1 = 1,
_mta —1.2.3 ...
lm+1"'m+ llms m"172y57 ’

)\2m = (a + 2m)lm.
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Again, if a = 0, the expression for ., simplifies to A2 = 2. In this case, one
could also use the second algorithm in its simplified form (without the s-recur-
sions), if one computes Jo(x) from an appropriate rational approximation. This
would probably result in a more efficient algorithm to generate Bessel functions
of integer order, than the use of (5.9).

We also note that in the special case of modified Bessel functions

a‘!-‘n(x) -—1(a+n)1r/2 +ﬂ(7’.m): x> 07

the recurrence relation (5.3) assumes the form
2(a + n)

z yﬂ_y"—1=07 n=1’2731"'9

Ynt1 +
and relation (5.7) the form

L) +2 %, Ctmiedm ) - f2le

It is now an easy matter to verify that algorithm (3.9), whether the N\, be de-
fined by (5.8), or by (5.10), converges as v — o, provided Jo4n(2) % 0 for

=0,1,2, .- . By Theorem 3.1 we need only show that
h,, = v+1 Z )\mgm
Gri1 m=0

has the limit zero. Now in the case of (5.8),since 0 £ a < 1,T(1 4+ 2a) > .88,
we clearly have
2 a+mI(2a 4+ m)

A | = I'(l4+ 2a) m T'(m)

< 2 m+ 1T(m + 2)
I'(l+ 2a) m I'(m)

Therefore, if » is already so large that | g, | = | gm | for 0 £ m < », we shall have

< 23(m + 1)

[h | = 2300 + 1)° = 0(vf),

frH.gv
gri1

hence lim,.. &, = 0, by virtue of (5.4). A similar argument applies to (5.10).
We proceed now to estimate the initial value of » to be used in algorithm (3.9),
given the number of significant digits desired. Such an estimate may be found
from the estimate (3.18) for the relative errors. For definiteness, we assume 2
complex, and assume identity (5.7) in the role of (3.2).
If v is large, the infinite series

2= Mafm

m=y+1

in (3.18) may roughly be approximated by its first term, A+1 f,+1, and similarly

> A

m=0
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may be approximated by the last term \,g, . Then
)
n —Jn . 1 )\v v v n
fo” = I =~ Mafn <1 + _9___) _frt1 g

n Al' y 14 n
(5.11) f 1 +1 1 g1 f
= - Alr'l"l vl fl“l"l & .
§ gr1 f n
Our aim is to find an upper bound for the moduli of these expressions, valid
forn = 0,1, 2, ---, N. Since | go/fx | ultimately grows rapidly with =, it is

plausible to expect that a bound which holds for n = N will also be a valid bound
whenn < N, particularly if N is large. We therefore consider the simplified prob-
lem of bounding the modulus of the last member in (5.11), when n = N. As a
further simplification we assume N, and thus », so large that the asymptotic ex-
pressions in (5.4) are reasonably accurate. In particular, then, 2N > e |z |. Under
these assumptions a short calculation gives

(») v 2(v—N)

n  — Jn —y (€% ez —2y

2 s () (), -
where a few unimportant coefficients have been omitted. For f,*’ to be an ap-
proximation of f, to d significant digits, we are led to require, simultaneously,

—y 6|Z| 1 ~d Glzl 26— IN —2 1 —d
(5.12) e (_2,,> =g - 10 < 3 N §4 107°,

In the case of real arguments z = = > 0, and using relation (5.9) in place of
(5 7), our reasoning must be slightly modified, but the conclusion is the same as
in (5.12), with y = 0.

Now the first inequality in (5.12), after taking logarithms and multiplying by

—2/(e|z]), gives

2 In 2 >2(D—-—y)

(5.18) T2 1meTe] = elz]

’

where
D =dlnl1l0 + In 4.

Similarly, the second inequality gives

vIn vid gNln<elel)+ D,

which may be rewritten in the form

v 2N v, v D
g _ i Tinl > 2
<N 1>ln<e|z}>+N1nN=2N'
Since » > N, and 2N > e| 2|, this is certainly satisfied if we require

v D
(5.14) ]—V.-l N = SN
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kx=tlnt

/e | -1

Sy ——

F16. 3. Graphof x = tInt

Both conditions (5.13) and (5.14) have now the form ¢ In ¢ = c. Since this is
equivalent to £ = t(c¢) with {(z) the inverse function of £ = ¢ In ¢ in the region
t = 1/e (see Fig. 3), our conditions may be given the final form

elz| 2(D—y)] . |z |
(5.15) vz t[ ARk if 0sy<D+5,
D

Low-accuracy approximations to the function {(z) are not hard to obtain. In
the interval 1/e = ¢ £ 1 we may first approximate the graph of ¢ In ¢ by a
quadratic parabola passing through the points (1/¢, —1/e), (1, 0), and having
zero slope at the first of these points:

. 1 e AN

Taking then the inverse function of the right-hand member to approximate ¢(z),

we obtain

1

—_— 1 1/2
t(x) = —1é + 9—\7; (x + ;) = 36788 + 1.0422(z 4 .36788)"% —1/e < 2 £ 0.

The accuracy of this approximation is about 4 %, or better.

In the region 0 £ x < 10, wetruncated the expansion of ¢(z) in Chebyshev poly-
nomials, having determined the first few expansion coefficients by numerical inte-
gration. We so - obtained

t(x) = 1.0125 + .8577x — .1290132" + 0208645z
— .00176148z* + .000057941z°,

with a maximum percentage error of about 1 %.
For larger values of z, we first observe that

i(z) ~z/Inz, T — .
In fact, [{(z) Inz]/x = (Inz)/Int(z), and using the rule of Bernoulli-
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L’Hospital, we find

1
Inz T ozt t(x)
zl—g} In t(m) N zv0 1 1 o ]:;;I-Ei T =1L

t(x) "TF Ini(z)

Unfortunately, the asymptotic expression so obtained does not give sufficient
accuracy, unless = is very large. Applying, however, one step of Newton’s
method to the equation ¢ In ¢ = z, with z/ln  as initial approximation, we get

. 1
)% hs T hhs
14+ Inz

This approximation now appears to be in error by less than 1% for z = 2. As
x — oo, the relative error clearly tends to zero.

An alternate method of selecting » in the case z = z > 0, a = 0, was derived
by W. Kahan [28], using Olver’s error analysis [38]. Let ¢ be the largest rela-
tive error tolerated in the final results, Jo(2), Ji(z), -+, Ju(z). Let K be the
integer

K = max (N, [z]),
and, with 8 > 0 arbitrary (though small, in practice), define
yx = 0, Ye+1 = B,

2
%ﬂ=§%—%m n=K+1,K+2---.
Then » may be taken to be the smallest n for which ¥4 = B8/e.
- Wehave seen that Bessel functions Ju1.(2) of positive orders can be computed
entirely from their recurrence relation. This remains true, to a certain extent, for

Bessel functions
(5.17) Yn = Jon(2), =123 ---; 0<a<l,
of negative orders. They satisfy the recurrence relation

2(n — a
———-—( p )yn+yn—l=0, n=2234: -,

(518) Ynt+1 +
which has the same Newton-Puiseux diagram as (5.3). The solution (5.17), how-
ever, is now a dominant solution, the minimal solution being f, = (—1)"J,—a(2).
It appears therefore safe to generate J,—,(2) by means of (5.18) in the ordinary
fashion. Moreover, the recursion may be started with n = 0, and the initial
values y—1 = Jo+1(2), Yo = Ju(2) obtained by the methods previously discussed.

The assumption @ > 0 is of course essential. If ¢ = 0, the two solutions ¥, and
J» above are the same (minimal) solution of (5.18), and forward recursion by
(5.18) is doomed to fail. The same must be expected if a is close to zero, and
indeed if a is close to one.
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EMPIRICAL I//N} FOR BESSEL FUNCTIONS Ju(x), n=0(I)N.

We present now a few numerical results concerning the first algorithm for com-
puting Jo+x(2). The performance of this algorithm was found to be quite insensi-
tive to changes of a in the interval 0 < a < 1, so that the results givenfor a = 0
may be considered as representative.

Our main concern was to determine the quality of the estimate of » given
above in (5.15), (5.16). We compared this estimate with the smallest value of »
empirically observed to yield J,(z), n = O(1)N, to six significant digits.” For
real z = z, the results are shown in Fig. 4, while for complex z = re*® they are
depicted in Fig. 5. Both figures show that agreement between estimated and
actual » is rather satisfactory on the whole, even though for larger values of:
| 2| it is worsening. Remarkable is also the relative smallness of »/N over an
extended region of the complex plane.

ALGOL procedures based on the methods of this paragraph may be found in
[18].

6. Legendre functions. A further class of special functions amenable to the
methods of §§3 and 4 are the associated Legendre functions of the first and second
kind, P,"(2) and Q,"(z). We assume that m is a nonnegative® integer, z a com-
plex number outside the interval (0, 1), with Rez > 0, and « arbitrary real or

7 More precisely, algorithm (3.9) was run withy = N+ 2, N + 4, N 4+ 6, --- until for
the first time the N 4+ 1 values f,), n = 0,1, --- , N, agreed to six significant digits with
the respective values of f,¢~2.

8 If o is an integer =m, or nonintegral, then P,~"(z) = [[(a — m + 1)/T(a + m + 1) 1P.m(2),
and the restriction to nonnegative integers m is not essential. Similarly, Q.(2)
= [[(a — m + 1)/T(a + m + 1)]Qa"(2).
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complex, but @ # —1, —2, —3, .-+ . The Legendre functions of the first kind
are then representable by a definite integral,

m _P(a+m+1) " 2 ue
Py = BB AL [Tt 2 - 1)

A similar representation holds for Legendre functions of the second kind,

cos t]* cos mt dt.

mey _ ¢ _qym TDla+1) ® cosh mt
Q" (2) = ( 1)‘ Tla—m+ Dh [z+ @ — 1)72 cosh =+ di,

provided Re (@ — m) > —1. In both these formulas the meaning of the expres-
sions (2 — 1)"?, (2 4+ 1)"* is as usual obtained by continuity in the complex
plane, cut along the interval ( — o, 1), assuming them real for z > 1. A similar
remark applies to the other fractional powers.

It is well known that P,” and Q,™ satisfy identical three-term recurrence rela-
tions, both with respect to order m and degree o. (See, e.g., [12, p. 160}.) The fact
that backward recursion techniques are applicable to obtain Legendre functions
of integral order and argument greater than unity was already mentioned in [10].
The use of Miller’s algorithm (cf. §3) for calculating toroidal functions of the
second kind is described in [50]. No mention is made, in this reference, of the use-
fulness of infinite series for normalization purposes, which makes this algorithm
even more attractive.

We begin with considering the recurrence with respect to order m. Both
P.,"(2) and Q,"(z), as functions of m, are solutions of
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P2
(N

o} ] 2
Fia. 6. Newton-Puiseux diagram for (6.1)
2me
(6.1) Ymwtr + mym + (m+ a)(m — a — 1)yma = 0,
m=1,2,3,---.
We first assume that « is not an integer. The case of integral a will be dealt with
later.
The Newton-Puiseux diagram (see Fig. 6) for the difference equation (6.1) is

a straight line segment with slope 1, and thus case (b) of Theorem 2.3 applies.
The characteristic equation is

2z
(22 — 1)1/2t + 1

1 1/2
tl = ——-(z i— 1) ) tz

Since Rez > 0, it is readily seen that
‘t1| >1> |t2‘.

]

 + 0,
which has the roots

~1
i .

Il

By Theorem 2.3, and the remarks following it, the difference equation (6.1) thus
possesses a minimal solution, ¥, , for which

for any other solution the corresponding limit is ¢; . Let

fo = P."(2)
m P 1
6.2) (@tm+ D
= m‘[ [z + (22 — 1) cos #]* cos mt dt,
0
so that

fm+1 ~ Pam+1(z)
Im mP,™(z) ’

The second member of this relation, as was just observed, has a finite limit as

m — oo,
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m — o, which is either # or & . Were it ¢, then | f.n | would tend to «, since
| & | > 1. This, however, is impossible, since f,, by (6.2) are essentially the Fourier
coefficients of a smooth function, and thus limm.« f» = 0. Therefore, the limit is
t», and P,"(2) is indeed the minimal solution of (6.1), while Q."(z) belongs
among the dominant solutions.

It follows that P,"(z), m = 0, 1,2, - - , can be obtained by the algorithms of
§§3 and 4. As will be seen shortly, an infinite series can be used for normalization,
so that no values of P,"(z) need to be known in advance. The functions Q."(2),
m = 0, 1,2, ---, on the other hand, can safely be generated by forward use of
(6.1); this requires two initial values for m = 0 and m = 1 to be available, In
the important special case « = —31 -+ n, where n is an integer, these initial values
may also be obtained by the aforementioned algorithms, applied to the recur-
rence with respect to degree (cf. below).

It is more convenient, computationally, to deal with f,, defined in (6.2), rather
than P,", since then we not only avoid excessively large numbers, but also obtain
a very simple identity for normalization. It is well known, indeed, that (see [12,
p. 166})

63) P+ 2 3 iy P = b+ G - 0

valid for Rez > 0 and arbitrary «. Hence,

PR B Gl Vi
(6.4) ﬁ+%§h- NCESVE
which may serve in the capacity of condition (3.2), with
4+ @ =) _ -
§ = I‘(a—l—l) ’ M-—l,)xm—2,m>0.

The convergence of the first algorithm then follows from the remark made after

Theorem 3.1.
To insure numerical stability, the ratio

6.5) LR il D
fo P(z)

should not be allowed to become excessively small (cf. §3). While it is difficult to
check the magnitude of this function for the full range of z and «, we shall at
least look into the behavior of this function near the singular points z = —1,
z2=+41,2= o,

As z tends to +1, or —1, in the plane cut from — « to 1, we have P,(z) — 1,
and so | 8/fo| — 1.

To study the behavior at infinity, we make use of the following facts (see
[49, §54]): If « % —3% + n, where n is an integer, we have, as 2 — «,

Pa(2) ~ Au(22)"" 4 B.(22)%

9 As is customary, we write P.(z) for P,%(z).
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where
4Da=d o Tetd
V1l (—a)’ *  AaT(a+ 1)
Otherwise, when o = —1 + n, then

—-\-/—-2-.2"”2 Inz, ifn=0,

Vi
P_ 2(2) ~
/2ytn(2) ) r(|n))

V' I(|n] +

) (22)712 0 if o= 0.
3

Hence, in the former case,

L (22)° - 1

fo Ax(2e)~@t) 4 B,(22)  Al(22)~Cet) 4+ B,’
which becomes small in modulus only if Re (2a: + 1) < 0,i.e., Re « < —4%.In the
case a = —3% -+ n, we have

™

Tz 1n=0
B 1
;:N WP——————(";(:)z), 1fn>0,
0
~-T(|n| + §) —2n] .
[t 21T 2/
VT T(n] (22)~" ifn <.

Here, the third case (n < 0) is critical, and also the first, but to a much lesser
degree.

For all practical purposes, then, (6.5) will be small in modulus only if
Re o < —3%. This can easily be avoided by employing the relation

(6.6) P,"(2) = PZ,(2),

when necessary. If Re « < —1, then indeed Re (—a — 1) > —1.

Restricting o to have real part —3 one obtains Mehler’s conical functions
PZ4,54i(2), where 7 is real. Since PZu94i(2) = PZam—i(2), by (6.6), these
functions are real when z is real. It suffices, moreover, to consider nonnegative
values of 7. We shall assume z = z > 1, which is a case of practical interest.

Since I'(a + m + 1) is now complex, the scaled functions (6.2) used previ-
ously are not as convenient anymore. To maintain the computational ad-
vantages noted before, we consider

1 »
(6.7) fm = po PZa+ir(2).

As follows from (6.1) and our previous discussion, f, so defined is a minimal
solution of

Imz (m — 3+ 7
©68) "t mr D@02 T Tam+ 1

Ym— = 0,

m=1,23,- ...
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To arrive at a normalizing identity for f. , involving real quantities only, we
write down (6.3) (withz = z) once for « = —% + ¢r, and oncefora = —1 — 7,
and then form the arithmetic mean of the two identities. Noting (6.7), we then
obtain

fot 21)‘"‘\”‘ =+ (@ — )" cos (rIn [z + (2* — 1)),

where
_ , _ m!T(§ + or)
A = Un + Un, um_I‘(%+'£'r+m)'
The N’s are best obtained from a three-term recurrence relation. We clearly have

_ (m+ Dun _ (m41)(m + § — ir)
m+ 5+ ir (m + DE + 2

For notational simplicity, let

Umt1 m e

132 2

(6.9) an=m+ 7, ﬂwﬁm;iﬁ’.
Then

Buthmir = (0m — 47 )Um ,

Brlimir = (am + 27)0m -
Adding, and subtracting, we get
(6.10) Brdmi1 = amAm — Tiim

Brmbtmir = Cmbtm + TAm ,
where pm = {(Um — 1Un). Eliminating the u’s, we find

2 2
Q-1 + Om A 2t + 7 Ay = 0,

Am -
i ﬁm lgm—lﬁm
or, with the values (6.9) inserted,
(6.11) Ay — 2lm + 1) pomm+1) 0, m=223, .

The initial values are
__ 1 - 8—4r

AT G+

We observe that the recursion (6.11) belongs to case (b) of Theorem 2.3, the
characteristic equation being (¢ — 1)* = 0. Because of the double root ¢; = t,=1,
Theorem 2.3 does not permit us to decide whether the recursion in (6.11), (6.12)

is numerically stable. We observe, however, that another solution of (6.11) is . ,
as follows by eliminating the N’s in (6.10). Therefore, Re 4. and Im u., are a pair

(6.12) A1
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of linearly independent solutions of (6.11). Using Stirling’s formula, and disre-
garding constant factors, we find

—irlnm
Um ~ ME ’ m —> «©,

so that both solutions oscillate, for large m, with linearly increasing amplitudes.
Therefore, numerical instability cannot arise.

A further interesting special case is obtained by assuming o a nonnegative
integer, & = p. Then, in fact,

(2" — )™ g
27p! dzrtm

P,"(2) = (" — 1)".

This shows that
P, (2) =0 if m > p.

We note that Theorem 1.1 with f, = P,"(z) is no longer applicable, since the
assumption f, # 0 (all m) does not hold. Neither apply the asymptotic results
of §2, the assumption (2.2) now being violated.

Nevertheless, f,, still satisfies the recurrence relation (6.1) (with « = p) for all
values of m, thus in particular form = p,p — 1, - -+, 1, whereby f,11 = 0. The
algorithm described at the beginning of §3 becomes applicable, and it follows that
the r-recursion in our algorithm (3.9), if started with » = p, furnishes the exact
ratios Tm-— = fm/fm-1, apart from rounding errors. The same is true for the
s-recursion, which yields exact values of

St = 3 Mo/ fnt s

r=m

the infinite series in (6.3) reducing to a finite sum, when @ = p. In short, (3.9)
with v = p now represents the complele algorithm for computing fn = Pp"(2),
m=20,1,2, -, p, and no tteration on v is required.

We now proceed to the recurrence relation with respect to degree. Let a, m,
and z be fixed, and consider P;i.(2), Quia(2) as functions of n. They both obey
the relation

(6.13) (n4+a—=m+ DyYnn — (20 + 2a + 1)2ya
‘ +n+a+mYar=0 n=012---.
This is a Poincaré difference equation whose characteristic equation is
£ —2t+1=0.
The roots are
h=z+ (& — 1) bh=t"'=z—(F—1)"
and it is readily verified that for Rez > 0,
fa] > 1> |6l
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From Theorem 2.3(b), and the remarks following this theorem, we conclude that
(6.13) has a minimal solution f, for which lim,.« fat1/fn = 2, while the limit is
t, for every other solution. Now it is known (see, e.g., [12, p. 162]) that

Qrn(z) ~ (=1)" 4/£2r11,'"—”2(z2 — 1)tz n— o,

for z outside the cut from — « to 1, thus in particular for those z which we are
considering here. It follows immediately, therefore, that the minimal solution is
Jn = Qa4n(2), and that g, = Pii.(2) is now a dominant solution.

The computation of Pzi.(2) for n = 0, 1, 2, - -+ can proceed using (6.13) in
the normal fashion. The required initial values P,"(2), Pz1(2) may be obtained
by the methods discussed above. These functions are thus again computable
entirely from their recurrence relations. On the other hand, Qzi.(2), as the
minimal solution of (6.13), is amenable to the algorithms of §§3 and 4.

Unfortunately, no simple infinite series involving the f, = Qzn(2) for arbi-
trary a exists, which would be convergent in the region considered here. Normali-
zation of f, , therefore, has to be accomplished by computing the initial value
Q."(2). In the special case of toroidal functions Q= a5+s(2), however, we have the
following relation [12, p. 166]:

- = m 1 e fz + 1\
Qi) + 23, Cawn(e) = (~1° /71 (m + 1) e - (2E1)7
n=1 2 2/ z2—1
which lends itself well for normalization, unless z is complex and near the singular
point —1.-
We wish now to give some additional numerical information concerning the
algorithms described in this paragraph.

u/N4
5
/a=—‘5
4 = 2.5
a=c<.
Q/
3
// a=55
/
//
2 a=10.5
a=20.5
]
% 5 10 15 20 25 30 «x

Fia. 7. Empirical v/N for Legendre functions Po*(z), n = O(1)N, where N = 50
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>
/ ////
Z// 1"

0] 5 10 15 20 25 3
F1g. 8. Empirical v/N for conical functions PZamyir(z), n = OQL)N, where N = 50

0

Of foremost interest is again the determination of »/N in our first algorithm.
A derivation of an estimate by analytical means appears to be out of question.
We tried, therefore, to determine the behavior of »/N empirically, as a function
of the various parameters involved. To simplify the task, we assumed a fixed
accuracy requirement of six significant digits. Moreover, we decided to consider a
fixed value of N. Since »/N was found to decrease with N, we deemed it desirable
to select a relatively large value of N as representative, namely, N = 50. If we
would not do so, we would considerably overestimate »/N, and pay heavily for
this in cases where N is actually large. To compensate for a possible underestima-
tion in cases where N is small, we suggest that a relatively large increment of »,
say 10, or even 20, be used in the iteration process of the first algorithm. Having
thus disposed of two parameters, we are still left with two in each case.

In the case of Legendre functions f, = P,"(z)/T(a + n + 1), where z > 1,

a = —3, the value of »/N found empirically for N = 50 is depicted in Fig. 7 as a
functlon of z and a. A reasonably good approx1mat10n to these curves was ob-
tained in the form

VoL 37.26 + .1283(a + 38.26)x
N 37.26 + .1283(a + 1)z

For the conical functions P29+ (2)/n!, where z > 1, 7 = 0, the empirical
value of »/N as a function of z and = is shown in Fig. 8. The curves were fitted by
a function which is linear in both z and , viz.,

7\"7 = 1 + (.140 + 02467)(z — 1).

As the graphs in Fig. 8 show, the conical functions are by far the hardest to com-
pute. As v/N becomes large, considerable accumulation of rounding errors must be
expected.
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v/N

so
\
|
\

2.0 \l \\\ N m=10

AR 3o
RAN\ N
[ NN

Y _ - -
1.0 11 1.2 1.3 1.4 1.5 1.6 «x

Fi16. 9. Empirical v/N for toroidal functions QZamn(z), n = O(1)N, where N = 50

Finally, in the case of toroidal functions Q=2 x(z), where z > 1, m = 0, the
behavior of »/N as a function of z and m is shown in Fig. 9, and is roughly approx-
imated by

v . 0146 + .00122m
N 1.15 + pou— .
ALGOL procedures based on the methods of this paragraph are available in

[19].

7. Coulomb wave functions. Coulomb wave functions are of importance in the
study of nuclear interactions. They arise when Schrédinger’s equation for a
charged particle in the Coulomb field of a fixed charge is separated in polar
coordinates. The radial component then satisfies the differential equation

, )
(7.1) d_?i+[1_2_’7_égi.j;l_)Jy=0,
dp P P

where 7 is a real parameter, L a nonnegative integer, and p > 0. Physically, »
depends on the relative charges. If both are of equal sign, then n > 0, otherwise,
n < 0. The variable p is a radial distance, suitably scaled, while L is the orbital
angular-momentum quantum number of the particle.

The origin p = 0 is a regular singular point of (7.1), with indicial equation

AN — 1) = L(L + 1).

Since the roots of this equation are \; = L + 1, A, = —L, the differential equa-
tion (7.1) has a solution corresponding to A; which is regular at p = 0, admitting
an expansion of the form

1(p) = " D cap™

n=0
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In quantum mechanics it is customary to normalize this solution to have
sinusoidal behavior as p — o, with amplitude equal to 1. So normalized, the
solution is called the regular Coulomb wave function, and denoted by Fr(n, p).
The solution corresponding to Ay, on the other hand, will contain a logarithmic
term, since \; differs from X\, by a positive integer. If normalized similarly as F, ,
it is called the 7rregular Coulomb wave function, and denoted by Gr(n, p).
The line
p=29 1>0,

which separates regions of different asymptotic behavior of the solutions of (7.1)
as p — « and n — o, is called the transition line.
In terms of Whittaker’s function M, ,(z) (see [12] for notation), we have

(7-2) FL(% P) = (21‘)_(”1)(&(ﬂ)Min,L+1/2(27:P),
where

2% | (L + 1 + 4n)|
(2L + 1)!

(7.3) » Cr(n) =

We note for later use,

3 27!'77 1/2 3 (L2 + 7]2)1/2
CO("?) = (e%" — 1) ’ OL("?) == m CL—l("?);

(74)
=1,2,8 .

As functions of L, both the regular and irregular Coulomb wave function
satisfy the three-term recurrence relation

LI(L + 1)° + 04 — (2L + 1) [n + L(J_i_D] ’e
(7.5) p

+ (L + 1)[142 + 7]2]”2?/L—1 = O; L = 17 2, 3; Tt

This difference equation has the same Newton-Puiseux diagram as the recurrence
relation for the Bessel functions (see IFig. 2). Hence, there are two solutions of
(7.5) with markedly distinct asymptotic properties as L — . These, in fact,
are precisely the regular and irregular Coulomb wave functions, since for fixed »
and p, it is known that

1
2LC(n)p"’

L— o

(7.6) Fi(n, p) ~ Cln)p™™,  Gu(n, p) ~

’

and furthermore,
1 - e L+1
(7.7) Cp(n) ~ e\/ﬁe (FZ—L) ’ L — .

In particular, F,, is the minimal solution of (7.5). Therefore, F';, may be obtained
by the algorithm in (3.9), provided a suitable infinite series can be found for
normalization. The proper selection of this series is a rather crucial matter, and
will be discussed next. ‘
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For computational convenience we first let

2"L!
(7~8) fL = m FL("I; P)-

Among other things (relatively slow rate of growth of the coefficients . in
(7.11) below), this effectively removes square rootsin (7.5). In fact, using (7.4),
one finds that f, is the minimal solution of

LIL + 1)* + 47 L(L + 1) L(L + 1)
(LF D@L+ 3) /"~ [*’ P ]y”L oL — 1

The following expansion is known (see, e.g., [6, p. 131, formula (168)]),

(7.9)

Y1 = 0.

Stnizaels _ T(p + 1) 5 (1i2te, =20
(7.10) ;ﬂ TR (@) My u2+a(2),
where P,*®(2) is the Jacobi polynomial of degree n. (For notation, see [55].)
Letting p = 1, k = o9, 2 = 2ip, « = —iw, and writing L for n, this becomes in
view of (7.2), (7.8),

(7.11) pe” = D Nfu, A = P ().
L=0

If w = 7, then one easily shows that (7.11) reduces to a result attributed in [53]
to P. Henrici. As one of several alternatives, it was suggested in this reference
to apply Miller’s backward recurrence algorithm to (7.9), using Henrici’s series
for normalization. Unfortunately, the process suffers from severe loss of accuracy
when 5 and p are positive and large. We show that by selecting w judiciously, the
loss of accuracy can be kept under control.

We recall (cf. the end of §3) that loss of accuracy due to cancellation occurs if

(7.12) S _re

is very small in absolute value. Let

so that the point (7, p) is above or below the transition line, depending on
whether 7 > 1 0or 0 < 7 < 1, respectively, and 7 < 0if — < 7 < 0. In each
of these three cases, fo will behave differently as |9 | — « and 7 is held fixed.
In fact, using general asymptotic results for Whittaker functions due to Buch-
holz (see [6, p. 101 ff, formulae (7), (11), (16a)]), one obtains from (7.2), after
some computation,®

fo~ o (1) s (VAT (VF 4 VA D= ),

r—1

7> 1,9— «,

0 In the cited formula (7) of [6], the factor exp (F«xi(x — (1 + u)/2)) should read
exp (Fri(k — (1 + w)/2)).
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1 T 1/4 - S
fo ~ o <.._._..> exp {n[r — 2 arccos v/7 + 24/7(1 — 7]},

l1—7

0<r<1l,g—> o,

o~ = (] )msin{zi WO+ D
TNV n|\[7]F 1 1 TIIT

+ I (Ve + VIr[+ D] - g}, —® <7 <05 —w.

To prevent the quantity in (7.12) from becoming exponentially small, as n — o,
we are led to choose

r

T
>
2r’ r=l
>
(7.13) w=H 217 [r — 2arccos v+ 20/70L -], 0<r<1,
0, r <O0.

\

Since for reasons which become clear later, small values of » are to be preferred,
equality in (7.13) is suggested. The parameter w so defined then depends
continuously on  in the interval (0, « ), and decreases monotonically from
o to 0. Clearly, as long as % is small, say <1, the choice w = 0 is entirely satis-
factory.

Other series expansions obtained by letting u = 2Ly 4+ 1, « = 0in (7.10) have
also been suggested for normalization [57], whereby the integer L, is adjusted
empirically to control the loss of accuracy.

The normalization identity now completely determined by (7.11) and (7.13)
(with equality sign), we proceed with a discussion of the resulting algorithm
(3.9).

We first observe that the coefficients A, in (7.11) satisfy

_2L+1 L'+ _ o .
(7.14) At = "m whp + L(L + 1) A1 ’ L= 1’ 2; 3: ’
(7.15) M =1, M=ow-—1,

as follows readily from the well-known recurrence relation for Jacobi poly-
nomials. In particular, they are all real. Using (7.14), (7.15) to generate the
Az, algorithm (3.9) becomes

?‘v(p) = 0, Tl(r.’-zl = (2—11—!‘:"‘1'5 {"I/(L(L -+ 1)) + 1/P

(7.16) - [1 + (#1)2} /(2L + 3)}*1,

( L=vwyv—1 -1,
) ) ) )
s,v = O) SL,C—I = TLI:—I(SLV + )‘L)’
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wp
(») pe W) ) )
fov =m’ fbv=7'Ly"1 Lv-‘ly L=1:2"":Lmax'
0

The final results F,, are readily obtained from (7.8), with the help of (7.4).

It is worthwhile to examine more closely the three-term recurrence relation
(7.14). We note that it is a difference equation of the Poincaré type, with charac-
teristic equation

£ — 2wt — 1 =0,
Since the roots are
h=w+vVr+1l b=0—1e+ 1,

it follows from Theorem 2.2 that (7.14) for w ¢ 0 has a minimal solution A\’
for which

(7.17) A{tlf\lw - Vw41, L — o,
L

while all other solutions behave according to

(7.18) ?l;—“ ~ o+ Vet F 1, L > .
L

To convince ourselves that the solution A\, defined by (7.15) is not a minimal
solution, we make use of the asymptotic formula™

PA*P(2) ~ (2 = 17z + Dz + DM 4 (2 — 1)1
X (2e0) 7 — )T + (2 — DY n— o,
where z is outside the segment [—1, 1]. It follows, by a simple computation, that
(1) N = PP () ~ L) 4 )+ VAT,
w#0, L— o,

where

(7.20) ¢ = arctan 1,

w

so that indeed (7.18) holds, rather than (7.17).

It may appear, therefore, that the use of (7.14) in forward direction is nu-
merically “safe.” Unfortunately, and surprisingly, it was observed by computa-
tion [applying algorithm (3.9) to (7.14)] that N\, defined by (7.14), (7.15) ap-
proaches a minimal solution, in the sense

M — M,
{A.'} being normalized by A’ = 1, as either 7, or p, or both, become large.

11 See {65, p. 194], where the result is stated for real o, 8. The derivation by the method
of steepest descent, however, is valid for arbitrary complex values of «, 8.
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Fia. 10. Degree of minimality of {\p}. The regions I, II, III indicale coverage of the
tables [36], [31], [58], respectively, for Fr(n, p).

(Recall that « is equal to the right-hand expressions in (7.13), and is thus a
function of p and %.) To describe this phenomenon more precisely, let

8= —log|M — N |,

which may be considered a measure of the ‘“degree of minimality’’ of the solution
A . (We expect, roughly speaking, that the generation of A\, by (7.14), (7.15)
involves a loss of about é decimal digits due to cancellation.) Fig. 10 shows the
behavior of § as a function of 7 and p. In particular, it can be seen that no serious
cancellation problems arise in the regions (marked, I II, IIT) which are com-
monly of interest in applications. However, in special applications which involve
large values of # and p, the loss of accuracy may indeed be quite substantial.

An obvious way to counteract this phenomenon is to generate the X\, in double
precision arithmetic. However, this may not be very efficient, considering that
L, in the region in question, may assume values as large as 100, or more. We sug-
gest the following alternative.

Let

(721) € = )\1 - )\1’ =w—-—n )\1’,

a quantity that can be calculated to any degree of accuracy (in double precision,
if necessary) without too much effort, using algorithm (3.9) for \,". Let further-
more ;" be the solution of (7.14) defined by

(7.22) )\o” = —>\1I, )\1” = 1

Then, using elementary facts from the theory of linear difference equations, one
finds that
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(7.23) Moo= —— O+ M.

1 + 1+ N2
Having determined e accurately, we may now use (7.23) to calculate A, . This
requires the computation of the minimal solution A’ by algorithm (3.9), and the
computation of \;” by (7.14), (7.22), but all of this can safely be done in single
precision. Thus, double precision arithmetic will only be required in the compu-
tation of e from (7.21).

For later use, we note the analogue of (7.19) for w = 0. In this case we use
(cf. [55, p. 194] and footnote™)

= letétui cos([n + (a+ 8+ 1)/2] g - (0‘ + ?é‘) g) :

™

PP (0) ~

’I‘I,-——)OO,

and find that
(7.24) A = P (0) ~ \/2 = [(=1)%™ + ¢, L— o.

The starting value » in (7.16) may be estimated similarly as for Bessel func-
tions. Using (5.11), we may approximate the relative error of £, by

(7.25) Loonng fpg — L2 92
P gy f L

where g, = 2"L'G.(n, p)/((21.)!1C(n)). We wish to bound this for I = Lpay,
assuming Lmax and v > L,y large. By (7.6), (7.7), we have for large L,

fI e—mz ep 2L+1
. % (27) ‘

Hence, the second term in (7.25), for large v and L, may be estimated by
fv+l gz, P L< )Mv_m 2L —2»
7.26 AR - L :
( ) gvs1 j[ 4:1-’ 2 y
To estimate the first term in (7.25) we observe from (7.19), (7.24), (7.6),
and (7.8), that for L large, and w = 0,

< PA(n) (1 + ") B(w)]" (GPB(w)>L
\/4rL 2L ’

IS ] S

where

2 cosh 2 =
Ay = {2 (/2,0 =0

B(w) = w 4+ Ve + 1,

¢ being defined in (7.20) The total relative error (7.25) will thus be <4-107¢%,
if we require that
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TrAm L+ B (22 <

o\ g o g g
) 4 =7 ’ max »

1079,

-

From here on, the analysis proceeds as for Bessel functions. Assuming (with-
out loss of generality) that Lmax > ep/2, the result is that » must satisfy both of
the following conditions:

esz(w) t(epB2(w) [D — wp + In (A(n)VBw)(1 + “’2)‘1,4)]) ’

D
> —
14 = Lmax t <2Lmax> )

where we recall that D = d In 10 4 In 4, andrt(x) is the inverse function of
z=tlnt

An ALGOL procedure for the computation of Fr(n, p), using the methods
described in this paragraph, may be found in [20].

8. Incomplete beta and gamma function. The incomplete beta function is
defined by the integral

v 2

(7.27)

(8.1) B.(p, q) = f Pl - dt, p>04¢g>00=z=1.
0

The complete beta function is obtained when z = 1, and can be expressed in
terms of gamma functions,

_ [ g _ et g = T@)T()
(8.2) Bi(p, q) = [ oL — e =

For large p or large q Laplace’s method (see [11, p. 37]) yields the asymptotic
formulae,

y4
(8.3) B.(p,q) ~ (1 — z)ﬂ*”-;-,-, p — w, g fixed,

(8.4) B.(p,q) ~T(p)g 7%, q — ,p fixed.

In probability distribution theory the following ratio of beta functions is
important,

B.(p, q)
Bi(p, q)

Recurrence relations hold in both variables p and ¢ (see [3])
(8.6) plip +1,¢9) — [(p + ¢ — Dz + pll(p, ¢)
' + (p+q— Dalip — 1,9) =0,

12 Formula (14) in [3] contains a misprint: the last term on the left should have the factor
¢, not p.

12

77



70 WALTER GAUTSCHI

dl.(p,q+ 1) —[(p+¢— 1)1 —2) + gl.(p,q)

8.7
+(p+q—1)1A —z)(p,g—1) = 0.

It also follows from (8.5) that

(8.8) I.(qg,p) = 1 — Ii.(p, ¢).

The calculation of I.(p, ¢) presents no difficulty when both p and ¢ are small
or moderately large. Expansion of (1 — ¢)? into the binomial series then leads
to a rapidly convergent series for B,(p, q), especially since by (8.8) we can always
arrange to have z in the interval 0 < ¢ < . Moreover, the gamma functions in
(8.2) are rapidly calculated by reducing the arguments to some standard interval
for which rational approximations are available [60]. When p or ¢ is large,
however, it may be more efficient to make use of the recursions (8.6) or (8.7).

Consider then, first,

f"= x(p+n)9)) n=071)2;"'; 0<p§17 q>0'
By (8.6) this is a solution of

n+p+q~1> n+p+qg—1
ntp )T At

TYn— = 0,

(8.9)  Yot1 — (1 +

again a Poincaré difference equation. The characteristic equation # — (1 + z)?
-+ z = 0 has the roots

By inspection (8.9) has the solution y, = 1, which clearly corresponds to the
root 4; . On the other hand, from (8.3) and (8.5), we find

fos1/fn ~ 2, n— «,

so that f, corresponds to the root ¢, . Therefore, f, is the minimal solution of
(8.9).

While our methods of §§3 and 4 again apply, it must be noted that in contrast
to the previous examples the dominant solution is now bounded. Forward re-
cursion by means of (8.9) should therefore cause no difficulties if the f,, are to be
obtained to a fixed number of decimals after the decimal point. If a given number
of significant digits is required, however, it is more appropriate to employ the
algorithms in §§3 and 4. The initial value fo = I.(p, q) needed in these algo-
rithms may be obtained by first reducing ¢ modulo 1 to g, where 0 < qo < 1,
then calculating I.(p, q.), I.(p, go + 1) by series expansion, and finally applying
the second recursion (8.7) to connect with I.(p, q).

Consider next

gn=lx(p19+n>’ n=071;2;"'; p>09 O<q—§1-
From (8.7) we now get the difference equation
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yn+1‘—|:1+n+£ig_l ¢! —x)]yn

(8.10)

+2EL I (1 = e = 0,
which may also be obtained from (8.9) by interchanging p with ¢ and, simul-
taneously, « with 1 — z. Therefore (8.10) has the solutions g, and I1—.(q -+ n, p),
of which the latter is again the minimal solution. We see that g, is among the
dominant solutions, and no problem of numerical instability arises.

For a detailed description of these algorithms we refer to [17].
The incomplete gamma function is defined by

(8.11) P(a,z) = 1 f e dt, a>0,z>0.
r (a) ()
It satisfies the well-known recurrence relation
. a—1 —zx
z
P(a’)x) - P(a - 1,$) - T(a")—)

which, by elimination of the inhomogeneous term, can be brought into the form
aP(a + 1,2) — (x + a)P(a,z) + 2P(a — 1,2) = 0.

Letting f, = P(a + n, z), we therefore find that f, is a solution of

(8.12) (a+ n)yws — (+ a4+ 0)Yn + 2Yn1 =0, n=1,2,3, ---.

This again is a Poincaré difference equation, whose characteristic equation
£ — t = 0 has the roots & = 1, ¢, = 0. The solution of (8.12) corresponding to
t is clearly y, = 1. The solution corresponding to ¢, is f, , since

‘%ﬂ ~ 1-:1—; N 1 —> 0 N
as follows from the well-known asymptotic formula
P(a,z) ~ 2% 7/T(a + 1), a— o,

(See, e.g., [13, p. 140].) Consequently, f, is a minimal solution of (8.12).
To obtain an infinite series in f, , we multiply f, by

_T(a + m)
(8.13) Mo = “mit@
and sum over m. We get
- . 1 - 1 ‘ ~t ja+m—1
;Okmfm—m;omll e t dt
1 T et e
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1 fegl
——I‘(a)[ot dt_al‘(a)’

and therefore,

a

8.14 mJm =
The coefficients \,, can easily be obtained from the recursion
(8.15) =1 A=2Em=ly o om=q 2,8, -

m

Our algorithms may now be applied to (8.12), (8.14) to compute P(a + n, )
forn =0,1,2,---, N.

9. Repeated integrals of the error function. In problems of heat conduction
the complementary error function

erfc z = 2 fw e
V' Vs

and its repeated integrals frequently occur. Following Hartree [25] we denote

i erfc z = erfc 2,
i* erfc z = f i"™ erfc ¢ dt, n=123:--.

It is also convenient to define

-1 2

i erfcz = —=¢
\/ T
Expressed as a single integral, we have

(t — Z)”

. 2
i"erfc z = — dt,

A

Writing

+1 _ 2 1 fw (t"""Z)” —t2 2 fw (t""Z)” —~3
erfcz—\/q_r<n+1‘ - te dt-—n_l_lz it dt),

and evaluating the first integral by parts, one finds

“erfcz—{———-z———i"erfcz —-——-—1——-—i"“1erfcz =0, n=012--

n+ 1 m + 1)
Consider now
fon = i erfe 2, n=—1012 --.,

which clearly is a solution of
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(9.1) Ynt1 + =0, n=012---.

P 1
nF i1 T

To this difference equation case (¢) of Theorem 2.3 could be applied with the
result that all solutions behave “similarly’”” as n — «, viz.,

1
lim su o | AR =
0 8up (1 | Vo)™ = =5

This conclusion is somewhat deceiving, as in fact f, is the minimal solution of

(9.1).
To see this, we make use of the result that for any fixed z, asn — o,
—(1/2)22
(9.2) i" erfc 2 ~ 7 oXP (=vV'2n2).
- 2" <—2- 4 1)

[See [13, p. 123] and also recall that the repeated integrals of the error function
are related to parabolic eylinder functions D,(z) by

i"erfcz = (/2" ' %)"*D_p1(24/2) ]
By inspection, moreover, one sees that
gn = (—1)"¢"i" erfc (—2)

also satisfies the recurrence relation (9.1). Applying (9.2) to both f, and ¢, ,
we find

(9.3) (=12~ v, 5o o,

This shows that f, is indeed the minimal solution of (9.1) whenever Re z > 0.
Otherwise, when Re z < 0, g, is the minimal solution.

Our algorithms of §§3 and 4 for computing f, are particularly simple, in this
case, since the initial value is known to be

fa =2/
TFrom (9.3) it is evident that convergence of the first algorithm is better the
further away z is from the imaginary axis.
The application of Miller’s backward recurrence algorithm in this connection
was first suggested by M. Abramowitz [1], and is further analyzed in [16].
We note, incidentally, that Theorem 1.1 gives us the identity
1 1 1
I _ 2+ 1) 200 + 2) 200 + 3)
Jaa z 2 2 ’
n -+ 1+n+2+n+3+

which by an equivalence transformation can be brought into the form

i"erfez _1/2(n 4+ 1)/2 (n +2)/2
"TLerfcz 2+ 2+ 2+ ’ Re 2 > 0.
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For n = 0, this reduces to the well-known result

26”] g L1/213/2

PERPE RPN
10. An example arising in the numerical computation of Fourier coefficients.
Let f(t) be a function defined and continuous on the closed interval [0, 2x],
and let

27 27
(10.1) a, =/ f(t) cos pt dt, b, = f ft) sinptdt, p=0,1,2, ---,
0 0

denote its Fourier coefficients. The computation of Fourier coefficients of high
order (p large) is notoriously difficult because of two reasons. Firstly, if one at-
tempts to apply standard integration techniques, such as the trapezoidal rule,
one is forced into a rather fine subdivision of the interval {0, 2] in order to cover
adequately the many oscillations of the trigonometric factors in (10.1). Secondly,
even if one adopts a sufficiently fine subdivision, substantial cancellation of
digits will occur in the summation associated with the integration formula. In-
deed, by Riemann’s lemma, both a, and b, tend to zero when p — o, whereas
the individual terms of the integration formula need not be small at all. In
matter of fact, cancellation will be more prominent the smoother the function
f is!

In order to circumvent these difficulties, it has been suggested to use Gauss
type integration methods, treating the troublesome trigonometric factors as
weight functions [61], [62]. As the general theory of Gaussian quadrature re-
quires nonnegative weight functions, one first writes

(10.2) a, = foh J(t) cos pt dt = .th(t) dt — fohf(t)(l — cos pt) dt,

and similarly for b, . Then Gaussian integration is applied to the second integral,
while the first integral is evaluated by some standard technique. Both integrals
may have to be evaluated to high accuracy, since for large p, they are nearly
equal. Thus, our cancellation problem is not entirely eliminated, but appears to
be under better control.

Gaussian quadrature formulae of possibly various orders have to be obtained
for each value of p. While this is a formidable task in itself, it appears feasible
on current high-speed computers. One would presumably start from the moments

2w 2r
Cn = f £*(1 — cos pt) dt, 8y = f t*(1 — sin pt) di,
(10.3) b P A

n=2012:--,

and use these to construct either the associated orthogonal polynomials, or the
continued fractions associated with the formal power series

L] 0
PR D DY ¥

n=0 ) n=0
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The abscissae and weights of the desired quadrature formula then follow readily.
Because of the inherent sensitivity of these quantities with respect to perturba-
tions of the moments, it is rather important that the moments (10.3) be ob-
tained as accurately as possible. Our concern here will be with a stable genera-
tion of these moments.

We assume p a positive integer. Integrating by parts, we have®

27 . 21
Cotr = f (1 — cos pt) dt = [t"*‘ <t — M)]
o A
2 sin pt
-f (n+1)t”(t—— p)dt
[ P

+1

2r 27
= 20)"" - (n+1) f £ f t" sin pt dt
0 0

27
= (2r)""* — ntl 1 (2m)™** — n ;— 1 *(1 — sin pt) dt
0

n+ 2
2T

+”’+1f i dt
D 0

— (zﬂ_)n—m _ n '+' 1

- n+2 + _-!-_ (21r)n+l _ 7}_“*_:_!- 8,
Y4 P

hence,

_ n + 1 n+1 1 2 . ..
(104) Cnt+1 » 8» + (277) (5 + n+ 2) y o= 0’ 1, 2, .
Similarly, one obtains

B n _'_ (2 )n+2 B
(10~5) Spt1 = p 11,+ n + 2 ) n = 0’ 1, 2, .
Replacing n by n — 1 in (10.5), and inserting the result in (10.4), one gets
n+2

(10.6) Cnt1 = “7&'2);2{_.—]._)—0”—14-(7&2:)_2, n=1,2’3’-..

Eliminating similarly the ¢’s from (10.4) and (10.5), one gets

(107) S = = T s+ (2) ( Tl +n+2)

n=123- .

Writing down (10.6) once with n increased by unity, and once with n decreased

13 In principle, ¢, and s, could be evaluated in closed form. However recursive generation

of these quantities is more effective. Alternatively, we could integrate the additive term
27

¢» in closed form, and compute f t» cos pt dt and f t» sin pt dt recursively. No substan-
(]
tial simplification would result, however.
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by unity, and eliminating the inhomogeneous terms, one finally obtains

2
[ DD ],
(10.8)
_41r2(n—1)n(n+1) =0
Pl +3
Similarly,
(109)  sins +[(n + D0 +2) W] f— o, R,
P P
where
2 2
n 42+ 2mp 4+ 2TP
= 4, n+ 3
On ™ 4w2p2
n -+ 27p + P

The recurrence relations (10.8), (10.9) are valid for n=2.
It is clear that (10.8), (10.9) permit, in principle, all moments of even order
to be obtained from those of order 0 and 2,

2
co = 2m, 02=41f(?1_"1">,

3 2
(10.10) 0 210
S = 27!', S = 47"2 ("311 + 5) ’

and all moments of odd order from those of order 1 and 3,

a = 27, cs = 4r° ('zr2 — ;)3—2) ,

2
81=21r<1r+l>, 83=47r(7r3—|-—21-——§3>.
P P p

As it happens, however, the moments are minimal solutions of (10.8) and
(10.9), respectively. Therefore, straightforward recursion, as indicated, is highly
unstable. We expect the algorithms of §§3 and 4 to be rather more effective,
especially since the first relations in (10.10), (10.11) can be used for normali-
zation.

To establish the minimal character of the moments, let us first write

(10.11)

Conth = Cn, Son+h = Sn,

where h is either zero or one. Then C, and S, are both solutions of three-term
recurrence relations of the standard form

(10.12\ Yn+1 + anYyn + bnyn—l = 0; n = 1; 2, 37 Tt

the Newton-Puiseux diagram in both cases having the form shown in Fig. 11.
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P (0) Py

2/ - -+

Po

0] l 2
Fia. 11. Newton-Puiseuz diagram for (10.8), (10.9)

Moreover,
2
2 167I’ 2

a,,Niﬁn, b,,~——-—p—2—n, n — o,
1t follows from part (a) of Theorem 2.3 that (10.12) has a pair of fundamental
solutions, y,,1 and ¥y, , for which
(10_13) Ynt11 ~ inz Ynt1,2 ~ 41‘_2’ n— .

’

Yn,1 P2 Yn,2

Both solutions thus tend with » to infinity, but the first one much more rapidly
than the second.

On the other hand, applying Laplace’s method [11, p. 37] to the integrals in
(10.3), one finds readily that for n — oo,

C, ~ p?(ﬂ_/n)3(27r)2n+h’ S, N% (27r)2n+h’ b= 1’ 2.

The C’s and S’s, therefore, exhibit the same asymptotic behavior as ¥, in
(10.13). Consequently, they are both minimal solutions of the respective equa-
tion (10.12).

11. A Sturm-Liouville boundary value problem. Consider the Sturm-Liou-
ville boundary value problem with one boundary condition at infinity,

(1L.1) (M)y) + ey =0, y(0) =1, y(w)=0.

We assume that p and ¢ are real-valued continuous functions in [0, « ), with
p(t) > 0, q(t) = 0, and in addition that

(11.2) wﬁ%:w, -fmq(t)(ft%>dt=oo.

Then the boundary value problem (11.1) has an unique solution which is mini-
mal in the continuous sense [24, p. 357 ff]. When solving the problem numeri-
cally, by a method of finite differences, we expect the approximate solution to be
minimal in the discrete sense. We wish to illustrate this in the case of a simple
finite difference scheme.
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Consider mesh points ¢, = nh,n = 0, 1, 2, --- , where A > 0 is small, but
fixed, and let y. designate approximations at ¢, to the solution y(¢) of (11.1),
yniy(tn): n=071727""

Such approximations may be obtained by first rewriting (11.1) as a system of
two first-order differential equations, letting z = p(t)y’,

2 4+ q(t)y =0,

’ 1

Yy ——<2 =0,

0

and then replacing derivatives by central difference quotients. We get

Znt1/2 — Zn—1/2

A + G Yn = 0,

n - Yn— 1
?/+1/2h21/ 1/2_;;%:0’
where p, = p(i.), ¢» = q({,). Eliminating the 2’s, we obtain the following dis-

crete analogue of (11.1),

(11.3) Ynt1 — pn+1/2 + pn—1/2 — h qn yn + M yn'—l = O) n = 1) 2, 3) Tty
DPriir2 P12

(11.4) Yo =1, lim y, = 0.

It appears to be an open question whether under the assumptions (11.2),
or some discrete analogue thereof, the difference equation (11.3) possesses a
minimal solution satisfying (11.4), if A is suitably restricted. The answer, how-
ever, is in the affirmative, if we make the stronger assumptions

(11.5) lim p(¢) = p > 0, lim ¢(t) = ¢ < 0.
t-»00 t->x

Then, indeed, (11.3) is a Poincaré difference equation having the characteristic
equation

t2——(2—~h2%>t+1=0‘

Since p > 0, ¢ < 0, the roots {1, £ of this equation are real and distinct for all
h > 0. In fact,

t1=1“h2§'qp'+h/‘/—%q—<l—h24-ip)) t2=t1~17

so that & > 1, 0 < ¢, < 1. The solution of (11.3) corresponding to ¢ therefore
is a minimal solution, for arbitrary &, and can be normalized to satisfy the first
condition in (11.4). The second condition (at infinity) is insured, since by
Theorem 2.2,
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Ynt1

n

~ 1, n—> 0,

for any minimal solution of (11.3).

Clearly, algorithm (3.9) applies in its simplified form (without the s-recur-
sion), since yo is given to be 1.

By way of an example, consider

Ll

24t
(This may be interpreted as a heat conduction problem for an infinite rod; cf.
[8, p. 150]). Here,

(11.6) Y y, y(0) =1 y(wo) =

1+
=1 L N
p(t) =1, q() 5T
and (11.5) is satisfied with p = 1, ¢ = —1. The discrete analogue of (11.6)

takes the form
2 1 + nh _
Yn+1 <2 + h ) + h> Yn + Yn—1 = 07
Yo = 1, lim y, = 0.

Applying algorithm (3.9), we obtain approximations ¥, to y, from
) 1

»
7y = 0, Pp—1 = y, m=yppv—1---,1
1+ nh ®)
24+,
(11.7) Ry Sl
yo(”) =1, yn(v) = yi&, n=12-,N.

Here, N is determined by the length of the interval in which the solution y(t)
is sought.

Table 2 displays selected numerical results for integrating (11.6) by (11.7) on
the interval [0, 5]. The first column shows the number N of subintervals, the
second column the corresponding value of 2 (= 5/N), the third column the

TaBLE 2

Approxzimate solution yn of the boundary value problem (11.6) by means of
(11.7), for n = kEN/5, k = 0(1)5

i
N k v
0 1 2 3 4 5
5 1 13 1.0 446887 | ,191699 | .080285 | .033098 | .013494
10 .5 25 1.0 .443648 | 187645 | .077222 | .031219 | .012465
50 N 116 1.0 .442753 | .186395 | .076251 | .030620 | .012137
250 .02 511 1.0 442729 | .186352 | .076217 | .030598 | .012124
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smallest integer » for which six significant digits are achieved. The remaining
columns contain the approximations y,” corresponding to ¢ = 1(1)5.
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An Application of Minimal Solutions of Three-Term
Recurrences to Coulomb Wave Functions

WALTER GAUTSCHI (La Fayette, Indiana)?l)
Dedicated to Professor ALEXANDER OSTROWSKI on his 75th birthday

1. In arecent article [3] we dealt with various recurrence algorithms for computing
minimal solutions of linear second-order difference equations—-solutions, that is, which
grow more slowly than any other linearly independent solution. Such solutions (if
they exist) are uniquely determined up to a multiplicative constant. The value of this
constant may be determined by specifying one initial value, or, more generally, by
specifying the value of an infinite series in this solution. In the latter case, it is possible
to obtain the respective solution without reference to any initial data.

Among several examples we considered in particular the regular Coulomb wave
functions F; (n,¢) (see [1] for notations). If we let

2kt 25T (L 4+ 1+ i)

fu= 2L)IC, () F(ng), Culn)= QL+ 1) » (LD
then f; is a minimal solution of
LI(L+ 1) +74%] L(L+1) L(L+1)
(L+1)@L+3) 7" “[ T ]“+ oLy T
(L=1,2,3,..), (1.2)
and we have the following infinite series relation 3],
f Afy=oge™, A =i"P{"T M (-iw). (1.3)
L=0

Here, P{*#(x) denotes the Jacobi polynomial of degree n. The parameters 7,0, are
assumed to be real, with p>0, w>0. Provided w is chosen appropriately, the algo-
rithms mentioned above lead to effective schemes of computing f; over an extended
range of the parameters #, g, and for as many values of L as are desired [3, § 7], [4].
An advantage of this approach is the absence of any need to compute Fy(#, ¢), which
is known to be tedious, calling for a variety of methods in different regions of the
parameters [2].

As one proceeds to large values of n, however, the generation of the coeflicients
A, becomes subject to serious loss of accuracy due to cancellation errors. The reason

1) Computer Sciences Department, Purdue University, Lafayette, Indiana, and Argonne National
Laboratory, Argonne, Illinois. This work was performed in part under the auspices of the United
States Atomic Energy Commission.
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for this can be traced to a peculiar phenomenon associated with the recurrence
relation for the Jacobi polynomials of purely imaginary parameters and variable. The
phenomenon, already observed in [3], but left unexplained there, is briefly described
in section 2. In section 3 we further elucidate this phenomenon and, at the same time,
provide a simple scheme to eliminate the cancellation problem which it causes. The
algorithm that so results proves to be effective for an almost unlimited region of the
parameters 7, ¢, and L. The only factor restricting its use on a digital computer
appears to be the possible occurrence of ‘overflow’ when |n| is very large. These
matters will be discussed in section 4.

2. From the well-known recurrence relation for Jacobi polynomials, one finds
that 4, satisfies

2L+ 1 L+n

A = ——— WA, A L=1,2,3,..), 2.1
L+ 1 L+1 @ L(L ) L—1 ( ) 2.1

10:1, ).1=CO—7]. (2.2)

(In particular, all 1, are real.) It is readily seen, that (2.1) possesses a minimal solution,
whenever w#0, which we denote by A;, assuming Ag==1. The desired solution 4,
is known to be nonminimal [3]. It would appear, therefore, that (2.1) and (2.2) lend
themselves conveniently for the accurate generation of A;. This is indeed the case as
long as # is not too large. As n— o0, it was observed, however, that A, ‘approaches’
the minimal solution A} in the sense that 4, — 1] —0. Therefore, the initial values of 4,
as n becomes large, will ultimately be indistinguishable (in finite arithmetic) from
those of A;, even though for large L the two solutions behave quite differently. In
fact, A;— o0 as L— o0, while A7 —0 as L—co. It is clear, therefore, that the solution
A, cannot be determined accurately from initial values, when # is large, unless one
resorts to multiple-precision arithmetic.
If it were possible to compute

e=A, — X, (2.3)

accurately, then the following device can be used [3].
Let A7 be the solution of (2.1) defined by

lg=—Ay, Al=1. 2.4
Then

Ap =A% + —— (/L + A1 A1), (2.5)
which shows that for small ¢ the solution A, initially follows closely A, until the
dominance of 4] outweighs the smallness of ¢. All terms in (2.5) can be computed
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accurately: A; by the algorithms mentioned at the beginning of section !, ¢ by as-
sumption, and A; by straightforward application of (2.1) and (2.4). [t may be noted,
in this respect, that relative errors J,, d, in the initial values A, 1] give rise to compa-
rable relative errors in 1;, when L is large, namely errors approximately equal to
SoA /(14 27%) and &,/(1+A72), respectively. This indicates that the solution ] is
computationally well defined.

3. We proceed now to derive an explicit expression for ¢ defined in (2.3). We may
assume 7>0, in which case o> 0 [cf. (4.2) below].
First of all we note that a minimal solution of (2.1) is given by

i = L QRTI (— ),

where Q{# (x) denotes the Jacobi function of the second kind. This follows from
the asymptotic formula‘®

(x = P (x + 1O (x)~n™ 2 x — (x> = )" T p(x)  (n—>o0), (3.1

in which x is a real or complex number outside the segment [—1, 1}, x and ff are real
or complex with Rea> —1, Reff> — 1, and ¢ (x)#0is regular outside of [—1, 1] and
independent of n. It is understood in (3.1) that one takes that branch of x — (x* —1)!/2
for which |x— (x*—1)"/?] < 1. Letting x= —iw, a=1in, f= —in, one readily obtains

T~ 0 — (00 + D) (L),
On the other hand, it is known [3, p. 66] that

Il ~ o+ (@ + 1) (Loo),

Amin

showing that A7 is indeed minimal. It follows, therefore, that

AT A L G
P O G O)

mm

In order to evaluate , we make use of [5, p. 75]

Fe+1)I(p+1)

(x, B) atf
Qo""(x) =2 Fra+p+2)

(x=1"x+ )"

2
xF(a+11a+ﬁ+21 ),

where F(a, b; ¢; x) denotes the hypergeometric function. Assuming o+ =0 (as is the

2) See [5, p. 223], where the result is obtamed for real oc> —1 ﬂ> — 1. The derivation by the
method of steepest descent, however, is valid also when « and § are complex, with Rea>> —1,
Refg> —1.

94



174 W. Gautschi AEQ. MATH.

case in our context), we have

F(cx +1,1;2; IL) - \ (@+ (o +2)(a+v) (1 2 x)“

—x v+ 1)

v=0
N (= ma=1\ 2
T/ vl v 1—x/~
v=0
which, on applying
—a—1\ 2’ 1 I
- ) — = - 1dr = 1 —zy®—1]j,
Y (TN S fameas - -
v=0 0

becomes
2 1—x 2 B
Fla+1,1;2, — |=—|{1—- —+]) —1].
| —x 2 1 —x
Therefore,

0% " P(x)=T(a+ 1) (—a+1)(x—1)""""(x+ 1)“1—2;" [(1 - ---2—->~a - 1}

= — F(Otiz);ﬂai_ijjz [1 — (x + l)a (x . l)—a] ,

provided that

2
—n <arg(x — )+ arg (1 — 1) <7.
Letting x= —iw (which satisfies this condition), and a=in, we obtain

B rqa+ipr@- H])

gt =iQf"m TP (~iw) = > ‘M- —iw)"(—1—-iw) 1.

By an elementary computation one finds that

1—io)"(-1—-iw) "=e "%,
where

i
¢ = arclan

Since, furthermore, I' (1 +in) I (1 —in)=nn/sinh(ny), we finally obtain
min 7 -2n¢
Amin _ (1 —eT21%), (3.2)

95



Vol. 2, 1969 Minimal Solutions of Three-Term Recurrences 175

To determine A7™, we use [S, p. 80]

QPP (x) =3[(x+ f+2) x + o = 1 Q5" (x)

Flo+ DB+ 1)

— 22" a4+ 4 2) (x -1 (x+1)7*

F(x+p+2) ’
and find
At = QT TI(—iw) = (w - ) A"+ T gm2ne (3.3)
sinh (7 )
Combining (3.2) and (3.3), we get
)»p‘nin 2’1

Al=_=w-—H— . 3.4
P T T T e G

Therefore, in view of (2.2), (2.3), the desired expression for ¢ is

2y 1
2ne_ ¢ = arctanw. (3.5)

8—_—},1——}..;=
€

This result both explains the phenomenon described in section 2, and provides a

simple formula to compute &, and thus 4, by means of (2.5).

4. The values of the exponentials in (1.1), (1.3), and (3.5), for large ||, may
become so large (or so small) as to exceed the range of permissible floating point
numbers on a particular computer. If this range is given by [107%, 10%], such ‘over-
flow” will occur in any of the following three cases,

enlql/,’l ~ IOR, e e > 10R, ezlﬂlff’ > 10R (4])

By definition of w [3, p. 65], we have

mH (T>])a
wo =13 n[n—2arccos/r+2y1(l—1)] (O<t<1), (4.2)
0 (r<0),

where t=¢/2n. Since 0<n—2 arc cos \/1"-{-2\/1(1 - %)én for 0< <1, it follows that
0<woe<n|n|. Moreover, 2|n| ¢ =2|x|arc tan {1/w)<n|y|. Therefore, none of the cases
in (4.1) will arise if |y| is restricted to satisfy

] R - RiIn10
"ML 107, ie. nf < = (.7329..)R. (4.3)
n

On the CDC 3600, e.g., one has R=2308, so that on this computer the restriction (4.3)
amounts to [ <225.7....
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Another place where overflow may occu - is in the generation of the quantities
A7 by (2.1), (2.4), when n>0. As L— o0, one finds

1+ APZ
B~ (21— 1) Ay,
2y
and in view of the known asymptotic behavior of A, (¢f. [3, p. 66]), and (3.4),
1+ (o —n) —
I (‘” '1)_ (zﬂL)—l/Z(l + wz)"1/4e"¢[a) i \/wz + 1]L+1/2’

2n

having assumed exp(2n¢)> 1. Roughly, then, A/ ~exp(n¢) [w +\/w2+ 11%, and to
avoid overflow we should have

o+ Jo! + 175 < 107,

Letting v denote the largest value of L for which A; is required (an estimate for v may
be found in [3, p. 69]) the last inequality is satisfied if

1 S
narctan(>+v1n((»+\/w2+1)<R1n 10. (4.4)
w

We note that v depends not only on th2 parameters 4, ¢, and L, but also on the desired
accuracy for Fy (n, ¢). If six significant digits are required, for example, it was found
that (4.4) holds true for 0 <5 <100, 0.1 <9<200,0< L<100, if R=308 as before.
The region in which our recurrence algorithm is applicable (using standard
floating point artithmetic) is thus delineated by the two inequalities (4.3) and (4.4).
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1. Introduction

In {2] one of us published algorithms for computing suc-
cessive derivatives of e”/z, (cos z)/z, and (sin z)/z. It was
brought to our attention [5] that the first two of these
algorithms are subject to substantial loss of accuracy if
x (or [z | in the case of the second algorithm) is large and
n, the order of derivative, is larger than |z |. In the fol-
lowing we examine the reasons responsible for this dif-
ficulty and suggest ways in which it may be overcome.
Revised algorithms implementing the results of this article
appear as Remark on Algorithm 282 in the Algorithms
section of this issue (see footnote).

Although hardly more than an isolated example,' the
question discussed here well illustrates the pitfalls in-
herent in the indiscriminate use of recurrence relations. It
may also serve to remind us of the computational limita-
tions of analytic formula manipulation systems.

Consider, for example, the derivatives

x

€

du(z) =%(}), n=012....

Work supported by the National Aeronautics and Space Ad-
ministration (NASA) under Grant NGR 15-005-039. This paper
gives the theoretical background of Remark on Algorithm 282
“Derivatives of e*/x, cos (x)/z, and sin (z)/2’’ by the same authors,
which appears on pages 53-54.

* Department of Computer Sciences.

1 College of Arts and Sciences.

! We note, however, that the functiond, in (1.1) is of some relevance
in molecular structure calculations by virtue of 4,(1,0) =
—du(—a), Au(—1, a) = (=1)"d.(a), where A, (0, @) = [ e=ttrdt
are auxiliary “molecular integrals’’ (cf. [4, 6]).

(1.1)
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Analytic differentiation yields

du(z) = (—1)"1%92%(—75), (1.2)
where
n k
en(2) = I;,% (1.3)

Formula manipulation systems most likely would deal
with (1.1) by effectively evaluating the expression in (1.2).
Note, however, that for x positive and large, and n > w,
the dominant term in the sum for e,(—z) has the order
of magnitude €°/+/ (2xz), while the sum itself is close to
e °. For such values of x and n, the evaluation of (1.2)
thus involves considerable cancellation of leading digits,
the resulting loss of accuracy amounting to about logiee™
= (.868...)z decimal digits.

Alternatively, one might try to compute the desired
derivatives recursively, as in [2], using

dn(z) = = Zdpa(a) + %,
(14)
€
n=1,238 ..., ds)==°.
While, technically speaking, this recursion is stable, it
will be seen that the cancellation problem reappears with
the same devastating force.

2. Error Propagation in Linear First-order
Difference Equations

The recurrence relation (1.4) is an example of a first-
order linear difference equation

Yn = Gutpns + bu, n=1,23 ..., an=0. (21)

We consider solutions on the set 9 of nonnegative integers
n. Given a particular solution {f,} of (2.1) to be computed,
we wish to examine the influence of a single error at
m € 9 upon the value of f, at any other n € 9. Since the
solution {f.} may vary considerably in magnitude, it is
appropriate to consider relative errors and restrict atten-
tion to the subset 9y < 9T on which f, # 0. Assuming for
simplicity that fo # 0, the question can easily be answered
as follows (ef. [1]).

Let {f.} denote the “perturbed” solution of (2.1) cor-
responding to the starting value fn = fu(1 + €), m € M.
Then for any n € 9, we have

ﬂ=nu+g¢ (22)
where?
o = J%‘, hn = Gnln ... Q1 (2.3)

2 The factor fo in the definition of p, is included only for the pur-
pose of normalization, making po = 1.

7
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A relative error e introduced at m thus induces a relative
error (pn/pm)e at n. In particular, the error is magnified if
|en] > | pm| and damped if | p.| < |pm]|. The quantities
pn Will be referred to as “amplification factors.”

The behavior of the function {| p. |} clearly determines
the error propagation pattern associated with the particular
solution {f.} of (2.1). If there is any choice of direction
in which the recursion (2.1) can be employed, then the
direction in which |p,| decreases (or has a tendency to
decrease) is generally the one to be preferred. Following
this direction, errors introduced at each step of the recur-
sion (due to rounding, for example) have a tendency to be
consistently damped out. Proceeding in direction of in-
creasing | p. | is-tolerable only if the maximum error am-
plification remains w1th1n acceptable limits.

3. Successwe denvatlves of e/x

"From (1.2) and (2.3) we find that the amplification
factors -p, associated with the solution (1.1) of the difference
equamon (1.4) are given by

pa(z) = (3.1)

_1

en(—x)
If z < 0, then |p,| decreases monotonically from 1 to
&', In this case the recursion (1.4) is properly applied
in the forward direction for all n > 0. If z > 0, the be-
havior of | p. | is as shown in Figure 1. Disregarding rela-
tively small values of z (for which |p.| remains within
acceptable limits for all n > 0), it is seen that | p. | initially
decreases until it reaches a minimum value near n, = [z],
and from then on increases, reaching the limit | po | = €°
rather abruptly. The: recursion: (1.4) is now properly
applied in the forward direction on the interval 0 < n < ng,
and in the backward direction on 7y < n < <, unless an
error amplification of | pw/pn, | is tolerable, in which case
forward recursion may be used on the whole interval
0<n< w.

We note that |e.(— n)] ~ e /2\/(27rn) asn — o,
from which it follows tha,t ‘the maximum error amphﬁca-
tion is approx1mately /2 4 (27z), when z is large.

The graphs in Figure 1 may be interpreted as follows.
Writing d,(z) in the form

d@) = (=17 2+ f e dt (3:2)
[by using the remainder term of the exponential series in
(1.2)] and assuming ¢ > O large, one observes that the
integral on the right of (3.2) initially dominates, until n
is large enough to make the first term of comparable
magnitude. From this point on, the first term quickly
becomes the dominant term. As long as the integral dom-
inates, d.(z) varies relatively slowly with n, so that by
(2.3) | px | is approximately proportional to | ha | = nlz™
Once the first term takes over, | p.| becomes constant,
equal to ¢°. Therefore, the ¢urves in Figure 1, up to a
scale factor, are essentially those for nlz ™", levelled off at
the value of n for which the integral in (3.2) becomes
negligible.
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Fie. 1. Amplification factors | p,(z) | of (3.1), for 0 < n < 80,
z = 2,5, 10, 15, 20

It remains to consider the question of computing an
appropriate starting value in cases where backward re-
currence is called for. From the remarks just made, it is
clear that d.(z) can be approximated by

n!
grtl

g.(z) = (=1)" (3.3)

to any degree of accuracy, if n is taken sufficiently large.
To analyze this more carefully, observe that the integral
in (3.2) is bounded by ¢/ (n + 1), and that n! > (n/e)"
for every integer n>1 Therefore,

. ex 2+l
ft dt<( +1)’e <(’n+1> e,
from Whlch it follows that | (dn — gn)/gn | <8 (0 <8 < 1),

and consequently | (dn — ¢a)/dn| < 8/(1 — §), as soon
as n is large enough to satisfy

n+l
€x
* < 6.
(n—!—l) e <8

In partiéular, Gn approximates d, to s significant digits if
(3.4) holds with § = % 10™". Taking loganthms, this con-
dition amounts to

n+1 n+1 x+sln10+1n2”-
ex ex ex

d—q,.

(34)

which in turn is equivalent to

z + sIn10+ln2)’ (35)
ez

n+1 Zext(

where ¢(y) denotes the inverse function of y = ¢ In ¢.
(Low-accuracy approximations to ¢(y) are obtained in
another context in [3, p. 51].) Thus, if »° is the smallest
integer n satisfying (3.5), then ¢, (z) in (3.3) may be used
to approximate d,(z) (to s significant digits) for n > n’,
while backward recursion in (1.4) may be used to obtain
da(z) for ne < n < .
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Fia. 2. Amplification factors | pa(z) | of (4.3), for 0 < n < 55,
z = 2,5, 10, 15, 20

4. Successive Derivatives of (cos x)/x and (sin x)/x

The derivatives

d* [cos z
n = - —— 4.
ca(a) dx"(x ) (4.1)
satisfy the difference equation
en(@) = — L epa(@) + = Re(ie™),
z & (4.2)
n=123":-,
and the associated amplification factors p, are now
cos T
p(z) = - oo —io)] " (4.3)

Clearly, p.(—2) = p.(z). The behavior of | p,| is shown
in Figure 2. The graphs are basically the same as those in
Figure 1, except that they are leveled off at an earlier
stage (due to the limiting value now being p, = cos z)
and are not nearly as smooth.

The recurrence (4.2) is again properly applied in the

forward direction for 0 < n < no (o = [[#|]), and should
be used in this backward direction for no < n < o unless '
the maximum error amplification |1/p,,| (now approxi-
mately half as large as in the case of d.(z)) is within
tolerable limits. Due to the fluctuations in | p, |, occasional
losses of significant digits must be expected, even if the
recursion is used in the proper direction. Loss of significance
is apt to occur for those values of n for which ]c,,(x)] )

"is exceptionally small.

The identity

e(z) = (——%

. A
+ [ P ReleM @ (44)
0
permits us to interpret the graphs of Figure 2 in a similar
manner as we did previously for the graphs of Figure 1.
It also follows from (4.4) that ¢.(x) in (3.3) can be used
to approximate ¢, (z) to s significant digits for all n satisfy-
ing

n+1 >e|x]t(‘°ﬂm—+h13)_

elz|

Replacing “Re” by “Im” in (4.2) and (4.3), and “cos z”
by “sin z” in (4.3), one obtains the difference equation
and associated amplification factors for the derivatives
sa(z) = (d"/dz")(sin z/z). The graphs of |p,| in this
case resemble those of Figure 2, except that no leveling-off
oceurs, since Imle”e, (—iz)] — 0 asn — .

R |
e Y
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is in preparation, and more research is required in that
area. An important topic for future investigation is a com-
parison of performance improvement and cost of segmenta-
tion for Boolean and probabilistic methods. Such an in-
vestigation could well include empirical testing.
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IS THE RECURRENCE RELATION FOR
ORTHOGONAL POLYNOMIALS ALWAYS STABLE?*

WALTER GAUTSCHI
Dept. of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398, USA

Abstract.

Attention is drawn to a phenomenon of “pseudostability” in connection with the three-term recurrence
relation for discrete orthogonal polynomials, The computational implications of this phenomenon are
illustrated in the case of discrete Legendre and Krawtchouk polynomials. The phenomenon also helps to
explain a form of instability in Stieltjes’s procedure for generating recursion coefficients of discrete
orthogonal polynomials.

AMS(MOS) Subject classification: 33-04, 35C50, 39A11, 65D20.

1. It is our experience, and the experience of many others, that the basic three-
term recurrence relation for orthogonal polynomials is generally an excellent means
of computing these polynomials, both within the interval of orthogonality and
outside of it. The same recurrence relation, on the other hand, is known to become
unstable if one attempts to use it for computing other solutions, for example, the
minimal solution when the argument is outside the interval of orthogonality (cf. [4]),
or the Hilbert transform of Jacobi polynomials when one of the Jacobi parameters is
large and the argument close to 1 (cf. [8,§4]). Here we wish to point out instances of
“pseudostability” in connection with the computation of discrete orthogonal poly-
nomials.

Our discussion sheds new light on a hitherto unexplained phenomenon of insta-
bility that afflicts the Stieltjes procedure for generating the recursion coefficients of
discrete orthogonal polynomials (cf. [6, §8]).

2. The (monic) orthogonal polynomials {r,(x;dA)} corresponding to a positive
measure dA on the real line are known to satisfy a three-term recurrence relation

(2.1) Yirs = (X — o )yx — By 15 k=0,1,2,...,

where o, = oy(dA)e R, B = Bu(dA) > 0 are coefficients uniquely determined by the
measure dA. We are interested in the stability of this recurrence relation with respect
to initial values y,, y,. That is, letting {y*} denote the solution of (2.1) corresponding

* Work supported in part by the Nationa} Science Foundation under grant DMS-9023403.
Received September 1992.
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to slightly perturbed initial values y§ = yo(l + &), ¥y¥ = y1(1 + ¢,), we like to
know how much y}* differs from y, for values of nlarger than 1. This is an elementary
exercise in the theory of linear difference equations. The answers is

2.2) yE—y, = (YoVnZ1 — Yo¥1Zn)eo — (V1YVnZo — VoV1Zn)8: ,

YoZi — Yi%o
where {z,} is an arbitrary solution of (2.1) linearly independent of {y,}. The factors
multiplying ¢; and &, on the right of (2.2), or more precisely, their moduli, determine
the extent of error amplification in the absolute error y* — y,. Normally, if y, # 0,

we prefer to consider relative errors (y¥ — y,)/y.. Appropriate amplification factors
are then given by

1Yoz1 = Yoy1(za/Va)l + 1120 — V0V 1(2n/ V)l
(2.3) o) = [Yoz1 — ¥12ol
21yoy1zal/lyezs — ¥12o| if y, = 0.

if y, #0,

We say that the recurrence relation (2.1)is unstable for the solution {y, } if 0, —
as n— oo. In view of (2.3), if y, # 0 for n sufficiently large, this is equivalent to
lim, ., |z,/y.) = o0, i.e., to {y,} being a minimal solution of (2.1). There are various
“backward recurrence” algorithms (see, e.g., [3], [10]) that can be used to compute
minimal solutions. A more perfidious predicament (since there are no easy counter-
measures) is pseudostability; by this we mean that w, is uniformly bounded asn —» o0,
but the bound is extremely large. We refer to pseudostability also in the case (of
particular interest here) where n can assume only a finite number of values, and some
of the w, are extremely large. (Isolated large values of w, may be due to “near zeros”,
¥, = 0, and may well be harmless in practice.)

In the case of orthogonal polynomials y, = #,(x;dA), we have y_; =0, y =1,
and we may choose for z, the solution of (2.1) satisfying z_, = 1, z, = 0. The
amplification factor w, in (2.3) then simplifies to

TN
21 Vu ‘

g — 22

21y Yn

7 PR
2lz z,,‘ if y,=0,

1

if y,#0,
Vu = T{X; dA).

(2.4) Wn(x) =

The quantities w, in {2.3) and (2.4) characterize stability with respect to initial
values yo, y,- A more complete picture of stability is provided by the following
stability measure relative to arbitrary starting values v, Vim+1:

lymzm+ 1~ YuVm+ I(Zn/yn)! + lym +1Zm = YmYm+ I(Zn/yn)l

|VmZm+1 = Ym+1Zml
2.5) ®p-nlx)=
( Z!ym.Ym%izni

Iymzm+1 - .Vm+lzm|

if y,=0.
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This number indicates to what extent errors committed atk = mandk = m + 1 are
amplified at k = n. We may have n > m or n < m; clearly, Wpm = Opomsr = 1 if
ymym+1 # 09 and wn = C00~~m'

3. We now apply the tools of §2 to discrete orthogonal polynomials. Here,
d4 = dly is a discrete Dirac measure

N
(3.1) diy(x) = ) @,8(x - x,)dx,
v=1
where
(3.2) X <Xy <X3<-"<Xy, 0, >0, v=12,... N.

In this «case there are exactly N  orthogonal polynomials,
m(-,dAy), k=0,1,...,N — 1, and the same number of associated recursion coefli-
cients ap(diy) and B, (diy), k=0,1,...,N — 1. We present two examples, believed
to be representative for a wide class of discrete orthogonal polynomials, exhibiting
phenomena of pseudostability. A third example illustrates a case of almost perfect
stability. All our computations were done on the Cyber 205, which has machine
precisions of 7.11 x 10715 and 5.05 x 10™2? in single, resp. double precision.

ExaMpLE 3.1. Equally spaced and equally weighted measure diy: x, =
—1+2v-1/AN-1), @,=2/N, v=12,...,N.

Here, the recursion coefficients are explicitly known:

(3.3) =0 k=01.. ,N-1

% k\? 1\
_ _ (VY 4-— =1,2,..,N—1
po=z p= (ot (= () o) - e

For fixed k, and N — o0, they converge to the respective recursion coefficients for
monic Legendre polynomials.

It turns out that in this example the recurrence relation (2. 1) applied with x = x, is
generally pseudostable, particularly soif v << N/2 and N islarge. (There is of course
symmetry with respect to the midpoint of [x,, xy].) We illustrate this in Figure 3.1,
which depicts the amplification factor w,(x) of (2.4) on a logarithmic scale for
l1<n<N-1 N=40,x=x, v=1,5 10, 20. There is clearly a trend of
rapidly increasing a,(x) as n approaches N - 1 when x is near the ends of the
interval [ x,, xy]. Near the center of the interval, the recurrence is quite stable.

The graphs of Figure 3.1 are also indicative of stability with regard to starting
values other than y,, y, as is shown in Table 3.1. (Integers in parentheses denote
decimal exponents.) Here, the quantity

(3.4) Qx,)=  max  0y.(x,)

0sm<as¥N-1
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15 -

10 — X5
3 X10
0 - X20

| 1 | |
10 20 30 40 n

Fig. 3.1. Amplification factors for Example 3.1.
is tabulated for selected values of v along with the integers m = m, and n = n, for
which the maximum in (3.4) is attained, and the maximum relative single-precision

error observed in the recurrence.

Table 3.1. Pseudostability of discrete Legendre polynomials.

v 2x,) m, n, maxerr
1 3.77121) 4 39 1.0310(8)
s 4.148(11) 22 39 3.4959(—2)
10 6.912(4) 32 39 3.2338(—8)
20 3.715(0) 25 38 1.1081(—12)
: N - 1 v—1 N—v
ExampLE 3.2. Krawtchouk polynomiais: x, =v~1, w,= b1 g,

v=12...,N,withp>0,g>0,andp+qg= 1.
Here, too, the recursion coefficients are known explicitly (see, e.g., [ 1, Eq. (3.5) on
p. 161 and Eq. (3.2) on p. 176])),

o =qk+pN—1—k), k=01,....N—1;

(-3) Bo=1, Pu= KN — Kipg, k=12..,N—1.

Figure 3.2 shows severe cases of pseudostability when p = 0.1, ¢ =09, N =40,
and the recurrence formula (2.1) is applied for x = x4, x5, X;0 and x,¢. Unlike the
previous example, Figure 3.2 does not indicate the full extent of pseudostability,
especially not in the case x = x,,. Indeed, the more general stability measure w,, .,
in (2.5) reveals considerable additional error amplification. This can be seen from
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Xy
logiow, 25— Xs
20 —
X10
15 -
10 —
5
X20
0 — /
1 i 1 {

10 20 30 40 n

Fig. 3.2. Amplification factors for Example 3.2.

Table 3.2, which displays the analogous information as Table 3.1. If p increases, the
severity of pseudostability diminishes, the lowest level being attained for
p = g = 1/2. In this case the quantities in the second and fifth column of Table 3.2
become 7.266(10), 5.797(5), 4.743(2), 5.173(0) and 4.702(—4), 1.217(—8),
1.382(—11), 1.401(— 12}, respectively.

Table 3.2. Pseudostability of Krawtchouk polynomials with

p=0.1,49=009.
v x,) m, n, max err
1 8.931(25) 4 39 4.85%(11)
5 2.053(26} 13 35 4.339(12)
10 5.04120) 20 39 2.741(7)
20 6.115(8) 30 39 4.995(—5)

The occurrence of pseudostability in Example 3.1 and 3.2 may be due, at least in
part, to the equispacing of the abscissae x,. Choosing as abscissae the Chebyshev
points on [ — 1, 1] indeed may lead to perfectly stable recurrences. This is shown in
the next example.

ExaMpLE 3.3. The Fejér measure.
This is the Dirac measure (3.1) underlying the Féjer quadrature rule, i.e.,

2v—1
X, = cos( v2 N ) are the Chebyshev points, and o, the Cotes numbers for the

corresponding (interpolatory) quadrature rule. The latter are known to be all
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positive. This example is of some interest in connection with Stieltjes’s procedure (cf.
§4).

We computed the recursion coefficients g, (all «, = 0) in double precision by an
orthogonal reduction method using Lanczos’s algorithm (cf., e.g., [9], [6, §71).
Applying the recurrence relation (2.1) for each x = x,, v=1,2,...,N/2, we then
determined (again in double precision) the maximum of all amplification factors in
2.5),

(3.6) Qy = max max Omon(Xy)-

1<v<N/2 0sm<n<N-1
The results are summarized in Table 3.3, where vy is the integer v for which the
maximum in (3.6) is attained. In the last column we also show the maximum
single-precision error observed. Compared with the previous two examples, the
recurrence relation is now remarkably stable.

Table 3.3. Stability of the recurrence relation
for Fejér's measure.

N Qy vy maxerr
20 1.098(2) 2 9.234(~-12)
40 1.465(3) 2 2.148(~10)
80 2.958{4) 3 5.554(—9
160 8.094(4) 21 3.636(—8)

4. Discrete orthogonal polynomials are an important tool in least squares curve
fitting. In this context, a common procedure to generate the required recursion
coeflicients consists in combining the recurrence relation (2.1) with the well-known
formulae

Zl\‘:; H wvxvnf(xv)

o = , k=0,1,..,.N~ 1,
¢ Z]vv=1 C!)‘,TC,%(JC‘,)
4.1) N
Z]fmg wvng(xv)
= . Bi= , k=12,..,N—-1
ﬁO vgl o ﬁk i\; 1 wvnf - l(xv)

Since ny, = 1, one begins by using (4.1) with k = 0 to compute o, f¢. Then (2.1) is
used withk = 0andx = x,, v=1,2,..., N,to generate all quantities n,{x,) needed
tocompute a,, f from (4.1). Returning to (2. 1) with k = 1 then yields (for x = x,)the
quantities m,(x,), which in turn allow us to compute «,, f,, etc. In this way, all
coefficients oy, B,k = 0,1,..., N — 1, can be progressively computed, by alternating
between (4.1) and (2.1). We have attributed this algorithm to Sticltjes, and called it
Stieltjes’s procedure in [ 5]. The same procedure has been developed in the 1950’s by
various authors; see, e.g., Forsythe [2].

Since Stieltjes’s procedure relies substantially on the recurrence relation for
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discrete orthogonal polynomials, it will necessarily begin to deteriorate, once the
recurrence relation starts developing the ill effects of pseudostability. This can be
nicely illustrated with the discrete polynomials of Examples 3.1 and 3.2. Using
N = 40, 80, 160 and 320, we applied Stieltjes’s algorithm in single-precision arithme-
tic and compared the computed coefficients with the known ones in (3.3) and (3.5).
The respective relative errors (absolute errors, if o, = 0) are shown in Table 4.1 for
Example 3.1. (This is a shortened version of Table 4.1 in [7,§4].) The error growth is
not as dramatic as Figure 3.1 would suggest. The reason is that for x = x, near the
endpoints of [x,, xy] (where error growth is most severe), the values of the poly-
nomials 7, at x = x, appearingin (4.1), when k is large, are much smaller than further
inside the interval, so that their errors do not contribute as much to the sums in {4.1)
as the errors of the more significant terms. Still, there is substantial deterioration of
Stieltjes’s algorithm after some point (depending on N).! The analogous resuits for
Krawtchouk polynomials are shown in Table 4.2 (where err o, are relative errors).

Table 4.1. Accuracy of Stieltjes’s procedure for Example 3.1.

N k érr o4 err fi N k eIT 0% err B,

<35 <191(-13) <7.78(-13) 160 < 76 <298(—13) <761(—13)

37 6.93(—11) 3.55(— 10) 94  125(—4) 1.17(-3)
39 193(-7) 9.58(~7) 112 235(-3) 1.16(0)

80 <53  <204(—13) <692(—13) | 320 <106 <865(—13) <739(—13)
61 3.84(—7) 9.35(—7) 128 2.46(—6) 4.67(-6)
69 1.87(—1) 6.14(0) 150 L15(—3) 2.18(~2)

Table 4.2. Accuracy of Stieltjes’s procedure for Example 3.2.

N k erT 0 err By N k err o err By

0 <2 <571(—13) <583(—13) | 160 < 54 <800(—13) <129(—12)

31 3.27(—6) 3.38(—6) 63 496(—7) 5.81(=7)
36 9.63(—2) 5.07(0) 7 2.06(—1) 1.16(0)

80 <37  <275(—13) <7I1(—13) | 320 < 84  925(—13) <2.52(—12)
43 1.23(=7) 1.35(~7) 95  417(-7 5.26(—T)
49 2.41(—1) 3.61(~1) 106 2.00(—1) 6.42(~1)

For the Fejér measure, we compared single-precision results furnished by the
Stieltjes procedure with double-precision results produced by the Lanczos algo-
rithm. The maximum (absolute) error in the o’s and the maximum (relative) error in
the f’s are shown in Table 4.3. The results confirm the remarkable stability of
Stieltjes’s algorithm in this case.

! This has already been observed in [5, Example 4.1], but was incorrectly attributed to the ill-
conditioning of an underlying map, the map H, of Eq. (3.4)in [ 5]. (The discussion of the condition of H, in
[5,§3.1] is incomplete inasmuch it does not take into account the dependence of the polynomials , on
the abscissae t, and weights 4,.) 109
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Table 4.3. Accuracy of Stieltjes’s
procedure for Example 3.3.

N max err o max err f§
40 1.35(—13) 5.19(—13)
80 2.34(—-13) 1.80(-12)
160 5.21(—13) 3.14(—~12)
320 5.37(-13) 6.05(—12)

Stieltjes’s procedure becomes relevant also in connection with absolutely continu-
ous measures d4 if one adopts the following idea (cf. [, §2.2]). Approximate d4 by
a discrete measure dAy such that o (diy) — o,(dA) and B {diy) — Bi(dl) as N — o0,
for fixed k. The discretization dA = diy can often be accomplished by applying
a suitable N-point quadrature rule to the inner product associated with dA. (In this
connection, Example 3.3 suggests the use of Fejér’s quadrature rule as especially
appropriate.) Possible occurrences of pseudostability, in such applications, are
usually of no concern, since convergence is realized for a value of N that is
considerably larger than the maximum value of k for which the a,, B, are desired.
The onset of pseudostability is thereby avoided; see [6, §8] for a numerical illustra-
tion. The same is true in the curve fitting context, where the number of data points,
N, is usually much larger than the degree k of the least squares approximant.
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THE COMPUTATION OF SPECIAL

FUNCTIONS BY LINEAR
DIFFERENCE EQUATIONS-

WALTER GAUTSCHI

Department of Computer Sciences, Purdue
University, West Lafayette, IN 47907-1398 USA

Abstract The use of linear difference equations for the
computation of special functions is discussed, especially with
regard to numerical stability. The emphasis is on difference
equations of the first and second order. Phenomena of
instability and pseudostability are exhibited along with
numerical algorithms to deal with them.

1. INTRODUCTION

Difference equations are a popular means of computing special func-
tions and can indeed be quite effective if proper attention is given to
the possible occurrence of instabilities. A vast majority of special func-
tions in practical use satisfy linear difference equations, either of first
order, or, more often, homogeneous of order two. We shall restrict our-
selves, therefore, to linear first-order and homogeneous second-order
difference equations and want to show, largely by examples, how they
can be used to compute special functions that satisfy them. For sim-
plicity we consider only special functions of real variables, although
the techniques we shall discuss are applicable also to functions of com-
plex variables. Our intent is not to develop complete general-purpose
routines of computing special functions; for this, we refer to software

*Work supported in part by the National Science Foundation under grant DMS-
9305430.
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exhaustively referenced in [16]. Our aim is more modest: we merely
illustrate one particular approach toward computing special functions
— the one based on linear difference equations — which may typically
constitute part of a more comprehensive computational algorithm.

Readers interested in a more exhaustive treatment of numerical
aspects of difference equations, including linear equations of higher or-
der and nonlinear equations, may wish to consult Wimp’s monograph
[22].

2. DIFFERENCE EQUATIONS OF ORDER ONE

The gamma function, defined by Euler’s integral, is arguably one of the
most fundamental special functions. Not only is its occurrence perva-
sive in the theory of special functions, and crucial even in important
branches of physics, but it also has significantly partaken in the devel-
opment of many ideas in real and complex analysis. A masterly account
of Euler’s integral in historical perspective, from the time of Euler to
the present, can be found in the essay of P.J. Davis (3].

It seemns appropriate, therefore, to start, in §2.1, with the gamma
function and related functions and the very simple difference equations
satisfied by them. Not surprisingly, they are essentially unproblematic
(at least in the real domain), although in the case of the logarithm
of the gamma function, and to a lesser degree, the digamma function,
improper use of the equations can lead to numerical instabilities. In
§2.2 we then look at the incomplete gamma function and its difference
equation and discover a first instance of genuine numerical instabil-
ity. This will prompt us, in §2.3, to investigate more systematically
the numerical properties of general first-order difference equations and
to develop a simple theory of numerical stability and pseudostability
based on amplification factors. Equipped with this theory, we return in
82.4 to the examples involving the gamma function and, in §§2.5-2.7,
present additional examples illustrating different stability phenomena
and computational algorithms to deal with them.

2.1. The Gamma Function. The gamma function
[(a) = / ¥ etnm1dy (2.1)
0

was introduced by the young Euler (then 22 years of age) in response to
a letter of Christian Goldbach, who sought an analytic expression of a
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function interpolating the factorials when a is an integer, n! = I'(n +1),
n =0,1,.... It satisfies the identity

I'(a + 1) = al(a) (2.2)

for all positive a. This equation is certainly one of the most basic
difference equations in analysis. It may be appropriate, therefore, to
use it as the starting point in our discussion of numerical aspects of
linear difference equations.

The numerical properties of (2.2), at least for real a, are almost
self-evident, since the only operation involved is multiplication — a
numerically benign operation — regardless of whether (2.2) is applied
in forward or in backward direction. This is illustrated in Table 2.1,
where the column headed by “err{” shows relative errors in forward
recursion, and the one headed by “err|” those in backward recursion
initiated with exact starting values. Computations, here and in the
sequel, are done on a Sun SPARC station IPX in double precision
(machine precision eps ~ 1.1 x 107!%) and in quadruple precision to
ascertain errors. Numbers in parentheses are decimal exponents.

TABLE 2.1. Recurrence (forward and backward) for the gamma function

n err] I'(n+1) err|
2 0.0000( 0) 0.20000000000000( 1) 0.8882(-15)
40 0.6196(-16) 0.81591528324790( 48) 0.7335(-15)
)
)
)

80 0.3278(-15) 0.71569457046264(119) 0.1729(-15
120 0.4670(-15) 0.66895029134491(199) 0.9406(-17
160 0.4994(-15) 0.47147236359921(285) 0.6090(~16

If there is any problem with the difference equation (2.2), it is the
rapid growth of the solution itself, which on many computers quickly
leads to “overflow”. (In single precision, we could not have gone beyond
n = 34.) Working with the logarithm of the gamma function alleviates
this problem but introduces others. The difference equation indeed

becomes :
InT(a+1)=InIl(a) +Ina, (2.3)

which requires the evaluation of a logarithm, Ina, in each step, and is
thus considerably more expensive than (2.2). Also, multiplication has
been replaced by addition, which is a potentially dangerous operation.
It is benign when both terms to be added are of the same sign, which
is the case when a > 1 and the recursion (2.3) is applied in forward
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direction. If it is applied in the backward direction, the two terms are of
opposite sign and there is the potential danger of “cancellation errors”.
In the case of (2.3), this indeed can be a problem, as is seen in Table
2.2, which exhibits results in a format similar to the one in Table 2.1.
In the range 2 < n < 10° shown, the results of backward recursion,
while comparable to those in forward recursion over much of the range,
significantly deteriorate near the end of the recursion.

TABLE 2.2. Recurrence (forward and backward) for the logarithm of the
gamma function

n err] In I'(n + 1) err]

2 0.3346(-16) 0.69314718055995(0) 0.4562(-08)
20000 0.5066(-14) 0.17807562173720(6) 0.1275(-13)
40000 0.6129(-14) 0.38387160658183(6) 0.2211(-14)
60000 0.1238(-14) 0.60013241046210(6) 0.3806(-14)
80000 0.5321(-14) 0.82318911692301(6) 0.1644(-14)

100000 0.2973(-14) 0.10512992218991(7) 0.9343(-16)

Similar results are observed for the digamma function ¥(a) =

["(a)/T'(a), which satisfies

Wa+1) = b(a) + 1, (2.4)

again, like (2.2), an inexpensive recursion. Its numerical properties in
the terminal phase of backward recursion turn out to be rather more
favorable than those for the logarithm of the gamma function. The
reason for this will become apparent later in §2.4.

2.2. The Incomplete Gamma Function. We now make in (2.1)
what appears to be an innocuous change, extending the integration to
a finite positive limit z instead of infinity,

Y(a,z) = /0 e~tto-1d. (2.5)

This gives rise to (one form of) the incomplete gamma function. Inte-
gration by parts immediately yields the difference equation

v(e +1,z) = avy(a,z) —z%€"", a>0. (2.6)

When z — oo, it reduces to (2.2) as it should. One would expect,
therefore, that for large = the two difference equations (2.2) and (2.6)
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have similar numerical behavior. This is only partially true, however,
and less so the smaller z; see Table 2.3. What is happening is that

initially, for relatively small a = n, the recursion (2.6) does indeed

TABLE 2.3. Recurrence (forward and backward) for the incomplete
gamma function

n

errf

v(n +1,2)

err|

v(60)

z=20 0
10
20
30
40
50
60

z=15 0
10
20
30
40
50

z=10 0
10
20
30
40

z=1 0
10
20

0.4129(-16)
0.2073(-15)
0.7525(-15)
0.2381(-13)
0.1256(~10)
0.6616(- 7)
0.2319(- 2)

0.2749(~16)
0.1689(-15)
0.4382(-14)
0.1818(-11)
0.1531(- 7)
0.1357(- 2)

0.5891(-17)
0.6166(-15)
0.1616(-12)
0.3215(- 8)
0.1444(- 2)

0.1966(-16)
0.3362(- 8)
0.4479( 4)

0.99999999793885( 0)
0.35895664347218( 7)
0.10726845372436(19)
0.35741977445572(31)
0.20745721643958(44)
0.14686167183265(57)
0.11461624033194(70)

0.99999969409768( 0)
0.31989163434435(07)
0.20186009363578(18)
0.52337877233360(29)
0.19120505355427(41)
0.80383949798391(52)

0.99995460007024( 0)
0.15130653544997( 7)
0.38640825537424(16)
0.21177243656947(26)
0.14501602968492(36)

0.63212055882856( 0)
0.36461334624107(-1)
0.18350467697256(1)

0.1808(-15)
0.1819(-15)
0.8274(-16)
0.2469(~16)
0.6625(~16)
0.2385(~16)
0.1543(-16)

0.8353(~16)
0.2329(-16)
0.5648(~16)
0.8649(-16)
0.3119(~17)
0.6448(~16)

0.2279(-15)
0.1103(-17)
0.6301(-16)
0.8637(~17)
0.1870(-16)

0.1966(~16)
0.4260(~16)
0.4673(-17)

87

83

79

70

behave like the one in (2.2), but from some n on, the results begin
to deteriorate and eventually become completely meaningless. While
the critical changeover point increases with increasing z, it cannot be
avoided and will eventually be surpassed (unless overflow comes to the
rescue!). On the other hand, if we recur in the backward direction,
taking an arbitrary 0 as the initial value at the integer v(60) shown in
the last column, we obtain all answers for 0 < n < 60 accurately to full
machine precision. Clearly, this calls for analysis!
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2.3. Numerical Stability of First-order Difference Equations;
Amplification Factors. Much insight is provided into the numerical
behavior of difference equations by analyzing the effect of a small (rela-
tive) error at some starting value n = s upon a terminal value at n = ¢.
This is easily done, for a general first-order difference equation

Yn = @n¥n-1 + o, n=1,2,3,...5 a,#0. (2.7)

Indeed, if {f.} is the desired solution, the general solution is known
to be y, = fn + ch,, where {h,} is the solution of the homogeneous
equation, :
hn =anhn_y, n=1,23,...; ho=1, (2.8)

and ¢ an arbitrary constant. The latter is uniquely determined by
¥s = fs(1 + ¢€) and yields y, = f, (1 + %ﬁa), provided f; # 0. Thus,
a relative error € at n = s gives rise to a relative error %f:fs at n ={,
assuming exact arithmetic (except for the initial error). Here, ¢ can be
larger or smaller than s, the former case relating to forward recursion,
the latter to backward recursion. With ¢; denoting the relative error
induced at n = ¢ by a relative error €, at n = s, we have

e=2e,, (2.9)

S

wheref
pn = thn
=
This suggests defining amplification factors

hp = ann-1---ag (ag=1). (2.10)

i (2.11)
Ps

Wyt =

for the recursion from s to ¢, which measure the amplification of error
involved. Clearly, w,—., = 1 and w;.; = 1/w,_;. The behavior of the
quantities |pn| = wo—n in (2.10) completely determines the numerical
stability of the recursion (2.7). If, for example, |p,| increases monoton-
ically in the range ng < n < ny, then for any s,¢ in this range, ws_.; > 1
ift > s, and ws_; < 1 if £ < s, which means that in forward recursion,
errors are consistently enlarged, whereas in backward recursion, they
are consistently diminished.

tHere, fo is included merely for the purpose of normalization and could, in fact
must (if fo = 0), be omitted.
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The following definition is thus immediate.
Definition 2.1. The difference equation (2.7) is said to be unstable for
computing the solution {f,} (in forward direction) if

lim {p,| = oco. (2.12)

n—+00

Technically speaking, we may call (2.7) stable if
sup |pn] = C < o0. (2.13)

n>0
In practice, however, stability in this sense may be misleading. It could
well be that (2.13) holds with a constant C' which is very large (many
decimal orders in magnitude, for example). In this case, initial errors
will be magnified by many orders of magnitude, which may completely
distort the terminal values. We then speak of pseudostability.

It is interesting to note that in the case of instability, we can
compute fy for any fixed N, in principle, as accurately as we wish
by starting the recurrence at some sufficiently large n = v > N, with
¥, = 0, and recurring from n = v down to n = N:

1
Yno1 = a—(yn—bn), n=vv—L...,N+1; y =0 (2.14)

Then the initial (relative) error is ¢, = 1, and (2.9) tells us that

en = 2N (2.15)
Py
To obtain fu to a relative error ¢, it thus suffices to take v so large that
len/p.| < €. However, this is foolproof only if |p,| increases monotoni-
cally for n > N. Then all rounding errors introduced in the course of
the recursion are consistently attenuated in downward direction. If, on
the other hand, |p,| decreases significantly for n > N before turning
around and tending to co as n — oo, then in the terminal phase of
backward recursion, rounding errors could be significantly amplified.
Whether this is tolerable or not depends on several factors: first on
the magnitude of the quantity R = Ns<up |p¢/ps|, secondly on the accu-
t<s

racy desired, and finally on the machine precision eps used. If R - eps
is still within the relative accuracy desired, then backward recursion
as in (2.14) is permissible; otherwise, it is not. Examples illustrating
these matters as well as phenomena of pseudostability will be given in
§52.5-2.7.
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2.4. The Gamma and Incomplete Gamma Function Revisited.
We now re-examine the numerical examples of §§2.1-2.2 in the light of
what we learned in §2.3. .

Since the difference equation (2.2) for the gamma function is
homogeneous, the associated amplification factors (2.10) are simply
pn = 1, and there is neither amplification nor attenuation of errors.
The recursion is entirely stable in either direction. The results in Table
2.1 attest to that.

For the logarithm of the gamma function, the difference equation
(2.3) with @ = n (and n > 2 to avoid zero initial values) has

In 2 In 2

= ~ . 2.1
In(n+1) nlnn’ nmee (2.16)

Pr

Here, p,, decreases monotonically, so errors are damped out in forward
recursion. There are, nevertheless, rounding errors, which, if randomly
distributed, can be expected, after n steps, to amount to about /n
times the machine precision. For n = 10°, this is about 7 x 1074,
Yet, the relative error in Table 2.2 for n = 10° is seen to be only
3 x 1078, which is more than a decimal order smaller; evidently, this
1s the result of consistent error damping. In contrast, for backward
recursion from n = 10° down to 2, one expects an amplification of the

initial error by the amount of — = 2 x 10°, whereas the amplification

observed in Table 2.2 is abou€ 5 x 107, again more than a decimal
order larger. This time, the discrepancy is due to all intermediate
rounding errors being consistently amplified. Note, however, that going
from s = 10° to ¢ = 2 x 10*, there is hardly any amplification, since
pt/ps =~ 6, and the observed mild deterioration of accuracy is entirely
due to rounding errors. On the other hand, when s = 2x10* and ¢t = 2,
then p;/p, = 3 x 10°, and one loses about five orders of accuracy, as
confirmed in Table 2.2.

For the digamma function ¥(n + 1), one obtains from (2.4) that

: v v

Pn = Y(n+1) " T (217)
where v is Euler’s constant v = .5772... . This still decreases mono-
tonically with n, but at a much slower rate. Accordingly, also the error
growth in backward recursion is much less than before. One finds, in-
deed, that in place of the error .4562 x 1078 in the last column of Table
2.2, one now has only .8058 x 10~13.
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‘8 ¥ T T T T T
x=1 x=5 x=10 x=15 x=20
16 :

14}

12|

log rho

70

FIGURE 2.1. Amplification factors wo_., = pn for the incomplete gamma
function (on a logarithmic scale)

To explain the results of Table 2.3 for the incomplete gamma
function, it is useful to plot

(1 —e *)n!

= , n=0,1,2,...,
y(n+1,z)

Pn
as a function of n for various (positive) values of z. This is shown in
Figure 2.1. It is evident (and can easily be proved from the recurrence
relation (2.6)) that p, increases monotonically for every z. Figure 2.1
also shows the rate of growth increasing for decreasing z. This explains
the more rapid loss of accuracy as one goes down in Table 2.3 from larger
to smaller values of . This type of behavior of p, makes the difference

equation (2.6) ideally suited for backward recursion a la (2.14), at least
when z is not excessively large.

2.5. The Remainders of the Exponential Series. A more ele-
mentary example, similar in its numerical behavior to the incomplete
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gamma function, is provided by

2 n

ra(z) = nlfe® — en(z)], en(z) =142+ -’;T ot % (2.18)

the scaled remainders of the exponential series. One easily verifies that
{r.} is a solution of the difference equation

n

Yo =NYpy — ", n=1,23,.... (2.19)

log rho

10 20 30 40 50 60 70 80 90

FIGURE 2.2. Amplification factors |p,| for the remainders of the
exponential series, when z < 0 (on a logarithmic scale)

Since h, = n! is the solution of the associated homogeneous equation,
one obtains from (2.10)
e —1

g (2.20)

Pn =

As n — oo, the denominator tends to zero, so that |p,| — oo, show-
ing that (2.19) is unstable for computing {r,}. In fact, for z > 0,
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we have monotonic growth of p,, just as in the case of the incomplete
gamma function. When z < 0, the situation becomes a bit more com-
plicated. The amplification factors (2.20) then behave in modulus as
shown in Figure 2.2. There is a significant downward dip of |p,| (note
the logarithmic scale of the vertical axis!) before its journey to infin-
ity. Backward recursion therefore loses accuracy in its final stage, as
explained at the end of §2.3. Since the minimum of |p,| is attained at
n = |z|, the remedy is rather simple: recur forward for all n < |z|,
and backward otherwise. In this way one always enjoys a regime of
consistent error damping.

The following two examples involve phenomena of pseudostabil-

ity.
2.6. Successive Derivatives of e*/z. The nth derivative d,(z) =
‘ﬁ";( e’ /z) satisfies the difference equation

1
Yn =~ (—nyn1 +€%), n=12.3,..., (2.21)

which is most easily obtained by applying Leibniz’s rule of differenti-

ation to the product z - e*/z = e*. The corresponding homogeneous

equation has the solution A, = (—1)"nlz™", which, combined with the
|

identity d,(z) = (-1)* i

" +1
factors

e“e,(—z), gives rise to the amplification

1
en(—2)

with e,(-) as defined in (2.18). For r < 0, therefore, p, decreases
monotonically to e ! as n — oc, and forward recursion is completely
satisfactory. When z > 0, the behavior of |p,| is rather bizarre, as
indicated in Figure 2.3. It is clear for one thing that p, — € as
n — oo, so that the difference equation (2.21) is stable for d,, but
pseudostable if z > 0 is large. What is striking is the abruptness with
which the limit is attained. An explanation is provided by the identity

(2.22)

Pn =

n! ! n_xt
g R (2.23)

d — __1 n
(@) = (-1)" -
in which, for large £ > 0, the first term or the second term is dominant
depending on whether n is relatively large or not. As long as the
integral dominates, it varies slowly with n so that |p.| = |dohn/dn]
is approximately proportional to |h,| = nlz™™. As soon as the first
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term becomes dominant — and this happens rather quickly — then p,
becomes practically constant equal to €.

T T T T T T T T

10 - x=20 4

log rho

10 20 30 40 50 60 70 80 90

FIGURE 2.3. Amplification factors for the derivatives of e*/z, z > 0 (on a
logarithmic scale)

This last observation also provides a clue as to an appropriate
method to calculate d,(z) accurately when z > 0. Figure 2.3 suggests
that for n > = backward recursion is indicated. But we cannot start
with an arbitrary zero initial values for n = v sufficiently large, as in
(2.14), since p, does not tend to co. Instead, we have to start with an
accurate starting value d,. From the discussion above it is clear that
an appropriate choice is d,(z) ~ (—1)"v!/z"*'. It is possible, indeed,
to estimate precisely how large v must be taken for this approximation
to ensure any prescribed relative accuracy (cf. [13]).

2.7. Exponential Integrals. The exponential integrals, defined by
En(z) = / TeTndt, x>0, (2.24)
1

are important in many physical applications, such as transport theory
and radiative transfer. For negative integer values of n they are known
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as molecular integrals in quantum chemistry and are in fact equal to

(=1)"djny(z) (cf. §2.6). Here we consider positive integer values of n

only, although the discussion extends easily to arbitrary positive n.
Integration by parts shows that f, = E,;i(z) satisfies

o= S (e F—azyay), n=1,23,.... (2.25)
n

For the corresponding amplification factors

z"E\(z)

= — = 2,... .
Pn W (2)’ n=012,..., (2.26)

one finds that, when p; < 1, i.e.,z < .61006.. .., they are monotonically
decreasing from 1 to 0, making the recursion (2.25) particularly effec-
tive for the computation of f,. This, of course, requires fo = E)(z),
which for such small values of z, however, is easily calculated by Taylor
expansion. For larger values of z, the p, initially increase to some

10 T T T T T T T

log rho

x=1 x=5 x=10 x=15 x=20

FIGURE 2.4. Amplification factors for exponential integrals (on a
logarithmic scale)
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maximum value (which can be significantly large) before turning around
and decreasing monotonically to zero; cf. Figure 2.4. Clearly, |p,| is
uniformly bounded for each fixed £ > 0, and (2.25) thus stable for
computing f, = E,11(z); but for large = the extremely large value
of mr?x‘pnl renders (2.25) pseudostable. Since this maximum occurs

near z, the proper procedure of computing f, = FE,(z) is to recur
backward from n; = (z) (the integer closest to z) down ton, if n < n,,
and to recur forward from n; to n, if n > n,. In this way one again
enjoys the benefit of consistent error attenuation. The starting value
En, +1(z) can be computed effectively from a continued fraction. This
indeed is a procedure used as early as 1960 by G.F. Miller {17, pp. 4-5]
and also adopted in our algorithm? [7].

3. DIFFERENCE EQUATIONS OF ORDER TWO

A great majority of special functions satisfy difference equations of
the second order, and they are often linear and homogeneous. It is of
interest, therefore, to consider the class of linear homogeneous difference
equations of order two,

Ynt1 + QnlYn + bnyn—l =0, n=1,23,. <o bn # 0, (31)

where the coefficients a,, b, may typically depend on additional param-
eters. The numerical characteristics of (3.1) can be described, similarly
as in §2.3, in terms of amplification factors, but there are now two
starting values that need to be considered and studied as to their effect
on terminal values of the solution. This will be discussed in §3.1. The
phenomenon of instability will be seen in §3.2 to be tied to the presence
of a minimal solution of (3.1), which in turn can be characterized in
terms of the convergence of a continued fraction. This leads to use-
ful computational algorithms. Some representative examples will be
discussed in §3.3, involving Bessel functions, Coulomb wave functions,
and repeated integrals of the coerror function. Another vast area in
which difference equations of the type (3.1) play a fundamental role are

YIf n < ny, we could use the continued fraction to compute Eny (z) directly
and dispense with the backward recurrence from n; to n. This is accomplished by
inserting the statement “if nl > nmaz then nl := nmaz;” immediately after the
statement “nl := entier(z+.5);" on p. 763 of {7], and accordingly delete the clause
“if nl < nmaz then” (but not the assignment statement following it!) in the two
occurrences near the end of the algorithm.
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orthogonal polynomials. Here, as shown in §3.4.1, minimal solutions
occur when the variable is outside the interval of orthogonality, which
is a case of interest, for example, in the study of Gaussian quadrature
remainders for analytic functions. Finally, a phenomenon of pseudosta-
bility is shown in §3.4.2 to arise in connection with discrete orthogonal
polynomials.

3.1. Numerical Stability of Second-order Difference Equa-
‘tions; Amplification Factors. Suppose that {f.} is the solution
of (3.1) to be computed. For simplicity assume that f, # 0 for all n,
so we can talk about relative errors. Let {g,} be an arbitrary second
solution of (3.1), linearly independent of {f.}, and assume go # 0. In
analogy to the discussion in §2.3, we consider the problem of error prop-
agation: given that relative errors €, and €,4; are committed at some
starting indices n = s and n = s+ 1, what is the resulting relative error
‘at the “terminal” index n = t? The problem amounts to identifying
the solution {y,} of (3.1) satisfying

Ys = fs(’l + 53), Yst1 = fs+1(1 + €s+1)’ (3~2)

and comparing y, with f;. This is an elementary exercise in the theory
of linear difference equations. We know that the general solution of
(3.1) is a linear combination of two linearly independent solutions, say,
Yn = €1 fantc2gn. The two conditions (3.2) then serve to fix the constants
¢ and ¢;, and hence the solution {y,}, which can then be compared
at n =t with f;. The result is conveniently expressed in terms of the
quantities

. ngn

n = ) 'n=0,1,2,..., 3.3
P gOfn ( )
in the form
y: — ft _ (Ps41 — Pe)Es — (ps = pt)Est1 ‘ (3.4)
ft Ps+1 — Ps

This suggests to define amplification factors as follows:

w ¢ 1= lps+1 _ptl + lps _ptl (3 5)
|/’a+l —PSI

$The factor fo/go is included in (3.3) solely for aesthetic reasons, namely to
make pg = 1. It is not essential, however, and could be removed from the subse-
quent expressions in (3.4) and (3.5) by dividing it out, both in the numerator and
denominator. This must be done if go = 0. Also, if f; = 0, the expressions in (3.4),
(3.5) must be similarly modified.
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They tell us the amount by which initial (relative) errors €,, €541 at
n = s, n = s+1, are amplified at n = ¢t. Obviously, ws—, = Wss41 = L.
Also, the quantity w,_.;, having an intrinsic meaning, does not depend
on the choice of {g,} in (3.3), so long as {g,} is linearly independent
of {fn}.

If for fixed s we have that w,_., tends to infinity as ¢t — oo,
then forward recursion is unstable for computing {f.}. This happens
precisely if |p,| — 00 as n — oo. Thus:

Definition 3.1. The difference equation (3.1) is said to be unstable for
computing {f.} (in forward direction) if

lim |p,| = o0, (3.6)

n—00

where p, is defined by (3.3). The difference equation is called stable if

sup jpn] =C < 00. (3.7)
n>0

Again, we must be prepared to deal with pseudostability, i.e.,
with the case in which the constant C in (3.7) is unacceptably large
(though finite).

It is worth observing that if one puts £54; = —1, which in view
of (3.2) means y,4+1 = 0, then as a consequence of (3.4) one gets

1 — £
fove _ g T (38)
Yo Ps+1

independently of the error €, Thus, in the case of instability, since
Psy1 — 00 as s — 00, if we recur backward, starting from some suffi-
ciently large n = s with starting values y, = 1, y,41 = 0, the quantity
on the left of (3.8) approximates f; arbitrarily well for any fixed ¢t. This
is the basis of J.C.P. Miller’s backward recurrence algorithm (cf. §3.2).

In contrast to first-order equations, we may now also consider
boundary value problems. Thus, we may be given the values of {f.}
at n = 0 and n = N and are to obtain the intermediate values f, for
1 <n < N —1. We are then interested in the relative errors in these
intermediate values caused by relative errors €y, €y in the boundary
values. An analysis similar to the one above will show that in this
context,

Yn — fn _ (pN = pn)éo + (pn — )N , (3.9)
fn pn —1
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with the p’s defined as before by (3.3). The appropriate error amplifi-
cation measure is now

. orgr%,(lmv = pnl + |pn — 1{) (3.10)
o low — 1] ' '

In effect, we are dealing here with the solution of a system of
linear equations in the unknowns y,y,,...,yn-1 having a tridiagonal

coefficient matrix A € RIV-UX(N-1) and special right-hand vector b €
RN—'I’ '

[ a; ]. 0 ] [ ——blfg ]
b a; 1 0
A = ¢ * N s b = M
by_2 an_2 1 0

| O bv-1 an-1 | | —fv ]

The quantity (3.10), in a sense, is the condition number for this special
linear system. It may well be that the difference equation (3.1) is
unstable for initial value problems (i.e., py — 00 as N — o00), but
stable for boundary value problems (i.e., wo.y only moderately larger
than 1, or even equal to 1). This i1s particularly evident if we are
interested only in relative errors (3.9) for 0 < n < ng, with ng < N
fixed, and accordingly consider

max (|pn = pa| + |pn — 1)
W 1= SDST0 . (3.100)
ol lon — 1]

Then indeed wp.py.y — 1 as N — oo.

3.2. Minimal Solutions and Continued Fractions; Backward
Recurrence Algorithm. Instability, by definition (3.6) and (3.3),
means that the solution {f,} of (3.1) has the property that

lim fn = (3.11)
n—+0oo gn
for some solution {g,} linearly independent of f,. It is easily seen that
(3.11) then holds for any linearly independent solution g, of (3.1). A
solution {f,} which has this property is called a minimal solution of
(3.1). A minimal solution is determined, if it exists, up to a constant
factor; in other words, the set of minimal solutions, if not empty, is
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a one-dimensional subspace of the linear space of all solutions. To
determine {f.} uniquely thus requires one condition, not two, as for
other solutions. \

To remove the arbitrary factor inherent in a minimal solution,
it is natural to consider ratios

r,,:f-}i‘-, n=012.... (3.12)

From the difference equation (3.1), dividing it by f,, one then immedi-
ately obtains

by,
Th + an + =0,
r

hence

Tp-1 = .
a, + 1y

Iterating this equation indefinitely yields formally the continued frac-

tion . ;
P fn — " Yn n+1 n+2 (313)
fn—l An— Qp41— Aniy2—
For n = 1, in particular,
—by by b
fo_zb b b (3.13,)

fO B a;— Q2— az—

A result of Pincherle now tells us that the continued fraction on the
right of (3.13;) converges precisely if (3.1) has a minimal solution {f.},
and the limit then is expressible in terms of it by the left-hand side of
(3.13,). More precisely, we have

Theorem 3.1 ([21, Ch. 111, §15]). The continued fraction on the right
of (3.13,) converges if and only if the difference equation (3.1) possesses

a minimal solution {f,} with fo # 0. In case of convergence, moreover,
(3.13) holds for each n =1,2,3,..., provided f, # 0 for all n.

For a proof, see, e.g., [5, p. 31].

To compute a minimal solution {f,} of (3.1), it would be un-
reasonable to employ (3.1) in forward direction. Not only would this
require two starting values (whereas one would be enough to identify
it), but also unavoidable rounding errors would activate other solutions
of the equation, which by their dominance (cf. (3.6)) would eventually
completely overshadow the desired solution. Theorem 3.1 provides a
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more natural means of computation. Suppose, indeed, that the minimal
solution is specified by a general linear condition of the form

Y Anfm=5, s#0, (3.14)
m=0

where A, and s are known, and the series is known to converge. (A
special case of (3.14) is A\ = 1, A, = 0 for m > 0, which specifies
fo = s.) Assume, moreover, that we want to compute f, for n =
0,1,2,...,N. Define r,, as in (3.12) and s, by

1 o o]
Sp = — Z Amfm - (3.15)
" m=n+l '
Then, if r, and s, were known for some v > N, we could proceed as
follows:

—b,
Tp—-1 =
" Gn t Tn n=v,v—1,...,1,
Sp-1 = rn—-l(An + Sn) (3'16)
S
= vy Jn = Tn-1Jn-1, :1127"'aN'
fo o + 50 fo=raoifa1, n

These formulae follow easily from the definition of r, and s, in (3.12)
and (3.15), respectively. It turns out that choosing r, = 0, s, = 0
in (3.16) yields a viable algorithm for computing the minimal solution

{fa}:
Theorem 3.2 ([5, p. 39]). If (3.1) has a nonvanishing minimal so-
lution {f,} satisfying (3.14), and rf:i)l, sfz"_)l, ) are the quantities
generated in (3.16) using r, = s, = 0, then

lim f®=f, n=0,12,...,N, (3.17)

if and only if
lim Jztt Y Angm =0 (3.18)

y—o0 gl/+1 m=0

for some solution {g,} of (3.1) linearly independent of {f.}.

The speed of convergence in (3.17) is determined by the speed
of convergence in (3.18) and by how fast the infinite series in (3.14)
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converges (cf. [5, Eq. (3.15)]). If only a finite number of the A,, are
nonzero, then (3.18) follows trivially from (3.6).

An alternative interpretation of the algorithm in Theorem 3.2 is
in terms of the solution {y{")} of (3.1) defined by

Yo = 1, Yv41 = O (l/ > N) (3‘19)
It can be shown, indeed, that ([5, p. 38])

fr(p,u) = —T'S_‘-*— y':(v,‘,)a Tle, 1)21"'7N‘ (3’20)
Amy®)
2,

In other words, {f{)} is the solution {y{’)} of (3.1) obtained by back-
ward recursion, using the starting values (3.19), “normalized” by the
factor s/ % _o Amy!¥). In this form, the algorithm is called Miller’s
backward recurrence algorithm. It was first proposed by J.C.P. Miller
as a means of computing Bessel functions [1, p. xvii] and has since
found applications to many other special functions. Nevertheless, the
quantities y{) generated in this algorithm can become quite large and
on many computers may produce “overflow”. No such problems are
present in the “continued fraction algorithm” (3.16).

While the algorithm (3.16) is based on backward recurrence (cf.
(3.5) with s = v and ¢ = n), there are also algorithms based on bound-
ary value techniques (cf. (3.10)). The best known is Olver’s algorithm
(18], [20], [8, §2.2.2(iv)]), which has a built-in feature of estimating an
appropriate value of v to ensure any prescribed accuracy. Realistic er-
ror bounds for difference equations of oscillatory and monotone type are
provided in [19]. All known recurrence algorithms can be interpreted
and unified in terms of triangular matrix factorization and numerical
linear algebra techniques; for this, and also for extensions to systems
of difference equations, see [2].

3.3. Examples. We begin with the example of Bessel functions, which
gave rise to Miller’s algorithmY.

Ezample 3.1. Bessel functions J,(z),n =0,1,2,...; z > 0.
The difference equation here is

2n
Ynt1 — — Yn + Yn =0, n=123,.... (3.21)

TAs pointed out in {5, p. 46], the idea of backward recurrence in connection with
spherical Bessel functions can be traced back at least to Lord Rayleigh (1910).
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The Bessel functions of the first kind, {J.(z)}, are a minimal solution, a
second solution being {Y,(z)}, the Bessel functions of the second kind.
Their dominance is rather pronounced, since

Y. (z) 2n\ 2"
T~ (;) . n o oo, (3.22)

but starts “taking hold” only once n exceeds z. For extremely large
values of z, backward recurrence thus will become expensive, and other
techniques may be more appropriate. (For modified Bessel functions
I.(z), there is an alternative continued fraction due to Perron, which
is particularly effective to calculate r, = I,4,(z)/I,(z) when z is very
large; see [14]).

There are many infinite series in the Bessel functions J, that can
be used for normalization. One that was found particularly convenient,
for real z > 0, is

Jo(z) +2 fj Jam(z) = L.

m=1
The algorithm (3.16) then becomes (we write r,_; instead of rf:’_)l, etc.)
z

ry = 01 Th-1 =

2n — zry n=v,v—1,...,1,

Sy =0, Sp_y = Fao1[l + (=1)" + s4]
1

fO: 1+80,

fnzrn—lfn-l, nzl,z,--.,N.
(3.23)

For Bessel functions with integer order, it may actually be more
efficient to simply evaluate ry from the continued fraction (3.13), use
the recursion in the first line of (3.23) to obtain the ratios r,_; for
n = N,N —1,...,1, compute fo = Jo(z) from some known ratio-
nal approximation, and finally use the last relation in (3.23) to obtain
fa = Jul(z) for n = 1,2,..., N. The technique outlined above is more
important for Bessel functions Jy4n, 0 < @ < 1, of arbitrary positive
orders, or for Bessel functions of real order and complex argument. In

either case, appropriate series are again available for normalization (see,
e.g., 5, Egs. (5.9) and (5.7)]). '

Ezample 3.2. Coulomb wave functions Fi(n,p), L =0,1,2,....
Coulomb wave functions, of interest in the study of nuclear inter-
actions between charged particles in a Coulomb field, behave in many
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ways similarly to Bessel functions. Corresponding to Bessel functions of
the first and second kind, there are now the so-called regular and irreg-
ular Coulomb wave functions, denoted by Fi(n, p) and GL(n, p), respec-
tively. Here, L is a nonnegative integer, the orbital angular-momentum
quantum number of the particle, 7 a real nonzero parameter depend-
ing on the relative charges, and p > 0 a scaled radial distance. Both
functions satisfy the difference equation

LUL + 1) + 792y — (2L + 1) {n ' —Li’iiﬁ] v

P (3.24)
HL+ DL+ 9%y, =0, L=123,...,
with {FL(%,p)} being the minimal solution, and
Gu(n,p) : (QL)2L“
— 2~ 28t — , L — oo. 3.25
Fi(n,p) ep (3:29)

Compare (3.25) with (3.22) to see the analogy with Bessel functions.
For computational purposes, it is more convenient to deal with

2L L

= BDCun) F(n, p), (3.26)

fu

where -
2Le=™/2|T(L + 1 + in)|
(2L + 1)} ’

The factors introduced in (3.26) are easily computed, since

2 1/2 I2 4 n2)1/2
Co(n) = (ez,,:?_ 1) , Culn) = (—m%cf,-l(n), L=1,23,....

L=0,12,....

Cr(n) =

In effect this removes square roots from the difference equation (3.24),
which now (for fi) assumes the form

LI(L + 1)*> + 77 . [ +L(L+1)}yL L(L+1)

L+ D@L+3) ¥+~ a1 Y1 =0

(3.27)
‘The choice of an appropriate infinite series (3.14) for (3.26) is a
rather delicate matter and depends on the value of
£
Ui

T =
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For reasons explained in [5, pp. 64-65], we are led to use

SoAfr=pe,  Ap=itPIT (—iw), (3.28)
L=0 .
where P,(f"‘—i")(z) is the Jacobi polynomial of degree L with imaginary
parameters a = i, f = —in, and w is defined by
2—"; if r>1,
1
w = E—[?{'*—2COS_I\/F+2\/T(1 —-r)] if 0<7<1,
0if 7<0.

As 7 increases from 0 to oo, the function w decreases from oo to 0,
hence is positive for all 7 > 0.

Equally intriguing as the choice of (3.28) for the normalizing
series is the computation of its coefficients A;. From the three-term
recurrence relation for Jacobi polynomials, they can be seen to satisfy
the difference equation

2L +1 L+ 9%
— —_—— Ay = =1.2 ... 2
/\L+l Lyl WAL L(L+ 1) L-1 0, L 1, a3v ’ (3 9)
with initial values
=1 M=w-1. (3.30)

(In particular, the Ay are all real.) Moreover, it can be shown that
{AL} is not a minimal solution of (3.29). It would appear, therefore,
that forward recurrence in (3.29), with starting values (3.30), is the
method of choice. Curiously, this is only conditionally true, namely
only when 5 > 0 is not too large. (Note that for < 0 we have w = 0,
in which case (3.29), (3.30) pose no computational problems.) The
difference equation (3.29) actually does have a minimal solution, A7,
which, when normalized by \j = 1, satisfies

)\0=/\:), /\1—/\’1—*0&87]—*00.

Therefore, for 7 large enough, the initial values Ag and A; of {A.} are
indistinguishable (in machine arithmetic) from those of the minimal
solution {A}}, in spite of Ay going to +o0o and A} to 0 as L — oo.
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Forward recurrence in (3.29), therefore, is doomed to fail when 7 is
large!

v A way out of this dilemma is to define {A}} as the solution of
(3.29) with initial values

Ao =—A, Al=1
(“orthogonal” to those of {\}), and to observe that

Ap =X + L+ M), (3.31)

— s (
14 A2
where

e= A — A (3.32)

When ¢ is small, the relation (3.31) shows that A initially behaves
like the minimal solution {A}} but starts deviating from it once the
dominance of A] begins to outweigh the smallness of €. The trick now
is to compute € nat by (3.32) (which would cause large cancellation
- errors), but explicitly by (cf. [6, Eq. (3.5)])

€= 2 é = tan™! (:1)- (w > 0). (3.33)

T oee —1°

Then the computation of Ay, from (3.31) (using our continued fraction
algorithm for ), ) is completely stable, and we are ready to apply the
algorithm of Theorem 3.2 to the difference equation (3.27) and normal-
izing series (3.28).

Ezample 3.3. Repeated integrals of the coerror function i* erfcz, n =
-1,0,1,2,...;z > 0.
These are defined by

-1 2 2 o -1
1 erfcc=—=¢€e"", 1 erfcx:/ i"erfctdt, n=0,1,2,... .
xz

N

Let _
fa=i"lerfcz, n=0,1,2,....

Then {f.} is a solution of the difference equation

1
Ynt1 + z Yn = 5= Y1 = 0, n=123,.... (334)
n 2n '

A second solution is given by

g = (=" "7 erfe(—2z),
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and since, for any fixed z (real or complex),

_1,2
e 2%

(cf. [4, Eq. (3.5)]), one finds that for z > 0

1" erfcz =

_1\n+1 Int1 ih erfc(—x) ~ 2V2nz 6
(-1) fo = ez e , ™ — 00, (3.36)

showing that {f,} is a minimal solution of (3.34). In this case, no
normalizing series (3.14) is required, since we know fy = % e™* and
we can take A\g = 1, A,, =0 for m > 0, and s = fo in the algorithm of
Theorem 3.2 (i.e., all su_ = 0).

It can be shown that ([4, §4])

i1 erfe(—z)

il erfcz

lonl = , n=0,1,2,..., (3.37)

is monotonically increasing for any fixed z > 0. Moreover, from (3.8)
(with s = v, t = n) and (3.20), we see that the approximations f{*)
produced by the algorithm (3.16) have relative errors

fy(xu)—fn — 1 —pn
fn Pu-{-l_l,

n=0,1,...,N+1,

so that, up to an additive term of O(p}?,),

f(v) — fa
fn

To guarantee a relative error € for all f(*),0 <n < N 41, it sufﬁces
therefore, to choose v such that

1+ |on] < 1+ ‘PN+1' < 2|pn 1] _
[Pu+1 ‘ |Pu+1 ! |Pu+1 !

2]PN+1|
<e. 3.38
Toonl S (3.38)

Assuming N (and hence v) large enough for the O-term in (3.35) to be
negligible, we obtain from (3.38) and (3.37)

—2\/2—11:: €
A 262\/—
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that 1s,

In!+42v2Nz +In2\’
v > £ .
- 2\/533

Since the dominance of the second solution g,, by (3.36), be-
comes weaker as = decreases, one may get away with forward recursion
for z sufficiently small and N not too large. This can be carefully ana-
lyzed and implemented in a general-purpose procedure to compute f,,
or a suitably normalized version of f, that avoids over- or underflow as
much as possible (cf. [9, 10]).

3.4. Orthogonal Polynomials. An important source of linear second-
order difference equations are orthogonal polynomials relative to some
(nonnegative) mass distribution do supported on a finite or infinite in-
terval, or on a finite set of points on the real line. In the former case,
if all moments

mnzjxnda(a:), n=20,1,2,...,
R

exist and are finite, there are infinitely many orthogonal polynomials
pn(z) = pa(z;do), n = 0,1,2,..., in the latter case exactly N of them,
Po, P1,- - -, PN~1, Where N is the number of support points of do = doy.
In either case, if assumed monic, they satisfy the difference equation

/

Ynsr = (.‘1‘ - an)yn - bny;'z—-lv n= 07 112’ e (3'39)

with starting values

¥y-1=0, yo=1 (yn = pa(-;do)).

The coefficients a,, b, are uniquely determined by do, except for bo,
which is conveniently defined to be the total mass, by = [ do(z).

Generally speaking, all solutions of (3.39) behave similarly if
z is located on the support interval of do. (Chebyshev polynomials
on [-1,1] are a case in point!) This is no longer true if z is outside
the support interval, as will be seen in the next subsection. There is
‘also a phenomenon of pseudostability that may occur in connection
with discrete orthogonal polynomials (corresponding to a discrete mass
distribution). This will be discussed in §3.4.2.

3.4.1. Associated functions. There is an interesting set of functions
associated with do and the orthogonal polynomials {p,.(-;do)}, defined
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pn(z; do
Qn(z) = qn(z;da) = /R —ij}:—)' da(:c), n=0,12,...,

where z is real or complex and assumed outside the support interval
of do. These satisfy exactly the same difference equation (3.39) (with
bo as defined above) as the one for orthogonal polynomials, but with
starting values

do(z)
R z—=x

y-1=1, yo= (yn = gu(z; do)), (3.40)
and with z in (3.39) replaced by z. Moreover, they constitute a minimal
solution of (3.39), inasmuch as

nllor?o :—:%—2—3% =0, z € C\suppdo, (3.41)

at least for the class of distributions do which give rise to a determined
moment problem [11]. This includes all distributions do supported on
a finite interval, and many others with unbounded support.

Since we know the initial value for n = —1, Theorein 3.2 provides
a simple algorithm to compute ¢,(z) for 0 <n < N:

r£v):0, rfz_)lz————-—éf————(‘-/—)', n:l/,l/—l,...,l,o,
s —an— 10 (3.42)

q(—yl) = 17 qs;u) = ry(lu_)qu(:_)h n = 0, l,. . .,N.

Under the assumptions above, we have

ul.lf?o qs:l):qn(z)’ n:O,l,...,N.
The algorithm is of interest even in the case N = 0, as it allows us
to compute the “Cauchy transform” of the distribution do (cf. yo
in (3.40)). Another interesting application is to Gaussian quadrature
(with weight distribution do supported on a finite interval), since the
ratio in (3.41) is nothing but the kernel in the remainder term

1 qn(z; do)
27 Jr pu(z;do)

R.(f) = f(2)dz
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of the quadrature rule [15]. Here, I is a contour surrounding the sup-
port interval of do and f is assumed analytic in the domain enclosed

by I

3.4.2. Discrete orthogonal polynomials. Numerical difficulties with dis-
crete orthogonal polynomials have been known for some time, but were
recognized only recently [12] to be attributable to a phenomenon of
pseudostability. Pseudostability is relevant also in cases, such as here,
“where the difference equation (3.39) holds only for a finite number of
n-values, n = 0,1,...,N — 1 (where n = N — 1 yields pn(-;don),
which, though well defined, is no longer orthogonal, since it vanishes at
all N support points of doy). It simply means that the amplification
factors w,_, defined in (3.5), as s and ¢ vary over 0 < s <t < N — 1,
may become very large in parts of this region. (Isolated large values
may be due to near zeros of p,(-) and need not be of any concern.)

We illustrate the phenomenon in the simplest case of discrete
Legendre polynomials, i.e., the polynomials p,( - ; don) orthogonal with
respect to the discrete N-point distribution dony having support points
z; and jumps w;, where

j—1

$J:—1+2—"““— w; = j:1727"'$N‘

2
N-1 N’
The respective recursion coeflicients a,, b, are known explicitly:

a, =0, n=0,1,...,N—1;

n=12,...,N—1.

It is thus easy to generate the solutions of (3.39) with starting val-
ues y_y = 0, yo = 1 (producing f, = pn(-;don)) and y_1 =1, yo =0
(producing a linearly independent solution, ¢,,). The respective amplifi-
cation factors w,_,; in (3.5) are then readily computed (paying attention
to footnote (3)). ‘

In Figure 3.1(a)-(d) are shown two-dimensional plots of w,_,; on
a logarithmic vertical scale, for N = 40 and =z = z;, 7 = 1,5,10,20.
(By symmetry, this covers also the cases t =z k=N — 3+ 1.) It can
be seen that pseudostability starts developing for ¢ > s as t approaches
N. 1t is rather pronounced when z is one of the lateral support points
(cf. (a), (b) of Figure 3.1) and much less so as z moves toward the
center of the interval [-1,1] (cf. (c), (d) of Figure 3.1).
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(a) (b)
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FIGURE 3.1. Amplification factors ws_,; for discrete
Legendre polynomials, N = 40
(a) z =z, (b) z = z5 (c)z=2z10 (d)z=2zg

Similar phenomena can be observed for other discrete orthogonal
polynomials with equally spaced support points, e.g., the Krawtchouk
polynomials ([12, Example 3.2]). Nonequally spaced points, such as
Chebyshev points, on the other hand, seem to stay clear from such
problems of pseudostability (|12, Example 3.3]).
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Numerical integration of ordinary differential equations
based on trigonometric polynomials

By

WALTER GAUTSCHI*

There are many numerical methods available for the step-by-step integration
of ordinary differential equations. Only few of them, however, take advantage
of special properties of the solution that may be known in advance. Examples
of such methods are those developed by Brock and MURrAY [2], and by DENNIS
[4], for exponential type solutions, and a method by UrABE and MisE [5] designed
for solutions in whose Taylor expansion the most significant terms are of relatively
high order. The present paper is concerned with the case of periodic or oscillatory
solutions where the frequency, or some suitable substitute, can be estimated in
advance. Our methods will integrate exactly appropriate trigonometric poly-
nomials of given order, just as classical methods integrate exactly algebraic
polynomials of given degree. The resulting methods depend on a parameter,
v=hw, where & is the step length and o the frequency in question, and they
reduce to classical methods if v—>0. Our results have also obvious applications
to numerical quadrature. They will, however, not be considered in this paper.

1. Linear functionals of algebraic and trigonometric order
In this section [a, b] is a finite closed interval and C*[a, 8] (s = 0) denotes the
linear space of functions x(f) having s continuous derivatives in [a, b]. We
assume C*[a, b] normed by
(1.1} Ix] = 2 max [+ ).

G=0 asst=b
A linear functional L in C*[a4, b] is said to be of algebraic order p, if
(1.2) Lt=0 (r=0,1,...,9);

it is said to be of frigonometric order p, relative to period T, if

(1.3) L1=Lcos(r%75t):Lsin(r%?t)=0 r=1,2,...,9).

Thus, a functional L is of algebraic order $ if it annihilates all algebraic poly-

nomials of degree =<p, and it is of trigonometric order p, relative to period T,

if it annihilates all trigonometric polynomials of order =<p with period T
Functionals of trigonometric order p are comparable with those of algebraic

order 25, in the sense that both involve the same number of conditions. The

* Oak Ridge National Laboratory, operated by Union Carbide Corporation for
the U. S. Atomic Energy Commission, Oak Ridge, Tennessee.
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relationship turns out to be much closer if we let L depend on the appropriate
number of parameters. In fact, consider functionals of the form

(1.4) Lx=pLixt -+ Boplopx+ Lopia 5,
where L; (1=1) are fixed linear continuous functionals in C®[a, 8] and B, real
parameters. Then the following theorem holds.
Theorem 1. Lef the functionals L, in {1.4) satisfy the following conditions:
i) L;1=0 (A=1,2,...,2p+1).

(ii) There is a unique set of parameters, B,=pB%, such that the functional L in
(1.4) 4s of algebraic order 29, that is to say,

x vow index, A column index
1. det(L,#) == 0 ’ .
(15) et (L, ) & (x,1=1,2,...,2;> )

Then, for T sufficiently large, there is also a unique set of parvameters, 8,=8,(T),
such that L is of trigonometric order p rvelative to period T. Furthermore,

{1.6) B(T)—>BY as T — oo.

Proof. The main difficulty in the proof is the fact that in the limit, as T — oo,
equations (1.3) degenerate into one single equation, L 1==0. We therefore trans-
form (1.3) into an equivalent set of equations from which the behavior of the
solution at T=oc can be studied more easily.

In this connection the following trigonometric identities are helpful,
7
oy X s
(1.7) sin E:;awﬁ—cosgx) (r=1,2,3,...),
where ¢, , are suitable real numbers and ¢,,50. The existence of such numbers
is obvious, if one observes that sinz’% =[(1—cosx)/2]" can be written as a
cosine-polynomial of exact order ». Differentiating both sides in (1.7) gives also
¥

(1.8) sin® 1 %cos-g-: >'7,,singx r=1,2,3,...),
e=1

where 7,,=p0,,/r, and in particular 7,,=0,,50.
Equations (1.3) are equivalent to

L1=0,
2n . 2n
L(1—cosrvr—fT—t):Lsmth=0 (r=1,2,...,9).

Because of assumption (i) the first of these equations is automatically satisfied.
The remaining equations are equivalent to

- 27 ¢ : 27 -
(1.9) ;U,QL(’L—congt)z;ersmth—O (r=1,2,...,9).
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Using (1.7) and the linearity of L we have

¢ 2w - 27 : 7T
glo‘,g L (1 — cos g z‘) = LQ%IO',Q (1 —cosg - t) =L [smz' (T t” )
Similarly, using (1.8), we find

D1, Lsing 2:;1 t=1L [s:in““1 (% t) cos ; t] )

=1
Therefore, letting
(1.10) "=

7
T >

we can write (1.9), after suitable multiplications, as follows:
L [(,Sé?}ﬁ)“—l cos u t} =0

ey o

This represents a system of 25 linear algebraic equations in the same number
of unknowns 8;, the coefficient matrix and known vector of which both depend
on the parameter #. We show that in the limit as #-—-0 the system (1.11) goes
over into the system of equations L#'=0 (r=1, 2, ..., 2p).

In fact, it is readily seen, by expansion or otherwise, that for any integers
=0, r=1, as 4 —0,

(1.11) r=1,2,.... ).

. -
de [(i{ﬁ) 7 COos % t:{ — 77df7 t2r~1’

di° u ar
o (ﬂ”ﬁ B @ pr
di° u ) dee

the convergence being uniform with respect to ¢ in any finite interval. In par-
ticular,

1 Zr—1
(,Smf’i) cosut — 2" =0
u
sin # ¢ \27 (1# = 0).
sy o
(7
so that, by the continuity of the L,, also
1 2y—1
Ll[(smﬁ) ’ cosut} — L, #"1
(# —0).

1 2
L[
u

From this our assertion follows immediately.

Since the limiting system, by assumption, has a unique solution, £}, the
matrix of the system (1.11) is nonsingular for #==0, and hence remains so for
u sufficiently small. It follows that for sufficiently large 7" there is a unique
solution, §,(7), of (1.11), satisfying (1.6). Theorem 1 is proved.
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Remark 1. Assumption (i) in Theorem 1 is not essential, but convenient for
some of the applications made later. The theorem holds without the assumption
(1) if the functional L in (1.4) is made to depend on 2p 41 parameters,

(1.4°) Lx:ﬁ0L0x+ﬁlle+---+ﬂ2pszx+L2P+1x,
and assumption (1.5) is modified, accordingly, to

» row index, A column index)

.5 L,
(1.5 det (L,#) 40 (x,z:o,1,...,zp

The proof remains the same.

Remark 2. For particular choices of the L, it may happen that the functional
L can be made of higher algebraic order than the number of parameters would
indicate. Ewven if the excess in order is a multiple of 2, this does not mean neces-
sarily that a similar increase in trigonometric order is possible. For example,

Lx=px(0)+x(1) —34'(0) —34'(1), pf=—1

if of algebraic order 2, but in general cannot be made of trigonometric order 1,

since
sinut sin 2u 1

smui gl = 2w 1 .
L _——cosu s 2(1+0052u)>0 (0<%< 2)

2, Linear multi-step methods

Linear functionals in C' play an important réle in the numerical solution of
first order differential equations

(2.1) ¥ =ft %),  xl) =%,
in that they provide the natural mathematical setting for a large class of numerical
methods, the so-called linear multi-step methods. These are methods which

define approximations x,, to values x (f,+ mhA) of the desired solution by a relation

of the following form
(2.2) KyprFog %, + -+ o Xy =528y x;+1 + B Xyt + s x;z+1—k)
. (n:k""—'l,k,k—i—'l,...),

where

x:”:f(t0+Mh, xm)'
Once k ‘“‘starting” values x,, x,, ..., %,_, are known, (2.2) is used to obtain
successively all approximations x,, (m=%) desired.

The integer £> 0 will be called the index of the multi-step method, assuming,
of course, that not both o, and B, vanish. (2.2) is called an extrapolation method
if B,=0, and an interpolation method if B,==0. Interpolation methods require
the solution of an equation at each stage, because x,,, in (2.2) is itself a function
of the new approximation x,, ;.

It is natural to associate with (2.2) the linear functional
k
(23) Lax=X[o;xe+m+1—Ah) —hfx(to+n+1—2h)] (x=1).
i=o

The multi-step method (2.2) is called of algebraic order p, if its associated linear
functional (2.3) is of algebraic order p; similarly one defines trigonometric order
of a multi-step method.
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Since any linear transformation ¢’=a¢-b (a=0) of the independent variable
transforms an algebraic polynomial of degree <5 into one of the same kind,
it is clear that (2.2) is of algebraic order p if and only if the functional

%

(2.4) Dx=2 [y x(kh—A) — B, %' (kR — A)]
=0

is of algebraic order p. Here, the parameter % has dropped out, so that the
coefficients «;, 8, of a multi-step method of algebraic order do not depend on 4.
The situation is somewhat different in the trigonometric case, where a linear
transformation other than a translation (or reflexion) changes the period of a
trigonometric polynomial. By a translation, however, it is seen that (2.2) is
of trigonometric order $, relative to period 7, if and only if

k
(2.5) L*x :Azo{al x[(k— A k] —hp, & [(k— 2) K]}
is of trigonometric order p relative to period 7.

For a multi-step method to be useful it must be numerically stable, which
above all imposes certain restrictions on the coefficients &, (see, e.g., [1, sec. 9])
In view of this we shall consider the «,; as prescribed numbers satisfying the
conditions of stability. Also they shall satisfy

k
(2.6) 2oap=0  (oag=1)

to insure algebraic and trigonometric order p=0.

It is then well known ([1 , Sec. 6]) that to any given set of £2+1 coefficients
«, satisfying (2.6) there corresponds a unique extrapolation method with index %
and algebraic order k. Letting therefore k==2p we can apply Theorem 1 to
L=1L" identifying

2p
(2.7) Lyx=—hx'[(2p—Dh] (1=1=529), Lz,,ﬂx:AZalx[(zpﬁ*/l)kj.
=0

It follows that there exists a unique extrapolation method with ever index
k=2¢ and trigonometric order p relative to any sufficiently large period T.
Again, as is well known, given k41 coefficients «,, there corresponds a unique
interpolation method with index %2 and algebraic order k-+1. Letting now
k4-1=29p, a similar application of Theorem 1 shows the existence, for T sufficient-
ly large, of an interpolation method with odd index A=2p —1 and trigonometric
order p relative to period T. Furthermore, in the limit as 7 -»oo, the resulting
methods of trigonometric order 4 reduce to those of algebraic order 2.

The essential parameter is actually not T, but /T, as is seen if the conditions
(1.11) of trigonometric order p are written down for the functional L*. Since

i 2r—1 i 2r—
dit [(gl%ﬂ) " cosu t} = (il‘n;tﬂ) e (27 cos?ut —1),

i— [( sin ﬁ)z’] =27 (iiiﬂ)m_l cosut

dt u 7
Numer. Math. Bd. 3 27
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one finds!

k ,
R B (M)m—z (27 cos?[u(k — A) B] — 1)

A=0 "

k . _
— Z o, (Eﬂﬂﬂ’i)y ! cos[u(k — A) k],
prer

U
’)thﬂ(sm[uk zi) "cos[u(k— A)h i (Sm[uk Ah})

Dividing the first relation by #*" %, and the second relation by 4?’, and letting

27
v—2uk——T— h,

one gets!

Z'Bl (M)m_z (21 cos2 [% (k— A) v} — 1)

=0 :i (251n[~ v])zr 1 [—1_ B v}
(2.8) p :
27)20/3/1 (2_51@——}‘“@) . cosl (R — A) v} = Zk (M)2r
(r=1,2,....9)

We summarize our findings in the following

Theorem 2. In correspondence to each set of coefficients o, with zevo sum there
exist unique sets of coefficients B, (v), B¥(v) depending on the parameter

v=2mh/T,
such that for v sufficiently small,

(29) Kypr oy X, + o oy Xy = R[S (1) Xy Ao + B2y (V) Hpst1-2p)

1s an extrapolation method of trigonometric ovder p relative to period T, and

Hppr T % %+ - %p1 Xppaop
= h[ﬂ(,)k(v) x:;-ﬁ-l + B (v) Xy ‘I’ﬁ;p—l (v) x;+2—2p]

ts an interpolation method of trigonometric order p relative to period T. The f,(v)
solve the system of linear algebraic equations (2.8) with k=2p, By=0, the f¥(v)
solve the same system with k=2p —1 and with no restrictions on the f's. As v—0
the multi-step methods (2.9) and (2.10) reduce to those of algebraic order 2P, vespec-
tively.

(2.10)

3. Existence criterion for trigonometric multi-step methods

Theorem 2 establishes the existence of trigonometric multi-step methods only
for v==2m AT sufficiently small. A more precise condition on v is furnished by
the following

1 Tf y=1 the coefficient of B; in the first relation, to be meaningful, must be
defined as unity.
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Theorem 3. Multi-step methods (2.9) and {(2.10) of trigonometric ovder p, relative
to period T, exist if
. 2n
(3.1) |v| < min (vp, «-2-~;—b»__~1~) (v=2mh/T),
where v, 1s the smallest positive zero of the costne-polynomial

(p*+1y/2 . . Y

vt,(gb2~3p+5—n)cos(2n~1)z (p odd)

(32 Cly=y "
1 s ’%3 . 1

Evp('p ——2—15)—%;:1%( —Z;b—n)cosnv (p even).

Here, v,(m) denotes the number of combinations of p monmegative® integers not
exceeding 2 —A1 which have the sum m.

Proof. The linear functional associated with the extrapolation method (2.9) is
2p
Lx :Azlﬂz Lix+ Lapia %,

where L x=—hx'[(2p—Ah](1=A=2p)and L, isgiven such that L,,,,1=0.
Similarly,

251

L¥x= Y B¥Lly¥x+ L x

1=0
with LY=L, ,, L§,1=0, is the functional associated with the interpolation
method (2.10). It is apparent, therefore, that the conditions (1.3) of trigonometric
order for these particular functionals give rise to a system of 24 linear algebraic
equations in the unknowns 8, and ¥, respectively, the matrix of which in either
case is given by

vsin{2p — 1) v vsin(2p — 2)v ... vsinw 0

—wvcos(2p —1)v —vcos(2p — 2)v ... — UCOSY — v
2vsin2(2p — 1) v 29sin2(2p — 2)v ... 27 sin 2v 0

B()=1 —2vcos2(2p—1)v —2vcos2(2p —2)v ... —2vc0820 — 2

.....................................

posinp(2p —1)v povsinp(2p —2)v ... puvsinpy 0
—puvcosp(2p—1)v —puvcosp(2p —2)v ... —pvcospy —pv

The instance v=0 (in which B is singular) is sufficiently dealt with by
Theorem 2. Theorem 3 will therefore be proved if it is shown that B(v) is non-
singular for all nonvanishing values of v satisfying (3.1).

Replacing the trigonometric functions in B (v) by Euler’s expressions and
applying a few obvious elementary operations on rows and columns of the

2 In terms of partitions (more commonly used in combinatorial analysis) which
involve positive integers with given sum, we have

vp(m)=umy_1 (2p—1, m)+ 7, (2p—1, m),

where m,(l, m) denotes the number of partitions of m into # unequal parts not ex-
ceeding 1.

27*
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resulting matrix, one shows that the determinant of B is equal to

2 2 2 2
wyh_y w3l o ... wi? w?
+1 +1 1 1
whity whils Wit wht
—p b 2P —p2(2p—1)i - - - - A
det B(t) = (p1) 277 #P0% e #EP—Di 3 0 1, g1 1| (= ).
Wap—1 Wap-o .- Wy Wy
1 1 o1 1

The last determinant is a minor of the Vandermonde determinant

2p , 9 2p .2
w? wib . wi? wi?
............. 2p1
u? w.gp—l wl{ wg = (0 — w,) 1 1 (wg — W),
520 0=o<p=2p~1
1 1 O

namely, up to the sign (—1)?, the coefficient of #” in the expansion along the
first column. From the right-hand side it is seen that this coefficient is equal to
(— 1)p0'p(wo»w1:---:w2p—1) 11 (wg”wa),
0=o<o=2p—-1
where ¢, denotes the p-th elementary symmetric function in 2p variables. There-

fore,

det B(v) = (p1)2 27222 ¢ P R0 Vv (w0, o wyy ) [T (@, — w,)
(3-3) 0So<ps2p—1

(1, = ¢'*?).
For the product in (3.3) we have
H (we — Zg;u) = TI gé(Q“‘“G)“' II [el‘ (o—a)iv _ 3_5(9“‘7)1—”]

o< o<<o o<@
= (24)P@p—1 b2 @p—1%0 [T gin Lo — g) .
o<
Also,
Ty (W, Wy, ..y Wyp_q) = 2y eht it H)E,
where the sum extends over all combinations (4;, 4, ..., 4,) of # nonnegative
integers not greater than 2p —1. Thus,

det B (v) = (— 1)? (p!)2 222 (=D y2P

(3.4) X [e4p@pVis Y gt td)iv] [T sink(o — o)u.
D<o<es2p—1

It is seen from this that B(v) for v=£0 is singular if and only if either the ex-
pression in brackets or the product following this expression vanishes.

As regards the first expression we can write it in the form

sy 11i p(3p—-1)2 ) p(3p—1)/2 0 2p—1)]5

—_ — 1RU n— -_— (2’

é $p(2p—-1)iv E y?(n)g — E vp(n)e p(2p )
n=p (p—1)/2 w=p(p—1)/2
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with »,(n) as defined in Theorem j. Consider first the case p even. Then, by
a shift of the summation index, the last sum is seen to be

22 ,
S spltt—gp ) e
n=—p2a
Since the determinant (3.4) is real, this sum must be real too, which is only

possible if
volp? — 5P+ n) =0y (P> — 3P —n) (P even).

Qur sum then becomes
P2
(3.5) v, (p2 - —{—-ZZVP ip —m)cosnv (p even).

Analogously, if p is odd, the sum in question is

(b(2p—1)—1)2 p3p=1)/2 _
L v, (1) g4 @p=Div

» n:p(p:—l)/z n=(p@p—11+1)/2
412 o 1iu o s
R O R LR TN PR B P!
n—=
Since this again must be real we also have

B dp+h— ) =n (P — kb — 4 (p odd),

and our sum becomes
pr+1) .
(3.6) Z ( + —— n) cos (27 — 1) (p odd).

Substituting (3.5) and (3.6) for the bracketed expression in (3.4) we finally obtain

(3.7) det B(v) = (—1)? (p)2 2227122 C (v) [ sind(o—o)v
0=o<es2p—1
with C,(v) as defined in (3.2).

Now, C,(v) =0 for 0< |v| < v, if v, is the smallest positive zero of C,. Also,
the sine- product in (3.7) is certainly nonvanishing for 0<|v|<2n/ (9;5 —1).
Therefore, det B {v) is nonvanishing for

: 2m
0< |v| < min (vp, ,,2‘35:-1-),
which proves our theorem.
For reference we list the cosine-polynomials C,(v) for p=1, 2, 3:

. v
Cy(v) =cos—,
Cqy(v) =14 cos v+ cos2v,
v v v 7 7
Cqy(v) =3 cos 5 +300533 + 2cos 5 = +cos7 - +c0593‘_,
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One finds easily that

7
WA, VU =Up

so that the bounds in (3.1) for p=1, 2, 3 are respectively xz, n/2, 27/5
We also note from (3.2) that

8 0 -z
(3-8) <|v] < 5

is a sufficient condition for nonvanishing of det B (v).

4. Trigonometric extrapolation and interpolation methods of Adams’ type
Multi-step methods with
og=— o0ty =1, ;=0 (A>1)

and maximal algebraic order for fixed index are called Adams methods. In
this section we list methods of trigonometric order that correspond to Adams’
extrapolation and interpolation methods in the sense of Theorem 2. The
coefficients B, (v) and BF(v) are obtained as the power series solution of the
appropriate system of equations (2.8) where coefficient matrix and known vector
are expanded into their Taylor series.

Adams exivapolation methods of trigonometric order p

2p
Xpi1= %y + hlglﬂpl (’(’)) x;H_l_A ('U =27 h/T)

T

4 120 120
55 ) —_ 59 923 2 | 15647 4 )
ﬂ21-24 (1 w132 Jr792 t+ ) Bas 24(1 708 +21240 T
_ 37 421 19 1921 4 :_-9_( 1oy 11 4 )
ﬁ23_24(1 444 +13320 T ) Baa 24 1+4v+120v+ ’
_ 4277( 5257 o, 196147 4 )
By 1440 1 3666 © + 439920” +
__ 7923 (, 48607 , 2341619 , )
Boe=— it (1 15836 U T 633840 0 )
. 9982( 107647 5 2791381 4,
Bas = 1440 1 20046 v+ 513360 vt )
_ 7298 (, 69473 o 10276973 , )
Baa= 1440 (1 21804 © + 2627280 © ’
2877 (y 10433 .5, 20683 .,
Bas = Ta40 (1 754 O " Sags0 U T ).
. 475 [, 55 o2 1015 )
Bao= 1440 (““ 114 + 2736 the)s
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Adams interpolation methods of trigonometric order p

2p—1

Tpi1 = Xy +4h AZG ﬂ:l ('U) x;+1—l (7) =2n k/T)

1021311:‘;*(1‘{”712— 2+"1;40U4+”):

Bro= o (14 1 + g ot o), = %(1—728~ vt 4+~-),
o 5 1 e B ),
T !

e (- e
Ziie 145420 (1 N ﬁig v 205177884i51 U“r'”)’
Fis = 1440( +A 18'274%1"7)4+"');

As shown in Section 3 the series for 8,, and 3, certainly converge for |v| <7,
where #, =, ry=n/2, r3=2m/5.
We also note the explicit formulae

_ sin§v . _p% _ tangv
ﬁ“—’%}cos v’ ﬂlz—ﬁw T

5. Trigonometric extrapolation and interpolation methods of Stérmer’s type

Linear multi-step methods are also used in connection with differential
equations of higher order, in particular with second order differential equations
in which the first derivative 1s absent,

(5.1) x'" = f(¢ %), ¥ (f) = %o, ' (to) = %o,
They take here the form
(5.2) Xyt 0a %y b0 Xy =R By Xy 1+ By xy o B ),
Koy = flto+mh, x,,).
The terminology introduced in Section 2 extends in an obvious manner to this

new situation. With the multi-step method (5.2) there is now associated the
functional

Lx—Z[ozAxt+(%+1—Z ) — 2B, X b+ (n+1— A h)]  (eg=1).
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Theorem 1 (with the modification mentioned in Remark 1 on p. 384) can then
be applied to this functional provided that not all the values of 4, are fixed in
advance. Otherwise our assumption (1.5') would not hold. Except for this
provision, however, the construction of multi-step methods (5.2} of trigonometric
order follows the same pattern as outlined in Sections 2 and 4 for first order

differential equations.
We content ourselves in this section with listing a few methods that result

if one takes
(5-3) ;=0 for A> 2.

In the algebraic case such methods of maximal order (for given index &) are
called Stormer methods (cf., e.g., [3, p. 125]).

Stormer extrapolation methods of trigonometric order p
2p-1

Hyi1+ %p1 (V) %, + %z(v) Xy = H ; ﬁpa (v) %4’@,+1—/1 (v=2mh/T)

o= — 2, =1, ﬂ11:1_~* 2+% Cats SRR
“21:‘*2(1—%04—*—%064—‘“), Koz = — %33 — 1,
fu= 21— Lot ), = — L1 Sty ),
ﬂzszé(1+%*vz+ 1;61)4+ ),
m31:—2(‘1~%(7)_v“+...)) tyy= — gy — 1,
Bl e
Bra=— o (1= 220y +727674—5§2901v4+~-),
pom - B B
ﬁ34=—2%66(1—%§v2+,5‘55292567v4+~--),
e Sl B )

.....................

Stérmer interpolation methods of trigonometric order p
2p—2
Xyt + O";t,ggl ('U) Xy -+ d';’;z (7)) Xp—q == h'zlz ﬂ;’gﬂ xﬂlﬁ-l—}. (7} =2 h/T)
=0
,1_ 2 1 4 301 6 L
h=—2(t 4 o vtk St

11 O1
afa=—ouhi—1, Bh=1+ 00+ 30
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1

Sl p e,

% * %
31=—2, ogpe=1, Pfro= 120

=g (gt ) A= (1 L e

12 20 120 120
ah=—2(1+ o0, afy=—ofi— 1,
« 190 221 5, 17521 , )
= 14 =yt Ly
Bso 240 (1T 342 4o T)

#2044, 79 .o, 11039 .4 |
g (1 4597)+1101600+ )

* __ 14 95 42103 4 ] % :JL( _ 16 0 4TIt 4 )
Bia= <1+4zv s0 U7 ) Bss= '™ 5 ¥ 20 V' T )
* 1 31 0 3899 4 )

34 240( 18 2160 0 T

The series for a,,, f,, converge if [v| <7, where » = oo, r,=n/2, those for
ap;, Bas converge if |v|<r¥ where #{=n/3, 7¥=n/2. This can be shown by
reasonings similar to, but more complicated than, those in Section 3. The values
of r,, 3 were not obtained because of the complexity of the calculations required.

We also note the explicit formulae

v

11 — — )

_ /2sindwv? ® 2cos v * 2{1—cos v)
PREES.S 2oosy gty 2meose)
2cosv—1 v2(2cosv—1)

6. Effect of uncertainty in the choice of T

Multi-step methods of trigonometric order presuppose the knowledge of the
period T of the solution, if it is periodic, or of a suitable substitute, if the solution
is only oscillatory. Precise knowledge of this kind is usually not available in
advance, so that one has to rely on suitable estimates of 7. Since 7 enters only
through the parameter v==2xnh/T and T=oc gives the classical multi-step
methods, one expects that uncertainties in the value of T° should not seriously
impair the effectiveness of trigonometric multi-step methods (when applicable)
as long as T is not significantly underestimated.

It is instructive to study from this point of view the simple initial value
problem

(64) o (‘1) - é) % x{0) = (:))

which has the solution

‘cost
*h) = (sin t).

Every multi-step method of trigonometric order =1 relative to period 2z is
exact in this case, so that the example allows us to isolate the effect of inaccu-
rately estimating the period.
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Let us select Adams’ interpolation method of trigonometric order 1, which
can be written in the form

A tantv , o

(6.2) Xy =%, + (Xpa1 -+ x,) (v=2nh|T).

The correct choice of T is 27, giving v=»h. We consider now T to be some

“estimate’” of 2z and use
27

T

to measure the quality of the estimate (underestimation, if 2> 1, overestimation,
if <1, precise estimate, if A=1).

Letting

1 AR
T=--tan-——,
A 2

application of (6.2) to (6.1) then gives

o —1
Xpi1 =%, + 7T (1 0) (anrl + xn)r

or else, collecting terms,

’l‘L’x *1~Tx v 1 1——12—-21x
—T 1 n+1 T 1 " n-+1 1_{__1,2 2_[ 1—'[2 n-

If we set

v=tan {4,

we get

cos¥ — sindd

Xp+e1=| . X

sin ¢ cos

Obviously,
_ 1 AR

(6.3) ©# = 2arctan (fzrtanr iﬁ)'

The n-th approximation x, to the solution of (6.1) is thus obtained by rotating

the initial vector xy= (1) n-times through the angle 4, where 4 is given by (6.3).
Therefore 0
(cos " 19)
xn = . ?
sin # ¢

which shows that the approximations have the correct amplitude, but phase errors
. 2 1 Ah
(6.4) g,=n{—h)=nh {7 arc tan (7 tan —27) — 1} .
If A=1 then ¢,=0, as we expect. In the limit as A0 we obtain the phase
error of the method of algebraic order 1, which in our example is the trapezoidal

rule. The expression in curled brackets, as function of 4, has a behavior as shown
in Figure 1. It is seen from this, in particular, that the error in absolute value
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is less than the error at 2=0 for all 1 with 0<< A< A4, where 1,>1. This means
that in using the modified trapezoidal rule (6.2) we may overestimate the period
as much as we wish, and even underestimate it
somewhat, and still get better results than with
the ordinary trapezoidal rule. On the other hand,
the curve in Figure 1 also shows that the error
reduction is not very substantial unless 1 is close !

to 1. If A= 1, for example, there is a gain of at [g 7 ] A
least one decimal digit only if the estimated period -——/ “

differs from the true period by 5% or less. Fig. 1

V& /e

7. Numerical examples

An important class of differential equations to which trigonometric multi-step
methods may advantageously be applied is given by equations of the form

(71) %"+ P{t) x =0,
where P(#) is a nearly constant nonnegative function,
(72) PO =P[1+p0)]Zz0 (1=1).

Here, P, is a positive constant and #(#) a function which is “small” in some
sense for t=4,.

Equation (7.1) may be considered a perturbation of %"+ Pjx=0, the dif-
ferential equation of a harmonic oscillator with angular frequency VPB,. This
suggests the following values of T {and thus of 9) as natural choices in methods
of trigonometric order,

(7.3) T=2x/VR, v=hVE.

If one is willing to select these values anew at each step of integration, one can
improve upon (7.3) by using

(7.4) T=T,=2aJP¢), v=v,=h|P)

in the computation of «x,,,.

Particularly favorable results are expected if #, is relatively large and # (¢)
such that

o0
(7.5) T1p@)|dé< o,
in which case it is known that x==c; cos Y B¢+ c, sin YBt+0(1) (¢, ¢, constants,
t—oo) for every solution of (7.1). Our first example belongs to this type.
Example L 5"+ (1004 5 )¥=0, 0<t,=¢=10.

The general solution can be expressed in terms of Bessel functions, x =
¢, VEJ,(108) ¢, JEY, (10¢). We single out the particular solution Vt J,(108) by
choosing the initial values accordingly. Table 1 below shows selected results
(every 50th value, using f,=1, A= .02) obtained by the Stdrmer extrapolation
methods of algebraic order 2 and 4, and of trigonometric order 1 and 2, in this
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order®. In the latter two methods the constant value (7.3) of T was used, that
is, T=m/5, v= 2.

Table 1 reveals an average increase in accuracy of about three decimal digits
in favor of the trigonometric extrapolation methods. This — it should be noted —
1s at practically no extra cost in computation, since the modified coefficients
of the trigonometric methods, if (7.3) is used, need only be computed once, at

Table 1. Stirmer extrapolation method of vavious algebraic and trigonometvic orders.
Example 1 with ty=1

¢ alg. ord. p=2 alg. ord, p=4 trig. ord. p=1 ‘ trig. ord. p=2 ‘ exact 7D values
1 —.2459358 —.2459358 —.2459358 ! —.24590358 ‘ —.2459358
2 .234 5901 2354337 2362055 | .2362115 | .2362085
3 —.1425368 —.148524 7 — . 1495871 ‘ —.14959066 . —.1495937
4 .00t 8875 .0143880 0147257 | 1M47349i 0147338
5 1393247 1234167 1248068 | 1248015 .124 8002
6 | —.2330076 —.2205650 —.2240619 | —.2240630 ‘ —.224 0592
7 | 2472935 2461304 2511024 | 251 1101 | 2511049
8 —.1773539 —.1924022 —.1972536 | —.1972659 ‘ —.1972606
9 \ .0470268 0771940 .079 8806 .0798903 8 .0798900
10 | 0993055 .0620548 0632007 | .06319097 l .0632007

the beginning of the computations. If the choice (7.4) is made an additional
3 decimal digit is gained on the average, the amount of computing being some-
what larger than before.

Stérmer interpolation methods of algebraic order 2 and of trigonometric
order 1, applied to Example 1, gave results which are 10—20 times worse than
the corresponding results in Table 1, the trigonometric method being, on the
average, more accurate by 23 decimal digits. The interpolation method of
algebraic order 4, however, is almost 100 times better than the corresponding
extrapolation method. Nevertheless there is also here an improvement of about
14 decimal digits in favor of the trigonometric modification.

Larger values of ¢, would put trigonometric methods into an even more
favorable light. As #, decreases from 1 to 0, trigonometric methods gradually
lose their superiority.

In our next example — a Mathieu differential equation — the relation (7.5)
is not satisfied any more.

Example 2. x"+100(1 —acos2f) x =0, =0, %=1, %g=0 (0<a=1).
We integrated this equation for various values of « using the same methods
and the same step length 2= .02 as in Example 1. An independent calculation
was done with the help of Nystrom’s method, which was also used to obtain
starting values. Selected results (every 25th value) of the Stormer extrapolation
methods, in the case = .1, are displayed in Table 28. Trigonometric order,
also in this example, is to be understood relative to period T=uax/5.

3 Calculations were done on ORACLE in 32 binary bit floating point arithmetic
(the equivalent of about 9 significant decimal digits). The final results were rounded
to 7 decimal places. — The author takes the opportunity to acknowledge the able
assistance of Miss RuTteE BeNson in performing these calculations.
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The results in Table 2 follow a similar pattern as those above in Table 1,
the main difference being a reduction, to roughly half the size, of the improvement
of trigonometric methods over the algebraic ones. The average gain in accuracy
is now about 1} decimal digits. The remarks made above on interpolation
methods hold true also in Example 2, except for the reduction just mentioned.
Obviously, as o decreases to 0, trigonometric methods become increasingly

Table 2. Stdrmer extrapolation method of various algebvaic and trigonometric ovders.
Example 2 with o= .1

13 l alg. ord. p=2 ! alg, ord, p=4 ‘ trig. ord. p=1 J trig, ord, p=2 exact 7D values
|

0 1.000 0000 1.0000000 1.0000000 1.0000000 1.0000000
0.5 0767165 ! .0690295 0685134 0691273 .069208 5
1.0 —.9035098 ‘ —.005644 8 —.9089870 I —.9080120 —.9084179
1.5 —.7105151 | —.6908656 —.6942472 | —.6938453 | —.6939608
2.0 .198 5482 2287643 ! .2304036 ! 2311394 .2300590
2.5 9715966 \ .967 908 3 9764633 } .9767822 9763699
3.0 2552862 .204 5198 2060842 © .2056667 2057667
3.5 —.9456869 \ —.9505080 —.9618456 ‘ —.961 3337 —.9616794
4.0 —.4833155 | —.4221211 —.4260400 —.4262622 —.4265317
4.5 5453242 .5922666 6026736 | 6021053 .6022367
5.0 .9517667 ‘ .9263164 \ .0422702 \ .941 8659 ‘ .941 7373

superior to algebraic methods. We have experienced only a slight decrease in
this superiority when we let o increase from .1 to 1.

It is anticipated that trigonometric methods can be applied, with similar
success, also to nonlinear differential equations describing oscillation phenomena.
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Global error estimates in ”one-step” methods
for ordinary differential equations* **

Walter Gautschi

Dedicated to Professor Mauro Picone on the occasion
of his ninetieth birthday

Abstract. We consider one-step methods for the numerical solution of ordinary differential -
equations and propose to utilize recent progress in local error estimation in order to
asymptotically estimate the global error.

1. Introduction

The majority of numerical methods for the solution of systems of ordinary differen-
tial equations generates approximations of the solution vector corresponding to a
finite sequence of points. By global error one usually understands the difference be-
tween the vector of approximation and the solution vector at the respective points.
The local error, on the other hand, is the difference between the approximate solu-
tion and the exact one, after a single step of the method initiated with exact data.
It is generally agreed that "one-step” methods, in particular methods of Runge-
Kutta type, notoriously do not permit an easy and efficient estimate of the local
error, not to speak of the global one. The situation, in recent years, has changed a
bit after rather efficient schemes have become known for accurately estimating the
local error (at least asymptotically for small steps). It is natural, then, to attempt
incorporating these schemes in procedures for the estimation of the global error.
This is the subject of our work.

* This work has been sponsored in part by the National Science Foundation, research grant GP-
36557

** English translation by Walter Gautschi of “Stime dell’errore globale nei metodi “one-step” per
equazioni differenziali ordinarie”, Rend. Mat. (2) 8 (1975), 601-617.
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2 Walter Gautschi

‘The desired estimates (as, in principle, has been known for some time) can be
obtained by integrating the variational differential equation satisfied by the princi-
pal part of the global error. This approach requires computing the Jacobian matrix
of the differential system evaluated along the solution trajectory and therefore,
in practice, may limit the applicability of the procedure to problems of small or
medium dimensions. Nevertheless, the occurrence of the Jacobian matrix is quite
natural in view of the well-known role it plays in the theory of perturbation. (For
procedures not using the Jacobian matrix, see [20]).

In Sections 2-7 we recall some basic concepts for "one-step” methods, including
also their properties of stability and convergence ([11], [10], [21]). The implemen-
tation, and the theoretical justification, of the procedure for estimating the global
error is presented in Sections 8-9. Section 10, finally, contains a numerical example.

2. The differential system
We consider the Cauchy problem
(2.1) dy/dz = f(z,y), a <z <b, yla)=ya,

for a system of m ordinary first-order differential equations. We assume f to be
defined, and sufficiently regular, in the rectangular domain

Ro=la,b] x Dy, Do={yeR™: ¢; <y'<d;, i=1,2,...,m},

where y° denotes the ith component of y. We consider Rg the fundamental domain
which is to include not only the exact solution, but also all approximations gener-
ated. Later, for various reasons, we will have to enlarge somewhat the domain in

which f is defined.
Meanwhile, we assume, once and for all, that y, € Dy, and that (2.1) has a
unique solution y(z) on [a,b] such that y(x) € Dy for a < x < b.

3. ”One-step” methods

A ”one-step” method for the calculation of an approximate solution of (2.1) can be
identified by a function

(3‘1) b : {a, b] X DO X [0, hg] — Rm,
which in some way is connected with the function f in (2.1). By means of
(3.2) yh =y + h®(z,y;h), 0 <h <hg,

it indicates how to proceed from a generic point (z,y) to the "next” point (x+h, yn),
just as f indicates how to proceed from (z,y) to (z + dx,y + fdz).
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Global error estimates in ”one-step” methods 3

In order to obtain a sequence u,, ~ y(z,) of approximations to the solution of
(2.1), the formula (3.2) is used in the following manner:

(3.3) Unt1 = Up + At 1P(Tn, Uns hng1), n=0,1,...,N -1, wug=ya,

where r, = a + hy + ha + -+ + hy,, and zxy = b. The choice of the "steps”
hi,ha, ..., hy is part of the steering mechanism for (3.3), which, normally, is de-
signed with the intention of keeping the norm of the error, ||u, —y(z,)|, sufficiently
small. More generally, the steering mechanism may also involve the choice of ”one-
step” methods varying from step to step.

As indicated in (3.1), we want ® to be defined in all of Ry x [0, hg]. For some
methods this assumption requires that the domain of definition of f be slightly
enlarged. For example, if ® represents the midpoint rule,

(x,y;h) = f(z + 3 h,y + § hf(z,y)),

the interval [a, b] should be enlarged to the right by the quantity % ho, whereas the
sides of Dy should be extended from both extremes by the quantity % ho My, where
Mo = max ||z, y)l|

We assume, once and for all, that 0 < h,11 < hg and u, € Dy for each
n=0,1,...,N — 1.

4. Local description of ”one-step” methods

There are a few concepts that describe local properties of a method &. We begin
with the one of truncation error (or "local error”).
Given a generic point (z,y) € Rg, we construct a solution tract of (2.1) ema-

nating therefrom,
(4.1) du/dt = f(t,u), <t <z+hy, uz)=y.

We call u(t), z < t < z+ho, the reference solution at the point (z, ), and denote it,
if necessary, more completely by u(t; x, y). We assume that u(t; z,y), z < t < z+ho,
is defined for all points (x,y) € Ro; once again, this assumption requires a slight
extension of the domain in which f is defined.

DEFINITION 4.1. For arbitrary (z,y) € Ro and h € (0, hg|, the truncation error
of ® at the point (z,vy) is defined by

(4.2) t(x,y;h) = h™ Hyn —u(z + h;z,y)].
By (3.2), therefore,

(4.2") t(z,y;h) = ®(z,y;h) — A u(z + k) — u(z))].
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4 Walter Gautschi

DEFINITION 4.2. The method ® is called consistent if
t(x,y;h) -0 as h — 0,

uniformly for (z,y) € Ro.
By (4.2') and (4.1), if ® is consistent, then necessarily

(4.3) P(z,y;0) = f(z,y)-

DEFINITION 4.3. The method @ is said to have order p, if there exists a constant
C > 0 not depending on z,y and h such that

(4.4) lt(z,y; h)|| < ChP for each (x,y) € Rg, h € [0, ho).

Property (4.4) will be expressed more briefly in the form
(4.4" t(z,y; h) = O(h?), h —0.

Normally, p is an integer. (See, however, [5]). We call p the exact order of ® if (4.4)
does not hold for any larger p. Evidently, p > 0 implies consistency of .

DEFINITION 4.4. A function 7(x,y) on Ry for which 7(z,y) # 0 and
(4.5) Hz,y h) = 7z, y)h? + O(hP+Y), h =0,

is called principal error function of the method &.

Since 7 # 0, p in (4.5) is the exact order of ®.

5. Global description of ”one-step” methods
We now examine the global behavior of algorithm (3.3). The set of points

{_In}g/:()a Tpn=a+h;+ho+---+hy, oy =b

will be called a grid on the interval [a, b], and we will denote it by my|a, b}, where h
stands for the collection of lengths Ay, ho, ..., hn. The fineness of the grid my|a, b]
is defined by
|h| = max hy,.
1<n<N
A (vector-valued) function defined on the grid myla,b] is called a grid function.
Any function y(z) defined on [a, b] induces a grid function by restriction.
With the algorithm (3.3) we associate an operator D), defined by
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Global error estimates in ”one-step” methods 5

(5.1) (Dru)p = h;il(unﬂ —Up) — Y(Tp,un;hny1), n=0,1,...,N —1.

Dy, acts on grid functions (with u,, € Dy) and generates a new grid function defined
on the whole grid except the final point zy. Note that for the exact solution y(x)
of (2.1), by virtue of (4.2),

(5'2) (Dh y)n = _t('r'my(wn); hn+1)'

DEFINITION 5.1. The method @ is called stable on [a, b] if for any grid m4[a, b],
with [h| arbitrarily small, and for arbitrary grid functions v, w (with v, € Dy,
wy, € Do), there exists a constant K > 0 not depending on n and h such that

(53)  jmax ffvn —wall < K([vo — woll + _max_ [[(Dhv)a = (D wall).

We refer to (5.3) as the stability inequality. In order to motivate Definition 5.1,
let u, w be grid functions for which

(Dhu)n:O, OS”SN'—'l’ U0 = Ya,

(Dpw)p =¢€n, 0<n<N-1, wy=uy,+¢,

where €,,, € are "small” vectors. We may interpret u as the result of applying algo-
rithm (3.3) in infinite precision, and w the result of applying it in finite precision.
The residual vectors €, and € may reflect the presence of rounding errors. Stability,
then, implies that

o 22X llun —wall < K(flell + | _max  fenl]),

that is, the error of the finite-precision result is of the same order of magnitude as
the rounding errors, for any grid, no matter how fine.
It is remarkable that essentially all ”one-step” methods are stable.

THEOREM 5.1. If ®(x,y; h) satisfies a Lipschitz condition with respect to 1y,
uniformly on [a,b] x Dy x [0, hol, that is,

|®(z,y; h) — Oz, y*; h)|| < Mlly — y*|,

(5.4)
for each x € [a,b], y,y* € Dy, h € [0, hy,

then the method ® is stable.

For the proof one takes any two grid functions v, w and verifies that

en <1+ h,M)ep1 +hnd, n=1,2... N,
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6 Walter Gautschi

where
en = |lvn —wn|, d= ngnsaﬁ_l |(Drv)n — (Dh w)nl].

It then easily follows that

n
ey, < elb=dMg | o(b-a)M Z hed < e(b_“)M{eo + (b — a)d},
k=1
n=0,1,2,..., N,

that is,
< (b—a)M b—ald
omax en < e {eo + (b —a)d},

which is the stability inequality (5.3) with K = e®*~™ max(1,b — a).

Theorem 5.1 remains valid for variable-methods algorithms involving a family
of ”one-step” methods {®,,} if each satisfies a Lipschitz condition with constant M
not depending on n.

It is useful to note that ® need not necessarily be continuous in x.

COROLLARY. Let myla,b] be an arbitrary grid on [a,b] and let Ay, b, be two
grid functions on myla, b, the former matriz-valued, the latter vector-valued, such
that

(5‘5) HATLN < o, ”bn“ <p forn=0,1,...,N—1,

where a, B do not depend on n and h. Given any (vector-valued) grid function u
on mpla, b] satisfying

(5.6) Upt+1 = Up + hnp1(Apun +bp), n=0,1,...,N —1,

there exists a constant v > 0 not depending on n and h, and dependzng only on a,
B, and ug, such that

(5.7) lupll <7v, n=0,1,...,N.

The corollary follows by letting A, = A(z,), b, = b(z,) for certain bounded
functions A(z), b(z), and by observing that

®(z,y; h) = A(z)y + b(x)

satisfies a Lipschitz condition (5.4) on Ry = [a,b] x R™ with constant M = a.
Taking v, = un, w, = 0 in the stability inequality (5.3), we obtain the desired
bound (5.7) with v = K(J|uo|| + ). The constant K depends on a.
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Global error estimates in ”one-step” methods 7

6. Convergence of ”one-step” methods

DEFINITION 6.1. The method @ is said to be convergent on [a, b] if for arbitrary =
with a < z < b one has '

(6.1) oJax [lun —y(za)| = 0 as [Al =0,

wherea = 79 <z, < --- < zny = zis a grid on [a, z| with fineness |h| = 12n2x<xN(xn—
<n

Tpn-1), {un} are the approximation vectors generated on this grid by algorithm (3.3),
and y(z,) is the exact solution vector of (2.1) at the grid point z.,.

The stability inequality (5.3) applied with v, = un, w, = y(z,), together with
(5.2), immediately gives the following result:

THEOREM 6.1. The method ® is convergent if it is consistent and stable. More-
over, if ® has order p, then
_ — P
(6.2) omax lun —y(za)ll = O(AI"),  [A] = 0.

7. Asymptotic error formula

In what follows, we shall need a refinement of Theorem 6.1, obtained indepen-
dently by HENRICI [11] and T1HONOV and GORBUNOV [23], [24]. (For more recent
alternative results, see RAKITSKII [16]). We assume that

(7.1) hnt1 = Hxn)h, n=0,1,...,N —1,
where ¥(z) is piecewise continuous on [a, b] and
8 <9Y(z) <O onla,b, 0<8<1<0.
In addition, for the ”base step” h in (7.1) we require that
0<h<hy® !

so that h,4+1 < hp in agreement with previous assumptions.
Algorithm (3.3) then becomes

Tntl = Tp + ﬁ(fn)i%

(7.2) Unt1 = Up + HZn)R®(Zp, un; Hzn)h), n=0,1,...,N -1,
Lo = a, UQ = Ya,

with N such that z5 = b.

THEOREM 7.1. Assume that
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8 Walter Gautschi

(i) ®(x,y; h) € C?[Ro x [0, hol],
(i) ® is a method of order p > 1 admitting a principal error function 7(x,y) €
C[R0}7

(iii) e(x) #s the solution of the linear initial value problem

¢ = fy (@, y(@))e + [H(@)Priz,y(@), a<z<b

(7.3)
e(a) =0,
where fy, = | f;,] denotes the Jacobian matriz of f.
Then
(7.4) max ||un — y(zn) — e(x,)hP| = O(RPT), h — 0.

0<n<N

The last relation will be expressed more briefly in the form

(7.4") Un — y(T,) = e(zy)hP + O(hPT1), 0<n < N.

8. Global error estimate

In order to estimate the error u, — y(z,), neglecting terms of order O(hP*1), it
suffices, according to (7.4") to obtain e(z,) with an error of order O(h). This can
be achieved by integrating (7.3) with Euler’s method, using appropriate approxi-
mations of the Jacobian matrix and the principal error function along the solution
trajectory.

THEOREM 8.1. Assume that

(i) ®(z,y; h) € C*[Ro x [0, hol],
(ii) @ is a method of order p > 1 admitting a pmnczpal error function 1(x,y) €

CHRy),

(iii) an estimate r(z,y; h) € C[Ro x [0, hol] is available for the truncation error
t(zx,y; h) satisfying

(81) r(z,y; h) = t(z, y; h) + O(WP*Y), h =0,
uniformly for (z,y) € Ry,
(iv) along with u, we generate the sequence vn, n = 0,1,..., N, in the following
manner:

)
Tnt1 = Tn + H(xn)h,

Un4l = Up + 19(:1771)h(1)(55n, Un; 19($n)h),

82)
Uptl = Up + ﬂ(mn)h[fy(zna un)vn + h—pr(xnvvn; 19($n)h)]’

\fEO:CL, U = Ya vo =0,
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Global error estimates in ”one-step” methods 9

where Tn = b.
Then

(8.3) Up — Y(Tn) = v h? + O(KPT), 0<n < N.
PRrROOF. We note, first of all, that

(8.4) fu(@n,un) = fy (@0, y(zn)) + O(hP),

(8.5) h7Pr(xn, Un; ) = 7(zn, y(zn)) + O(h).

Indeed, Eq (8.4) follows from (6.2) and from assumption (i), according to which

f(z,y) = ®(z,y;0) € C*[Ry]. Moreover, since 7, is continuous by assumption (ii),
T(Tny Un) = T(Tn, Y(Tn)) + Ty(Tn, Tn ) (Un — y(x4)),

where %, is a point on the segment from u, to y(z,) (its exact location varies
from component to component). Therefore, using again (6.2), we get 7(zn, u,) =
T(Zn, y(xn)) + O(hP), and by assumption (iii) and (4.5),
(T, Un; h) = (T, Un; h) + O(RPTY) = 7(zy, un )AP + O(APHL)
= 7(zn,y(xn))h? + O(th) + O(hp+l)a
from which (8.5) follows, since p > 1.
Let now g(z,y) = fy(z,y(z))y + [¥(z)]P7(x,y(x)). Since the equation for v,

in (8.2) has the form v, 11 = v, +hni1(Anv, +0y), with A, bounded matrices and
b, bounded vectors, it follows from the corollary to Theorem 5.1 that

(8.6) v =O(1), h—0.

Substituting (8.4), (8.5), and (8.6) into the equation for v, 41, and noting from (8.5)
that
h=Pr(xp, un; H(zn)h) = [0(zn)]P7(Tn, y(zn)) + O(h),

we find

Unt1 = Un + KT )A{ fy(Tn, Y(Tn))Vn + [0(20)P7(2n, y(zn)) + O(h)}
= Uy + Hxn)hg(Tn,vn) + O(h?).
Since vy = 0, this is a O(h?)-perturbation of Euler’s method applied to ¢’ = g(z,e),
e(a) = 0—the ”variational equation” (7.3) of Theorem 7.1. Euler’s method being

stable, we can conclude that v, = e(z,) + O(h), from which, by virtue of (7.4'),
there follows (8.3). Theorem 8.1 is thus proved.
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10 Walter Gautschi

It is of some interest to note that assumption (ii), concerning 7, can be weakened
to 7(z,y) € C[Ro]. Since the stronger assumption has been used only to prove (8.5),
it suffices to show that (8.5) can be obtained under the weaker assumption.

From the definition (4.2') of the truncation error, we have

(8.7) ty(z,y;h) = y(z,y; h) — h ™ uy(z + h) — uy(2)],
where u,(t) is a solution of the initial value problem
duy/dt = fy(t,u)uy, 2z <t<x+ ho,
uy(z) =1,
I being the unit matrix. Moreover, u, € C?[z,z + hg|. Therefore,
B My (@ + ) — uy (2)] = duy /dt]ms + hduy dt?)—¢ = f,(z,y) + O(h),

where z < £ < x + h (the exact location of £ varies from component to compo-
nent). Using this last relation in (8.7), together with ®,(x,y;h) = ®,(z,y;0) +

h®yn(z,y; h) = fy(z;y) + O(h), we obtain
(8.8) ty(z,y;h) = O(h), h— 0.
Now, by (8.1),
T(Tn, Un; h) = (T, un; h) + O(RPT1)
= t(@n, Y(xn); h) + ty(@n, Tns B)[un ~ y(zn)] + O(RPT),
and therefore, by (8.8) and (6.2),
P(Tny ni b) = @0, y(2); h) + O(RPFY) = T(n, y(za)))AP + O(WPH),

which, again, establishes (8.5).

9. Local error estimators

Many estimators r(x,y; h) for the truncation error have been found that satisfy
(8.1). The best known, perhaps, is the one based on Richardson extrapolation
to zero. Yet, this procedure is rather inefficient in terms of additional function
evaluations. More attractive are estimators that use pairs of ”one-step” methods.
If ® is the basic method of integration, of order p, and ®* any method of order
p* =p+1, then

(9.1) r(z,y; h) = ®(z,y; h) — @*(z,y; h)
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Global error estimates in ”one-step” methods 11
is an acceptable estimator. Indeed, from the definition (4.2),

O(z,y;h) — hHu(z + h) — u(z)] = t(z,y; h),

@*(z,y; h) — b u(z + h) — u(z)] = O(hPH),

from which (8.1) follows by subtraction.
Frequently, ® is an explicit Runge-Kutta process with s stages,

(

ky = f(.')?, y)’

o—1
< ka:f($+ﬂdhay+hz)‘diT)v 022’3""’83

T=1

<I>(:t:, Y; h) = Z aakcr(zv Y; h’)
o=1

\

In order to make (9.1) efficient, one chooses for ®* an analogous process with s*
stages, where s* > s, in such a way that

Mo =gy, Ao =MX,r foro=23,...,s.

The estimator r(z,y; h) then "costs” only s* — s additional evaluations of f. If
§* = s+ 1, one can even try to save another evaluation by choosing (if possible)

(9.2) e =1, Ager =, for7=1,2,... 8 —1.

In this case, indeed, k,« will be identical with k; of the next step.

Many pairs of Runge-Kutta formulae of this type have been developed by
FEHLBERG [6], [7], [8]. There is considerable freedom in the choice of the pa-
rameters Uy, Asr, @y. The choices made by Fehlberg were guided by an attempt to
reduce the magnitude of the principal error function 7(z,%) of the method ®. His
formulae correspond to values of p, s, s* shown below:

p|3 45 6 7 8
sl 456 8 11 15
s* |5 6 8 10 13 17

For p = 3 (p* = 4), for example, the formulae satisfy (9.2), and take on the
following form:
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12 Walter Gautschi

= flz,y),
ko = ($+2h Y+ Zhlcl)
ks = f(z+ & hy+ 90'{) hki + 333 hks),
ko = f(z + 35 by + s by — Lz Mk + Si573 hks),
Y=Y+ h(490 ke + 3538 k2 + 3562 Ka),
ks = f(x + h,yn),

_ 229 1125 13718
yh y+ h( 1470 ki + 1373 1813 ks + 81585 kg + 18 k5)v

(9.3)

(@, y;h) = h™ yn — y3)-

Similar formulae were developed by other authors; see for example,
CESCHINO [2], TANAKA [22], BACHMANN [1], SARAFYAN [17], ENGLAND [4]. Es-
timators that use information on several consecutive steps are given by SHINTANI
[18], [19], PROTHERO [15], KIS [13], [14], and HUDDLESTON (12].

10. Numerical example

We illustrate Theorem 8.1 by applying Fehlberg’s third-order method (9.3) to an
example taken from [9], that is

d’c/dz? = —m2z%c — ws(c? + 32)_1/2,
(10.1) 2/G<r<2/g+1,
d?s/dx? = —n2x?s 4+ me(c? + s2)71/2
where ¢ > 0 is an integer. The initial conditions are chosen to be
(10.2) c=1, de/dx =0, s =0, ds/dx =2n\/q for x =2,/q,
which (for each ¢ =0,1,2,...) ’identify the solution
(10.3) c(z) = cos(% z%), s(z) =sin(3 %), 2y/g<z<2/g+1.

For the purpose of this illustration, (10.1) is treated as a system of four first-order
differential equations for the vector-valued function

()

¢(z)

s(2)
| (@)
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Global error estimates in ”one-step” methods 13

The length of the interval of integration is kept constant at 1, but the interval
itself is moved to the right as ¢ assumes the values 0,1,2,..., thus entering into
regions of gradually increasing frequencies. One expects, therefore, that the error
estimation becomes more difficult with inicreasing q.

We choose (arbitrarily) the step-control function to be

1if0<E<y,
1:¢1 1
sif 7 << 5,
o) = 2L aTEE0
11f5<€§1,
2if 2 < ¢ <1,

where £ = z — 2,/q. Selected numerical results are reported below in Table 1.
The first column contains the values of ¢, the second some selected values z,, of z,
the third the observed global errors ||u, — y(z,)||co, and the fourth the estimates
lvnh3|lo according to (8.3) (where p = 3). The column headed by ”%” indicates
the discrepancy in percents between the actual and estimated errors. The lower
part of the table shows only the errors and estimates of maximum discrepancy.

Table 1. Global errors, and their estimates, for the example (10.1), computed by Fehlberg’s
method (9.3) and the estimation procedure (8.2). (Numbers in parentheses indicate deci-
mal exponents, for example 4.17(~5) = 4.17 x 107°).

h = .025 h =.0125 h = .00625
q x error est %li error est %]|| error est %
x10" | x107 x10° | x10° x10° | x10°
0 .1 | .67665 | .67638 041] .84548 | .84529 | .02{] 1.0566 | 1.0565 | .01
.2 113532 ] 1.3484 .36} 1.6850 | 1.6818 { .19{ 2.1017 | 2.0996 | .10
3 | 1.7165 | 1.7037 .75{ 2.1259 | 2.1175 | .39]| 2.6442 | 2.6388 | .20
4 | 1.7566 | 1.7400 951 2.1663 | 2.1555 | .50} 2.6885 | 2.6815 | .26
.5 | 1.7439 | 1.7200 | 1.37| 2.1349 | 2.1195 | .72} 2.6395 | 2.6295 | .38
.6 | 5.0043 | 5.1641 | 3.19{| 6.5333 | 6.6252 |1.41}] 8.3289 | 8.3839 | .66
71 12.075 | 12.161 .72)f 15.551 | 15.584 | .22|| 19.689 | 19.704 | .07
.8 1 69.886 | 66.962 | 4.18] 89.073 | 86.832 {2.52|| 111.59 | 110.06 |1.37
9 | 219.68 | 202.87 | 7.65]] 267.98 | 256.04 {4.46|| 327.51 | 319.58 |2.42
1.0 | 417.22 | 368.32 |11.72)| 476.14 | 442.74 |7.01}] 559.66 | 537.85 {3.90
0 max|4.17(-5){3.68(-5)| 11.7{|4.76(-6){4.43(-6)|7.01]|5.60(~7)|5.38(-7)(3.90
1 max|2.10(-4){2.63(—4)| 25.0[.970(-3){1.19(-3){23.1{|9.04(-5)|1.05(-4){16.3
2 max|2.73(-3)|3.69(-3)| 34.9{|3.95(-4)|5.09(-4)|28.8(|2.28(~4){2.71(-4){19.0
3 max|7.45(-3)|11.5(-3)| 54.4]|4.82(-3)[6.67(-3)]38.3{|8.43(-4)|1.11(-3)|31.5
4 max|1.45(-2)|2.62(-2)| 81.3|{1.49(-3)|2.18(-3){46.8]{1.61(-3){2.19(-3)|36.1
5 max|3.34(-2){6.94(-2)| 107||2.79(-3)|4.50(-3)|61.1{2.88(-3)|4.07(-3)|41.2
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As expected, the quality of the estimates worsens with increasing ¢, but improves

with decreasing h. For ¢ = 0 the percental discrepancy is about halved each time h
is reduced to h/2, indicating that the results respect the asymptotic law expressed
in (8.3). For ¢ > 0, the technique is not yet sufficiently refined, at this point, but
the estimates, nevertheless, are rather satisfactory on the whole.
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Multistep methods with minimum global error
coefficient™ **

W. GAUTSCHI™ and M. MONTRONE!

Abstract. We consider linear k-step methods of maximal order in which the roots ¢; # 1
of the first characteristic polynomial are constrained to satisfy |¢;| < v, 0 < v < 1. We
find the unique method of this class having minimum global error coefficient.

1. Let us consider a generic k-step method

k k
(1‘1) Zasyn+s - hZBan—f—s, Q= 1;
5=0

s=0

for the solution of the initial value problem

(1.2) v =f(z,y), (@) = yo.
With the method (1.1) one associates the linear functional [1, p. 327]

k

(1.3) Lu =Y [asu(s) — Bsu'(s))-

s=0
The method has order p if and only if
Lt" =0, r=0,1,...,p; Lt*P*1+£0.
The global error coefficient is 3, p. 223]

* Work carried out under the finalized project ”Medicina Preventiva” (MPP 1).
** English translation by Walter Gautschi of “Metodi multistep con minimo coefficiente dell’errore
globale”, Calcolo 17 (1980), 67-75.
*** Department of Computer Sciences, Purdue University, Lafayette, Indiana, U. S. A.
t Istituto di Analisi Matematica, Universita di Bari, Collaboratore G. N. I. M.
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2 W. Gautschi and M. Montrone

tP+1
)
(1.4) Cop=—>
D s=0Ps

where p is the order of the method.
We assume that the characteristic polynomial

k
(1.5) pQ) =) a’
s=0

has roots (s with

L=C( > Gl =Gl > > (Gl
(1.6)

(s simple if |(s] = 1.

These conditions, as is known, are indispensable for the convergence of the
method. Moreover, Dahlquist’s theory ensures that, given such a polynomial p(¢)
of degree k, it is always possible to determine, correspondingly, a convergent k-step
method of order at least £ + 1. Only if k is even, (2 = —1, and the roots (;,
s =3,...,k, are distinct and complex of modulus one, can the method have order
k + 2, which is the maximum order possible.

As far as the interval of absolute stability associated with the method is con-
cerned, it is well known, however, that this interval is the larger the further inside
the unit circle the roots of p((¢) different from 1 are located.

In view of these considerations, we fix v, 0 < < 1, in this work, and examine
the class A, of characteristic polynomials for which ¢; = 1, || < v for s =
2,3,...,k, and, among all polynomials in A, we look for the one that minimizes
in absolute value the global error coefficient in the corresponding k-step method of
order k£ + 1.

We find that this minimum is attained for the polynomial having all roots
different from 1 concentrated at the point —v.

For some values of v and k we construct the multistep methods associated with
this characteristic polynomial, and we determine the respective intervals of absolute
stability.

2. Consider the transformation { = % ,Z = %—;—i , which maps the unit circle
into the negative half-plane and, in particular, the point { = 1 into z = 0; moreover,
it maps the circle ', : |[¢] < v < 1 into a circle C in the same half-plane (see Figure

1).
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Multistep methods with minimum global error coefficient 3

,//// t piano -

C

Fig. 1.

1
The circle C, intersects the real axis in the points —w and ——, where
w
11— ‘
w=-—"-,
14+~
Let the transformed characteristic polynomials be

r(Z)=(1;z)kp(iiz),
(2.1) o) - (1;Z>ka<ijj>7

k
where o(() = Z Bs¢® is the second characteristic polynomial.
s=0
If the polynomial p(¢) has a root of multiplicity p at ¢, then the polynomial

1 .
¢ . if { # —1, or has degree

7(z) has a root of the same multiplicity at z = CA———

k—p,if C = —1, and vice versa. Therefore, all the roots of r(z) are contained in
the negative half-plane. Furthermore, (1) = 1 and, letting

(2.2) r(z) = a1z + a22® + - + ag 2,

we have that a; >0, s =1,2,...,k,if p€ A,.

We denote the zeros of 7(z) by z,, 0 = 21 < |z9| < |z3| < --- < |zl

The class A, of polynomials p(¢) transforms into the class D., of polynomials
r(z) defined by

(2.3) Dy={r(z): 21=0,2,€C,, s=2,3,...,k}.
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4 W. Gautschi and M. Montrone

If we put
(24) T+Z'£@:b0+b12+bgz2+”',
In¥2 2

it is known (cf. [3, p. 230]) that for every polynomial r(z) one obtains the k-step
formula of maximum order by letting

(2.5) $(2) = bo + byz 4 - + bz~
Moreover,
b
2. C,.. = 2
( 6) kyp 2pb0 )

where p is the order realized in this way. If r € D, then p =% + 1.
The problem at hand, therefore, consists in determining

b1
2k+1b0

2.7 in |C = mi
(2.7) fg}gi k1] rfggff

3. We put

(371) :/\0+>\222+/\4Z4+~-~,

In 142

1-2z

and recall (cf. [3, p. 231]) that Ao = 4, Ag, <O for v > 1.
It then follows from (2.4) that

1
bo = 5 a1,

Ak+101 + Ag—1a3 + - - - + Aaag, k odd,
(3:2) br+1 =
Ak@o + Ag_sa4 + - - - + Aoag, k even.

We must minimize

. [Aotr] + [Ae—1]22 + - -+ [Xa| S, K odd,
3.3) 2[Cr | =
|)\k'z—f+|/\k_2|%+“'+|/\2|%f, k even.

Putting u; = —z;, j = 2,3,...,k, we have
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t

Fig. 2.

[[oa(z +u5)
H?:z(l + u;)

The points u; are located in the circle —C, (see Figure 2).

(3.4) r(z) =z

Now,
k
(3.5) H(z +uy) = ag(u)2* L+ o (u)F 2+ 4 ok-1(u),
=2
where
oo(u) =1, o1(u) =ur +us + -+ up,...,00_1(u) = urug - - - ug

are the elementary symmetric functions in the variables ug, us, . . ., u.

Therefore,

as  Ok-s(u)
3.6 — = —=05_1(v), $=1,2,...,k,
(3.6) o o) 1(v)

where o, 1(v) are the elementary symmetric functions in the variables vy, vg, . .., vk
with v; = o . Since the transformation v = 1/u maps the circle —C, into 1tself

we have that v; € -Cy, 7 =2,3,...,k.
If among the v; there are conjuga,te complex pairs, v, = §, +1in,, U, = Eu — Ny,
Nu > 0, then from the identity

k
3.7) H(z + vy) H[(z +E)+ 772] = 203_1('0);:’“‘5,
s=1

A Iz
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6 W. Gautschi and M. Montrone

where vy and §, are positive, it is clear that each o,_1(v) is a nondecreasing function
of n,.

To minimize os_;(v), it thus suffices to consider the case in which all v; are real.
In this case, the minimum of o,_1(v) for the v; varying in —C,, clearly obtains if
Uy = U3 = -+ = Up_1 = w, independently of s.

Moreover,

(3.8) min o,_1(v) = (k - 1)w3_1.

v;e-Cy s—1

Therefore, by (3.3) and (3.6), one has

,

‘)\k-é—li + (k;1)|/\k_1]w2 + (kzl)i)xk~3‘w4 4+ 1)\2[(.«)]‘7‘—1

. 1
Trélgi [Cr k1| = ok < k odd,

T el + B3 Aeafw® + - + Pafwf ™ K even.
\

The polynomial realizing the minimum is

(3.9) r(z) = 2 (;i i)

k-1

to which corresponds the charateristic polynomial

(3.10) pQ) =~ 1C+n*

4. We note, in the case of k£ odd, that

. . _ o—kiy
(41) lim, min [Ch k1] =2 [Ab-+1]-

Actually, from (3.3) it follows that

(4.2) inf {Crry1] = 27" Aes1], Kk odd,
pPEA

where A is the class of characteristic polynomials satisfying (1.6). Eq (3.10) suggests
(but does not prove!) that, in general, there does not exist a zero-stable method
(that is, a polynomial p € A) for which |Ck k41| is equal to the infimum in (4.2).
We prove, in fact, as already asserted in [2], that this is true whenever & (odd) > 5,
while for k = 3, every k-step method with zeros (; =1, (o = —1, =1 < (3 < 1 has _
minimum coefficient |C3 4] = 15 -
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It is clear, by (3.3), that |Ck k41| = 27%|\gy1] is possible only if ag = a5 = - - - =
ar = 0, that is, if
(4.3) r(2) = a1z + apz? + a2t + - +ap_ 1 2F L.
There follows, in particular, that ¢ = —1 is a zero of p(¢).

If k = 3, we have

r(z) = z(a1 + a22).

By the stability assumption it follows that r(z) has the zeros z; = 0, 25 = ¢ with
—00 < £ < 0 arbitrary, from which

PO = -1+ -AN), —-l<r<l

Each of these polynomials thus generates a zero-stable 3-step method, of order 4,
having minimum coefficient |C3 4| = 3 M| = 715

Assume now k (odd) > 5. Since p € A, we have ax_; # 0, and the sum of the
zeros z; of r(z), being equal to —%’:‘—f , must be zero. In particular,

-1
R,er =0.
1

7 =

[
I

On the other hand, by the same assumption p € A, we have Re zj <0, from which,
necessarily, Rez; = 0, j = 1,2,...,k — 1. Since 2; = 0, the latter is compatible
with zero-stability only if r(z) has odd degree, contradicting (4.3).

In an analogous manner one proves (see also (3, p. 286, Problem 37]) that for k
(even) > 2,

- o—k-1
(4.4) ;gg [Ch k2] = 27" Akl
If k£ > 4, there does not exist a zero-stable method of order k + 2 attaining the

infimum in (4.4), while for k¥ = 2 Milne’s method is the unique 2-step method with
0274 = ’él/\d = —18L9 .

5. We now examine the methods of Section 3 corresponding to k = 2 and k = 3.
For k£ = 2 one obtains

(51) Yns2 = (1 = V¥Yns1 = VYn = % (5 =) frne2 + 81 +7) far1 — (1 = 57) fn)

with
11—+«

(5.2) C=—-———.
24 1+«

Note that for v = 0 one obtains the Adams-Moulton method with error constant
C = —1/24. For v = 1 one obtains Milne’s method.
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8 W. Gautschi and M. Montrone

The interval of absolute stability is [4, p. 74]

(5.3) [—6 1—;% ,o} .

For k = 3 one has
Ynt3 — (1 = 27)Un+2 — Y(2 = V¥ns1 — V’Un
(5-4) = 2h—4 (9 =27 + %) fagsz + (19 + 267 — 59%) fri2
—(5 — 267 — 199%) fup1 + (1 — 27 + 99%) f]

with

1 19 — 22y + 1942
720 (1+7)?

(5.5) C=-
The interval of absolute stability is

(5.6) [~3 ﬁ—; ,0} .

If v = 0 one obtains the Adams—Moulton method.
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Algorithm 726: ORTHPOL—A Package of
Routines for Generating Orthogonal
Polynomials and Gauss-Type

Quadrature Rules

WALTER GAUTSCHI
Purdue University

A collection of subroutines and examples of their uses, as well as the underlying numerical
methods, are described for generating orthogonal polynomials relative to arbitrary weight
functions. The object of these routines is to produce the coefficients in the three-term recurrence
relation satisfied by the orthogonal polynomials. Once these are known, additional data can be
generated, such as zeros of orthogonal polynomials and Gauss-type quadrature rules, for which
routines are also provided.

Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: Approxirr}ation; G.14
{Numerical Analysis]: Quadrature and Numerical Differentiation; G.4 [Mathematical Soft-

ware)]
General Terms: Algorithms
Additional Key Words and Phrases: Gauss-type quadrature rules, orthogonal polynomials

1. INTRODUCTION

Classical orthogonal polynomials, such as those of Legendre, Chebyshev,
Laguerre, and Hermite, have been used for purposes of approximation in
widely different disciplines and over a long period of time. Their popularity is
due in part to the ease with which they can be employed and in part to the
wealth of analytic results known for them. Widespread use of nonclassical
orthogonal polynomials, in contrast, has been impeded by a lack of effective
and generally applicable constructive methods. The present set of computer
routines has been developed over the past 10 years in the hope of remedying
this impediment and of encouraging the use of nonstandard orthogonal
polynomials. A number of applications indeed have already been made, for
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47907-1398.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and /or
specific permission.
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example, to numerical quadrature (Cauchy principal value integrals with
coth-kernel [Gautschi et al. 1987}, Hilbert transform of Jacobi weight func-
tions [Gautschi and Wimp 1987], integration over half-infinite intervals
[Gautschi 1991¢], rational Gauss-type quadrature [Gautschi 1993a; 1993b)),
to moment-preserving spline approximation [Gautschi 1984a; Gautschi and
Milovanovié 1986; Frontini et al. 1987], to the summation of slowly conver-
gent series [Gautschi 1991a, 1991b], and, perhaps most notably, to the proof
of the Bieberbach conjecture [Gautschi 1986b].

In most applications, orthogonality is with respect to a positive weight
function, w, on a given interval or union of intervals, or with respect to
positive weights, w,, concentrated on a discrete set of points, {x ]}, or a
combination of both. For convenience of notation, we subsume all of these
cases under the notion of a positive measure, d A, on the real line R. That is,
the respective inner product is written as a Riemann-Stieltjes integral,

(WM=fuuwumnn, (1.1)
[154

where the function A(¢) is the indefinite integral of w for the continuous part,
and a step function with jumps w, at x, for the discrete part. We assume that
(1.1) is meaningful whenever u, v are polynomials. There is then defined a
unique set of (monic) orthogonal polynomials,

m,(t)=t* + lower-degree terms, k=0,1,2,...,

(m,,7,)=0 if k+/. : (1.2)

We speak of “continuous” orthogonal polynomials if the support of dA is an
interval or a union of intervals, of “discrete” orthogonal polynomials if the
support of dA consists of a discrete set of points, and of orthogonal polynomi-
als of “mixed type” if the support of dA has both a continuous and discrete
part. In the first and last cases, there are infinitely many orthogonal polyno-
mials, one for each degree, whereas in the second case, there are exactly N
orthogonal polynomials, 7y, 7y, ..., 75 _,, where N is the number of support
points. In all cases, we denote the polynomials by 7,(-) = 7,(-; dA), or 7, (-; w),
if we want to indicate their dependence on the measure dA or weight function
w, and use similar notations for other quantities depending on dA or w.

It is a distinctive feature of orthogonal polynomials, compared to other
orthogonal systems, that they satisfy a three-term recurrence relation,

my (8) = (t — a)m, (t) — B,m,_ (), k=0,1,2,...,
wo(t) =1, m_(t) =0, (1.3)

with coefficients «;, = a,(dA) € R, B, = B,(dA) > 0 that are uniquely deter-
mined by the measure d A. By convention, the coefficient 3,, which multiplies
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7_, = 0 in (1.3), is defined by
Bo = Bo(dX) = [ dCe). (1.4)
R

The knowledge of these coefficients is absolutely indispensable for any sound
computational use and application of orthogonal polynomials [Gautschi 1982a,
1990]. One of the principal objectives of the present package is precisely to
provide routines for generating these coefficients. Routines for related quanti-
ties are also provided, such as Gauss-type quadrature weights and nodes and,
hence, also zeros of orthogonal polynomials.

Occasionally (e.g., in Gautschi [1984a], Gautschi and Milovanovié [1986],
Frontini et al. [1987], and Gautschi [1993a; 1993b]), one needs to deal with
indefinite (i.e., sign-changing) measures dA. The positivity of the 8, is then
no longer guaranteed, indeed not even the existence of all orthogonal polyno-
mials. Nevertheless, our methods can still be formally applied, albeit at the
risk of possible breakdowns or instabilities.

There are basically four methods used here to generate recursion coeffi-
cients: (1) Methods based on explicit formulas. These relate to classical
orthogonal polynomials and are implemented in the routine recur of Section
2.(2) Methods based on moment information. These are dealt with in Section
3 and are represented by a single routine, cheb. Its origin can be traced back
to work of Chebyshev on discrete least squares approximation. (3) Bootstrap
methods based on inner product formulas for the coefficients, and orthogonal
reduction methods. We have attributed the idea for the former method to
Stieltjes, and referred to it in Gautschi {1982a] as the Stieltjes procedure. The
prototype is the routine sti in Section 4, applicable for discrete orthogonal
polynomials. An alternative routine is lancz, which accomplishes the same
purpose, but uses the method of Lanczos. Either of these routines can be used
in mecdis, which applies to continuous as well as to mixed-type orthogonal
polynomials. In contrast to all previous routines, medis uses a discretization
process and, thus, furnishes only approximate answers whose accuracies can
be controlled by the user. The routine, however, is by far the most sophisti-
cated and flexible routine in this package, one that requires, or can greatly
benefit from, ingenuity of the user. The same kind of discretization is also
applicable to moment-related methods, yielding the routine mccheb. (4)
Modification algorithms. These are routines generating recursion coefficients
for measures modified by a rational factor, utilizing the recursion coefficients
of the original measure, which are assumed to be known. They can be thought
of as algorithmic implementations of the Christoffel, or generalized Christof-
fel, theorem and are incorporated in the routines chri and gchri of Section 5.
An important application of all of these routines is made in Section 6, where
routines are provided that generate the weights and nodes of quadrature
rules of Gauss, Gauss—Radau, and Gauss—Lobatto types.

Each routine has a single-precision and double-precision version with
similar names, except for the prefix d in double-precision procedures. The
latter are generally a straightforward translation of the former. An exception
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is the routine dlga used in drecur for computing the logarithm of the
gamma function, which employs a different method than the single-precision
companion routine alga.

All routines of the package have been checked for ANSI conformance and
tested on two computers: the Cyber 205 and a Sun 4/670 MP workstation.
The former has machine precisions €° = 7.11 X 10713, €% = 5.05 X 10729 in
single and double precision, respectively, while the latter has €° = 5.96 X
1078, €? = 1.11 X 107 '%. The Cyber 205 has a large floating-point exponent
range, extending from approximately —8617 to +8645 in single as well as in
double precision, whereas the Sun 4/670 has the rather limited exponent
range [ — 38, 38] in single precision, but a larger range [ —308,308] in double
precision. All output cited relates to work on the Cyber 205.

The package is organized as follows: Section 0 contains (slightly amended)
netlib routines, namely, rlmach and dlmach, providing basic machine
constants for a variety of computers. Section 1 contains all of the driver
routines, named testl, test2, etc., which are used (and described in the body
of this paper) to test the subroutines of the package. The complete output of
each test is listed immediately after the driver. Sections 2-6 constitute the
core of the package: The single- and double-precision subroutines described in
the equally numbered sections of this paper. All single-precision routines are
provided with comments and instructions for their use. These, of course,
apply to the double-precision routines as well.

2. CLASSICAL WEIGHT FUNCTIONS

Among the most frequently used orthogonal polynomials are the Jacobi
polynomials, generalized Laguerre polynomials, and Hermite polynomials,
supported, respectively, on a finite interval, half-infinite interval, and the
whole real line. The respective weight functions are

w(t) = w=B () = (1L -1 +8)°
on (—=1,1),a> —1,8> —1:Jacobi; (2.1)
w(t) = w*(t) =t% ! on (0,o), @ > —1: Generalized Laguerre; (2.2)

w(t) =e !’ on (—o, ©): Hermite. (2.3)

Special cases of the Jacobi polynomials are the Legendre polynomials (« =
= 0); the Chebyshev polynomials of the first (a = 8 = — 1), second (a = 8
= 1), third (e = —8 = — 3), and fourth (e = — B = 3) kinds; and the Gegen-
bauer polynomials (a = 8 = A — 3). The Laguerre polynomials are the special
case a = 0 of the generalized Laguerre polynomials.

For each of these polynomials, the corresponding recursion coefficients
a, = a,{w), B, = B(w) are explicitly known (see, e.g., Chihara [1978,
pp- 217-221] and are generated in single precision by the routine recur.
Its calling sequence is

recur(n, ipoly, al, be, a, b, ierr).
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On entry,
n is the number of recursion coefficients desired; type integer.
ipoly is an integer identifying the polynomial as follows:

1 = Legendre polynomial on (—1, 1);

2 = Legendre polynomial on (0, 1);

3 = Chebyshev polynomial of the first kind;

4 = Chebyshev polynomial of the second kind;

5 = Chebyshev polynomial of the third kind;

6 = Jacobi polynomial with parameters al, be;

7 = generalized Laguerre polynomial with parameter al; and
8 = Hermite polynomial.

al, be are the input parameters «, 8 for Jacobi and generalized Laguerre
polynomials; type real; they are only used if ipoly = 6 or 7, and in
the latter case, only al is used.

On return,
a,b are real arrays of dimension n with a(k), b(%) containing the coeffi-
cients a, _, B, _,, respectively, £ = 1,2,... /n.

ierr is an error flag, where

ierr = 0 on normal return,

ierr = 1 ifeither al or be is out of range when ipoly = 6 or ipoly = 7,

ierr = 2 if there is potential overflow in the evaluation of B, when
ipoly = 6 or ipoly = 7; in this case, B, is set equal to
the largest machine-representable number,

ierr = 3 if n is out of range, and

ierr = 4 if ipoly is not one of the admissible integers.

No provision has been made for Chebyshev polynomials of the fourth kind,
since their recursion coefficients are obtained from those for the third-kind
Chebyshev polynomials simply by changing the sign of the «’s (and leaving
the B’s unchanged).

The corresponding double-precision routine is drecur; it has the same
calling sequence, except for real data types now being double precision.

In the cases of Jacobi polynomials (ipoly = 6) and generalized Laguerre
polynomials (ipoly = 7), the recursion coefficient B, (and only this one)
involves the gamma function I'. Accordingly, a function routine, alga, is
provided that computes the logarithm In [ of the gamma function, and a
separate routine, gamma, coraputing the gamma function by exponentiating
its logarithm. Their calling sequences are

function alga(x)
function gammal(x, ierr),

where ierr is an output variable set equal to 2 or 0 depending on whether the
gamma function does, or does not, overflow, respectively. The corresponding
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double-precision routines have the names dlga and dgamma. All of these
routines require machine-dependent constants for reasons explained below.

The routine alga is based on a rational approximation valid on the interval
[1, 2]. Outside this interval, the argument x is written as

x=x,+m,

where
B x— x|+ 1 if x—lx] <3,
¢ x — x| otherwise
is in the interval (3, 2] and where m > —1 is an integer. If m = —1 (e,

0 <x < 3), then InT(x) = In[(x,) — In x, while for m > 0, one computes
InT'(x) = In(x,) + In p, where p =x,(x, + D-(x, + m — 1. If m is so
large, say, m > m,, that the product p would overflow, then ln p is com-
puted (at a price!) as Inp =In x, + In{(x, + 1) + - +In(x, + m — 1). It is
here where a machine-dependent integer is required, namely, m, = smallest
integer m such that 1-3-5---(2m + 1)/2™ is greater than or equal to the
largest machine-representable number, R. By Stirling’s formula, the integer
my is seen to be the smallest integer m satisfying (m + 1)/e)In{(m + 1)/e)
> (In R — +1n8)/e, hence, equal to le-t((In R — 5In8)/e)|, where t(y) is
the inverse function of y = ¢ln ¢. For our purposes, the low-accuracy approxi-
mation of t(y), given in Gautschi [1967b, pp. 51-52], and implemented in the
routine t, is adequate.

The rational approximation chosen on [2, 2] is one due to W.J. Cody and
K. E. Hillstrom, namely, the one labeled n = 7 in Table II of Cody and
Hillstrom [1967]. It is designed to yield about 16 correct decimal digits (cf.
Table I of Cody and Hillstrom [1967]), but because of numerical cancellation
furnishes only about 13-14 correct decimal digits.

Since rational approximations for InT" having sufficient accuracies for
double-precision computation do not seem to be available in the literature, we
use a different approach for the routine dlga, namely, the asymptotic approx-
imation (cf. eq. 6.1.42 of Abramowitz and Stegun [1964], where the constants

B, ,. are Bernoulli numbers)

InT(y) =(y —Dlny —y + 1n(27)

n 32
1 ————y @m-b 4 R 2.4
mg‘ 2m@2m — 1)° (3) 24

for values of y > 0 large enough to have
1
IR (y) < 510“1, (2.5)

where d is the number of decimal digits carried in double-precision arith-
metic, another machine-dependent real number. If (2.5) holds for y > y, and
if x > y,, we compute In I'(x) from the asymptotic expression (2.4) (where
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y = x and the remainder term is neglected). Otherwise, we let %, be the
smallest positive integer & such that x + £ > y,, and use

Inl'(x) =Inl(x + ky) — In(x(x + 1) - (x + &y — 1)), (2.6)

where the first term on the right is computed from (2.4) (with y = x + k).
Since, for y > 0,

,R ( )] < |B2n+2l
IS on ¥ 2)@2n + 1)

-2n+1)

(cf. Abramowitz and Stegun [1964, eq. 6.1.42]), the inequality (2.5) is satisfied
if

2‘B2n+2|
@n +2)2n+ 1)

y > exp{ ld In10 + In } 2.7)

2n + 1

In our routine dlga, we have selected n = 9. For double-precision accuracy on
the Cyber 205, we have d = 28.3, for which (2.7) then gives y >
exp{.121188 --- d + .053905---} ~ 32.6.

For single-precision calculation, we selected the method of rational approxi-
mation, rather than the asymptotic formula (2.4) and (2.6), since we found
that the former is generally more accurate, by a factor, on the average, of
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