


Contemporary Mathematicians

Joseph P.S. Kung
University of North Texas, USA

Editor

For further volumes:
http://www.springer.com/xeries/4817



Claude Brezinski ¢ Ahmed Sameh
Editors

Walter Gautschi, Volume 4

Selected Works with Commentaries






Walter Gautschi, 2021






Contents

List of Contributors. . .oovviiiiiiiiii ittt it iitieiteentnnenns xiil

34 Publications .cvvviiiiit ittt ittt ittt e, 1
Walter Gautschi

Part I Commentaries

35 Special Functions ......... ...ttt 7
Javier Segura

35.1 Computational methods ........... ... ... ... ... 7

35.1.1 Exponential integral ............ ... ... . L 7

35.1.2 Repeated integrals of the coerror function............... 8

BD.2 ZTOS . o o oo 8

35.2.1 Freud and subrange Freud polynomials.................. 8

35.2.2 Ultraspherical polynomials.............................. 9

35.2.3 Subrange Jacobi polynomials..................... ... ... 9

References. ... ... 9

36 Approximation ............iiiiiiiiiiiiii i i i 11

Miodrag M. Spalevi¢

37 Orthogonal Polynomials on the Real Line ................ 13
Walter Van Assche

37.1 Polynomials orthogonal with respect to

exponential integrals....... ... ... . i 13
37.2 Polynomials orthogonal with respect to cardinal

B-spline weight functions............. ... ... oL 16
37.3 Binet-type polynomials and their zeros....................... 17

37.4 Polynomials orthogonal relative to weight functions
of Prudnikov type ...... ... . 19



viil Contents

37.5 Orthogonal polynomials relative to a generalized

Marchenko—Passtur probability measure....................... 21
37.6 Another look at polynomials orthogonal relative to
exponential integral weight functions................. ... ... 23
References .. ... 24
38 Gauss-type Quadrature ............c.ciiiiiiiiiiiiiinan.. 27
Gradimir V. Milovanovié¢
38.1 Introduction....... ... 27
38.2 Gauss—Turan quadrature ............. ..., 27
38.3 Gauss—Turan quadrature for Laguerre and Hermite weight
functions . ... .. 30
References .. ... ..o 32
39 Ordinary Differential Equations.......................... 33
John Butcher
40 History . oovviiiiiiii ittt ittt ittt i i e e 35
Gerhard Wanner
40.1 A historical note on Gauss—Kronrod quadrature .............. 35
40.2 Interpolation before and after Lagrange....................... 35
References .. ... ..o 36
41 Miscellanea ....... ..ottt ittt 37

Martin J. Gander



Contents X

Part II Reprints

42

43

44

Papers on Special Functions................. ..o, 41

42.1 [172] (with F. E. Harris and N. M. Temme),

Expansions of the exponential integral in

incomplete gamma functions, Appl. Math.

Lett. 16, 1095-1099 (2003) ...« .ovrie e 42
42.2 [212] Algorithm 957: Evaluation of the repeated

integrals of the coerror function by halfrange

Gauss—Hermite quadrature, ACM Trans. Math.

Software 42, Article 9, 10 pages (2016) ........................ 48
42.3 [213] Monotonicity properties of the zeros of Freud

and sub-range Freud polynomials, Math. Comp. 86,

855-864 (2017) .ot 59
42.4 [216] On the Ismail-Letessier—Askey monotonicity

conjecture for zeros of ultraspherical polynomials,

in Frontiers in orthogonal polynomials and g-series,

251-266, World Sci. Publ., Hackensack, NJ, 2018.............. 70
42.5 [218] On the zeros of subrange Jacobi polynomials,

Numer. Algorithms 79, 759-768 (2018) .........cooiiiiiin.... 87
Paper on Approximation...............oiiiiiiiinrnnann. 99

43.1 [217] A discrete top-down Markov problem in
approximation theory, in Frontiers in orthogonal
polynomials and g-series (M. Zuhair Nashed and
Xin Li, eds.), 267-289, World Sci. Publ.,
Hackensack, NJ, 2018. ... . ... 100

Papers on Orthogonal Polynomials on the Real Line..... 125

44.1 [211] Polynomials orthogonal with respect to

exponential integrals, Numer. Algorithms 70,

215226 (2015) ot 126
44.2 [215] Polynomials orthogonal with respect to



45

46

cardinal B-spline weight functions, Numer.

Algorithms 76, 1099-1107 (2017) ..........coooiiiit..

44.3 [219] (with Gradimir V. Milovanovi¢) Binet-type
polynomials and their zeros, Electron. Trans.

Numer. Anal. 50, 52-70 (2018) ..........ooiiiiiia...

44.4 [223] (with Gradimir V. Milovanovi¢) Orthogonal
polynomials relative to a generalized Marchenko—
Pastur probability measure, Numer. Algorithms 88,

12331249 (2021) ..o

44.5 [224] (with Gradimir V. Milovanovi¢) Orthogonal
polynomials relative to weight functions of

Prudnikov type, Numer. Algorithms, to appear .........

44.6 [225] Another look at polynomials orthogonal
relative to exponential integral weight functions,

Numer. Algorithms, to appear..........................

Paper on Gauss-type Quadrature....................

45.1 [209] High-precision Gauss—Turdn quadrature rules
for Laguerre and Hermite weight functions, Numer.

Algorithms 67, 5972 (2014) ...

Papers on Ordinary Differenial Equations............

46.1 [15] (with H. A. Antosiewicz) Numerical methods in
ordinary differential equations, Ch. 9 in Survey of
numerical analysis (J. Todd, ed.), 314-346, McGraw—

Hill, New York, 1962 ...... ... .. ... .. i

46.2 [56] Comportement asymptotique des coefficients dans
les formules d’intégration d’Adams, de Stormer et de
Cowell, Paris Sér. A-B, 283, no. 10, Aiii, A7T87-AT788,

Contents



Contents el

47.1 [177] A historical note on Gauss-Kronrod quadrature,

Numer. Math. 100, 483-484 (2005) ........covviiiiiin.. 262

47.2 [206] Interpolation before and after Lagrange, Rend.
Semin. Mat. Univ. Politec. Torino 70, 347-368 (2012) ........ 265
48 Paper on Miscellanea............ ..ottt 289

48.1 [221] (with Ernst Hairer) On conjectures of Stenger in
the theory of orthogonal polynomials, J. Inequal. Appl.,
Paper No. 159 (2018), 27 PP vvvvviiii e 290






List of Contributors

Walter Van Assche
Department of Mathematics
KU Leuven, Heverlee, Belgium

John C. Butcher
Department of Mathematics
The Univsersity of Auckland
Auckland, New Zealand

Martin Gander

Section de Mathématiques
Université de Geneve
Geneve, Switzerland

Nick Higham
School of Mathematics

The University of Manchester
Manchester, UK

Jacob Korevaar

Korteveg de Vries Institut
University of Amsterdam
Amsterdam, The Netherlands

Lisa Lorentzen
Institutt for Matematiske
Fag NTNU

Trondheim, Norway

Gradimir Milovanovié
Matematicki Institut SANU
Beograd, Serbia

Giovanni Monegato
Dipartimento di Matematica
Politecnico di Torino

Torino, Italy

Lothar Reichel
Department of Mathematical Sciences

Kent State University
Kent, OH, USA

Javier Segura
Departamento de Matematicas
Estadistica y Computacion
Universidad de Cantabria
Santander, Spain

Miodrag M. Spalevié
Department of Mathematics
University of Belgrade
Belgrade, Serbia

Gerhard Wanner
Section de Mathématiques
Université de Geneve
Geneve, Switzerland






34

Publications (continuation of Section 4, Volume 1, including
updated entries for the years 2012-2014)

Walter Gautschi

Books

B4. Orthogonal polynomials in Matlab: exercises and solutions,
Software, Environments, Tools, STAM, Philadelphia, 2016.

B5. A software repository for orthogonal polynomials, Software, En-
vironments, Tools, STAM, Philadelphia, 2018.

B6. A software repository for Gaussian quadratures and Christoffel
functions, Software, Environments, Tools, STAM, Philadelphia,
2021.

Publications

2012

204. Numerical integration over the square in the presence of algebraic/log-
arithmic singularities with an application to aerodynamics, Numer. Al-
gorithms 61, 275-290.

205. Sub-range Jacobi polynomials, Numer. Algorithms 61, 649-657.

206. Interpolation before and after Lagrange, Rend. Semin. Mat. Univ. Po-
litec. Torino 70, 347-368.

2013

207. Repeated modifications of orthogonal polynomials by linear divisors, Nu-
mer. Algorithms 63, 369-383.



208.

209.

210.

211.

212.

213.

214.
215.

216.

217.

Walter Gautschi

Neutralizing nearby singularities in numerical quadrature, Numer. Al-
gorithms 64, 417-425.

2014

High-precision Gauss—Turdn quadrature rules for Laguerre and Hermite
weight functions, Numer. Algorithms 67, 59-72.

A brief summary of my scientific work and highlights of my career, in
Walter Gautschi: selected works and commentaries, Vol. 1 (C. Brezin-
ski and A. Sameh, eds.), 9-17, Birkh&duser, Boston, MA.

2015

Polynomials orthogonal with respect to exponential integrals. Numer. Al-
gorithms 70, 215-226.

2016

Algorithm 957: Fvaluation of the repeated integrals of the coerror func-
tion by half-range Gauss—Hermite quadrature, ACM Trans. Math. Soft-
ware 42, Article 9, 10 pages.

2017

Monotonicity properties of the zeros of Freud and sub-range Freud poly-
nomaals: analytic and empirical results, Math. Comp. 86, 855-864.
Erratum to: Sub-range Jacobi polynomials, Numer. Algorithms 74, 637.

Polynomials orthogonal with respect to cardinal B-spline weight func-
tions, Numer. Algorithms 76, 1099-1107.

2018

On the Ismail-Letessier—Askey monotonicity conjecture for zeros of ul-
traspherical polynomials, in Frontiers in orthogonal polynomials and g-
series (M. Zuhair Nashed and Xin Li, eds.), 251-266, World Sci. Publ.,
Hackensack, NJ.

A discrete top-down Markov problem in approximation theory, in Fron-

tiers in orthogonal polynomials and g-series (M. Zuhair Nashed and
Xin Li, eds.), 267-289, World Sci. Publ., Hackensack, NJ.



34. Publications 3

218. On the zeros of sub-range Jacobi polynomials, Numer. Algorithms 79,
759-768.

219. (with Gradimir V. Milovanovi¢) Binet-type polynomials and their zeros,
Electron. Trans. Numer. Anal. 50, 52-70.

220. Progress by accident: some reflections on my career, STAM News 51,
no. 10, 7-8.

2019

221. Kommentar (Interpolation des Logarithmus) zum Brief Leonhard Eu-
lers an Daniel Bernoulli, Opera Omnia IV /A3, Birkhauser, Basel.

222. (with Ernst Hairer) On conjectures of Stenger in the theory of orthog-
onal polynomials, J. Inequal. Appl., Paper No. 159, 27 pp.

2021

223. (with Gradimir V. Milovanovi¢) Orthogonal polynomials relative to a
generalized Marchenko—Pastur probability measure, Numer. Algorithms
88, 1233-1249.

224. (with Gradimir V. Milovanovi¢) Orthogonal polynomials relative to weight
functions of Prudnikov type, Numer. Algorithms, to appear.

225. Another look at polynomials orthogonal relative to exponential integral
weight functions, Numer. Algorithms, to appear.






Part 1

Commentaries

In all commentaries, reference numbers preceded by “GA” refer to the num-
bers in the list of Gautschi’s publications; see Section 4, Vol. 1 and Section 34,
this volume. Numbers in boldface type indicate that the respective papers
are included in these selected works.






35

Special functions

Javier Segura

Here, five papers are commented on, [GA172], [GA212], [GA213], [GA216],
and [GA218] (see p. 31 of Vol. 1 and pp. 2-3 of this volume), all dealing with
different aspects of special functions. They can be divided into two groups,
one on computational methods and the other on zeros. Among the former are
the papers [GA172] and [GA212], the first discussing the computation of the
exponential integral by means of series expansion in incomplete gamma func-
tions and the second the computation of the repeated integrals of the coerror
function by halfrange Gauss—Hermite quadrature. In the second group of
papers, the focus is on monotonicity properties, both analytic and empirical,
for the zeros of classical and nonclassical orthogonal polynomials.

35.1 Computational methods

35.1.1 Exponential integral. In the paper [GA172], written jointly with
F. E. Harris and N. M. Temme, the expansion of the exponential integral

— (1, 2)
El(z)—l—z—l—lnz:z oy (35.1)
n=1
in incomplete gamma functions is derived as a limit case (first A | 0, then
a — 0) from the interesting identity

o - yla+n,z
Y(a,Az) = A Z—( , )

(Y

n=0
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stated by Tricomi in [4] without proof, but proved in this paper. When
compared with the known power series expansion

o0

Ei(z)+z+4+Inz= Z(—l)

n=1

n-1 2 (35.2)

nn!’

one finds that they nicely complement one another in the sense that for large
|z|, internal cancellations of terms in the series of (35.1) is negligent when
arg z ~ 0 but gets worse as arg z grows from 0 to 7, whereas for the series
in (35.2) it is just the other way around.

35.1.2 Repeated integrals of the coerror function. Computation of the
repeated integrals of the coerror function,

folz) =1"erfe(x), n=0,1,2,...,

using recursion, has been considered by Gautschi previously in [GA13],
[GAB9], [GAGO]; see §6.1.1 of Vol. 1. In [GA212] an entirely different ap-
proach is taken, namely numerical quadrature based on the integral repre-

sentation
2

fl@) = V7 n!
where the integral is evaluated by halfrange Gauss—Hermite quadrature. This
allows the computation of f,(z) for just one, or a few, values of n.

The potential occurrence of underflow and overflow, and the fact that
the proposed (nonclassical) quadrature rules are currently available only up
to 200 quadrature points and up to an accuracy of 32 digits, impose certain
restrictions on the (n,r)-domain. These are carefully analyzed for the case
where f,(x) is wanted to an accuracy of 12 or 30 decimal digits.

/ g e—(x2+2xt) e—t2 dt,
0

35.2 Zeros

35.2.1 Freud and subrange Freud polynomials. For zeros of an orthogonal
polynomial that depends on a parameter 7, there is a classical result of
A. Markov [3, Theorem 6. 12. 1] establishing monotonic growth of the zeros as
a function of the parameter. The paper GA[213] provides concrete examples
of this result related to subrange Freud polynomials orthogonal with respect
to the weight function

w(z) = |z[fe ™ p>—-1,v>0
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on intervals x € [0,¢], x € [¢c,00], € [—¢,c|, v € [-00,—c|] U [¢, 0], where
¢ > 0. The parameter in question here is 7 = v. Additional results, also for
Freud polynomials on x € R, having a wider scope, are obtained by numerical
computation.

35.2.2 Ultraspherical polynomials. Monotonicity and other properties for
zeros of ultraspherical polynomials have received a great deal of attention
in the literature. We mention, e. g., the work of Shafique, Muldoon, and
Spigler [2] and that of Elbert and Siafarikas [1], culminating in the Ismail-
Letessier—Askey (ILA) conjecture, proved in [2]. Gautschi’s paper [GA216]
examines to what extent this work can be extended, at least computationally,
from monotonicity to complete monotonicity, which gives rise to a number
of conjectures.

35.2.3 Subrange Jacobi polynomials. Subrange Jacobi polyhnomials are
orthogonal with respect to the Jacobi weight function w(z) = (1—z)®(1+x)?,
a > —1, f > —1, supported either on the symmetric subinterval [—¢, ¢],
0 < ¢ < 1, or on the asymmetric interval [—1,¢], =1 < ¢ < 1. We may refer
to them as symmetric resp. asymmetric subrange Jacobi polynomials. In
the asymmetric case, it follows from Theorem 2.6 in [GA219] that all zeros
of asymmetric subrange Jacobi polynomials are monotonically increasing as
functions of ¢. In Theorem 1 of [GA218] the same is shown to be true in
the symmetric case for all positive zeros if &« = 3. The case a # 3 is more
complicated. Assuming, without restriction of generality, that @ < (3, the
matter depends on the validity of a conjecture that is of independent interest,
namely

m(—c)]? (1=c\"°
{ } ( ) <1, n>1,a<f 0<c<]1, (35.3)
() 1+c¢

where m, () is the symmetric subrange Jacobi polynomial of degree n. If
true, then the upper half of the zeros of m,, if they are positive, increase
monotonically as functions of ¢; cf. Theorem 2 in [GA218]. The conjecture
(35.3) is known to be valid if & < 0 and 8 > 0 (see Remark 2 on p. 763 of
[GA218]).

References

[1] ELBERT, ARPAD AND PANAYIOTIS D. SIAFARIKAS. Monotonicity properties
of the zeros of ultraspherical polynomials, J. Approz. Theory 97 (1999), 3-39.
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36

Approximation

Miodrag M. Spalevié¢

The paper here commented on is [GA217] (see p. 2 of this volume), an
original contribution to approximation theory turning the classical Markov
problem for a polynomial p of degree n around by seeking a bound of |p|
on [—1,1] if a bound of |p(k)} is known. Naturally, for this reversed Markov
problem to be meaningful, £ additional conditions for p and its first £ — 1
derivatives must be imposed. For these, Gautschi takes the initial conditions
p(=1) = p/(=1) = .-+ = p*=Y(=1) = 0. The problem then has an easy
answer. More challenging and, at the same time, more interesting is a discrete
version of this problem, which is what Gautschi is mainly dealing with here,
namely

Problem (Discrete top-down Markov problem). Given integers n > 1 and
1 < k < n, and given n — k + 1 distinct points TS = {r,} in [-1,1],
—1<7 <7< - <Thp1 <1, consider the following class of polynomials
of degree n,

@%k) ={peP,: p(—1)=p'(-1)=---=ph=I(-1) =0,
and |P(k)(7y)‘ <1, v=12....n—k+1}
Foreachv =1,2,... ,n—k+1, determine the mazimum possible value M,S@
of |p(1,)| when p € QP
M%) = max [p(r,)|, v=1,2,...,n—k+1. (35.1)
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Gautschi gives a nice and simple solution to this problem.

Denote by ¢, the elementary Lagrange interpolation polynomials of degree

n — k for the points in ’]I‘,(f), satisfying ¢,(7,) = 1, £,(1,) = 0 if v # p, and

let s = [s,(/kl), s,(fQ), . ,s,(jlz_kﬂ] be the vector with entries si) = 1 if the
integral
1= [ - enar

is positive, s(yk,l = —1 if it is negative, and an arbitrary value, for example
)

sl(,k,l =0, if L% = 0. The desired quantity (35.1) is then expressed explicitly

as
n—k+1

M= >

p=1

| =t an)

~1
v=12,....n—k+1,

the associated extremal polynomial being

* 1 ‘ -
i) = h=1) / (t = 7) pp_r(r;8P)dr,

-1
where p,_(- ;s,(,k)) is the interpolation polynomial of degree n — k passing
through the points (7, s,%), w=12....n—k+1.

Various examples are discussed numerically, with the points 7, being
Gauss—Jacobi, in particular Gauss—Legendre, quadrature points, Gauss—Lo-
batto points for Jacobi weight functions, as well as equally spaced points on
the open or closed interval from —1 to 1. Issues of interest are structural

properties of the sign pattern matrix

e

(k)
S
Sn—k+1 - 2

)
Sn—k+1
and monotonicity properties of M,(ka) as a function of v and of max, Mékg
as a function of k£ or n. There are many opportunities here for additional
work, for example, deriving the numerical results obtained, and more similar

worthwhile results, by means of rigorous mathematical analysis.

Acknowledgement. 1 would like to express my thanks to the editors for
their help in writing this commentary.
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Orthogonal Polynomials on the Real Line

Walter Van Assche

During the past few decades, Walter Gautschi has developed a number of
algorithms for computing recurrence coefficients for orthogonal polynomials
and the related Gauss quadrature nodes and quadrature weights. These are
all available and described in detail in his books and survey papers [GAB3],
[GA179], [GAB4], [GAB5], [GAB6]. To fix notation, we will denote the
orthonormal polynomials by p, and the monic orthogonal polynomials by
mn. The recurrence relation for the monic polynomials is (§1.3 in [GAB3])

Tnt1(z) = (x — o) () — Bumn—a(z), n=0,1,2,...,

with initial values mo(z) = 1 and 7_;(z) = 0. Observe that (5 is not needed,
but Gautschi usually takes 5y = pg, the zero-moment of the orthogonality
measure. The N-point quadrature nodes are the zeros of the orthogonal
polynomial of degree N and are also equal to the eigenvalues of the symmetric
tridiagonal Jacobi matrix containing the first N recurrence coefficients a,,
0 <n < N —1, on the diagonal and the square root of the N — 1 coefficients
Bn, 1 <n < N —1, on the two side diagonals. The quadrature weights are
related to the first components of the corresponding normalized eigenvectors
and contain fy as a factor (Golub and Welsch, [7]). Hence the crucial task
is to compute the recurrence coefficients.

37.1 Polynomials orthogonal with respect to exponential integrals
[GA211]
The goal in this paper is to compute the recurrence coefficients for orthogonal
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polynomials with the exponential integral F, as weight function,

/0 " (&)o@ By (@) = Sy

where

o dt
E,(z) = e — . v>0.
1 tv

Integrals with this weight function, when v is an integer, are of interest in
radiative transfer problems in astronomy and astrophysics, and hence the
relevant Gauss quadrature methods could be useful in that field. For v =
1, an eight-digit table of the 20-point Gauss quadrature formula has been
published by Gautschi as early as 1968; see §(v) in [GA32].

In the present paper, Gautschi makes use of variable-precision codes from
Chapter 2 of his book [GAB3] to compute as many of the recurrence coef-
ficients as desired, to arbitrary precision. This is done not only for poly-
nomials orthogonal on [0, 00], but also for subrange polynomials orthogo-
nal on a finite interval [0,¢], ¢ > 0. The software used comes from the
package OPQ containing Matlab double-precision programs, and from the
symbolic Matlab package SOPQ, which are available on Gautschi’s website
https://www.cs.purdue.edu/archives/2002/wxg/codes/.

The moments of the exponential integral weight function are easily ob-

tained,

o n!
n = "E,(r)dx = , =0,1,2,...,
i /0 2" E,(x)dx T "

and are used in the symbolic version of the Chebyshev algorithm to compute
the first NV recurrence coefficients v, 5,, 0 < n < N—1. Owing to the severe
ill-conditioning of the process, the working precision has to be considerably
larger than the target precision. Thus, for example, when v = 1 and N = 40,
to obtain answers to an accuracy of 32 digits, one needs a working precision
of 60 digits. The answers, in fact, are shown on p. 219 of Gautschi’s paper.
Interestingly, the recurrence coefficients «,,, with the exception of the first
few, are very close, more so the larger n, to 2n, which formally are the re-
currence coefficients for the generalized Laguerre polynomial with parameter
—1. Similarly for the recurrence coefficients 3, which are close to n(n — 3),
the generalized Laguerre coefficients with parameter —3; see Fig. 37.1. The
reason for this may have something to do with the fact that F,(z) ~ e */x
as r — o0, so that the exponential integral looks like the gamma density.
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Figure 37.1: The recurrence coefficients ay, (left) and
Br (right) (indicated by circles) for v = 1. The lines
in red indicate the recurrence coefficients of the gener-
alized Laguerre polynomials with parameter —1 (left)
and parameter —3 (right)

For the orthogonal polynomials on [0, c|,

/Ocpn(x)pm(x)El,(CL’)diL’ = 5m,m

the moments are

¢ 1
e = / B @) = —— (o(k+ 1,0 + D1 = 1,0)),

where (a, z) and I'(a, z) are the incomplete gamma functions,

v(a, ) :/ t*te~tdt, TI'(a,z) :/ t*te~tdt.
0 T

The latter can be computed with the Matlab Symbolic Toolbox, but for the
former, Gautschi provides his own symbolic routine. The numerical condi-
tioning is now worse, requiring a working precision of 85 digits to obtain the
first 40 recurrence coefficients to 32 correct digits for moderately large values
of ¢ (0 < ¢ <16).

In Eq. (2.58) of [GAB4], Gautschi manages to find an explicit formula
for the modified moments my, of the weight function E,(x) on [0, co] relative
to an arbitrary (monic) polynomial py(x) of degree k. He takes for py the
monic Laguerre polynomial of degree k. Based on estimates for the numerical
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conditioning of the modified Chebyshev algorithm (producing the recurrence
coefficients «y,, f, from the modified moments), he then claims surprisingly
large condition numbers, even larger than in the case of ordinary moments;
see Tables 2.11 and 2.13 in [GAB4]. As communicated to me by Gautschi
[4], he has verified these unusual claims by additional computations. He also
pointed out two software issues, the first in the routine run_sr_Enu.m, where
in the assignment statements for abl and ab2 the second argument on the
right was missing and should be 32 in either case. Secondly, the routine
smmomEnu.m was erroneous and has been replaced by a correct one. All this
has been implemented in the routines on his website (see above).

In a later paper [GA225] (see §37.6) the computation of the three-term
recurrence coefficients from modified moments is revisited. The comparison
between the method using ordinary moments and modified moments was not
fair since the analysis included the computation of the modified moments.
See §37.6 for more comments.

37.2 Polynomials orthogonal with respect to cardinal B-spline weight
functions [GA215]
B-splines play an important role in approximation by splines and multireso-
lution approximation, where integrals involving the cardinal B-spline appear
frequently, and therefore quadrature formulas for these weight functions are
indispensable. Milovanovi¢ [12] developed a method and an algorithm, based
on the moments of the cardinal B-spline, to compute in symbolic form the
recurrence coefficients of the orthogonal polynomials on [0,m] for the car-
dinal B-spline function of order m. Gautschi had access to a preprint of
Milovanovi¢’s paper and decided to look at another approach based on mul-
ticomponent discretization, which is described in §2.2.4 of his book [GAB3].
The cardinal B-spline ¢,, of order m > 1 is a positive piecewise polyno-
mial function which consists of polynomials of degree m — 1 on each interval
[k — 1,k] (1 < k < m) chosen so as to make ,, smooth, belonging to
C™2(R). Tt vanishes outside of [0, m]; see Fig. 37.2. For m = 1 the cardinal
B-spline is constant equal to 1 on [0, 1] and 0 elsewhere. The corresponding
orthogonal polynomials are then the shifted Legendre polynomials on [0, 1].
The cardinal B-spline ¢, can be (and has been) computed recursively by

1

gOm(l') = m— 1 (ZL‘ Somfl(x) + (m — $)§0m71(f17 — 1)) , m > 2.

Matlab routines cBspline.m and scBspline.m are provided to compute ¢,
in Matlab double- resp. variable-precision arithmetic. The multicomponent
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Figure 37.2: Cardinal B-splines for
m=1:10,12,15,20

discretization procedure requires the evaluation of integrals of the form

/k (0 m (1), / Er2(t) oo (1)

-1 -1
with ¢ < n —1, where n is the number of recurrence coefficient pairs wanted.
These integrals can be computed exactly by Gauss quadrature on [k — 1, k]
with n+[m/2] —1 points. The results produced in double precision are com-
pared with the high-precision results of the moment-based method and are
found to be quite accurate, the relative error always being close to machine
precision. Three numerical examples illustrate the efficiency of the method.
The cardinal B-spline of order m is symmetric on the interval [0, m] so that
the recurrence coefficients «y, are all constant equal to m/2. The recurrence
coefficients 8 converge to m?/16, which is to be expected since the weight
function belongs to Nevai’s class for the interval [0, m]. This follows from the
fact that ¢, () > 0 on (0, m) (Rakhmanov’s theorem; see, e.g., [2]). Gautschi
mentions that convergence of the recurrence coefficients is a consequence of
the weight function being in the Szego class, which is correct, but the weight
function also belongs to the Nevai class for the interval [0,m], which is a
much larger class. Gautschi also observes that convergence is slow, which is
probably due to the fact that ¢,,(x) is very small near the endpoints 0 and
m; see Fig. 37.2.

37.3 Binet-type polynomials and their zeros [GA219|
In the late 1990s, Dahlquist published some important work on summa-

tion formulas which involved Gauss quadrature using the Binet distribution
wB(z) = w(2rx) /27, where

w(z) = —log(l —e h, 2 € (00, 00),
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is the Binet weight function. In this paper [GA219], Gautschi and Milo-
vanovié also consider the generalized Binet weight function

w(z;a) = —log(l —ae ), 2z € (—00,00), 0<a<l.

They compute the recurrence coefficients and the zeros of orthogonal polyno-
mials related to these and some other weight functions, such as the squares of
these weight functions and the restrictions to [0, 00), [¢, 00), [0, ¢] and [—¢, ¢],
where ¢ > 0. The Binet function w on (—00, 00) is considered in §2.1 of the
paper, where the moments

pr =0 if kisodd, pp=2k!((k+2) if kis even

are used in the Chebyshev algorithm to generate in sufficiently high precision
the desired recurrence coefficients. As many as 64 working digits are used
to compute the first 100 recurrence coefficients to 32 digits. The generalized
Binet function w(x;«) is dealt with in §2.2. It is shown, in particular, that
all positive zeros of the respective orthogonal polynomials are monotonically
decreasing as functions of a. The proof uses Markov’s theorem on the varia-
tion of the zeros of an orthogonal polynomial in dependence of a parameter
contained in the weight function. In §3.1, the squared Binet function is con-
sidered, and in §3.2 the squared generalized Binet weight function, for which
the same monotonicity property of the zeros is shown to hold as for gener-
alized Binet functions in §2.2. Halfrange weight functions, supported on the
positive real line [0,00), are dealt with in §4, where all zeros of the corre-
sponding generalized Binet polynomials are shown to decrease monotonically
as functions of a. The squares of the Binet and generalized Binet function
on [0,00) are investigated in §5. The above monotonicity result for zeros
again holds for halfrange squared generalized Binet polynomials. Finally, §6
deals with the restrictions to [, 00), ¢ > 0, to [0, ¢], and to [—c,c|. The de-
pendence of the zeros on the parameter c¢ is discussed for each of these cases.
It is observed that the restriction to [c,00), yielding upper subrange Binet
polynomials, corresponds to a shift in the weight function in the sense that
w(x+c;a) = w(x;e “a) for x > 0, so that the recurrrence coefficients oy, are
shifted by the constant c. All zeros of the upper subrange Binet polynomials
are now shown to be monotonically increasing as functions of c.

Cizek and Vrsay [1] formulated a conjecture about the asymptotic behav-
ior of the recurrence coefficients, which was proved by Jones and Van Assche
[9]. They, however, considered the weight function w?(z) = w(27 z)/27 and
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Figure 37.3: The recurrence coefficients [ (indi-
cated by black circles) for the Binet function w and
their approximation (indicated by a red line)

its transformed version w?(\/x)/+/z on [0, 00). Translated to the recurrence
coefficients [, for the Binet weight w, the asymptotic behavior is

The recurrence coefficients fj (black circles) are plotted in Fig. 37.3 to-
gether with n?7?/4 (solid red line), showing that this asymptotic behavior
is indeed confirmed, not only for large n, but for all n. The recurrence
coefficients are taken from the file coeff binet.txt on Gautschi’s website
https://www.cs.purdue.edu/archives/2002/wxg/codes/BINET.html.

37.4 Polynomials orthogonal relative to weight functions of Prud-
nikov type [GA224]

At the seventh Spanish Symposium on Orthogonal Polynomials and Ap-
plications (VII SPOA) held at the University of Granada (Spain) in 1991,
Prudnikov posed some problems [13, §9] about orthogonal polynomials with
ultra-exponential weight functions &(x, k) given by

27 xs

1 a+ioco Fk
§(x,k):—/ (s ds, a>0, x>0.

—ioco

The right-hand side is the inverse of the Mellin transform, so that

| e s = 140s)
0
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and, in particular, the moments of £(x, k) are

Hn = (n')k

For k = 1 one has {(z,1) = e and the corresponding orthogonal poly-
nomials are the Laguerre polynomials L, (z). For k = 2 one has &(x,2) =
2Ky(2y/x), where Kj is the second-kind modified Bessel function of order 0.
Prudnikov was interested in getting the generating function, a Rodrigues-
type formula, the recurrence relation, and a differential equation for the
corresponding orthogonal polynomials.

Gautschi and Milovanovié¢ consider the weight function

po(z) = 2272 K,(2y/x), x>0, v>0,

the case v = 0 corresponding to Prudnikov’s weight function &(z,2). The
generalized Prudnikov weight is

wi(x) = 2%, (x), >0, a>—1,

v

and its moments are
pn =T(n+a+v+1I'(n+a+1).

Gautschi and Milovanovi¢ work out a procedure to compute the first N re-
currence coefficients by means of the Chebyshev algorithm with sufficiently
high precision. Their Matlab routines can be found on Gautschi’s web-
site https://www.cs.purdue.edu/archives/2002/wxg/codes/PRUD.html.
Their analysis of the conditioning of the Chebyshev algorithm suggests that
to compute N = 100 recurrence coefficients to an accuracy of 15 decimal
digits requires 80 working digits.
Other related weight functions are also considered: Prudnikov-type weights
of type 1,
wi(z)=e"p,(z), >0, v>-—1,

v

and Prudnikov-type weights of type 2,

Vep (x), >0, veR.

w, (r) =2 te”

The moments of Prudnikov-type weights of type 1 can be obtained in
terms of a confluent hypergeometric function, and those for Prudnikov-type
weights of type 2 in terms of a Meijer G-function The condition numbers for



37.5 Orthogonal polynomials for a generalized Marchenko—Pastur measure 21

type 1 are substantially larger than for the generalized Prudnikov weight,
and as a result, one will need to work with 100 digits to obtain the first
N = 100 recurrence coefficients to an accuracy of 15 decimal digits. The
condition numbers for the Prudnikov-type weights of type 2 are similar to
those of the generalized Prudnikov weights. Gautschi and Milovanovié¢ also
consider symmetric versions of the Prudnikov weights on (—oo, c0) but with
x replaced by |z|. They find that the condition numbers are then much lower
and the number of required digits is about half of what was needed before.
It turns out that when k = 2 | the multiple orthogonal polynomials [§],
of interest in Hermite-Padé approximation and random matrix theory [15],
with weights z%p,(z) and x%p,,1(x) are much more natural [14], and for
them, one can indeed find a Rodrigues formula, a differential equation, and
a recurrence relation, but not of order 2, but rather of order 3. When k& > 2,
the multiple orthogonal polynomials can be expressed in terms of Meijer G-
functions and generalized hypergeometric functions. They appear in random

matrix theory when one takes products of random matrices (Kuijlaars and
Zhang [10]).

37.5 Orthogonal polynomials relative to a generalized Marchenko—
Pastur probability measure [GA223|

The Marchenko—Pastur density is

1
 27e

w(x) e/ (b—2)(x —a), =€la,b]

when 0 < ¢ < 1, where a = (y/c — 1)? and b = (y/c+ 1)?, and

w(z) + <1 - %) 5

when ¢ > 1, where J, is the Dirac delta function at z = 0 with mass 1. This
in fact is the limiting distribution of the eigenvalues of the matrix X X*,
where X is an n X m random matrix with i.i.d. normal random variables
(real, complex, or quaternion). When m < n, there will be an eigenvalue at
0 with multiplicity n — m, which gives rise to the dy when ¢ > 1 (given that
m = n/c). The Marchenko—Pastur density also is the asymptotic distribution
of the zeros of Laguerre polynomials L% (nz) when a,/n has a limit, see [5]
when a,, = a and [6] when a,, = an + «. This is not surprising since there
is a connection between the random matrix X X* and Laguerre polynomials,
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the average characteristic polynomial of X X* being the Laguerre polynomial

LY (x) when X involves complex normal random variables and m > n,

and 2" LE™ () when m < n.
Gautschi and Milovanovié¢ generalize the Marchenko—Pastur density by

replacing the exponents 1/2 for b — x and x — a by a and 3, respectively, so
that

1 1
— 2z (b—2)%x —a)’ + (1——) do if ¢>1,
C o Cc
1
— 2 (b—2)*(z—a)® if c< 1,
Ho

w(z; o, B,c) =

where
b
AMmﬁmwa/x*w—xw@—a%m,c>a

and the absolutely continuous part is supported on [a,b]. With an affine
transformation z = 2y/ct + ¢+ 1 the interval [a,b] is mapped to [—1, 1] and
the weight transforms to a weight of the form

(@B)(t) 1
w
—_— 1——]6-
Yy +( C) 7

where w(*#) is the Jacobi density (1 —#)*(1+ )% g = (c+1)/(2y/c) and x
a constant that makes this a probability density. We are dealing here with
a modification of the Jacobi density known as a Geronimus transform; see,
e.g., Zhedanov [16, Eq. (3.12)] or Maroni [11]. The Geronimus transform
is the inverse of the Christoffel transform, which multiplies a given weight
function by t+¢g. The Geronimus transform can also be viewed as an Uvarov
transform (one divides the weight by ¢+ ¢) and the addition of a mass point
at —g. Such spectral transformations have been considered before in the
literature, in particular by Gautschi in §2.4.1 of [GAB3]. But here, Gautschi
and Milovanovi¢ do this in much detail for the generalized Marchenko—Pastur
density, both analytically and numerically.

They first show that the monic orthogonal polynomials 7} for the weight
on [—1,1] are given by

mi(t) = BV () + B (1),
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where ]Sk(a’ﬁ ) are the monic Jacobi polynomials and ~; constants depending
on «,3,c. This corresponds to Zhedanov’s equation (3.9) in [16]. The co-
efficients v, are investigated in detail. It is shown that they are given by
Y& = —Pr/DPr—1, where the pj satisfy the recurrence relation

o1+ (g +al)pr+ Bk =0, k>1.

This is the three-term recurrence relation for monic Jacobi polynomials and

variable t = —g. The general solution is a linear combination of Pk(a’ﬂ )(—g)
and ()
1 [e%
Pt
/ k—() w'@P) (t)dt.
-1 t+ g

The latter is a minimal solution of the recurrence relation, for which Gautschi
had developed numerical methods earlier; see §2.3 in [GAB3]. The recur-
rence coefficients «y, and ) of interest can now be obtained in terms of the
recurrence coefficients o and S of the monic Jacobi polynomials and the
coefficients ~,. Gautschi and Milovanovi¢ show that

lim ap, =1+¢, lim g =c,

k—o00 k—o0
which also follows from the fact that the Marchenko—Pastur measure on |a, b|
belongs to the Nevai class [2].

Some examples are worked out in more detail, in particular those with

a, = £1/2, for which the recurrence coefficients oy and fj are given ex-
plicitly as functions of c. Remarkably, they converge almost instantaneously
when ¢ < 1, and in the case a = = 1/2 also when ¢ > 1.

37.6 Another look at polynomials orthogonal relative to exponen-
tial integral weight functions [GA225]

In [GA211] Gautschi computed the recurrence coefficients for the orthogonal
polynomials relative to the exponential integral weight function E,, see §37.1.
He now realized that the comparison between the Chebyshev algorithm with
ordinary and modified moments was misleading, since he included the com-
putation of the modified moments in his analysis. For a fair comparison one
must assume that the ordinary moments and the modified moments are given
and the question then is how well both methods perform when computing
the recurrence coefficients.

The conclusion is that for the weight function £, on the infinite interval
[0,00) the Chebyshev algorithm with modified moments (involving Laguerre
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polynomials with parameter a = —1/4) is only marginally better than the
method using ordinary moments. Both methods show a considerable amount
of ill-conditioning, so that variable precision is necessary and Matlab double
precision is not sufficient. For the weight function F, restricted to the finite
interval [0, ¢] the Chebyshev algorithm with modified moments (involving the
Legendre polynomials on [0, ¢]) is perfectly stable and produces almost fully
accurate results in Matlab double precision. There is however a difference
in the runtime of the two algorithms in variable-precision arithmetic: the
method with ordinary moments is about 30% faster than the method using
modified moments.

The modified moments (in the case of the infinite support interval [0, c0))
are evaluated here differently than before in [3, Exercise 2.26(b)] and in a
manner applicable also to finite support intervals [0, ¢]. Specifically,

g = / B0t = / o) I vt

where I'(a, z) is the incomplete gamma function. Gautschi suggests to com-
pute the latter integral using n-point Gauss quadrature relative to the novel
and unusual weight function

v(r) =2 'T(1 —v,z), >0,

which will give exact results when 0 < k& < 2n — 1. In a similar way one
can compute the modified moments for the weight E, restricted to the finite
interval [0, c| by using Gauss quadrature relative to the weight function v
restricted to [0, ¢]. Of course, this means that one has to compute the nodes
and weights for these Gauss quadrature rules, for which the Chebyshev al-
gorithm (in sufficiently high precision) is suggested. The moments for the
weight v can be computed explicitly in terms of the gamma function (for the
infinite interval) and the incomplete gamma function (for the finite interval).
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Gauss-type Quadrature

Gradimir V. Milovanovié

This commentary concerns the paper [GA209] (see p. 2 of this volume).

38.1 Introduction

In [3], T presented Gautschi’s constructive theory of orthogonal polynomials
on the real line, including effective algorithms for numerically generating
orthogonal polynomials, a detailed stability analysis of these algorithms, as
well as several new applications of orthogonal polynomials. In the last section
of that article, I mentioned some extensions and applications of Gautschi’s
theory including a few of my own.

One of these applications is the construction of so-called s-orthogonal
polynomials relative to any positive weight function (or measure d\) and the
associated quadrature formulas with multiple nodes. This indeed is the topic
of [GA209], where the measure d)\ is either the Laguerre measure e *d¢ on
[0, 00] or the Hermite measure e~**dt on [—o0, oo].

38.2 Gauss—Turan quadrature
Let P, be the set of all algebraic polynomials of degree at most n and P be
the set of all algebraic polynomials. The (monic) s-orthogonal polynomials

Tns(t) = t" + terms of lower degree (n € Ny, s a fixed integer in N)

are characterized by the orthogonality relations

/t” [Tns(O)*THdAE) =0, v=0,1,...,n—1, (38.1)
R
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and play an important role in the construction of so-called Turan quadratures
[4] with multiple nodes

/f t)dA(t iZA (1) + Ras(f), (38.2)

v=1 o=0

where n and s are positive integers n > 1, s > 0, and the formula (38.2)
has maximum degree of exactness d = 2(s + 1)n — 1, i.e., R, s(f) = 0 for all
[ € Pyy1)n—1. Indeed, the nodes 7, are the zeros of m, and the weights

)\I(,U), for each v, the solution of an upper triangular system of 2s + 1 linear
equations.

If s = 0, the polynomials 7, ¢ are the ordinary (monic) polynomials ,, s =
7, orthogonal with respect to the measure dA on R, and (38.2) is the usual
Gaussian quadrature rule.

In [1] we reinterpreted the conditions (38.1) as ordinary orthogonality
conditions relative to the positive measure d\, s(t) = [m,s(¢)]**dA(t) (see
also [GA154] and [2]), i.e

/ t' mps(t)dA s(t) =0, v=0,1,...,n—1. (38.3)
R

Evidently, this defines m, s implicitly. Nevertheless, for the measure d\, (1),
where n and s are fixed, there exists a unique sequence of (monic) polynomials

{W,(C?}kzo (deg F](Cns) = k) such that
/tjwks()d)\ns():(), P=01,. . k-1 (38.4)
R

Thus, {7?,(:2 }i>o0 1s a sequence of standard monic polynomials orthogonal with
respect to the measure d\,s(t) on R and therefore satisfies a three-term
recurrence relation of the form

n () = (t—ap)m (1) = Bem) (8, k=0.1,...,

) - (38.5)
7T15<>:O7 7TOS() 1

where the recurrence coefficients depend on the measure d), ;. We denote
them by 04,(:2 = oz,(gn), k=0,1,2,...,and Blgns) = B,in), k=1,2,...,suppressing
the dependence on s, or even simply by ay and f as in (38.5).
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Because of the uniqueness of this sequence of orthogonal polynomials
{71'](:;) 122 o, by comparing (38.3) with (38.4), we conclude that its member
with £ = n must be the s-orthogonal polynomial, i.e.,

Tn,s(t) = T, 2 (1), (38.6)

so that we need the recurrence coefficients only for £ < n — 1 in order to get
(38.6).
Now using Darboux’s formulas
(n) _(n) (n) _(n)
(tﬂ-k,s ’ ﬂ—k,s) o (ﬂ—k,s ’ 71—k,s)
B =

(il mid) (Mo ms)

(38.7)

A =
for Kk <mn —1 (see [1]), where

(0.0) = (0, Dy, = / p()g(t) (1), (33.8)

R
and omitting indices (7, = W,(Cns) ), we can write the following system of 2n — 1
nonlinear equations,

fn(gn) = O) 0, = [a07a17"'7an—1;617'"76n—1]T7 (389)

where fn = [fl; fg, ceey fgn_l]T and

for+1 = /(ak — ) ()2 (H)dA(t) =0, k=0,1,...,n—1,
R

for = / [Ber? (1) — m2(6)] 72 (H)ANE) =0, k=1, .n—1.

(38.10)
For solving the system of equations (38.9), the Newton—Kantorovich method,
converging quadratically, was proposed in [1]. All integrals in (38.10), as well
as the ones in the elements of the Jacobian, can be computed exactly, except
for rounding errors, by using an (s+ 1)n-point Gauss—Christoffel quadrature
formula with respect to the measure d\(¢). Thus, in all calculations, only the
fundamental three-term recurrence relation (38.5) and the Gauss—Christoffel

quadrature rule with respect to the measure dA(t) are needed (see [1] or
§3.1.3.2 in [GAB3)).
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Using a stable construction of s-orthogonal polynomials, in a joint pa-
per with Gautschi [GA154] we developed a method for constructing Gauss—
Turdn type quadrature formulae (38.2). This led to further progress in the
theory of quadratures with multiple nodes.

As can be seen, the functions fx, k =1,2,...,2n—1, in (38.10) are highly
nonlinear functions of the 2n — 1 variables ag, a1, ..., a,_1 and Bq,..., Bn_1.
Solving (38.9) with the Newton—Kantorovich method therefore requires suffi-
ciently accurate initial approximations for the recurrence coefficients. This is
the main problem in this area, which, in [GA209], is addressed by Gautschi
in the case of Laguerre and Hermite weight functions.

38.3 Gauss—Turan quadrature for Laguerre and Hermite weight
functions s =1,2,...,5

The values of s are restricted here to the first five integers, which is deemed
sufficient for most applications. In the notations below, the parameter s is
suppressed.

Consider first the Laguerre case. Here the recurrence coefficients af and

L for the ordinary (monic) Laguerre polynomials are linear resp. quadratic

in k, more precisely, ot = 2k + 1 and 8f = k?. Gautschi discovered that a

similar property holds, at least approximately and irrespective of the value
of s, also for the recurrence coefficients of interest here.

When n = 1 there is only one unknown oy = ozél), which is the only
positive solution of the algebraic equation

2s+1

Ji= /000(040 - If) [7?175(t>]2se—tdt = Z(_1>V(25 19— V)V&(Z)s-i-l—y — 0,

v=0

where we used 7 (t) =t — .

When n = 2 there are three unknowns a(()Q), a?) and B%Q), when n = 3

five unknowns oz((]g), a§3), ozé?’) and 6%3), 53), etc. Assuming n =1,2,..., N,
all unknowns may be arranged in a matrix R = [A| B] of order N x (2N —1)

formed with two block matrices A and B containing a- resp. [-coefficients.
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That is,
e
aéQ) O42) 552)
a(()s) ags) ags) ﬁgs) ﬂég)
R = .
N-1) (N-1) (N-1 N-1 N—-1) ,(N—1 N-1
aé >a§ )a; )"'045\/72) 5; )5§ )"'Bz(vfz)
N N N N N N N N N
i a(() ) ag ) Ozg ) Oégv_)g aﬁv_)l B§ ) Bé b 51(\/—)2 6](\/—)1 i

Gautschi’s discovery mentioned above can now be stated as follows: The
elements on the diagonal and subdiagonals of the matrix A lie approximately
on straight lines, whereas those on the diagonal and subdiagonals of the ma-
trix B lie approximately on parabolas. Moreover, with a good deal of heuris-
tics, Gautschi was able to determine the coefficients of the respective linear
and quadratic functions. The approximate matrix R, ~ R with N = 42 so
obtained provides sufficiently accurate initial approximations for the solu-
tion of the system (38.9) by the Newton—Kantorovich method (in sufficiently
high-precision arithmetic) to succeed for all 2 < n < N when s = 1. For
larger s this is true only if /V is smaller, as small as N = 15 when s = 5.

In the case of the Hermite measure d\(t) = e *d¢, matters are similar,
but simpler, insofar as the matrix A is the zero matrix by symmetry. Also,
the integer N can now be taken as large as 90.

I take this opportunity to point out some inaccuracies and a mistake in
the paper [GA209], neither of which affects the validity of the final results.
On p. 62 of the paper, right after the "First Empirical Observation”, it
should have been stated that & = 0 in the left graph of Fig. 1 and k£ = 1
in the right graph. Likewise for Fig. 2 on p. 70. Also on top of p. 67, read
k=0,1,2,... ,N—1instead of k = 1,2,... , N —1. Finally, the equation for
I'(k + 1/2) in the textline after the third displayed formula on p. 69 should
read T'(k + 1/2) = (1/2)x /7 and Eq. (4.1), accordingly,

Qavri(B) = %(—1)’“(23 () e

k=0

The five equations following (4.1), however, are correct.
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Ordinary Differential Equations

John Butcher

See Section 22, Volume 3.
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History

Gerhard Wanner

40.1 A historical note on Gauss—Kronrod quadrature [GA177]
Many famous ideas attributed to famous authors have been found by someone
else much earlier. As Walter Gautschi has discovered, the idea behind Gauss—
Kronrod formulas is no exception from this rule and indeed has been put
forward more than half a century earlier by Rudolf Skutsch [1]. Walter
Gautschi does not speculate as to why this paper went unnoticed for such a
long time. One reason, however, may well be that the paper was written in
a style not all that easy to understand.

40.2 Interpolation before and after Lagrange [GA206]

Lagrange was born 1736 in Turin and died 1813 in Paris. For the occasion
of Lagrange’s 200th anniversary of death, the Department of Mathematics
at the University of Turin invited Walter Gautschi to give a lecture in the
series Lezioni Lagrangiane, which led to the present paper.

After a long career entirely consecrated to academic research of the high-
est level, without any teaching duties, Lagrange, then “le premier des savants
d’Europe” (Fourier), found himself in front of a large heterogeneous class of
“Citoyens” in the newly founded Ecole Normale, who expected “des notions
¢lémentaires”, but instead "ils n’y ont trouvés que des notions académiques”.
Consequently, Lagrange had to lower continuously his level and finished his
fifth and last lecture by explaining nicely Newton’s interpolation formula and
then his own version, now called “Lagrange’s interpolation formula”.

With more enthusiasm than Lagrange, Walter Gautschi took this formula
as an occasion for an impressive overview of interpolation “before Lagrange”:
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Newton, a curious (and failed) attempt by Euler to interpolate the common
logarithm from its values at the powers of ten [GA186], Waring [2] predating
Lagrange by 16 years, and “after Lagrange”: the understanding of error and
convergence (Cauchy, Runge) and many modern applications (barycentric
formulas, Hermite—Fejér interpolation, quadrature, ODE’s and PDE’s).
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Miscellanea

Martin J. Gander

The paper to be commented on is [GA222]. T remember well when the work
started which led to this joint paper by Walter Gautschi and Ernst Hairer:
Walter was visiting Geneva and gave a seminar in our numerical analysis
seminar series on June 12th 2018, which contained interesting conjectures
going back to Stenger. After the seminar we had very lively discussions,
and Ernst Hairer showed us on the board in my office a technique used
in the theory of collocation Runge-Kutta methods in ordinary differential
equations, which seemed related to the Stenger conjecture. After Walter
returned back to Purdue University, the discussions continued and Walter
and Ernst managed to prove the Stenger conjecture in several cases, but also
found cases where it does not hold, which led to the present manuscript.
What are the Stenger conjectures? Consider the zeros x; of an orthogonal
polynomial of a fixed degree for a given weight function w(x) on the interval
[a, b], and the Lagrange polynomials which equal one at one of the zeros and
zero at all the others. If one integrates these Lagrange polynomials either
between [a,z;] or [z;,b] and then puts the result into a matrix U resp. V
indexed by the Lagrange polynomial index for the columns and the index of
the zero for the rows, Stenger conjectured that the eigenvalues of the matrices
U and V lie in the open right half of the complex plane. Walter and Ernst
call this the restricted Stenger conjecture, and they also consider the case
when, in the integration of the Lagrange polynomial, one uses the weight
function w, which they call the extended Stenger conjecture, and which can
also be considered for unbounded intervals. If the weight function is the
identity, i.e. for Legendre polynomials, the restricted and extended Stenger
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conjectures coincide, and are simply called the Stenger conjecture.

In the present manuscript Walter and Ernst first prove that the Stenger
conjecture holds, by using a symmetry argument that allows them to study
only the U matrix. They next prove that the restricted Stenger conjecture
also holds for the weight function w(x) =1 —x on [—1,1], i.e. a special case
of the Jacobi weight functions, and again symmetry is used for the proof.
At first one might think that the proof also works for slightly more general
Jacobi weight functions, but this is not the case, and is illustrated by a
counterexample using a Gegenbauer polynomial of degree five.

This counterexample is typical for many other weight functions as well,
and Walter and Ernst give several conjectures for the restricted Stenger con-
jecture which are thoroughly based on computational evidence, in particular
for Gegenbauer and Jacobi polynomials, and for algebraic/logarithmic weight
functions, where in each case the conjecture only holds under additional con-
ditions.

They then prove for the extended Stenger conjecture that it also holds for
the special case of the Jacobi weight function above, and extensive numerical
evidence is presented that suggests that the extended Stenger conjecture
holds in more cases than the restricted one, namely for Gegenbauer and
Jacobi polynomials, and also algebraic/logarithmic weight functions. In each
case the eigenvalues are also plotted and one can see that they seem to
converge to lie on specific curves in the complex plane as the matrices become
larger.

Walter and Ernst then further investigate Laguerre and generalized La-
guerre weight functions, and Hermite and generalized Hermite weight func-
tions, and still the extended Stenger conjecture seems to hold. To push this
further, Walter and Ernst present a case of a weight function supported on
two disjoint intervals, so the function is not strictly positive, and the extended
Stenger conjecture still seems to hold.

Finally, for discrete weight functions, and also block-discrete and epsilon-
block-discrete weight functions, very carefully crafted numerical experiments
show that the extended Stenger conjecture does not hold any more. So
while it seems that the extended Stenger conjecture is more natural than the
restricted one and holds in many more cases than the restricted one, it is still
false for certain weight functions.



Part 11

Reprints






42

Papers on Special Functions

172 (with F. E. Harris and N. M. Temme), Expansions of the exponential
integral in incomplete gamma functions, Appl. Math. Lett. 16, 1095-1099
(2003)

212 Algorithm 957: Evaluation of the repeated integrals of the coerror func-
tion by half-range Gauss—Hermite quadrature, ACM Trans. Math. Software
42, Article 9, 10 pages (2016)

213 Monotonicity properties of the zeros of Freud and sub-range Freud poly-
nomials, Math. Comp. 86, 855-864 (2017)

216 On the Ismail-Letessier—Askey monotonicity conjecture for zeros of ul-
traspherical polynomials, in Frontiers in orthogonal polynomials and g-series
(M. Zuhair Nashed and Xin Li, eds.), 251-266, World Sci.Publ., Hackensack,
NJ, 2018

218 On the zeros of subrange Jacobi polynomials, Numer. Algorithms 79,
759-768 (2018)




42

42.1. [172] “Expansions of the exponential integral in
incomplete gamma functions”

[172] “Expansions of the exponential integral in incomplete gamma func-
tions”, Appl. Math. Lett. 16, 1095-1099 (2003).

(©2003 Elsevier. Reprinted with permission. All rights reserved.




Applied
Mathematics
Letters

PERGAMON Applied Mathematics Letters 16 (2003) 1095-1099 .
) www.elsevier.com/locate/aml

Expansions of the Exponential Integral
in Incomplete Gamma Functions

W. GAUTSCHI
Department of Computer Sciences, Purdue University
West Lafayette, IN 47907-1398, U.S.A.

F. E. HARRIS
Quantum Theory Project, University of Florida
P.O. Box 118435, Gainesville, FL 32611, U.S.A.

N. M. TEMME

Center for Mathematics and Computer Science (CWI)
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

(Received and accepted August 2002)

Communicated by F. Brezzi

Abstract—An apparently new expansion of the exponential integral E; in incomplete gamma.
functions is presented and shown to be a limiting case of a more general expansion given by Tricomi
in 1950 without proof. This latter expansion is proved here by interpreting it as a “multiplication
theorem”. A companion result, not mentioned by Tricomi, holds for the complementary incomplete
gamma, function and can be applied to yield an expansion connecting E; of different arguments. A
general method is described for converting a power series into an expansion in incomplete gamma.
- functions. In a special case, this provides an alternative derivation of Tricomi’s expansion. Numerical
properties of the new expansion for E; are discussed. © 2003 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

The exponential integral

e—t

El(z)=/zw——t—dt (1.1)

occurs widely in applications, most notably in quantum-mechanical electronic structure calcula-
tions. In view of the extremely large number of evaluations that are often required, there is a
continuing interest in improving the efficiency of its calculation. In a search for better methods
of evaluating Fi, one of us (F.E.H.) discovered the expansion

n!

Bi(z) = —y—Inz+ i Amz) (1.2)
n=1

F.E.H. acknowledges financial support from the U.S. National Science Foundation, Grant DMR-9980015. He is
also employed- at the Department of Physics, University of Utah.

0893-9659/03/8% - see front matter (© 2003 Elsevier Ltd. All rights reserved. Typeset by AA4S-TEX
doi: 10.1016/50893-9659(03)00149-6
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where

z
'y(a,z)zf e "t dt
0

is the incomplete gamma function (cf. [1, Section 6.5]). Another of us {W.G,) observed the
relevance of an expansion given in 1950 by Tricomi, of which (1.2) is a limiting case.

2. AN EXPANSION OF TRICOMI
In 1950, Tricomi [2, equation (45)] stated without proof the expansion

YaAz) =22y 7(&:’—”—22 (1A (2.1)
n=0 ’

For any fixed complex a # 0, —1, -2, ..., the left-hand side is analytic in the domain Az € C\R_,
where R_ is the negative real axis; it is an entire function if a is a positive integer. For fixed a
and z, the series in (2.1) converges for arbitrary complex .

An interesting proof derives from the observation that (2.1) is a “multiplication theorem”
(see [3, Volume 1, Section 6.14]). Such theorems can usually be obtained when all derivatives
of the function to be expanded can be expressed in terms of the same family of functions [3,
Volume 1, Section 6.14]. In the present instance, we have the relation

n

y(a+n,z) = (—1)"za+"ad—Z; (z7%y(a, 2)), (2.2)

which follows readily from the integral representation

1
27%(a, 2) =/ e el dt.
0

When using (2.2) in the right-hand side of (2.1), one obtains

a.a — hn dn bt #1
A%z ;H@(z va,2)), h=(A-1)z (2.3)

The series can be seen to be the Taylor expansion of (z + h)"*y(a,z + h). Since z + h = Az,
expression (2.3) becomes ‘
A%2%(z+ h)"%y(a, 2 + h) = ¥(a, Az).

This completes the proof of (2.1).

Multiplication theorems (and related addition theorems) are available for many other special
functions, such as Bessel functions [4, Chapter 11; 1, p. 363; 5, Section 4.10; 6, Chapter 5, Sec-
tion 5, Chapter 8, Section 6] and orthogonal polynomials (5, Section 9.8; 7, Section 4.10(7)].
Equation (2.1) is a special case of a multiplication theorem for confluent hypergeometric func-
tions [3, Section 6.14].

3. DERIVATION OF (1.2) FROM TRICOMI'S EXPANSION

Separating out the first term on the right of (2.1) and bringing it to the left, we write Tricomi’s
result in the form '

1a, Az) ;aA“’v(a, 2) _ 3 (e :!n,Z) (1= A", (3.1)

n=1

From the power series of vy(a, Az} (cf. [1, equation 6.5.29]) one gets

¥(a,Az) = Ay(a,z) _ 2 1— % sq_C
a+1 2a+4

b a ()‘Z)Q +jl _7(a3Z>1
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which, as A | 0, has the limit 2%/a — v(a, z). Thus, by (3.1),

z® had a+n,z

- - 7(“7 Z) = 7( 1 ) (3'2)
a = n

If v(a, 2) on the left is replaced by I'(a) — I'(a, 2) and I'(a) written as I'(a + 1) /a, equation (3.2)
takes the form

z¢ —T(a+1) +T(a,2) = i 7((1:‘71,2)‘

a
n=1

Now take the limit ¢ | 0. Applying Bernoulli-I’Hospital’s rule to the first term on the left and
noting that I''(1) = —y and I'(0, z) = E;(z), one gets

nzty+ By =Y 102,
n=1 )

which proves (1.2).

4. A COMPANION TO TRICOMI'S EXPANSION WITH AN
APPLICATION TO THE EXPONENTIAL INTEGRAL

There is a companion result to (2.1), not mentioned by Tricomi, for the complementary incom-
plete gamma function,

(a2} =2 K‘%"’—z)u—m, IA—1]<1. (4.1)
n=0 .

This follows from (2.1) by inserting the definition «y(a, z) = I'(a) — I'(a, 2} in both sides of the
expansion and noting that, by Taylor’s series for A™® at A = 1, one has

3 D@m=V yerg), pog<r (4.2)

n!
n=0

Equation (4.1) holds also for a = 0, by analytic continuation, and yields

E1()z) =E1(z)+iF(Z;z) 1-XN"  A-1 <1 (4.3)

n=1

Here, the coefficients are elementary functions

r 1
2 _Lose (), n2i,
n! n

where e (2) = 1+ z+22/21 + - - + 2™ /m! are the partial sums of the exponential series. These
can be generated by recursion in a stable fashion, at least when z is real (cf. [8]). If A = 1/2, for
example, then

E, (g) = Ei(2) +§‘1 %:TT)

For positive z, the sum converges more rapidly than that of (27n)~1.
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5. OTHER EXPANSIONS IN
INCOMPLETE GAMMA FUNCTIONS

We return to (3.2) and write it as

a+k

a+k

Z 7(‘”” z) k> 0. (5.1)

We next form the following series, with arbitrary dy (subject to convergence), and insert (5.1) in
it,
el a+k

Z k?;:w) idki (Z) ?_(.‘L:_'_”i)
i f: lﬁ‘%l kz:;, (Dd’“ (5.2)

where
n n
Cn = ( k) d. (5.3)
k=0

Any power series that can be cast in the form given in the left-hand side of (5.2) can therefore
be written as a series in incomplete gamma functions.
We illustrate the procedure by applying (5.2) to ¥(a, Az), which has the power series expansion

o kAa-{-k a+k
(@, Az) = ZO k'(a THerR
In this example, dy = (—=1)*X2*t* and from (5.3) we obtain ¢, = A%(1 — A)®, thereby recover-
ing (2.1).

6. NUMERICAL PROPERTIES OF (1.2)

Tricomi [2, p. 148] expressed the thought that some of the series expansions he listed without
proof, including (2.1), might prove useful also for computational purposes. We discuss here the
computational merits of the series (1.2), which, as has been shown, is a limiting case of (2.1).

Compared with the power series in

& (_1)1’1—1 e
E = —y - — 6.
(D) ==y =tz ) T (61)
n=1
the series in (1.2) has some definite drawbacks. In (6.1), the terms of the series can be generated
recursively in forward direction, n = 1,2,3,..., until they no longer contribute to the sum within

the desired accuracy. This is not possible with (1.2). Although it is true that the terms in (1.2)
also satisfy a forward recursion,

y(n+1,2) =ny(n,z) — z2"e”?, n=12,3,...,

y(1,2z) =1—e"%, (62)

the recursjon becomes severely unstable as n exceeds |z|. (This can be shown by an analysis similar
to the one in [9, Section 2.4].) To preserve numerical stability when n > |z|, one must generate
v(v, 2),v(v—1,2),...,7(n, z) backwards with v chosen sufficiently large, whereby (v +1, z) may
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be replaced by zero. The choice of v depends on the number of terms in (1.2) required for given
accuracy, which has to be estimated a priori. Thus, summing the series to a prescribed accuracy’
is considerably more involved for the series in (1.2) than it is for the one in (6.1).

Another important consideration is internal cancellation of terms in a series. In this regard,
the series in (1.2) and (6.1) complement each other. There is no significant cancellation of terms
in either series if |2| is relatively small, say |z] < 5. For larger values of |z|, the severity of
cancellation increases with increasing arg z for the series in (1.2) and decreases with increasing
arg z for the series in (6.1). Near the positive real axis (arg z ~ 0) the series (1.2) is practically
free of cancellation but subject to severe cancellation near the negative real axis (argz =~ ),
more so the larger |z|. For the series (6.1), it is just the other way around.

With regard to speed of convergence, the two series are comparable, since for bounded z, as
n — 0o, one has y(n, z)/n! ~ z"e¢~*/(nn!) (cf. [10, Section 4.3, equation (3)]).

Another source of impaired accuracy is the cancellation that may occur when the series in (1.2),
respectively, (6.1) is added to —y — In z. This can be quite pronounced if |z| is large and z near
the positive real axis. The severity of the problem diminishes as arg z increases and becomes
negligible near the negative real axis.
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Algorithm 957: Evaluation of the Repeated Integral of the Coerror
Function by Half-Range Gauss—Hermite Quadrature

WALTER GAUTSCHI, Purdue University

Nonstandard Gaussian quadrature is applied to evaluate the repeated integral i"erfc x of the coerror function
for n € Ny, x € R in an appropriate domain of the (n, x)-plane. Relevant software in MATLAB is provided: in
particular, two routines evaluating the function to an accuracy of 12 respective 30-decimal digits.

Categories and Subject Descriptors: G.1.4 [Numerical Analysis]: Quadrature and Numerical Differentia-
tion; G.4 [Mathematical Software]: Algorithm Design and Analysis

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Half-range Gauss—Hermite quadrature, MATLAB software, repeated
integral of the coerror function

ACM Reference Format:

Walter Gautschi. 2016. Algorithm 957: Evaluation of the repeated integral of the coerror function by half-
range Gauss—Hermite quadrature. ACM Trans. Math. Softw. 42, 1, Article 9 (February 2016), 10 pages.
DOI: http://dx.doi.org/10.1145/2735626

1. INTRODUCTION

The integrals in the title are of considerable interest in physics and chemistry, notably
in problems involving heat and mass transfer. They are traditionally evaluated by the
three-term recurrence relation that they satisfy [Gautschi 1961; Amos 1973]. This in-
volves, even if done carefully, controlled loss of accuracy [Gautschi 1977]. On the other
hand, a whole sequence of integrals is produced, as may be required in some applica-
tions. Here, we propose a method based on quadrature that, involving the summation
of a finite sum of positive terms, is perfectly stable and allows the computation of just
one of these integrals. The quadrature entails nonclassical Gaussian integration and
the half-range Hermite polynomials orthogonal with respect to the weight function
exp(—t2) on [0, oo]. An important issue is the determination of a natural domain in the
(n, x)-plane in which to evaluate the function.

2. INTEGRAL REPRESENTATION
The function in question is

frlx)=1"erfcx, n=-1,0,1,2,..., x e R, (2.1)

Author’s address: W. Gautschi, Department of Computer Science, Purdue University, West Lafayette, IN
47907-2066; email: wgautschi@purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 0098-3500/2016/02-ART9 $15.00

DOILI: http://dx.doi.org/10.1145/2735626

49

ACM Transactions on Mathematical Software, Vol. 42, No. 1, Article 9, Publication date: February 2016.



9:2 W. Gautschi

where
2 2
froilx) = —=e™,
f (2.2)
fu(x) :/ froi@®)dt, n=0,1,2,....
As is well known from calculus, f,, can be expressed as a single integral,
2 ot —a)
fulx) = N / ( n‘x) e ’dt, n>0. (2.3
x !
Changing variables, t — x = t, we can write
2 o0 n
fulx) = = f % e g, (2.4)
0 .
that is,
2 e—x2 x n,_—2xt —t*
fulx) = N / t"e 2t dt. (2.5)
+Jo

Our method is based on this integral representation in which the integral will be
evaluated by Gaussian quadrature; see Section 4.

Incidentally, the same integral representation can also be used to extend the meaning
of the function f,(x) from nonnegative integer values of n to arbitrary real values
n = v > —1 if the factorial n! in Equation (2.5) is replaced by the gamma function
I'(v + 1). Here, however, we will stick to integer values. Likewise, Equation (2.5) could
be used as a basis for computing f,(z) for complex z. Again, we restrict ourselves here
to real values of x.

Before developing computational methods, it seems worthwhile to figure out a nat-
ural (n, x)-domain in which to evaluate f,(x). This will be discussed in Section 3. At
this point, we briefly note that when x is large negative, the integral in Equation (2.5)
is prone to overflow. This can be avoided, or at least deferred, if one places the factor
exp(—x?) inside the integral, that is, if one uses the alternative form

fulx) = / the (2o q  x (, (2.6)
0

2
Jrn!
We assume, without further notice, that this will be done in any computation involving
negative values of x.

3. AN APPROPRIATE (N, X)-DOMAIN

In this section, we determine a natural domain D in which to evaluate the function
f»(x). With regard to the variable n, we require that n! does not overflow, which implies
n < 171 for IEEE standard double precision. We shall assume, more conservatively,
that n < 150.

When the variable x is nonnegative, the domain D is going to be the one in which f,(x),
evaluated in MATLAB double-precision arithmetic, neither underflows nor overflows.
This is discussed in Sections 3.1 and 3.2. Otherwise, when x < 0, the determining factor
is not under- or overflow, but the numerical quadrature of the integral in Equation (2.6);
see Section 3.3. For large negative values of x, this becomes more difficult and requires
higher-order quadrature rules. Since we use nonstandard Gaussian quadrature rules,
which currently are available only up to order 200, the domain D, when x < 0, will be
determined by the requirement that not more than 200 quadrature points be needed
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to evaluate the integral in Equation (2.6) to 12 significant decimal digits. Under- and
overflow then ceases to be an issue. This is analyzed in Section 4.2.

3.1. Underflow

Since MATLAB’s double-precision arithmetic conforms with the IEEE standard, the
smallest positive floating-point number is realmin = 2.2251e-308; any positive number
smaller than A = 2.2251 x 1072% gives rise to underflow.

We first observe that f,,(x) never underflows when x < 0 (and 0 < n < 150). Indeed,
let x = —&, &€ > 0. Then, by Equation (2.3),

2 o0 I
fa(—&) = Jeal /_g (t+&)Ve " dt

2 o 2 0 2
= t e~ dt t e~ dt |.
ﬁn!(fo(Jré)e —i—/é(—i—é)e )
Here, the first integral on the right is greater than

00 1 00 1 n4+ 1
n_—t2 — — (n-1)/2 -1 O
/0 et dt 3 /0 T e 'dr 3 ( 5 ) .

The second integral is

&
/ (& —1)e "dr >0,
0

so that
1 IMrn+1)/2) 1 T(n+1)/2)
Jr T+l /T2 -(n+1)/2)°

Using the duplication formula [Abramowitz and Stegun 1964, 6.1.18] for the gamma
function, we have that

fn(=§) >

IM(n+1)/2) Von 51
Frn+1)  2T((n+2)/2)° '
thus,
fu(—€) > V2 > V2 >3899x1071% >, £>0. (3.2)

= 210((n +2)/2) — 2150(152/2)

Therefore, underflow cannot occur, and we can assume that x > 0. Foreachn,0 <n <
150, we determine experimentally the value x = x*(n) of x for which f,(x) underflows.
The tool for this is the routine quad_inerfc.m! (calling on the routine gauss.m of the 0PQ
package [Gautschi 2014]) evaluating f,(x) by numerical quadrature of Equation (2.5);
for details, see Section 4. This routine returns not only y = f,,(x), but also two output
variables uflow and oflow, which are 1 or 0 depending on whether or not underflow
of y respective overflow has occurred. This is detected by the routine returning y = 0
respectively y = Inf. Since we are interested in underflow, the procedure, then, is the
following. We increase x from x = 10 in steps of 1 until the routine quad_inerfc.m
returns uflow = 1 for the first time. We call b the corresponding value of x and let
a = b — 1. We thus have an interval [a, b], a < b, with the property that y = f,(a) does
not underflow, but f,(b) does. We take this as the initial stage of a bisection method,
which will halve the interval [a, b] and check whether underflow does or does not occur

1All Matlab programs referenced in this paper galn be accessed at http://dx.doi.org/10.4231/R7959FHP.
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Fig. 1. The function x;;(n) and its linear approximant.

at the midpoint m. If it does occur, we replace the right end point b; otherwise, we
replace the left end point a, by m. We continue until the interval [a, b] has become
sufficiently small. (The number of bisection steps required can be determined a priori
in a well-known manner; e.g., see Gautschi [2012, Section 4.3.1].) This is implemented
in the routine xunder.m. The resulting function x = x;(n) has been computed in this
manner for n = 0 : 150, and is plotted, using run_xunder.m, in Figure 1 as the solid
line. It is slightly concave and decreasing, and is easily approximated from below by a
straight line, as shown in Figure 1 by the dashed line. Its equation is x = 27 — .084n.
Thus, the trapezoidal domain bounded on top by this straight line, on the left and right
by the vertical lines n = 0 and n = 150, and at the bottom by the real line, is a close
approximation to the desired domain D when x > 0. We denote it by D*.

3.2. Overflow
Overflow occurs if a number is produced that exceeds realmax = 1.8 x 103%. It is clear
that overflow is not an issue when x > 0, since by Equation (2.5),

2 e /ootne—tzdt: 1 _.T((n+1)/2)
0

2

fn(x)fﬁ ol ﬁe I“(n——l—l)’

and using Equation (3.1),
V2~ -

2T ((n+2)/2) —

For the case x < 0, as in Section 3.1, we let x = —&, & > 0, and first derive an upper
bound for f,(—&). By Equation (2.4), we have that

g n! fu(—£) = / te~ Q. £ > 0.
0

Breaking up the integral on the right in two, one from 0 to £ and the other from & to
oo, one finds that

1 00
v £ (=) = g+l (/ 1— t)”e—fztzdt+/ 1 +t)"e‘52t2dt> ,
0 0

falx) < x/§e’x2§\/§, x>0,n=0,1,2,....

2
and since the first integral is bounded by 1,

g n! fu(—£) < g"t1 (1 + f 00(1 + t)ne—fzfzdt> . (3.3)
0

52
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Fig. 2. Logarithm of the bound in Equation (3.4) when & = 18.1.

Here again, we split the integral in two, one from 0 to 1 and the other from 1 to oo,
using 1 + ¢ < 2 in the former and 1 + ¢ < 2¢ in the latter, to get

/ (14 tye 5 dt < 2" (1 +f t"ethzdt> .
0 1

In the integral on the right, we change variables, £2t?> = 7, and find that

*° 242 1 *© ( 1) 2
/ e 50 dt = — / D274y
1 A

1 12—t I'(n+1)/2)
< 2%-)14—1 A T e 'dr = W .

Inserting these inequalities in Equation (3.3) yields

\/TE ! fu(=€) < E"TH(1 42" + 2" 'T((n + 1)/2);

thus, using again Equation (3.1),

2(1+ 2" V2
Jrn! ((n+2)/2)°

In Section 4.2, it will be seen that & will have to be restricted to & < 18.1 for the
numerical evaluation of the integral in Equation (2.6) by Gaussian quadrature to be
possible for all n with 0 < n < 150. But then, the upper bound in Equation (3.4)
is far from overflowing. The logarithm of the bound for & = 18.1 has the behavior
shown in Figure 2 as a function of n. The routine bound_Fn_neg.m producing this plot
also determines that the maximum occurs at n = 37 and has the value 36.5031. The
maximum of f,(—&) when & is restricted as mentioned, therefore, is exp(36.5031) =
7.1303 x 10'®, way too small to cause overflow. Thus, the lower boundary of D must be
taken to be above the straight line x = —18.1. A more precise boundary is determined
in the next section.

fa(=8) < gl 4 (3.4)

3.3. The Lower Boundary of D

Just as in Section 3.1, in which the upper boundary of D was determined experimen-
tally to be the function x = x*(n)—the smallest (positive) value of x for which f;,(x)
underflows—we now determine the lower boundary of D to be the function x = x**(n),
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Fig. 3. The function x,;*(n) and its linear approximant.

the largest (negative) value of x for which Gauss quadrature fails on account of requir-
ing more than 200 quadrature points for 12-digit accuracy. The routine for computing
x = x™(n) is xgo200.m, resembling xunder, but calling on the routine N_inerfc.m that
signals failure of Gauss quadrature by an output variable go200, which is 1 if Gauss
quadrature fails, and 0 otherwise. The graph of the function x = x**(n), practically a
straight line, as generated by the routine run_xgo200.m, is shown in Figure 3. As in
Figure 1, it can be approximated from above by a straight line, x = —17.9 + .024n,
which will be taken to be the lower boundary of D.

4. THE QUADRATURE METHOD
Both integrals in Equations (2.5) and (2.6) can be evaluated by Gaussian quadrature

relative to the weight function w(¢) = et supported on the half-infinite interval [0, co],
that is, by half-range Gauss—Hermite quadrature. Thus, in the case of Equation (2.5),
for example,

N

]

/ e 2 w@)dt = Y 15 (r8)"e > + Ry, (4.1)
0 v=1

where 1%, A¢ are the N-point Gauss nodes and weights for the weight function w and
Ry is the remainder term. The summation in Equation (4.1) involves only positive
terms, so that the computation is perfectly stable.

With regard to the special (nonstandard) Gaussian quadrature formula required,
it can be generated by well-known methods [Gautschi 2004, Section 3.1.1] from the
eigenvalues and eigenvectors of the Jacobi matrix belonging to the half-range Hermite
weight function. Related software in MATLAB is readily available to carry this out.

Specifically, the MATLAB command

xw = gauss (N, ab) (4.2)

where gauss.m is a routine in the 0PQ package [Gautschi 2014], generates the N nodes
7% and N weights A% and returns them in the first respective second column of the N x 2
array xw. The N x 2 input array ab must contain the necessary data for the half-range

Hermite polynomials, namely, in the first column the N coefficients {ak},ivz _01, and in the
second column the N coefficients { ,Bk}kN: ’01 in the three-term recurrence relation

1) = (¢ — ap)mp(t) — Bprn_1(t), k=0,1,...,N—1,
mo)=1, n_1)=0
54
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Fig. 4. The number N of Gauss points needed for 12 digit accuracy when the n-intervals, from top left to
bottom right, are [0, 25], [25, 501, [50, 75], [75, 1001, [100, 125], and [125, 150].

satisfied by these polynomials. The first 200 coefficients are available in the file
ab_hrhermite to 32-digit accuracy and have been generated in Gautschi [to appear,
Section 1.4] by the classical Chebyshev algorithm in high-precision arithmetic. The
command?

ab = loadvpa('ab_hrhermite’, 3,32,200,2) (4.3)

produces the symbolic 200x2 array ab, which, if necessary, can be converted to a
MATLAB double-precision array ab0 by the command abO=double (ab). The command
(4.2) can thus be used to produce all N-point Gauss formulae for N =1, 2, ..., 200.

It is important, however, to have some idea about the number N of Gauss points
needed to achieve a prescribed accuracy. This is discussed in Sections 4.1 and 4.2 for
x > 0 and x < 0, respectively, and for an accuracy requirement of 12 significant decimal
digits. For 30-digit accuracy, see Section 5.

4.1. The Order of the Gauss Quadrature Rule Necessary for x > 0

In order to find an estimate N*(n, x) of the number N(n, x) of quadrature points needed
to obtain f,(x) for x > 0 accurate to 12 decimal digits, it is convenient to break up the
n-interval 0 < n < 150 into six subintervals,

I(ng) =[np <n<mno+25], ny=0:25:125.

In each of these intervals, we determine the maximum value Npax(n9) of N, extended
over all n € I(ng) and x = 0 : 0.2 : 27, x € D', using the routine N_inerfc.m and
quad_inerfc.m. This is done in the script? Nplus_pos.m. The results are shown in the
plots of Figure 4. In each plot, it is easy to bound N from above by a straight line

2The routine loadvpa.m is not yet part of the MATLAB symbolic toolbox, but has been developed by the
MathWorks staff at the request of the author.
3In Matlab releases more recent than 2011, this routine may not work properly.
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Fig. 5. The number N of Gauss points needed for 12 digit accuracy when x < 0.

Nt = N*t(n,x),0 <x < 27. Their equations are

[21.5 +2.388x] (0 <n <25),
[24 + 2.08x] (25 < n < 50),
133 + 1.549x] (50 < n < 175),
[40 + 1.068x] (75 < n <100),
[47 + .4348x] (100 < n < 125),
[64 — .1852x] (125 < n < 150).

Nt(n,x) =

The bounds N7 are fairly close to the true values of N when n < 50, but can be quite
a bit larger when n > 50. The results thus obtained for f,(x) may have an accuracy
exceeding 12 decimal digits; for more on this, see Section 5.

4.2. The Order of the Gauss Quadrature Rule Necessary for x < 0

The routine Nplus_neg.m has the same objective as the routine Nplus_pos.m, namely, to
find a suitable estimate N*(n, x) for N(n, x) when x < 0. Contrary to the latter routine,
however, it examines the values of N on the horizontal lines x = —.9 : —1 : —16.9 for
0 < n < 150 such that (n,x) € D (see Figure 3). The function y = f,(x) on the lower
(straight-line) boundary behaves similar to its bound (Equation (3.4); see Figure 2): it
has the value 2.000 at n = 0, a maximum 9.384 x 10 at n = 17, and the minimum
8.374 x 108! at n = 150.

The plots for x = —.9: —1: —16.9 are shown in Figure 5. Being rather regular, they
allow us to derive a simple analytic expression for a suitable bound N*, namely,

N*(n, x) = min(200, [10 + 10.5|x| + (.3223 + .00747|x)n])

if (n.x)eD. x <0. (4.4)

The condition in the if-clause is equivalent to x| < 17.9 —.024n,0 <n < 150, x < 0. As
in Section 4.1, the bound can be fairly conservative, and yields answers that are often
more accurate than the 12 digits striven for.

5. HIGH-PRECISION COMPUTATION

Since the Gauss quadrature rules needed are available to an accuracy of 32 decimal
digits, we may as well try to extend the work described so far from the accuracy level

of &g = .5 x 107! to the one of, say, &1 = .5 x 1072°. To do so, we need symbolic
variable-precision analogues of the five routines mentioned in Sections 4.1 and 4.2,
56
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that is, sgauss.m, sN_inerfc.m, squad_inerfc.m, sNplus_pos.m, and sNplus_neg.m, in
order to produce plots analogous, but at a lower resolution, to those in Figures 4 and 5.
We omit details and simply report on the results obtained for a suitable upper bound

N+,

When x > 0 and 0 < n < 150, then
[43 +3.92x7 (0 <n <25),
[43 + 4.042x] (25 <n < 50),
139 +4.143x] (50 <n <175),
[49 4+ 3.333x1 (75 <n < 100),
[68 +2.722x1 (100 < n < 125),
[67 +1.733x] (125 < n < 150).

Nt(n,x) =

Otherwise, when x < 0, severe restrictions on x must be imposed. If the accuracy of 30
significant digits is to be maintained for all 0 < n < 150, the limitation to 200 Gauss
quadrature points essentially means that x must be restricted to x > —1. If we lower
nmax = 150 to nmax = 100, the restriction is x > —3.1, and for nmax = 50, itis x > —5.2.
Assuming, then, that 0 < n < 50 and 0 > x > —5, an appropriate choice of N7 is found
to be

[(47 + 37|x|)/4 + .46n] (|x| < 4),

+ —
N, x) = { 157 + 2.36n] (x| > 4).

6. CONCLUSION AND TESTS

We are now in a position to write the final (short) routines, inerfc.m and sinerfc.m,
that evaluate f,,(x) to at least 12-digit resp. 30-digit accuracy. The (n, x)-domain in the
former routine is bounded on top by the descending straight line x = 27 — .084n, at the
bottom by the ascending straight line x = —17.9 + .024n, and on the left and right by
the vertical lines n = 0 and n = 150. The same domain is valid in the latter routine
when x > 0, except that the boundary on top is the horizontal line x = 27. For x < 0,
however, the vertical boundaries are at n = 0 and n = 50, and the one at the bottom at
x = —5. Both routines assume that the calling program has downloaded the symbolic
array ab by the command (4.3). The core of the routines is identical with the routines
quad_inerfc.m and squad_inerfc.m, except for handling under- and overflow, which is
no longer needed. Since our routine inerfc.m calls on the routine gauss.min (4.2), with
abO=double(ab) in place of ab, the array ab0 must be declared as a global variable in
the calling program. The same applies in the case of sinerfc.m and the file ab.

Extensive checks have been run using the routines run_inerfc.mand run_sinerfc.m
to verify that the accuracy of 12 resp. 30 significant digits, in the respective domains,
have indeed been achieved. This is done by running the routines twice, once with the
estimated value N = N* of N, and once with N = N* + 5 (when < 200) and comparing
the two results to make sure that the former is as accurate as claimed. The points (n, x)
chosen for testing the double-precision routine inerfc.m are

0:.2:1,

1.5:.5:5,

55:.5:8,

n=0:25:150, x =1 85:.5:12, (n,x) € D.
13:19,

20 : 27,

-.5:-5:-175,

27

ACM Transactions on Mathematical Software, Vol. 42, No. 1, Article 9, Publication date: February 2016.



9:10 W. Gautschi

The maximum relative discrepancy errmax between the results of the two runs were
observed to be 6.53 x 10714, 6.95 x 1071*, 3.54 x 10714, 1.33 x 10714, 3.16 x 10714,
4.95 x 10714 in the six intervals for x > 0, and 2.29 x 10! in the interval for x < 0. The
same points are chosen for the variable-precision routine sinerfc.m, except for x < 0,
where we take n = 0 : 10 : 50, x = —.5 : —.5 : —5, according to the restrictions we
had to impose in this case. Here, the values for errmax were found to be 7.93 x 10734,
9.08 x 10732, 4,57 x 10734, 2,50 x 10733, 3.28 x 10732, 1.60 x 1073!, for x > 0, and
6.78 x 103! for x < 0. As can be seen, the test results are quite satisfactory; they
also confirm that the accuracy achieved in many parts of the (n, x)-domain is higher
than the one requested, considerably so (by as many as nine digits) in the case of the
variable-precision routine sinerfc.m.

To demonstrate how our routines are used, we refer the reader to the code in the
file Table7_4.m in the accompanying software package, which recomputes Table 7.4 in
Abramowitz and Stegun [1964] of the scaled function 2"TI'(n/2 + 1)i"erfcx, using the
routine inerfc.m, forn =[1:6 10 11] and x = 0 : .1 : 5, and at the same time checks
the results against 20-digit values produced by sinerfc.m, using dig = 20. All entries
of Abramowitz and Stegun [1964, Table 7.4] were found to be correct to all six digits
given, except for occasional end-figure errors of one unit. The maximum error of the 12-
digit results generated by Table7_4.m was found to be 8.3 x 1071?, so that, as expected,
the actual accuracy produced by inerfc.m is almost two digits higher than requested.
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MONOTONICITY PROPERTIES OF THE ZEROS OF FREUD
AND SUB-RANGE FREUD POLYNOMIALS:
ANALYTIC AND EMPIRICAL RESULTS

WALTER GAUTSCHI

ABSTRACT. Freud and sub-range Freud polynomials are orthogonal with re-
spect to the weight function w(t) = |t|* exp(—|t|¥), u > —1, v > 0, supported
on the whole real line R, resp. on strict subintervals thereof. The zeros of these
polynomials are studied here as functions of v and shown, analytically and em-
pirically by computation, to collectively increase or decrease on appropriate
intervals of the variable v.

1. INTRODUCTION

Freud polynomials are commonly defined to be orthogonal with respect to the
weight function

(1.1) w(t) = w(t;p,v) = [tle W, p>—-1,v>0,

supported on the whole real line R. Here we also consider “sub-range” Freud
polynomials, which are orthogonal with respect to the same weight function (1.1),
but on strict subintervals of R. Specifically, lower and upper symmetric sub-range
Freud polynomials are orthogonal on an interval [—c¢,c], 0 < ¢ < oo, resp. on
two disjoint intervals [—oo, —c] U [¢, 0], and become ordinary Freud polynomials
when ¢ — oo, resp. ¢ — 0. Likewise, lower and upper one-sided sub-range Freud
polynomials are orthogonal on [0,¢], 0 < ¢ < oo, resp. on [¢, 00|, and become half-
range Freud polynomials when ¢ — oo, resp. ¢ — 0.

Our interest is in the zeros of these polynomials, in particular their monotonicity
properties when considered functions of the parameter v. Analytic results can
be derived from a well-known theorem dealing with the dependence of the zeros
of orthogonal polynomials on a parameter. While of limited scope, these results
contain statements valid for arbitrary parameters p > —1 and arbitrary degrees
n. They are presented and discussed in Section 2. A more comprehensive study of
the zeros, at present, is possible only through experimental computation. Results
obtained along these lines are described in Section 3. For computational details,
however, we must refer to [2].
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2. ANALYTIC RESULTS

The standard result for dealing with zeros of an orthogonal polynomial that
depends on a parameter is Markov’s theorem (Theorem 6.12.1 of [3]). We apply it
here to Freud and sub-range Freud polynomials, where the parameter in question
is v.

2.1. One-sided sub-range Freud polynomials.

Theorem 1. (a) Let vy > 0 and 0 < ¢ < e~ /. Denote by m, the lower one-
sided sub-range Freud polynomial of degree n orthogonal on [0, c| with respect to the
weight function

(2.1) w(t; ¢, p,v) = the " te [0, ¢].

Then all zeros of m, are monotonically increasing on [vy,00) as functions of v, for
every > —1 andn=1,2,3,....

(b) Let vy > 0 and ¢ > e~'/*°. Denote by, the upper one-sided sub-range Freud
polynomial of degree n orthogonal on [c, 0] with respect to the weight function

(2.2) w(t; e, m,v) = the !, te [c, 00].

Then all zeros of m, are monotonically decreasing on (0,v9) as functions of v, for
every u > —1 andn=1,2,3,....

Proof. (a) Let the zeros of ,, in decreasing order, be
(V) > 1) > - >1,(v) > 0.

Then, according to Theorem 6.12.1 of [3], the regularity assumptions of which being
all satisfied, the zero 74(v), for k fixed, is an increasing [decreasing| function of v
provided

_ Ow(t;e,p,v)/0v

f®): w(t; ¢, p,v)

, O<t<e,

is an increasing [decreasing] function of ¢ on (0, ¢). An elementary computation will
show that, irrespective of the value of u,

ft)=—t"In t.
Now
()= —t""Yvint+1),

which is positive on the interval (0,t) and negative on t > ty, where tq = e~ /7.
Since by assumption ¢ < e~/*0 we have, for v > 1y,

(2.3) O<t<e<e /o <e Wv—t,

hence f/(t) > 0 on (0,c). By the cited theorem, therefore, 7 (v) for each k is an
increasing function of v on [y, 00), as claimed.
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(b) We now have, in place of (2.3), when v < vy,
t>c>e /0 s e/ =g,

so that f’(t) is negative on (¢,00), and the assertion follows as in part (a) from
Theorem 6.12.1 of [3]. O

Part (a) of Theorem 1 is of limited scope insofar as it deals only with intervals
of orthogonality [0,c¢], 0 < ¢ < 1. (In the limit ¢ = 1, that is, vy = oo, it provides
no information at all.) It is also of limited interest, since the zeros, in this case,
are almost constant functions of v (see Example 1 below). In this regard, part (b)
of the theorem has a wider scope, covering intervals [¢, 00], 0 < ¢ < oo, and in the
case ¢ > 1, that is, vy = oo, provides monotonicity information valid on the whole
interval 0 < v < co. (In the other limit case ¢ = 0, that is, vy = 0, it again is
devoid of content.)

We illustrate Theorem 1 by numerical examples. To compute the desired zeros,
we first compute the first N recurrence coefficients of the respective orthogonal
polynomials from the first 2NV moments of the weight function, using the classical
Chebyshev algorithm in sufficiently high precision (cf. [1, §2.1.7]). The moments
are always expressible in terms of the gamma and incomplete gamma functions.
Thereafter, the zeros of the orthogonal polynomial of degree n can be obtained
(in ordinary working precision) for all n < N by well-known eigenvalue/vector
techniques (cf. [1, §3.1.1]).

Example 1. The zeros of 7, (of Theorem 1(a)) for n = 15 and n = 30, when
vp=3,c=eY/3=7165..., 1=0, and 3 < v < 10.

Here, the monotone growth of the zeros is extremely slow. When n = 15, the
slope is as small as 3.64 x 10~7 and never larger than 8.78 x 10~4. For n = 30,
the corresponding numbers are 4.77 x 1078 and 4.52 x 10~%. Thus, the zeros
are practically constant as functions of v. Plots of them are shown in Figure 1 for
n = 15 and n = 30. It was determined that monotone growth of all zeros holds even

0.8 T T T T T T 0.8
0.7F 4 0.7
0.6 b 0.6F
0.5 0.5p
0.4 ] 0.4F
0.3F 1 0.3
0.2 b 0.2
0.1 0.1F
0 0
s 4 s 6 7 8 9 10 s 4 s & 7 8 98 10
nu nu

FIGURE 1. The zeros of 7, in the case vy = 3 of Theorem 1(a)
for n = 15 (on the left) and n = 30 (on the right).

for smaller values of v, namely for v > 1.6926 when n = 15, and for v > 1.7064
when n = 30. Thus, Theorem 1(a) is not sharp with regard to the interval of
monotonicity.
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Example 2. The zeros of 7, (of Theorem 1(b)) for n = 15 and ¢ = 1 (vy = o0),
@w=0,and 0 <v <10.

In Figure 2 the zeros of m, are shown for n = 15, on the left when 0 < v < 2,
and on the right when 2 < v < 10. In the former case, some of the zeros are very
large, so that the plot is logarithmic in the y-axis. It is seen, and has been checked,
that all zeros, as predicted by the theorem, are monotonically decreasing.

FIGURE 2. The zeros of 7, in the case ¢ = 1 of Theorem 1(b) for
n=150n0 < v <2 (on the left) and 2 < v < 10 (on the right).

The graphs look similar for values of ¢ greater than 1 but, of course, lie above the
horizontal line at height ¢. They require much higher precision (250-digit arithmetic
when ¢ = 6) to produce.

2.2. Symmetric sub-range Freud polynomials.

Theorem 2. (a) Let vgp > 0 and 0 < ¢ < e~ 1/(¥0) . Denote by 7% the symmetric
sub-range Freud polynomial of degree n orthogonal on [—c,c] with respect to the
weight function

(2.4) w(tye,p,v) = [tFe M te[—cd.

Then all positive zeros of ) are monotonically increasing on [2vy, 0] as functions
of v, for every u > —1 and n =2,3,... .

(b) Let vy > 0 and ¢ > e~/ (2%0) . Denote by m¥ the symmetric sub-range Freud
polynomial of degree n orthogonal on [—oo, —c| U [¢, 00] with respect to the weight
function

(2.5) w(tye, p,v) =t|*e ", t €[00, ~c] Uc, o).

Then all positive zeros of 7} are monotonically decreasing on (0,2vg) as functions
of v, for every u > —1 and n=2,3,....

Proof. (a) Since in this case the weight function is even and the interval of orthog-
onality is symmetric with respect to the origin, the orthogonal polynomial of even
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MONOTONICITY PROPERTIES OF THE ZEROS OF FREUD POLYNOMIALS 859

degree 2n is 73, (t) = 7,7 (t*) and the one of odd degree is 73, , 1 (t) = tm,, (¢?), where
7t is orthogonal on [0, c?] relative to the weight function w*(t) = tF1/2w(t/?)
(cf. [1, Theorem 1.18]). Thus, the positive zeros of 73, resp. 73, , , are the square
root of the zeros of 7,7, resp. 7. The weight functions for the latter polynomials
are t=1/2=t""? esp D e=t"* T4 hoth of them, part (a) of Theorem 1 can
be applied if v is replaced by v/2 and ¢ by c¢?, showing that the square root of
the zeros of =, hence also the zeros themselves, are monotonically increasing on
[vg, 00) if ¢ < e~/ and v/2 > 1y, that is, if ¢ < e~ /(") and v > 2u.

(b) The polynomials 7 are now orthogonal on [¢2, co] with respect to the weight
function w®. The proof then proceeds as in part (a), but applying part (b) of

Theorem 1, again replacing v by v/2 and ¢ by c?. (|

As to the scope and sharpness of Theorem 2, here remarks similar to those after
Theorem 1 also apply.

3. EMPIRICAL RESULTS

For simplicity, we concentrate on the case u = 0, but will indicate what effect
other values of © may have on our results. Also with regard to the range of v-values,
we will generally assume 0 < v < 10, which seems to be the interval in which the
more interesting monotonicity properties of the zeros play out.

As already noted, there are significant gaps in part (a) of the theorems of Sec-
tion 2 with regard to intervals of orthogonality covered, and deficiencies in part
(b) with regard to sharpness. Here, we fill the gaps and remove the deficiencies by
numerical computation.

3.1. Lower one-sided sub-range Freud polynomials. The interval of orthog-
onality [0,¢], 0 < ¢ < 1, is covered by Theorem 1(a) of Section 2.1. It is not a
particularly interesting case, since all zeros are essentially constant as functions of
v. The same is still true when ¢ = 1 (the limiting case vy = oo of Theorem 1(a)),
as is shown in Figure 3, depicting the zeros of m, for n = 15 and n = 30.

1 1
0.8f- 1 0.8
06 0.6
0.4 0.4
0.2 - 0.2k
0 0
0 2 4 6 8 10 0 2 4 6 8 10
nu nu

FIGURE 3. The zeros of m, when ¢ =1 for n = 15 (on the left)
and n = 30 (on the right).
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860 WALTER GAUTSCHI

To provide an idea of how the zeros behave when ¢ > 1, we look at the case
¢ = 2 and show graphs of them in Figure 4 for n = 1,7,15, and 30. The case n =1
is somewhat special, the zero decreasing to a minimum value and increasing almost
imperceptively thereafter. For n > 1, the appearance of the graphs resembles that
of a waterfall, a gentle one when c is relatively small, and a more precipitous one for
larger c; see, e.g., Figure 5, where ¢ = 6. Although it may appear that all zeros are
collectively decreasing, this is not quite true; there are exceptional intervals early
on, when v < vy, where vy = 1.392,1.420, 1.420 for respectively n = 7,15, 30, and
also for v much larger than 10. But all these exceptions occur in the flat parts of
the graphs and are quite minute and not visible to the naked eye.

1

FIGURE 4. The zeros of 7, when ¢ = 2 for n = 1,7,15,30 (from
top left to bottom right).

3.2. Upper one-sided sub-range Freud polynomials. Theorem 1(b) covers
intervals [c, oo] with 0 < ¢ < oo. It is sharp when ¢ > 1 (1y = ), in which case
all zeros decrease monotonically on 0 < v < co. Plots of them have been shown in
Figure 2, for 0 < v < 10.

Here we wish to discuss in detail the sharpness of Theorem 1(b) for selected
values of ¢ < 1; specifically, for given vy we compute the true interval (0, 1) on
which all zeros decrease monotonically, for all n > 1 and all y > —1.

To begin with, we found evidence, by numerical experimentation, that any in-
terval of monotonicity expands as either n, u, or both, are increased. The least
favorable case, therefore, is n = 1 and p > —1 very close to —1, say, p = —.99999.

65

Licensed to Purdue Univ. Prepared on Mon Apr 5 12:08:23 EDT 2021 for download from IP 128.210.107.25.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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FIGURE 5. The zeros of 7, when ¢ = 6 for n = 15 (on the left)
and n = 30 (on the right).

In this case it is relatively straightforward to compute the desired interval (0, )
as a function of v9. Results for selected values of vy are shown in Table 1. It can be
seen that these intervals are significantly larger than the intervals (0,1) claimed
in Theorem 1(b), but like the latter become smaller with decreasing vy, that is,
decreasing c.

TABLE 1. Worst-case intervals (0,2) of monotonic decrease of
all zeros (n =1 and p~ —1).

vy | ¢ = e /v vy vy | c=e t/vo v

6 .8464... | 39.336 || .6 1887. .. 5.1103
4 788, 126.594 || .5 1353. .. 4.5158
2 .6065... | 13.877 || .4 .0820. .. 3.9393
1 3678... | 7.5703 | .3 .0356. .. 3.3930
9 | .3291... |6.9481 || .2 | 6.738x1073 | 2.8985
8| .2865... |6.3295 || .1 | 4.540x107° | 2.4861
T .2396... | 5.7162

Notice that in the last few entries of Table 1 we are getting very close to the
case of half-range Freud polynomials. The fact that the corresponding intervals
(0, v§) remain finite, and even become a bit smaller, suggests that the zeros of the
half-range Freud polynomials are not likely to collectively decrease for arbitrary
n>1and p > —1. We will confirm and quantify this computationally in the next
subsection.

3.3. Half-range Freud polynomials. Here we explore computationally how v,
the upper endpoint of the interval (0, v§) in which all zeros decrease monotonically,
depends on n for p = pu_ = —.9999999, about the least favorable value of i, and also
for u = —1/2,0, 1/2, and 1. The results are shown in Table 2. Notice the extent of
monotonic expansion of the interval (0, v/5) when n and/or p are increased. We can
see from this table that, for example, all zeros of the half-range Freud polynomial
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T, for any g > —1 (more precisely, u > u_), decrease monotonically for all v in
the interval (0,10] when n > 2, and for all v in the interval (0, 100] when n > 6.

TABLE 2. The intervals (0,2() of monotonic decrease of all zeros
of half-range Freud polynomials m,, in dependence of n and pu.

p=p— ||p=-1/2 p=0 p=1/2 p=1
n vy n vy n vy n vy n 12
121662 || 1| 45574 || 1]6.8949 || 1 [9.2204 || 1 | 11.541
2| 11.541 || 2 | 15.371 || 2 19.204 || 2 | 23.039 || 2 | 26.874
3126874 || 332233 || 3| 37.593 || 3| 42.955 || 3 | 48.318
4148318 | 4 | 55.207 || 4 | 62.098 || 4 | 68.990 || 4 | 75.882
5|75.882 || 5 | 84.303 || 5| 92.725 || 5 | 101.15

6 | 109.57

0 05 1 15 2 2 s 4 5 & 7 8 s 10

FIGURE 6. The zeros of the half-range Freud polynomial m,, of
degree n = 15 on the interval 0 < v < 2 (on the left) and 2 < v <
10 (on the right) when p = 0.

We show plots of the zeros in Figure 6 for n = 15 and pu = 0.

3.4. Lower symmetric sub-range Freud polynomials. Symmetric intervals
[—c, c] for 0 < ¢ < 1 are covered by Theorem 2(a). Since all zeros are then practically
constant as functions of v, even in the limit case ¢ = 1 (that is, vy = 00), when the
theorem is devoid of content, the case 0 < ¢ < 1 is not of particular interest. For
the more interesting cases ¢ > 1, we again must rely on computational exploration.

One expects that the behavior of the positive zeros of 7} will be similar to that
of all zeros of 7, in the asymmetric case. This is indeed borne out by numerical
computation. One finds again the waterfall-like descent of all positive zeros, the
steepness of the descent being larger the larger the parameter c. It does not seem
necessary, therefore, to illustrate this pictorially.
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3.5. Upper symmetric sub-range Freud polynomials. As in the asymmetric
case of Section 3.2, also here in the symmetric case there is a need to sharpen part
(b) of Theorem 2, that is, to determine, for given v, the exact interval (0, ) of
monotone decrease of all positive zeros in the worst-case scenario of p very close
to —1 and n = 1. (Increasing p and/or n, as in the asymmetric case, yields larger
intervals (0,7).) Results analogous to those in Table 1 are shown in Table 3.

TABLE 3. Worst-case intervals (0,2) of monotonic decrease of
all positive zeros (n =1 and p ~ —1).

—1/(2v0) * —1/(2v0) *

Vg |c=e 12 Vg |c=e 12
6 .9200. .. 78671 || .6 4345, .. 10.221
4 .8824. .. 53.189 || .5 3678. .. 9.0315
2 T788. .. 27.753 || .4 .2865. .. 7.8786
1 .6065. .. 15.141 || .3 .1888. .. 6.7860
9 5737 .. 13.896 || .2 | 8.208%x1072 | 5.7970
.8 .5352. .. 12.659 || .1 | 6.737x1073 | 4.9722
7 .4895. .. 11.432

Here again, the last few entries, pertaining to cases very close to ordinary Freud
polynomials, suggest that also the zeros of Freud polynomials are not likely to
collectively decrease without some qualifications.

3.6. Freud polynomials. Computations analogous to those carried out in Sec-
tion 3.3 have been made for the case of Freud polynomials. With notation as in
Section 3.3, the results are shown in Table 4. Notice again the monotonic behavior
of the intervals (0, vy) for increasing n and/or p. It can be seen that all positive
zeros of the Freud polynomial 7} decrease monotonically on the interval (0, 10] if
n > 3, and on the interval (0,100] if n > 9.

TABLE 4. The intervals (0, v5) of monotonic decrease of all posi-
tive zeros of Freud polynomials 7 in dependence of n and pu.

p=p— || p=-1/2 p=0 p=1/2 p=1
n vy n vy n vy n vy n vy
2 [ 4.3325 |[ 2 | 6.7510 || 2 | 9.1147 || 2 [ 11.457 || 2 | 13.790
3113.790 || 3 | 16.117 || 3 | 18.441 || 3 | 20.762 || 3 | 23.082
4123.082 || 4 |26.910 || 4 | 30.741 || 4 | 34.574 || 4 | 38.408
538408 || 5| 42.242 || 5 | 46.077 || 5 | 49.913 || 5 | 53.749
6| 53.749 || 6 | 59.106 || 6 | 64.465 || 6 | 69.825 || 6 | 75.186
7| 75.186 || 7 | 80.548 || 7 | 85.910 || 7 | 91.273 || 7 | 96.636
81 96.636 || 8 | 103.52

9 | 124.20
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864 WALTER GAUTSCHI

FIGURE 7. The positive zeros of the Freud polynomial ; for
n=150n0 < v <2 (on the left) and 2 < v < 10 (on the right).

Plots of the zeros for n = 15 are shown in Figure 7. In the process of producing
these plots it was checked that all zeros indeed decrease on (0, 10].
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A number of conjectured monotonicity properties for zeros of ultra-
spherical polynomials are reviewed, leading up to the Ismail-Letessier—
Askey (ILA) conjecture of the title, which has been proved in 1999 by
Elbert and Siafarikas. It is shown that two of the earlier conjectures
are consequences of the ILA conjecture. Computational support is
provided for strengthening several of these conjectures, including the
ILA conjecture, from monotonicity to complete monotonicity.
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1. Introduction

Inequalities and monotonicity properties for zeros of orthogonal polynomi-
als depending on a parameter is a classical subject; see, e.g., [24, Chapter 6].
The last three or four decades, however, have seen a considerable increase
of activity in this area. Several approaches have been pursued concurrently.
One is via differential equations, specifically the Sturm comparison theorem.
Surveys and tutorials on this are given by L. Lorch, A. Laforgia, and
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M. E. Muldoon in, respectively, [22, 20], and [21], and further applications
to generalized Laguerre polynomials in [3], to Jacobi polynomials in
[5, Section 3], and to ultraspherical polynomials in [1, 2]. Another approach
uses Markov’s theorem [24, Section 6.12], which has recently been applied
in [11] in connection with Freud and sub-range Freud polynomials, and a
slight extension thereof in [15, Section 3] with applications to Laguerre,
Jacobi, and Meixner polynomials. An approach originating in physics,
and promoted primarily by Mourad Ismail, makes use of the Hellmann—
Feynman theorem, which looks at the zeros of orthogonal polynomials as
eigenvalues of an operator depending on a parameter and states formulas
for the derivatives of the eigenvalues with respect to that parameter. This
is surveyed in the paper [19] and applied there, and in a number of other
papers [14, 17, 18], to zeros of a variety of orthogonal polynomials, including
birth and death process polynomials.

Finally, there is an entirely empirical approach based on numerical
computation, which is an important vehicle to test conjectured inequal-
ities and monotonicity properties, thereby providing stimuli for further
analytical work. Examples of this are a series of papers, [6-8, 13] on
the zeros of Jacobi polynomials and also the paper [11] already cited
on the zeros of Freud polynomials. This is the approach used here in
Section 5 to test conjectured higher monotonicity properties for zeros of
ultraspherical polynomials. Ordinary monotonicity properties are surveyed
in Section 2. Software tools used in this paper are briefly described in
Section 4.

2. Ultraspherical Polynomials and the ILA Conjecture

Ultraspherical polynomials arise in the solution of Laplace’s equation in
high-dimensional spaces, when written in terms of hyperspherical coordi-
nates and solved by the method of separation of variables. The polynomials,
also named after the Austrian mathematician Leopold Gegenbauer (1849—
1903), who introduced them in his doctoral thesis of 1875 and studied them
in subsequent papers, are commonly denoted by C,SA) [23, equation 18.7.1]
(but see also [24, Section 4.7], where the notation P is used), n being
the degree and A > —1/2 a parameter. They are orthogonal on the interval
(—1,1) relative to the weight function wj (t) = (1 — t2)*~1/2, that is

/ 1 NN (Hywa(t)dt =0 if k # . (2.1)
1
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Fig. 1. The positive zeros of C,(ZA) for n =40 and —1/2 < A < 10.

Important special cases include Chebyshev polynomials of the first and
second kind, corresponding to A = 0 and A = 1, and Legendre polynomials,
corresponding to A = 1/2.

Since the weight function w) is even, the polynomial c™ is even or
odd, depending on whether n is even or odd, and the zeros therefore are
symmetric, or antisymmetric, with respect to the origin. To study them,
it thus suffices to look at the positive zeros ZT(LA])C of C,(,)‘), In Fig. 1 we
show plots of them as functions of A for —0.49 < A < 10 and n = 40.
It appears from the graphs, and has been verified computationally, that the
zeros are all monotonically decreasing. This was already known to Stieltjes
(see [24, p. 121]) and a proof using Markov’s theorem in combination
with quadratic transformation of hypergeometric functions is mentioned in
[15, p. 188]. Laforgia [20] conjectured that the zeros multiplied by A become
monotonically increasing for all A > —1/2 and all n > 2, and proved this
for 0 < A < 1 using one of Szegd’s formulations of the Sturm comparison
theorem [24, Theorem 1.82.1]. We verified this computationally for —1/2 <
A < 10 (in steps of of 1/100) and for all n with 2 < n < 40. Graphs for
n = 40 are shown on the left of Fig. 2. Ahmed, Muldoon, and Spigler [1], also
using Sturmian methods, proved that the zeros multiplied by [A + (2n? +
1)/(4n + 2)]'/? are increasing when —1/2 < X\ < 3/2, n > 2, which we
verified computationally for the same values of A and n as above and show
graphs for n = 40 on the left of Fig. 3. This actually implies the validity of
Laforgia’s conjecture for —1/2 < A < 3/2 by straightforward differentiation
of )\_1[)\—l—(2n2+1)/(4n+2)]1/2[)\z7(:‘,1]. Ismail and Letessier [16] conjectured
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Fig. 2. The positive zeros of Cy\) multiplied by A (left) for n = 40, —1/2 < A < 10,
and multiplied by v/X (right) for n = 40, 0 < A < 10.
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Fig. 3. The positive zeros of C,(L)‘) multiplied by [A 4 (2n2 + 1)/(4n + 2)]*/2 (left) and
multiplied by (1 + A)/2 (right) for n = 40, —1/2 < A < 10.

that the zeros multiplied by v/A are monotonically increasing for A > 0
and proved this for the largest zero. We verified the conjecture for all 2 <
n < 40 and all positive zeros, for the same values of A as before, but with
A > 0. Respective graphs are shown on the right of Fig. 2 for n = 40.
Askey suggested that monotonic growth may also hold when the zeros are
multiplied by (1 4+ A\)'/2, which has become known as the ILA conjecture,
named after Ismail, Letessier, and Askey. We verified this conjecture for
all 3 < n < 40 (when n = 2 the product in question is constant equal
to 1/y/2) and for —1/2 < A < 10 in steps of 1/100; see the graphs on
the right of Fig. 3. The conjecture, in fact, has been proven by Elbert and
Siafarikas [4] by showing that the Ahmed-Muldoon-Spigler result holds for
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all A > —1/2, which in turn, by straightforward differentiation, implies the
ILA conjecture.

3. Some Implications of the ILA Conjecture
With z()\) denoting any positive zero of C,(LM, writing

1/2
= (552) D = (A )

and using the ILA conjecture f/(A) > 0 (proved by Elbert and Siafarikas),
differentiation of the right-hand side yields

A+AHYZAY2 (0] = )+ 1 A+ AH Y2320 >0 for A > 0,

that is, the validity of the Ismail-Letessier conjecture. Likewise, writing

o= (SE) " et

and differentiating yields

1/2
(1;A> M) = F)+ 31+ N)"Y21+2/0)2(0) >0 if A>0,

proving Laforgia’s conjecture for A > 0. For A < 0, the conjecture is trivially
true since [Az(\)]" = z(A) + Az/(A) > 0 because of z'(\) < 0.
4. Matlab Software for Orthogonal Polynomials

All computational work in this chapter was done by using the Matlab
software package Orthogonal Polynomials and Quadrature (0PQ), located
at

http: //dx.doi.org/10.4231/R7959FHP,
and its symbolic (variable-precision) counterpart (SOPQ), located at
http: //dx.doi.org/10.4231/R7ZG6Q6T.

We describe and illustrate here the routines most relevant for our purposes.
Many other applications can be found in [10].
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A system {7}, of monic polynomials m(t) = t¥ + ... is called
orthogonal on the interval (a,b), —o0 < a < b < oo, with respect to a
positive weight function w, if (cf. also (2.1))

b
/ meOme(Dw(t)dt =0 when k £ 0. (4.1)
It is known that every such system satisfies a three-term recurrence relation

7r;c+1(t):(t—ak)ﬂk(t)—ﬂkﬂk,l(t), k:(],172,...7
(4.2)
m_1(t) =0, mo(t) =1,

with real ay, = ag(w) and positive 8, = Br(w) that depend on the weight
function w. Thus, to obtain the polynomial m, of degree n from (4.2)
requires knowledge of the first n of these coefficients, aqg, aq,...a,—1 and

Bo, B1,-- -, Bn_1, where By can be arbitrary, but is conveniently defined to
be By = f: w(t)dt. These are provided by the OPQ routine with syntax

ab = r_name(n,...), (4.3)

where name specifies the name of the orthogonal polynomial, n the degree,
and ab is the n x 2 array of recurrence coefficients

ap Bo

a B1
ab =

Qp—1 /Bn—l

The dots on the right of (4.3) stand for possible parameters defining the
orthogonal polynomial.

The polynomials that interest us here are exclusively Jacobi polynomials,
which are orthogonal on the interval (—1, 1) relative to the weight function
w(t) = (1 —)*(1 + )% a > —1, B > —1. More specifically, we are
interested in wltraspherical polynomials, which are Jacobi polynomials with
parameters « = 8 = A — 1/2, where A > —1/2. Their first n recurrence
coefficients are produced by the 0PQ routine

ab=r_jacobi(n,lambda-1/2)
in Matlab double precision, and by the SOPQ routine

sab=sr_jacobi(dig,n,lambda-1/2)
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in dig-digit precision. Thus, ab=r_jacobi(5,1) and sab=sr_jacobi
(42,5,1), which are the same as ab=r_jacobi(5,1,1) and sab=sr_jacobi
(42,5,1,1), produce

ab =
0 1.333333333333333e+00
0 2.000000000000000e-01
0 2.285714285714286e-01
0 2.380952380952381e-01
0 2.424242424242424e-01
and
sab =

, 1.33333333333333333333333333333333333333333]
) 0.2]
, 0.228571428571428571428571428571428571428571]
, 0.238095238095238095238095238095238095238095]
, 0.242424242424242424242424242424242424242424]

[ I e B e B e B |
O O O O O

that is, the first five recurrence coefficients for the ultraspherical polynomial
Cég/ 2 in double and 42-digit precision.

There is no 0PQ routine that specifically generates the zeros of orthog-
onal polynomials, but they can be generated by the Gauss quadrature

routine
xw = gauss(n, ab), (4.4)

which obtains in the first column of the n X 2 array xw the n nodes (in
increasing order), and in the second column the corresponding weights, of
the n-point Gaussian quadrature rule associated with the weight function
w specified by the n x 2 array ab of its first n recurrence coefficients. The n
Gaussian nodes are nothing but the n zeros of the orthogonal polynomial
of degree n relative to the weight function w. Thus, the n zeros of c™ in
increasing order are obtained by the following Matlab routine:

function z=zeros_us(n,lambda)

%ZEROS_US Zeros of ultraspherical polynomials.

% Z=ZEROS_US(N,LAMBDA) generates the N zeros in

% increasing order of the Nth-degree ultraspherical
% polynomial C_N-{(LAMBDA)}.
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ab=r_jacobi(n,lambda-1/2); xw=gauss(n,ab);
z=xw(:,1);

The Matlab script
%PLOT_ZEROS_US

n=40;
n0=floor((n+1)/2)+1;
for k=nO:n
si=(-.49:.01:10)’;
% si=(0:.01:10)’;
s=size(si); y=zeros(s);
i=0;
for lam=-.49:.01:10
% for lam=0:.01:10
i=i+1;
z=zeros_us(n,lam);
¥, K)=2(k);
y(i,k)=lam*z (k) ;
y(i,k)=sqrt(lam)*z(k);
y(i,k)=(2*n"2+1+2*1am* (2*n+1)) ~ (1/2) *z (k) ;
y(i,k)=(1+lam) " (1/2)*z(k);
end
for i=2:s(1)
if y(i,k)>=y(i-1,k)
% if y(i,k)<=y(i-1,k)
[n i k]
[y(i,k) y(i-1,k)]
error (’wrong sign’)
end
end
plot(si,y(:,k),’LineWidth’,1.5);set(gca, ’FontSize’,14)
hold on
axis([-1 11 0 1.1])
% axis([-1 11 -1 11])
% axis([-1 11 -.5 3.5])
% axis([-1 11 -5 701)
% axis([-1 11 -.5 3.5])
xlabel(’\lambda’); ylabel(’z(\lambda)’);
% xlabel(’\lambda’); ylabel(’\lambda*z(\lambda)’)
% xlabel(’\lambda’); ylabel(’\lambda"{1/2}*z(\lambda)’)
% xlabel(’\lambda’);
% ylabel(’ (2*n~2+1+2x\lambdax* (2*n+1)) ~{1/2}*z(\lambda) ’)
% xlabel(’\lambda’); ylabel(’(1+\lambda) {1/2}*z(\lambda)’)

B

not, only produces all plots in the figures of Section 2 but also checks the
validity of the relevant monotonicity properties by selecting the appropriate
commands from those commented out or currently active.
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5. Conjectured Higher Monotonicity Properties
for Ultraspherical Polynomials

Let again z(\) be any positive zero of the nth-degree ultraspherical
polynomial C,([\), A > —1/2. (For simplicity of notation, we do not show
the dependence of z on m.) The ILA conjecture, proved by Elbert and
Siafarikas [4], states that

FO) =@+, A>-1/2, (5.1)
is an increasing function of A for A > —1/2 and n > 3, even though z(A) is

decreasing. Likewise, the Ahmed-Muldoon—Spigler result, as extended and
proved by Elbert and Siafarikas (see end of Section 2), states that

m2+1
9(\) = (AJF 4n + 2

is an increasing function of A for A > —1/2 and n > 2. The Ismail-Letessier

1/2
> 2(\), A>—1/2, (5.2)

conjecture, as proved in Section 3, states that
RN = VAz(N), A>0, (5.3)

is monotonically increasing for A > 0 and n > 2, while Laforgia’s conjecture,
also proved in Section 3, states that

E) =Xz(h), A>-—1/2 (5.4)
is monotonically increasing for A > —1/2 and n > 2.

The graphs of f and h on the right of Figs. 3 and 2, showing not only
monotonicity, but also concavity of all positive zeros, suggest that these
zeros satisfy also higher monotonicity properties. The same may be true
for the function g and some of the larger zeros in the graph on the left of
Fig. 3, and perhaps even for the function k()).

5.1. The function f(\)
Our conjecture for the function f is as follows.

Conjecture 5.1. For all n > 3 the first derivative f’ of the function f in
(5.1) is completely monotone on (—1/2,00), i.e.,
(=)™ DN >0, m=0,1,2,..., A>—1/2. (5.5)
The evidence we provide for this and the subsequent conjectures is for
n < 15. It is based on divided differences. Thus, let s(h) = {s;(h)}32;,
h > 0, be the infinite sequence with

sj(h) = —1/24jh, j=1,2,3,...,
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and djm(h; f) = [sj(h),sj+1(h),...,Sjtm(R)]f the mth-order divided
difference of f relative to m + 1 consecutive members of s(h) starting with
sj(h). Our objective is to verify computationally that for given integers
J>1land M >0

(=)™ djmia(h; f) >0, j=1,2,....0; m=0,1,..., M. (5.6)

Since the (m + 1)th divided difference of f is equal to a positive constant
times the (m + 1)th derivative of f evaluated at some intermediate point
(see, e.g., [9, equation (2.117)]), it is plausible, especially if h is small, that
(5.6) implies (5.5), at least for the A-range and the m-values indicated by
(5.6), but very likely for all A > —1/2 and all m > 0.

In principle, the computational validation of (5.6) is straightforward,
but requires caution when m is large, because of numerical instability. By
virtue of (see, e.g., [9, Chapter 2, Exercise 54])

A" f = mh"djm (h; f),
where A™f; is the mth difference of f at s;, the computation of
divided differences and differences is equally stable. Because of cancellation
errors, however, computing differences becomes increasingly unstable as m
increases, and may even yield the wrong sign. Therefore, high-precision
arithmetic is imperative, though time-consuming, when m is large.

We select h = 0.02, M = 14, and J = 350, which are constants that
remain fixed for the remainder of this section. The choice of these constants
covers divided differences of orders 1-15 and a A-interval —1/2 < X < 13/2.

In Matlab double-precision arithmetic, we were able to confirm (5.6)
forall 3 <n <15 and 0 < m < 4 in a matter of a few seconds runtime.
The differences A™ f; involved were never smaller in absolute value than
1.894x 10~ '3, For the values (n, m) not covered by these computations, that
is, for 3 < n <15 and 5 < m < 14, it took 36-digit arithmetic in symbolic
Matlab and some 70 h of runtime to confirm (5.6). The absolutely smallest
difference A™ f; observed was 7.774x 10730,

The computations described are implemented in the Matlab script®
conj_geg.m for double precision arithmetic, and in the script sconj_geg.m
for variable-precision arithmetic using the Matlab symbolic toolbox. The
former script also uses the OPQ routines r_jacobi.m and gauss.m, com-
puting respectively the recurrence coefficients of the relevant ultraspherical
polynomials and the related Gaussian quadrature rules (hence, in partic-
ular, the positive zeros of the ultraspherical polynomials), and the latter

aAll Matlab scripts referenced in this chapter are collected in [12].
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script uses the corresponding variable-precision routines sr_jacobi.m and
sgauss.m; cf. Section 4. An additional pair of routines is used, dd.m and
sdd.m, generating (from the bottom up) the appropriate divided differences
in double or variable precision; see, e.g., Machine Assignment 7(a) in
[9, Chapter 2] and its solution on p. 153. The script conj_geg.m and
the routine dd.m are shown below. Their variable-precision versions are
straightforward translations from double-precision arithmetic to variable-
precision arithmetic.

%CONJ_GEG

£0="%12.4e\n’;

h=1/50; J=350; M=15;

for n=3:15

fprintf (°n=%4.0f\n’,n)
nh=floor(n/2); z=zeros(J,1);
for k=1:nh
for j=1:J
b=-1+j%h;

% b=-1/2-h+j*h;
ab=r_jacobi(n,b);
xw=gauss(n,ab);
z(j)=sqrt (b+3/2) *xw(n+1-k,1);

A z(j)=sqrt (b+1/2) *xw(n+1-k,1);
% z(j)=-xw(n+1-k,1);

end

for m=1:M

dmin=10"20; x=zeros(m+1,1); zm=zeros(m+1,1);
for jm=1:J-m
for mu=1:m+1
x (mu)=-1+(jm+mu-1) *h;
zm(mu) =z (jm+mu-1) ;
end
dm=dd (m,x,zm) ;
if sign((-1) “m*dm)>0
disp(’wrong sign’)
fprintf (£0,h"m*factorial (m)*dm)
error(’quit’)
end
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if abs(dm)<dmin, dmin=abs(dm); end
end
fprintf (f0,h"m*factorial (m)*dmin)
end
fprintf(’\n’)
end
end

function y=dd(n,x,f)

%DD Divided difference.

%  Y=DD(N,X,F) evaluates the Nth divided difference
% Y of F, where X=[X_0,X_1,...,X_N]"T,

% F=[F(X_0),F(X_1),...,F(X_N)I"T.

d=zeros(n+1,1);

d=£f;

if n==0
y=d(1);
return

end

for j=1:n
for i=n:-1:j

d(i+1)=(d(1i+1)-d(1))/ (x(i+1)-x(i+1-3));

end

end

y=d(n+1);

The script conj_geg.m, as listed, produces an error message “wrong
sign” already for n = 3 and m = 5 and displays the delinquent difference.
The latter is close in absolute value to the machine precision, in fact equal
to 3.684x107 1%, and therefore unreliable. To produce the double-precision
result mentioned above, the m-loop in the script has to be run only up
to m = 5. The 36-digit confirmation of (5.6) is produced by the script
sconj_geg.m.

5.2. The function h(X)

The conjecture for the function A is as follows.
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Conjecture 5.2. For all n > 2 the first derivative h' of the function h in
(5.3) is completely monotone on [0,0), i.e.,

(=)™ () >0, m=0,1,2,..., A>0. (5.7)

The numerical validation of Conjecture 5.2 is done by the same scripts
conj_geg.mand sconj_geg.m, slightly modified to deal with the function A
in place of f and the interval A > 0 instead of A > —1/2. Here, the double-
precision routine does the job quickly for 2 < n < 15 and 0 < m < 6, and
the 36-digit routine for the remaining cases in about 79 h runtime.

With regard to complete monotonicity, the functions g and k in (5.2),
(5.4) do not quite measure up to the functions f and h in (5.1) and (5.3).
It is true that for the single positive zero z(\), when n = 2 or n = 3,
the functions ¢’ and k' are indeed completely monotone, but for n = 4,
computation suggests that for g this is true only for the larger of the two
positive zeros and not for the other, and for the function k only for the
smaller of the two zeros and not for the other.

5.3. The function g(\)

Conjecture 5.3. For all n > 4, the first derivative g’ of the function g in
(5.2) is completely monotone when z(\) is the largest positive zero of CflA),
but not so otherwise.

This was verified in the same manner as Conjectures 5.1 and 5.2,
with the same scripts conj_geg.m, sconj_geg.m, suitably modified. It took
another 15h of runtime.

For the positive zeros z(A) of g other than the largest, additional com-
putations (in 36-digit arithmetic) suggest an “incomplete monotonicity”
property, i.e., the existence of a positive integer mg such that

(=1)™gm (X)) >0 for 0 <m < mg, A > —1/2, (5.8)
with the opposite inequality holding when m = mg + 1. If we denote the
positive zeros of C}LA) in decreasing order by zfl/\lz, k=1,2,...,|n/2], then
it is found for 4 < n < 30 that '

mgo = 1 holds
for £ =2 when 17 <n < 30

mg = 2 holds

for k=2 when 4 <n <16
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for k =3 when 6 <n <30
for k =4 when 8 <n <30
for k =5 when 17 <n <30
for k =6 when 24 <n < 30
mg = 3 holds
for k =5 when 10 <n < 16
for k =6 when 12 <n <23
for 7 <k <15 when 2k <n < 30

5.4. The function k()

It took another 60h of runtime to verify the following conjecture for the
function k.

Conjecture 5.4. For 4 < n < 10, the first derivative of the function k in
(5.4) is incompletely monotone (in the sense of (5.8), with mg = 3,2, 1 for
respectively n = 4,5 <n <6, n > 7) when z(\) is the largest positive zero
of CSL)‘), and completely monotone otherwise. For 11 < n < 15, both the
largest and second-largest zero is incompletely monotone (the former with
mo = 1, and the latter with mg = 8,5, 3, 2 for respectively n = 11, n = 12,
13 <n < 14, n = 15), while all the other zeros are completely monotone.

This pattern likely continues for n > 15, with the first few positive zeros
(in decreasing order) being incompletely monotone, and the remaining ones
completely monotone.

5.5. The zeros z(A)

It seems natural to ask whether higher monotonicity properties may hold
also for the zeros themselves. After all, when n = 2, we have —2/'(\) =
(1/2v/2)(X\ + 1)73/2, which is clearly completely monotone, and the same
is true for n = 3, where —z(\) = (1/2+/2/3)(\ + 2)7%/2, suggesting that
—2'(\) might be completely monotone for all n > 2,

(=)L) >0, m=0,1,2,...,A> —1/2.

Computations (even in Matlab double precision), however, confirm this only
for m = 0, the first counterexample occurring already when n =6, m =1,

84



December 21, 2017 10:3 Frontiers in Orthogonal Polynomials and g-Series 9in x 6in b3010-ch13 page 265

On the ILA Monotonicity Conjecture for Zeros of Ultraspherical Polynomials 265

and A = —1/2+ h, and others for n =7, m =1, and A = 0, or n = 8,
m=1,and A =1/2.
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Abstract All positive zeros of subrange Jacobi polynomials, orthogonal on [—c, c],
0 < ¢ < 1, with respect to the weight function w(x) = (1 — x)%(1 + OB o> —1,
B > —1, are shown in the ultraspherical case « = B, and partly conjectured in the
general case o < f3, to be monotonically increasing as functions of c.
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1 Introduction

Subrange Jacobi polynomials are orthogonal with respect to the Jacobi weight func-
tionw(x) = (1 —x)*(1+x)f, > —1,8 > —1, supported either on the symmetric
subinterval [—c, c], 0 < ¢ < 1, or on an asymmetric interval [—1,c], —1 < ¢ < 1.
Computational aspects of these orthogonal polynomials have been considered in [1]
(under the more restrictive assumption ¢ > 0 in the asymmetric case). Here we are
interested in the zeros of these polynomials, in particular in monotonicity properties
of the zeros when considered functions of c.

The asymmetric case is simpler, in this regard, since it has been proven, for general
weight functions, that all zeros increase monotonically with ¢ ([2, Theorem 2]). Here
we consider the more interesting case of symmetric subintervals.

P4 Walter Gautschi
wgautschi @purdue.edu

1 Department of Computer Science, Purdue University, West Lafayette, IN 47907-2066, USA

88
@ Springer



760 Numer Algor (2018) 79:759-768

2 Symmetric subintervals

The monotonicity behavior of the zeros, as in [2], can be studied starting from the
respective Gaussian quadrature formula,

/ pEwE)dx = Y 1, ()pu(©), p € Py, 2.1)

u=l1

where x,, (c) are the zeros of the nth-degree subrange Jacobi polynomial and A (c)
the corresponding Christoffel numbers. Differentiating with respect to ¢, we obtain

da
pOw(e) + p(—c)w(—c) = Z “(c) (xﬂ(c)>+2x (©)p'(xu(c)) “(C)

u=1
(2.2)
The principal idea, going back to A. Markov (cf. [4, §6.12]), is to put here
[0 (01
p) = "———,
X — XU

where m,(x) = rrn P )(x ¢) 1s the (monic) subrange Jacobi polynomial of degree n,
and x, = x,(c) is some fixed zero of m,,. Clearly, p(x,) = 0 for all u, and also

p'(xu) =0 forp #v, and p'(x,) = [, (x,)]".
From (2.2), we therefore obtain

2 I [mEoPwEo 1| ) dry(©)
Ty (c)w(c) {C—XU |: ,(C) :| w () c—|—xv} )hv(c)[ﬂ (xv)] de
(2.3)

In the special case @ = B of ultraspherical polynomials, we have w(—c) = w(c)
and n,%(—c) = 713 (c), so that (2.3) simplifies to

22 w(e) | — 1 J (O, (o) 2 22 (2.4)
C —_ e X .
" c—x, CH+x Y Y de
Here,
1 1 2,
C— Xy c+x, 2 — x%

is positive if x,, > 0. Since the other factors on the left of (2.4), as well as those on the
right multiplying dx, /dc, are all positive, it follows that dx, /dc > 0. Thus, we have

Theorem 1 All positive zeros of the subrange ultraspherical polynomials, orthogo-
nal on [—c, c], 0 < ¢ < 1, are monotonically increasing as functions of c.

Remark to Theorem 1 From the proof of the theorem, it is clear that it holds for
any symmetric weight function, i.e., for any positive function w satisfying w(—x) =
w(x)on[—a,al,0 <c <a < o0.
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Fig. 1 Positive zeros of the 1.2
subrange Chebyshev polynomial
of degree n = 30 in dependence 17
of the parameter ¢ 08l
o 06+ _
8 _
N 04t
0.2r
0 L
-0.2 : : : :
0 0.2 0.4 0.6 0.8 1

c

Figure 1, produced by the Matlab script plot_zeros_srchebyshev.m,!

shows the positive zeros of the subrange Chebyshev polynomial (0 = 8 = —1/2) of
degree n = 30 as functions of c.
In the general case @« # B, we may, and will, assume o < J, because of

N,Ea’ﬂ)(XQ c) = n—rgﬂ’a)(—x; c). Since

w(—c)  [(1—c\P™
w(c) _<1+c> ’

we can write (2.3) in the form

1 j'[n(—C) 2 1—c p—a 1
’ Y B —
7, () (1 = o)*(1 +¢) {c_xv [nn(c)] <1+c> C+Xv}

= Ap(0)[m) (x,)]? dry, (2.5)
dc

so that the sign of the derivative dx, /dc is the same as the sign of the expression in
curled brackets, which will be denoted by «,, ., (c),

_ 2 _ B—a
nn () = — —[ﬂ”( C)] (1 C) L (2.6)

c— Xy 1, (c) I+c¢ c+xy
It should be noted that «,, ,, (1) = 1/(1 —x,), which is positive since x,, < 1. Thus,
in the unlikely scenario where c is very close to 1, some or even all zeros may be
monotonically increasing near ¢ = 1.
With regard to the factor multiplying the second term on the right of (2.6), we
make the following interesting conjecture.

Conjecture For anyn > 1, « > —1, B > —1 with o < B, and for any c with
0 < ¢ <1, there holds

_ 2 . B—a
w = [””( C)] (1 c) <1, 2.7)
7Tn(C) l+c¢

' All Matlab scripts and routines referenced in this paper can be accessed at the website http:/www.cs.
purdue.edu/archives/2002/wxg/codes/ZSRIAC.html.
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where w,(-) = Jrn(a’ﬁ )(-;c) is the subrange Jacobi polynomial of degree n

orthogonal on [—c, c] relative to the weight function w(x) = (1 — x)¥(1 + x)B.

Empirical evidence in support of the conjecture is provided in Appendix B.

3 Subrange Chebyshev polynomials of the fourth kind

This is the case of Jacobi polynomials with parameters « = —1/2, 8 = 1/2,
which merits special attention. We assume the zeros x,, of the nth-degree polynomial
ordered increasingly,

—c < x1(c) < x2(c) < --- < x,(c) < c. (3.1)

The Matlab script plot_zeros_srchebyshev4 . m computes and plots the zeros
of subrange Jacobi polynomials. In the case at hand, all zeros for n = 30 are shown at
the bottom of Fig. 2 for .02 < ¢ < .98. The plot suggests that the negative zeros are
monotonically decreasing, and the positive zeros monotonically increasing as func-
tions of c. Actually, this is not quite true. It is true for all zeros unless c is close to 1.
For the values ¢ = .02 : .02 : .98 of ¢, exceptions have been observed only for the
largest negative zeros. When n is even, they are monotonically decreasing for c less
than about .89, consistently for all (even) n, and monotonically increasing thereafter.
When 7 is odd, they are decreasing for c less than about .979, and increasing there-
after. This is illustrated for n = 30 in the top-left plot of Fig. 2, and for n = 29 in the
top-right plot. The behavior described is consistent with the remark made after (2.6).

4 Subrange Jacobi polynomials with parameters « < 8

In the case now under consideration, the upper half of the zeros display a more coher-
ent pattern than the lower half, both with regard to the sign of the zeros and their
monotone behavior as functions of c.

For the upper half of the zeros, we have

Theorem 2 Assuming the conjecture in Section 2 is true, all zeros x,,, v = |n/2|+1 :
n, if positive, of the subrange Jacobi polynomial of degree n, n > 1, orthogonal on
[—c,cl, 0 < ¢ < 1, with respect to the weight function w(x) = (1 — x)*(1 + x)B,
a < B, are monotonically increasing as functions of c.

Proof From (2.6) and (2.7), we have

1 w (1 —w)c+ (1 +w)x,
_ = > 0,

c—Xxy, Cc4+xp 2 —x2

since 0 < x, < ¢ by assumption, and 0 < @w < 1 by the conjecture of Section 2.
Thus, the assertion of Theorem 2 follows from what was said after (2.5). Ol
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Fig. 2 Zeros of the subrange Chebyshev polynomial of the fourth kind in dependence of the parameter c;
n = 30, largest negative zero (top left); n = 29, largest negative zero (top right); n = 30, all zeros (bottom)

Remark 1. All zeros x, in question were found, using the Matlab script
mon_zeros_subjacobi.m (which also verifies monotonicity of the zeros), to be
positive whenn < 30,0, 8 = —8: .2 : 10,0 < B,and ¢ = .02 : .02 : .98. The
script may take many hours to run.

2. The conjecture in Section 2 has been proven to be true [3] for Jacobi parameters
o <0, 8 > 0. In this case, the claim in Theorem 2 also follows from A. Markov’s
theorem; see Appendix A.

Plots of the zeros x,, v = |[n/2| + 1 : n,forn = 30, ¢ = —.8, 8 = 10,
are produced by the Matlab script plot_zeros_subjacobi.m and shown on
the left of Fig. 3. The plot on the right shows the zeros x,, v = 1 : |n/2], for
the same values of n, o, and B. Here, as was determined by the Matlab script
run_anal_zeros_subjacobi.m, the zeros start out decreasing monotonically,
but at some point, sooner the larger the zero, turn around and begin to increase. The
two largest zeros even become positive, the first at about ¢ = .78, the other already
at about ¢ = .3. The same pattern, perhaps in a less pronounced form, persists for
smaller values of 8 — .

Both plots were produced by the routine plot_zeros_subjacobi .m.
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Fig. 3 Zeros of the subrange Jacobi polynomial of degree n = 30 for « = —.8, B = 10 in dependence of
the parameter c; upper half of the zeros (left); lower half of the zeros (right)

Appendix A: A partial result

Denote the subrange Jacobi polynomial of degree n, orthogonal on [—c,c], 0 <
¢ < 1, relative to the Jacobi weight function w@h(x) = (1 — )% + x)P, by
T, (x) = n,Ea’ﬂ )(x; c). Let p,(x) = pr(la’ﬂ ) (x; ¢) be the monic polynomial of degree
n orthogonal on [—1, 1] relative to the weight function V@B (x:¢) = w@®P (cx),
—1 < x < 1. Then, as is easily seen (also see [1, §2]),

1
PP 0 = Sl e o) D

Since p,(,a’ﬂ )isa polynomial orthogonal with respect to the weight function w(x; ¢) =

(1—cx)*(14cx)?, x € (—1, 1), depending on a parameter, we can apply A. Markov’s
theorem (cf. [4, §6.12]). According to this theorem, all zeros x, of p,(f[’ﬁ ) are
monotonically increasing functions of ¢ in (0, 1) provided the Markov function

_ dw(x;c)/dc

M(x;c) w(x;c)

i1s monotonically increasing as a function of x in (—1, 1). We have

w = a(l — ) N (=x)1 + ex)? 4+ Bx(1 — cx)¥(1 + ex)P !
c

= x {,3(1 ) (1 +ex)f ! —a(l — ex)* 11 +cx)ﬂ} ,
so that

e ol
M(x;c)=x — , —l<x<l.
1+ cx 1—cx

Since

x " 1 ( x )’_ 1
(1—|—cx)_(l—|—cx)2’ l—cx/) — (1—cx)?
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(primes indicate derivatives with respect to x), there holds

B B o
(I14+cx)2 (1 —cx)?’

Therefore, if « < 0 and 8 > 0 and not both, « and B, are zero, in which case

Theorem 1 applies, we have M'(x;c¢) > 0 on (—1, 1). Hence, by Markov’s theo-

rem, all zeros of the orthogonal polynomial p,(la’ﬂ ) are monotonically increasing as

functions of c. Since the zeros of n,E“’ﬂ ) are &, = cx, and

d d
&:xvﬁ—c tv

dc de’
a!ﬂ)( .

M (x;c) =

it follows that all positive zeros of n,g
tions of ¢ in (0, 1).

; ¢) are monotonically increasing func-

Appendix B: Empirical evidence supporting the conjecture in Section 2

Using (A.1), we get from (2.7)

PP 10 (1)
O T @B . (1+ ) ' ®-1)
PP (15 ¢) ¢

Since w @A) (0) = 1, the polynomial p,(la’ﬂ ) (x;c), as ¢ | 0, tends to the monic
Legendre polynomial of degree n, and hence w = 1 for ¢ = 0. What we conjecture,
in fact, is that for any n > 1 and any «, 8 with 8 > o > —1, the quantity w in (B.1)
decreases monotonically as a function of ¢, ¢ € (0, 1]. Since ® = 1 for ¢ = 0, it then
follows that 0 < w < 1 for ¢ in (0, 1], as conjectured in (2.7).

To prove this analytically, by differentiating w with respect to ¢, is virtually impos-
sible, and even unlikely to succeed in symbolic computation, since the dependence
of p,(f[’ﬁ )(- ; ¢) on c is very complicated. However, we provide rather compelling
empirical evidence that w indeed decreases as a function of c.

We begin by computing and plotting w for n = 30, for ¢ = 0 : .01 : 1, and for
selected values of «, B8, namely the seven values « = [—1/2,0,1/2,1, 2,5, 10] of
and for each « the five values 8 = o + [1/2, 1, 2, 5, 10] of B. The seven plots are
produced by the Matlab routine conj_omega . m, which also verifies monotonicity.

1 1 1

0.8 ﬁ 0.8 0.8

0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
% 0.5 1 % 0.5 1 % 0.5 1

Fig. 4 The function w in dependence of ¢ for n = 30 and selected values of («, ), B > «
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0.5

0

0 0.5 1

Fig. 5 The function w in dependence of ¢ for n = 10, n = 30, n = 50 (from left to right), and for integer
values of (a, 8), 8 > «

Since all these plots look quite alike, we show, in the far left of Fig. 4, only the fourth
plot as a representative for all seven. The same routine also plots w for ¢ = —1/2,
B = 30 and for « = 5, B = 50, the result of which is shown in the second and third
plot of Fig. 4. The flatness at the bottom of these curves, of course, is caused by the
second factor in (B.1).

Clearly, when 8 = «, we have w = 1, since not only the second factor in (B.1), but
also the first, is equal to 1. Thus, when g is close to, but larger than «, inevitably w
will be close to 1 for quite a while, but eventually will have to vanish at ¢ = 1 owing
to the second factor vanishing there. This explains the behavior of the curves near the
top (corresponding to 8 & «) of the first plot in Fig. 4, and also makes plausible the
behavior of w shown in the other two plots of the figure, typical for values of o and
B far apart.

The plots in Fig. 5 show w fora = 0 : 20, 8 = o + [1 : 20], that is, for inte-
ger values of «, B, for which the computation (by 1-component discretization) of
the polynomials p,ga’ﬂ )( -5 ¢) 1s fast, since the weight function w@P (cx) is a poly-
nomial of degree o + B; cf. [1, §2]. The three plots, produced by the Matlab script
run0_omega . m, are respectively for n = 10, n = 30, and n = 50.

The evidence for the validity of our conjecture produced so far relates mostly to
the rapid descent of @ to O with ¢ approaching 1; see, however, Fig. 4. The more
delicate behavior for small ¢, say 0 < ¢ < .1, requires further scrutiny. Figure 6,
produced by the script runl_omega . m, shows plots of w for ¢ in the interval [0, .1],
for f = a + [1 : 20] (from top to bottom), superimposed as « varies from O to
20 in steps of 1. It can be seen that each plot is practically a linearly decreasing

005 N 0.98 N 0.99
0.9 0.96 0.98
0.85 0.94 0.97
0'80 0.05 0.1 092 0 0.05 0.1 096 0 0.05 0.1

Fig. 6 The function w in dependence of ¢ on [0, .1] for n = 10, n = 30, n = 50 (from left to right), and
in each plot for § = o 4 [1 : 20] (where o = 0 : 20)
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