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Part I

Commentaries

In all commentaries, reference numbers preceded by “GA” refer to the num-
bers in the list of Gautschi’s publications; see Section 4, Vol. 1 and Section 34,
this volume. Numbers in boldface type indicate that the respective papers
are included in these selected works.





35

Special functions

Javier Segura

Here, five papers are commented on, [GA172], [GA212], [GA213], [GA216],
and [GA218] (see p. 31 of Vol. 1 and pp. 2–3 of this volume), all dealing with
different aspects of special functions. They can be divided into two groups,
one on computational methods and the other on zeros. Among the former are
the papers [GA172] and [GA212], the first discussing the computation of the
exponential integral by means of series expansion in incomplete gamma func-
tions and the second the computation of the repeated integrals of the coerror
function by halfrange Gauss–Hermite quadrature. In the second group of
papers, the focus is on monotonicity properties, both analytic and empirical,
for the zeros of classical and nonclassical orthogonal polynomials.

35.1 Computational methods

35.1.1 Exponential integral. In the paper [GA172], written jointly with
F. E. Harris and N. M. Temme, the expansion of the exponential integral

E1(z) + z + ln z =
∞∑

n=1

γ(n, z)

n!
(35.1)

in incomplete gamma functions is derived as a limit case (first λ ↓ 0, then
a→ 0) from the interesting identity

γ(a, λz) = λa
∞∑

n=0

γ(a+ n, z)

n!
(1− λ)n
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stated by Tricomi in [4] without proof, but proved in this paper. When
compared with the known power series expansion

E1(z) + z + ln z =
∞∑

n=1

(−1)n−1
zn

nn!
, (35.2)

one finds that they nicely complement one another in the sense that for large
|z|, internal cancellations of terms in the series of (35.1) is negligent when
arg z ≈ 0 but gets worse as arg z grows from 0 to π, whereas for the series
in (35.2) it is just the other way around.

35.1.2 Repeated integrals of the coerror function. Computation of the
repeated integrals of the coerror function,

fn(x) = ın erfc(x), n = 0, 1, 2, . . . ,

using recursion, has been considered by Gautschi previously in [GA13],
[GA59], [GA60]; see §6.1.1 of Vol. 1. In [GA212] an entirely different ap-
proach is taken, namely numerical quadrature based on the integral repre-
sentation

fn(x) =
2√
π n!

∫ ∞

0

tn e−(x
2+2xt) e−t

2

dt,

where the integral is evaluated by halfrange Gauss–Hermite quadrature. This
allows the computation of fn(x) for just one, or a few, values of n.

The potential occurrence of underflow and overflow, and the fact that
the proposed (nonclassical) quadrature rules are currently available only up
to 200 quadrature points and up to an accuracy of 32 digits, impose certain
restrictions on the (n,x)-domain. These are carefully analyzed for the case
where fn(x) is wanted to an accuracy of 12 or 30 decimal digits.

35.2 Zeros

35.2.1 Freud and subrange Freud polynomials. For zeros of an orthogonal
polynomial that depends on a parameter τ , there is a classical result of
A. Markov [3, Theorem 6. 12. 1] establishing monotonic growth of the zeros as
a function of the parameter. The paper GA[213] provides concrete examples
of this result related to subrange Freud polynomials orthogonal with respect
to the weight function

w(x) = |x|µ e−|x|
ν

, µ > −1, ν > 0
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on intervals x ∈ [0, c], x ∈ [c,∞], x ∈ [−c, c], x ∈ [−∞,−c] ∪ [c,∞], where
c > 0. The parameter in question here is τ = ν. Additional results, also for
Freud polynomials on x ∈ R, having a wider scope, are obtained by numerical
computation.

35.2.2 Ultraspherical polynomials. Monotonicity and other properties for
zeros of ultraspherical polynomials have received a great deal of attention
in the literature. We mention, e. g., the work of Shafique, Muldoon, and
Spigler [2] and that of Elbert and Siafarikas [1], culminating in the Ismail–
Letessier–Askey (ILA) conjecture, proved in [2]. Gautschi’s paper [GA216]
examines to what extent this work can be extended, at least computationally,
from monotonicity to complete monotonicity, which gives rise to a number
of conjectures.

35.2.3 Subrange Jacobi polynomials. Subrange Jacobi polyhnomials are
orthogonal with respect to the Jacobi weight function w(x) = (1−x)α(1+x)β,
α > −1, β > −1, supported either on the symmetric subinterval [−c, c],
0 < c < 1, or on the asymmetric interval [−1, c], −1 < c < 1. We may refer
to them as symmetric resp. asymmetric subrange Jacobi polynomials. In
the asymmetric case, it follows from Theorem 2.6 in [GA219] that all zeros
of asymmetric subrange Jacobi polynomials are monotonically increasing as
functions of c. In Theorem 1 of [GA218] the same is shown to be true in
the symmetric case for all positive zeros if α = β. The case α 6= β is more
complicated. Assuming, without restriction of generality, that α < β, the
matter depends on the validity of a conjecture that is of independent interest,
namely

[
πn(−c)
πn(c)

]2 (
1− c
1 + c

)β−α
< 1, n ≥ 1, α < β, 0 < c < 1, (35.3)

where πn( · ) is the symmetric subrange Jacobi polynomial of degree n. If
true, then the upper half of the zeros of πn, if they are positive, increase
monotonically as functions of c; cf. Theorem 2 in [GA218]. The conjecture
(35.3) is known to be valid if α ≤ 0 and β > 0 (see Remark 2 on p. 763 of
[GA218]).

References
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Approximation

Miodrag M. Spalević

The paper here commented on is [GA217] (see p. 2 of this volume), an
original contribution to approximation theory turning the classical Markov
problem for a polynomial p of degree n around by seeking a bound of |p|
on [−1, 1] if a bound of

∣∣p(k)
∣∣ is known. Naturally, for this reversed Markov

problem to be meaningful, k additional conditions for p and its first k − 1
derivatives must be imposed. For these, Gautschi takes the initial conditions
p(−1) = p′(−1) = · · · = p(k−1)(−1) = 0. The problem then has an easy
answer. More challenging and, at the same time, more interesting is a discrete
version of this problem, which is what Gautschi is mainly dealing with here,
namely

Problem (Discrete top-down Markov problem). Given integers n ≥ 1 and

1 ≤ k ≤ n, and given n − k + 1 distinct points T(k)
n = {τν} in [−1, 1],

−1 ≤ τ1 < τ2 < · · · < τn−k+1 ≤ 1, consider the following class of polynomials
of degree n,

Q(k)
n = {p ∈ Pn : p(−1) = p′(−1) = · · · = p(k−1)(−1) = 0,

and
∣∣p(k)(τν)

∣∣ ≤ 1, ν = 1, 2, . . . , n− k + 1}.

For each ν = 1, 2, . . . , n−k+ 1, determine the maximum possible value M
(k)
n,ν

of |p(τν)| when p ∈ Q(k)
n ,

M (k)
n,ν = max

p∈Q(k)
n

|p(τν)| , ν = 1, 2, . . . , n− k + 1. (35.1)
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Gautschi gives a nice and simple solution to this problem.

Denote by `µ the elementary Lagrange interpolation polynomials of degree

n − k for the points in T(k)
n , satisfying `µ(τµ) = 1, `µ(τν) = 0 if ν 6= µ, and

let s
(k)
ν = [s

(k)
ν,1, s

(k)
ν,2, . . . , s

(k)
ν,n−k+1] be the vector with entries s

(k)
ν,µ = 1 if the

integral

I(k)ν,µ =

∫ τν

−1
(τν − τ)k−1`µ(τ)dτ

is positive, s
(k)
ν,µ = −1 if it is negative, and an arbitrary value, for example

s
(k)
ν,µ = 0, if I

(k)
ν,µ = 0. The desired quantity (35.1) is then expressed explicitly

as

M (k)
n,ν =

1

(k − 1)!

n−k+1∑

µ=1

∣∣∣∣
∫ τν

−1
(τν − τ)k−1`µ(τ) dτ

∣∣∣∣,

ν = 1, 2, . . . , n− k + 1,

the associated extremal polynomial being

p∗ν,k(t) =
1

(k − 1)!

∫ t

−1
(t− τ)k−1pn−k(τ ; s(k)ν )dτ,

where pn−k( · ; s(k)ν ) is the interpolation polynomial of degree n − k passing

through the points (τµ, s
(k)
ν,µ), µ = 1, 2, . . . , n− k + 1.

Various examples are discussed numerically, with the points τν being
Gauss–Jacobi, in particular Gauss–Legendre, quadrature points, Gauss–Lo-
batto points for Jacobi weight functions, as well as equally spaced points on
the open or closed interval from −1 to 1. Issues of interest are structural
properties of the sign pattern matrix

Sn−k+1 =




s
(k)
1

s
(k)
2
...

s
(k)
n−k+1




and monotonicity properties of M
(k)
n,ν as a function of ν and of maxνM

(k)
n,ν

as a function of k or n. There are many opportunities here for additional
work, for example, deriving the numerical results obtained, and more similar
worthwhile results, by means of rigorous mathematical analysis.

Acknowledgement. I would like to express my thanks to the editors for
their help in writing this commentary.
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Orthogonal Polynomials on the Real Line

Walter Van Assche

During the past few decades, Walter Gautschi has developed a number of
algorithms for computing recurrence coefficients for orthogonal polynomials
and the related Gauss quadrature nodes and quadrature weights. These are
all available and described in detail in his books and survey papers [GAB3],
[GA179], [GAB4], [GAB5], [GAB6]. To fix notation, we will denote the
orthonormal polynomials by pn and the monic orthogonal polynomials by
πn. The recurrence relation for the monic polynomials is (§1.3 in [GAB3])

πn+1(x) = (x− αn)πn(x)− βnπn−1(x), n = 0, 1, 2, . . . ,

with initial values π0(x) = 1 and π−1(x) = 0. Observe that β0 is not needed,
but Gautschi usually takes β0 = µ0, the zero-moment of the orthogonality
measure. The N -point quadrature nodes are the zeros of the orthogonal
polynomial of degree N and are also equal to the eigenvalues of the symmetric
tridiagonal Jacobi matrix containing the first N recurrence coefficients αn,
0 ≤ n ≤ N − 1, on the diagonal and the square root of the N − 1 coefficients
βn, 1 ≤ n ≤ N − 1, on the two side diagonals. The quadrature weights are
related to the first components of the corresponding normalized eigenvectors
and contain β0 as a factor (Golub and Welsch, [7]). Hence the crucial task
is to compute the recurrence coefficients.

37.1 Polynomials orthogonal with respect to exponential integrals
[GA211]
The goal in this paper is to compute the recurrence coefficients for orthogonal
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polynomials with the exponential integral Eν as weight function,

∫ ∞

0

pn(x)pm(x)Eν(x)dx = δm,n,

where

Eν(x) =

∫ ∞

1

e−xt
dt

tν
, ν > 0.

Integrals with this weight function, when ν is an integer, are of interest in
radiative transfer problems in astronomy and astrophysics, and hence the
relevant Gauss quadrature methods could be useful in that field. For ν =
1, an eight-digit table of the 20-point Gauss quadrature formula has been
published by Gautschi as early as 1968; see §(v) in [GA32].

In the present paper, Gautschi makes use of variable-precision codes from
Chapter 2 of his book [GAB3] to compute as many of the recurrence coef-
ficients as desired, to arbitrary precision. This is done not only for poly-
nomials orthogonal on [0,∞], but also for subrange polynomials orthogo-
nal on a finite interval [0, c], c > 0. The software used comes from the
package OPQ containing Matlab double-precision programs, and from the
symbolic Matlab package SOPQ, which are available on Gautschi’s website
https://www.cs.purdue.edu/archives/2002/wxg/codes/.

The moments of the exponential integral weight function are easily ob-
tained,

µn =

∫ ∞

0

xnEν(x)dx =
n!

ν + n
, n = 0, 1, 2, . . . ,

and are used in the symbolic version of the Chebyshev algorithm to compute
the first N recurrence coefficients αn, βn, 0 ≤ n ≤ N−1. Owing to the severe
ill-conditioning of the process, the working precision has to be considerably
larger than the target precision. Thus, for example, when ν = 1 and N = 40,
to obtain answers to an accuracy of 32 digits, one needs a working precision
of 60 digits. The answers, in fact, are shown on p. 219 of Gautschi’s paper.
Interestingly, the recurrence coefficients αn, with the exception of the first
few, are very close, more so the larger n, to 2n, which formally are the re-
currence coefficients for the generalized Laguerre polynomial with parameter
−1. Similarly for the recurrence coefficients βn, which are close to n(n− 3),
the generalized Laguerre coefficients with parameter −3; see Fig. 37.1. The
reason for this may have something to do with the fact that Eν(x) ≈ e−x/x
as x→∞, so that the exponential integral looks like the gamma density.
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Figure 37.1: The recurrence coefficients αn (left) and
βn (right) (indicated by circles) for ν = 1. The lines
in red indicate the recurrence coefficients of the gener-
alized Laguerre polynomials with parameter −1 (left)
and parameter −3 (right)

For the orthogonal polynomials on [0, c],

∫ c

0

pn(x)pm(x)Eν(x)dx = δm,n,

the moments are

µk =

∫ c

0

xkEν(x)dx =
1

ν + k
(γ(k + 1, c) + eν+k Γ(1− ν, c)),

where γ(a, x) and Γ(a, x) are the incomplete gamma functions,

γ(a, x) =

∫ x

0

ta−1e−tdt, Γ(a, x) =

∫ ∞

x

ta−1e−tdt.

The latter can be computed with the Matlab Symbolic Toolbox, but for the
former, Gautschi provides his own symbolic routine. The numerical condi-
tioning is now worse, requiring a working precision of 85 digits to obtain the
first 40 recurrence coefficients to 32 correct digits for moderately large values
of c (0 < c ≤ 16).

In Eq. (2.58) of [GAB4], Gautschi manages to find an explicit formula
for the modified moments mk of the weight function Eν(x) on [0,∞] relative
to an arbitrary (monic) polynomial pk(x) of degree k. He takes for pk the
monic Laguerre polynomial of degree k. Based on estimates for the numerical
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conditioning of the modified Chebyshev algorithm (producing the recurrence
coefficients αn, βn from the modified moments), he then claims surprisingly
large condition numbers, even larger than in the case of ordinary moments;
see Tables 2.11 and 2.13 in [GAB4]. As communicated to me by Gautschi
[4], he has verified these unusual claims by additional computations. He also
pointed out two software issues, the first in the routine run sr Enu.m, where
in the assignment statements for ab1 and ab2 the second argument on the
right was missing and should be 32 in either case. Secondly, the routine
smmomEnu.m was erroneous and has been replaced by a correct one. All this
has been implemented in the routines on his website (see above).

In a later paper [GA225] (see §37.6) the computation of the three-term
recurrence coefficients from modified moments is revisited. The comparison
between the method using ordinary moments and modified moments was not
fair since the analysis included the computation of the modified moments.
See §37.6 for more comments.

37.2 Polynomials orthogonal with respect to cardinal B-spline weight
functions [GA215]
B-splines play an important role in approximation by splines and multireso-

lution approximation, where integrals involving the cardinal B-spline appear
frequently, and therefore quadrature formulas for these weight functions are
indispensable. Milovanović [12] developed a method and an algorithm, based
on the moments of the cardinal B-spline, to compute in symbolic form the
recurrence coefficients of the orthogonal polynomials on [0,m] for the car-
dinal B-spline function of order m. Gautschi had access to a preprint of
Milovanović’s paper and decided to look at another approach based on mul-
ticomponent discretization, which is described in §2.2.4 of his book [GAB3].

The cardinal B-spline ϕm of order m ≥ 1 is a positive piecewise polyno-
mial function which consists of polynomials of degree m− 1 on each interval
[k − 1, k] (1 ≤ k ≤ m) chosen so as to make ϕm smooth, belonging to
Cm−2(R). It vanishes outside of [0,m]; see Fig. 37.2. For m = 1 the cardinal
B-spline is constant equal to 1 on [0, 1] and 0 elsewhere. The corresponding
orthogonal polynomials are then the shifted Legendre polynomials on [0, 1].

The cardinal B-spline ϕm can be (and has been) computed recursively by

ϕm(x) =
1

m− 1
(xϕm−1(x) + (m− x)ϕm−1(x− 1)) , m ≥ 2.

Matlab routines cBspline.m and scBspline.m are provided to compute ϕm
in Matlab double- resp. variable-precision arithmetic. The multicomponent
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discretization procedure requires the evaluation of integrals of the form
∫ k

k−1
π2
` (t)ϕm(t)dt,

∫ k

k−1
t π2

` (t)ϕm(t)dt

with ` ≤ n− 1, where n is the number of recurrence coefficient pairs wanted.
These integrals can be computed exactly by Gauss quadrature on [k − 1, k]
with n+dm/2e−1 points. The results produced in double precision are com-
pared with the high-precision results of the moment-based method and are
found to be quite accurate, the relative error always being close to machine
precision. Three numerical examples illustrate the efficiency of the method.

The cardinal B-spline of orderm is symmetric on the interval [0,m] so that
the recurrence coefficients αk are all constant equal to m/2. The recurrence
coefficients βk converge to m2/16, which is to be expected since the weight
function belongs to Nevai’s class for the interval [0,m]. This follows from the
fact that ϕm(x) > 0 on (0,m) (Rakhmanov’s theorem; see, e.g., [2]). Gautschi
mentions that convergence of the recurrence coefficients is a consequence of
the weight function being in the Szegö class, which is correct, but the weight
function also belongs to the Nevai class for the interval [0,m], which is a
much larger class. Gautschi also observes that convergence is slow, which is
probably due to the fact that ϕm(x) is very small near the endpoints 0 and
m; see Fig. 37.2.

37.3 Binet-type polynomials and their zeros [GA219]
In the late 1990s, Dahlquist published some important work on summa-

tion formulas which involved Gauss quadrature using the Binet distribution
wB(x) = w(2πx)/2π, where

w(x) = − log(1− e−|x|), x ∈ (∞,∞),
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is the Binet weight function. In this paper [GA219], Gautschi and Milo-
vanović also consider the generalized Binet weight function

w(x;α) = − log(1− αe−|x|), x ∈ (−∞,∞), 0 < α < 1.

They compute the recurrence coefficients and the zeros of orthogonal polyno-
mials related to these and some other weight functions, such as the squares of
these weight functions and the restrictions to [0,∞), [c,∞), [0, c] and [−c, c],
where c > 0. The Binet function w on (−∞,∞) is considered in §2.1 of the
paper, where the moments

µk = 0 if k is odd, µk = 2 k! ζ(k + 2) if k is even

are used in the Chebyshev algorithm to generate in sufficiently high precision
the desired recurrence coefficients. As many as 64 working digits are used
to compute the first 100 recurrence coefficients to 32 digits. The generalized
Binet function w(x;α) is dealt with in §2.2. It is shown, in particular, that
all positive zeros of the respective orthogonal polynomials are monotonically
decreasing as functions of α. The proof uses Markov’s theorem on the varia-
tion of the zeros of an orthogonal polynomial in dependence of a parameter
contained in the weight function. In §3.1, the squared Binet function is con-
sidered, and in §3.2 the squared generalized Binet weight function, for which
the same monotonicity property of the zeros is shown to hold as for gener-
alized Binet functions in §2.2. Halfrange weight functions, supported on the
positive real line [0,∞), are dealt with in §4, where all zeros of the corre-
sponding generalized Binet polynomials are shown to decrease monotonically
as functions of α. The squares of the Binet and generalized Binet function
on [0,∞) are investigated in §5. The above monotonicity result for zeros
again holds for halfrange squared generalized Binet polynomials. Finally, §6
deals with the restrictions to [c,∞), c > 0, to [0, c], and to [−c, c]. The de-
pendence of the zeros on the parameter c is discussed for each of these cases.
It is observed that the restriction to [c,∞), yielding upper subrange Binet
polynomials, corresponds to a shift in the weight function in the sense that
w(x+ c;α) = w(x; e−cα) for x ≥ 0, so that the recurrrence coefficients αk are
shifted by the constant c. All zeros of the upper subrange Binet polynomials
are now shown to be monotonically increasing as functions of c.

Cizek and Vrsay [1] formulated a conjecture about the asymptotic behav-
ior of the recurrence coefficients, which was proved by Jones and Van Assche
[9]. They, however, considered the weight function wB(x) = w(2π x)/2π and
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Figure 37.3: The recurrence coefficients βk (indi-
cated by black circles) for the Binet function w and
their approximation (indicated by a red line)

its transformed version wB(
√
x)/
√
x on [0,∞). Translated to the recurrence

coefficients βk for the Binet weight w, the asymptotic behavior is

lim
n→∞

βn
n2

=
π2

4
.

The recurrence coefficients βk (black circles) are plotted in Fig. 37.3 to-
gether with n2π2/4 (solid red line), showing that this asymptotic behavior
is indeed confirmed, not only for large n, but for all n. The recurrence
coefficients are taken from the file coeff binet.txt on Gautschi’s website
https://www.cs.purdue.edu/archives/2002/wxg/codes/BINET.html.

37.4 Polynomials orthogonal relative to weight functions of Prud-
nikov type [GA224]
At the seventh Spanish Symposium on Orthogonal Polynomials and Ap-

plications (VII SPOA) held at the University of Granada (Spain) in 1991,
Prudnikov posed some problems [13, §9] about orthogonal polynomials with
ultra-exponential weight functions ξ(x, k) given by

ξ(x, k) =
1

2πi

∫ a+i∞

a−i∞

Γk(s)

xs
ds, a > 0, x > 0.

The right-hand side is the inverse of the Mellin transform, so that

∫ ∞

0

xs−1ξ(x, k)dx = Γk(s),
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and, in particular, the moments of ξ(x, k) are

µn = (n!)k.

For k = 1 one has ξ(x, 1) = e−x and the corresponding orthogonal poly-
nomials are the Laguerre polynomials Ln(x). For k = 2 one has ξ(x, 2) =
2K0(2

√
x), where K0 is the second-kind modified Bessel function of order 0.

Prudnikov was interested in getting the generating function, a Rodrigues-
type formula, the recurrence relation, and a differential equation for the
corresponding orthogonal polynomials.

Gautschi and Milovanović consider the weight function

ρν(x) = 2 xν/2Kν(2
√
x), x > 0, ν ≥ 0,

the case ν = 0 corresponding to Prudnikov’s weight function ξ(x, 2). The
generalized Prudnikov weight is

wαν (x) = xαρν(x), x > 0, α > −1,

and its moments are

µn = Γ(n+ α + ν + 1)Γ(n+ α + 1).

Gautschi and Milovanović work out a procedure to compute the first N re-
currence coefficients by means of the Chebyshev algorithm with sufficiently
high precision. Their Matlab routines can be found on Gautschi’s web-
site https://www.cs.purdue.edu/archives/2002/wxg/codes/PRUD.html.
Their analysis of the conditioning of the Chebyshev algorithm suggests that
to compute N = 100 recurrence coefficients to an accuracy of 15 decimal
digits requires 80 working digits.

Other related weight functions are also considered: Prudnikov-type weights
of type 1,

w+
ν (x) = e−xρν(x), x > 0, ν > −1,

and Prudnikov-type weights of type 2,

w−ν (x) = x−1e−1/xρν(x), x > 0, ν ∈ R.

The moments of Prudnikov-type weights of type 1 can be obtained in
terms of a confluent hypergeometric function, and those for Prudnikov-type
weights of type 2 in terms of a Meijer G-function The condition numbers for
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type 1 are substantially larger than for the generalized Prudnikov weight,
and as a result, one will need to work with 100 digits to obtain the first
N = 100 recurrence coefficients to an accuracy of 15 decimal digits. The
condition numbers for the Prudnikov-type weights of type 2 are similar to
those of the generalized Prudnikov weights. Gautschi and Milovanović also
consider symmetric versions of the Prudnikov weights on (−∞,∞) but with
x replaced by |x|. They find that the condition numbers are then much lower
and the number of required digits is about half of what was needed before.

It turns out that when k = 2 , the multiple orthogonal polynomials [8],
of interest in Hermite–Padé approximation and random matrix theory [15],
with weights xαρν(x) and xαρν+1(x) are much more natural [14], and for
them, one can indeed find a Rodrigues formula, a differential equation, and
a recurrence relation, but not of order 2, but rather of order 3. When k > 2,
the multiple orthogonal polynomials can be expressed in terms of Meijer G-
functions and generalized hypergeometric functions. They appear in random
matrix theory when one takes products of random matrices (Kuijlaars and
Zhang [10]).

37.5 Orthogonal polynomials relative to a generalized Marchenko–
Pastur probability measure [GA223]

The Marchenko–Pastur density is

w(x) =
1

2πc
x−1
√

(b− x)(x− a), x ∈ [a, b],

when 0 < c < 1, where a = (
√
c− 1)2 and b = (

√
c+ 1)2, and

w(x) +

(
1− 1

c

)
δ0

when c > 1, where δ0 is the Dirac delta function at x = 0 with mass 1. This
in fact is the limiting distribution of the eigenvalues of the matrix XX∗,
where X is an n × m random matrix with i.i.d. normal random variables
(real, complex, or quaternion). When m < n, there will be an eigenvalue at
0 with multiplicity n−m, which gives rise to the δ0 when c > 1 (given that
m = n/c). The Marchenko–Pastur density also is the asymptotic distribution
of the zeros of Laguerre polynomials Lann (nx) when an/n has a limit, see [5]
when an = α and [6] when an = a n + α. This is not surprising since there
is a connection between the random matrix XX∗ and Laguerre polynomials,
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the average characteristic polynomial of XX∗ being the Laguerre polynomial
L
(m−n)
n (x) when X involves complex normal random variables and m ≥ n,

and xn−mL(n−m)
m (x) when m < n.

Gautschi and Milovanović generalize the Marchenko–Pastur density by
replacing the exponents 1/2 for b− x and x− a by α and β, respectively, so
that

w(x;α, β, c) =





1

c µ0

x−1 (b− x)α(x− a)β +

(
1− 1

c

)
δ0 if c > 1,

1

µ0

x−1 (b− x)α(x− a)β if c < 1,

where

µ0(α, β, c) =

∫ b

a

x−1(b− x)α(x− a)βdx, c > 0,

and the absolutely continuous part is supported on [a, b]. With an affine
transformation x = 2

√
c t+ c+ 1 the interval [a, b] is mapped to [−1, 1] and

the weight transforms to a weight of the form

χ
w(α,β)(t)

t+ g
+

(
1− 1

c

)
δ−g,

where w(α,β) is the Jacobi density (1− t)α(1 + t)β, g = (c+ 1)/(2
√
c) and χ

a constant that makes this a probability density. We are dealing here with
a modification of the Jacobi density known as a Geronimus transform; see,
e.g., Zhedanov [16, Eq. (3.12)] or Maroni [11]. The Geronimus transform
is the inverse of the Christoffel transform, which multiplies a given weight
function by t+g. The Geronimus transform can also be viewed as an Uvarov
transform (one divides the weight by t+ g) and the addition of a mass point
at −g. Such spectral transformations have been considered before in the
literature, in particular by Gautschi in §2.4.1 of [GAB3]. But here, Gautschi
and Milovanović do this in much detail for the generalized Marchenko–Pastur
density, both analytically and numerically.

They first show that the monic orthogonal polynomials π∗k for the weight
on [−1, 1] are given by

π∗k(t) = P̂
(α,β)
k (t) + γkP̂

(α,β)
k−1 (t),
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where P̂
(α,β)
k are the monic Jacobi polynomials and γk constants depending

on α, β, c. This corresponds to Zhedanov’s equation (3.9) in [16]. The co-
efficients γk are investigated in detail. It is shown that they are given by
γk = −pk/pk−1, where the pk satisfy the recurrence relation

pk+1 + (g + αJk )pk + βJk pk−1 = 0, k ≥ 1.

This is the three-term recurrence relation for monic Jacobi polynomials and
variable t = −g. The general solution is a linear combination of P̂

(α,β)
k (−g)

and ∫ 1

−1

P̂
(α,β)
k (t)

t+ g
w(α,β)(t)dt.

The latter is a minimal solution of the recurrence relation, for which Gautschi
had developed numerical methods earlier; see §2.3 in [GAB3]. The recur-
rence coefficients αk and βk of interest can now be obtained in terms of the
recurrence coefficients αJk and βJk of the monic Jacobi polynomials and the
coefficients γk. Gautschi and Milovanović show that

lim
k→∞

αk = 1 + c, lim
k→∞

βk = c,

which also follows from the fact that the Marchenko–Pastur measure on [a, b]
belongs to the Nevai class [2].

Some examples are worked out in more detail, in particular those with
α, β = ±1/2, for which the recurrence coefficients αk and βk are given ex-
plicitly as functions of c. Remarkably, they converge almost instantaneously
when c < 1, and in the case α = β = 1/2 also when c > 1.

37.6 Another look at polynomials orthogonal relative to exponen-
tial integral weight functions [GA225]

In [GA211] Gautschi computed the recurrence coefficients for the orthogonal
polynomials relative to the exponential integral weight function Eν , see §37.1.
He now realized that the comparison between the Chebyshev algorithm with
ordinary and modified moments was misleading, since he included the com-
putation of the modified moments in his analysis. For a fair comparison one
must assume that the ordinary moments and the modified moments are given
and the question then is how well both methods perform when computing
the recurrence coefficients.

The conclusion is that for the weight function Eν on the infinite interval
[0,∞) the Chebyshev algorithm with modified moments (involving Laguerre
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polynomials with parameter α = −1/4) is only marginally better than the
method using ordinary moments. Both methods show a considerable amount
of ill-conditioning, so that variable precision is necessary and Matlab double
precision is not sufficient. For the weight function Eν restricted to the finite
interval [0, c] the Chebyshev algorithm with modified moments (involving the
Legendre polynomials on [0, c]) is perfectly stable and produces almost fully
accurate results in Matlab double precision. There is however a difference
in the runtime of the two algorithms in variable-precision arithmetic: the
method with ordinary moments is about 30% faster than the method using
modified moments.

The modified moments (in the case of the infinite support interval [0,∞))
are evaluated here differently than before in [3, Exercise 2.26(b)] and in a
manner applicable also to finite support intervals [0, c]. Specifically,

mk =

∫ ∞

0

pk(t)Eν(t)dt =

∫ ∞

0

pk(t) t
ν−1Γ(1− ν, t)dt,

where Γ(a, x) is the incomplete gamma function. Gautschi suggests to com-
pute the latter integral using n-point Gauss quadrature relative to the novel
and unusual weight function

v(x) = xν−1Γ(1− ν, x), x > 0,

which will give exact results when 0 ≤ k ≤ 2n − 1. In a similar way one
can compute the modified moments for the weight Eν restricted to the finite
interval [0, c] by using Gauss quadrature relative to the weight function v
restricted to [0, c]. Of course, this means that one has to compute the nodes
and weights for these Gauss quadrature rules, for which the Chebyshev al-
gorithm (in sufficiently high precision) is suggested. The moments for the
weight v can be computed explicitly in terms of the gamma function (for the
infinite interval) and the incomplete gamma function (for the finite interval).
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[12] Milovanović, Gradimir V. Symbolic-numeric computation of orthogonal
polynomials and Gaussian quadratures with respect to the cardinal B-spline,
Numer. Algorithms 76 (2017), 333–347.

[13] Van Assche, Walter. Open problems, J. Comput. Appl. Math. 48 (1993),
225–243.

[14] Van Assche, W. and S. B. Yakubovich. Multiple orthogonal polynomi-
als associated with Macdonald functions, Integral Transform. Spec. Funct. 9
(2000), 229–244.

[15] Zhang, Lun. A note on the limiting mean distribution of singular values
for products of two Wishart random matrices, J. Math. Phys. 54 (8) (2013),
083303, 8 pp.

[16] Zhedanov, Alexei. Rational spectral transformations and orthogonal poly-
nomials, J. Comput. Appl. Math. 85 (1997), 67–86.





38

Gauss-type Quadrature

Gradimir V. Milovanović

This commentary concerns the paper [GA209] (see p. 2 of this volume).

38.1 Introduction
In [3], I presented Gautschi’s constructive theory of orthogonal polynomials
on the real line, including effective algorithms for numerically generating
orthogonal polynomials, a detailed stability analysis of these algorithms, as
well as several new applications of orthogonal polynomials. In the last section
of that article, I mentioned some extensions and applications of Gautschi’s
theory including a few of my own.

One of these applications is the construction of so-called s-orthogonal
polynomials relative to any positive weight function (or measure dλ) and the
associated quadrature formulas with multiple nodes. This indeed is the topic
of [GA209], where the measure dλ is either the Laguerre measure e−tdt on
[0,∞] or the Hermite measure e−t

2
dt on [−∞,∞].

38.2 Gauss–Turán quadrature
Let Pn be the set of all algebraic polynomials of degree at most n and P be
the set of all algebraic polynomials. The (monic) s-orthogonal polynomials

πn,s(t) = tn + terms of lower degree (n ∈ N0, s a fixed integer in N)

are characterized by the orthogonality relations

∫

R
tν [πn,s(t)]

2s+1dλ(t) = 0, ν = 0, 1, . . . , n− 1, (38.1)
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and play an important role in the construction of so-called Turán quadratures
[4] with multiple nodes

∫

R
f(t)dλ(t) =

n∑

ν=1

2s∑

σ=0

λ(σ)ν f (σ)(τν) +Rn,s(f), (38.2)

where n and s are positive integers n ≥ 1, s > 0, and the formula (38.2)
has maximum degree of exactness d = 2(s+ 1)n− 1, i.e., Rn,s(f) = 0 for all
f ∈ P2(s+1)n−1. Indeed, the nodes τν are the zeros of πn,s and the weights

λ
(σ)
ν , for each ν, the solution of an upper triangular system of 2s + 1 linear

equations.
If s = 0, the polynomials πn,s are the ordinary (monic) polynomials πn,s =

πn orthogonal with respect to the measure dλ on R, and (38.2) is the usual
Gaussian quadrature rule.

In [1] we reinterpreted the conditions (38.1) as ordinary orthogonality
conditions relative to the positive measure dλn,s(t) = [πn,s(t)]

2sdλ(t) (see
also [GA154] and [2]), i.e.,

∫

R
tν πn,s(t)dλn,s(t) = 0, ν = 0, 1, . . . , n− 1. (38.3)

Evidently, this defines πn,s implicitly. Nevertheless, for the measure dλn,s(t),
where n and s are fixed, there exists a unique sequence of (monic) polynomials

{π(n)
k,s}k≥0 (deg π

(n)
k,s = k) such that

∫

R
tj π

(n)
k,s (t)dλn,s(t) = 0, j = 0, 1, . . . , k − 1. (38.4)

Thus, {π(n)
k,s}k≥0 is a sequence of standard monic polynomials orthogonal with

respect to the measure dλn,s(t) on R and therefore satisfies a three-term
recurrence relation of the form

π
(n)
k+1,s(t) = (t− αk)π(n)

k,s (t)− βkπ(n)
k−1,s(t), k = 0, 1, . . . ,

π
(n)
−1,s(t) = 0, π

(n)
0,s (t) = 1,

(38.5)

where the recurrence coefficients depend on the measure dλn,s. We denote

them by α
(n)
k,s = α

(n)
k , k = 0, 1, 2, . . ., and β

(n)
k,s = β

(n)
k , k = 1, 2, . . . , suppressing

the dependence on s, or even simply by αk and βk as in (38.5).
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Because of the uniqueness of this sequence of orthogonal polynomials
{π(n)

k,s}∞k=0, by comparing (38.3) with (38.4), we conclude that its member
with k = n must be the s-orthogonal polynomial, i.e.,

πn,s(t) = π(n)
n,s(t), (38.6)

so that we need the recurrence coefficients only for k ≤ n− 1 in order to get
(38.6).

Now using Darboux’s formulas

αk =

(
tπ

(n)
k,s , π

(n)
k,s

)
(
π
(n)
k,s , π

(n)
k,s

) , βk =

(
π
(n)
k,s , π

(n)
k,s

)
(
π
(n)
k−1,s, π

(n)
k−1,s

) , (38.7)

for k ≤ n− 1 (see [1]), where

(p, q) = (p, q)dλn,s =

∫

R
p(t)q(t)dλn,s(t), (38.8)

and omitting indices (πk = π
(n)
k,s ), we can write the following system of 2n−1

nonlinear equations,

fn(%n) = 0, %n = [α0, α1, . . . , αn−1; β1, . . . , βn−1]
T , (38.9)

where fn = [f1, f2, . . . , f2n−1]T and

f2k+1 =

∫

R
(αk − t)π2

k(t)π
2s
n (t)dλ(t) = 0, k = 0, 1, . . . , n− 1,

f2k =

∫

R

[
βkπ

2
k−1(t)− π2

k(t)
]
π2s
n (t)dλ(t) = 0, k = 1, . . . , n− 1.





(38.10)
For solving the system of equations (38.9), the Newton–Kantorovich method,
converging quadratically, was proposed in [1]. All integrals in (38.10), as well
as the ones in the elements of the Jacobian, can be computed exactly, except
for rounding errors, by using an (s+ 1)n-point Gauss–Christoffel quadrature
formula with respect to the measure dλ(t). Thus, in all calculations, only the
fundamental three-term recurrence relation (38.5) and the Gauss–Christoffel
quadrature rule with respect to the measure dλ(t) are needed (see [1] or
§3.1.3.2 in [GAB3]).
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Using a stable construction of s-orthogonal polynomials, in a joint pa-
per with Gautschi [GA154] we developed a method for constructing Gauss–
Turán type quadrature formulae (38.2). This led to further progress in the
theory of quadratures with multiple nodes.

As can be seen, the functions fk, k = 1, 2, . . . , 2n−1, in (38.10) are highly
nonlinear functions of the 2n− 1 variables α0, α1, . . . , αn−1 and β1, . . . , βn−1.
Solving (38.9) with the Newton–Kantorovich method therefore requires suffi-
ciently accurate initial approximations for the recurrence coefficients. This is
the main problem in this area, which, in [GA209], is addressed by Gautschi
in the case of Laguerre and Hermite weight functions.

38.3 Gauss–Turán quadrature for Laguerre and Hermite weight
functions s = 1, 2, . . . , 5

The values of s are restricted here to the first five integers, which is deemed
sufficient for most applications. In the notations below, the parameter s is
suppressed.

Consider first the Laguerre case. Here the recurrence coefficients αLk and
βLk for the ordinary (monic) Laguerre polynomials are linear resp. quadratic
in k, more precisely, αLk = 2k + 1 and βLk = k2. Gautschi discovered that a
similar property holds, at least approximately and irrespective of the value
of s, also for the recurrence coefficients of interest here.

When n = 1 there is only one unknown α0 = α
(1)
0 , which is the only

positive solution of the algebraic equation

f1 =

∫ ∞

0

(α0 − t)[π1,s(t)]2se−tdt =
2s+1∑

ν=0

(−1)ν(2s+ 2− ν)ν α
2s+1−ν
0 = 0,

where we used π1,s(t) = t− α0.

When n = 2 there are three unknowns α
(2)
0 , α

(2)
1 and β

(2)
1 , when n = 3

five unknowns α
(3)
0 , α

(3)
1 , α

(3)
2 and β

(3)
1 , β

(3)
2 , etc. Assuming n = 1, 2, . . . , N ,

all unknowns may be arranged in a matrix R = [A |B] of order N × (2N −1)
formed with two block matrices A and B containing α- resp. β-coefficients.
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That is,

R =




α
(1)
0

α
(2)
0 α

(2)
1 β

(2)
1

α
(3)
0 α

(3)
1 α

(3)
2 β

(3)
1 β

(3)
2

...
...

...
. . .

...
...

. . .

α
(N−1)
0 α

(N−1)
1 α

(N−1)
2 · · · α(N−1)

N−2 β
(N−1)
1 β

(N−1)
2 · · · β(N−1)N−2

α
(N)
0 α

(N)
1 α

(N)
2 · · · α(N)

N−2 α
(N)
N−1 β

(N)
1 β

(N)
2 · · · β(N)

N−2 β
(N)
N−1




.

Gautschi’s discovery mentioned above can now be stated as follows: The
elements on the diagonal and subdiagonals of the matrix A lie approximately
on straight lines, whereas those on the diagonal and subdiagonals of the ma-
trix B lie approximately on parabolas. Moreover, with a good deal of heuris-
tics, Gautschi was able to determine the coefficients of the respective linear
and quadratic functions. The approximate matrix Ra ≈ R with N = 42 so
obtained provides sufficiently accurate initial approximations for the solu-
tion of the system (38.9) by the Newton–Kantorovich method (in sufficiently
high-precision arithmetic) to succeed for all 2 ≤ n ≤ N when s = 1. For
larger s this is true only if N is smaller, as small as N = 15 when s = 5.

In the case of the Hermite measure dλ(t) = e−t
2
dt, matters are similar,

but simpler, insofar as the matrix A is the zero matrix by symmetry. Also,
the integer N can now be taken as large as 90.

I take this opportunity to point out some inaccuracies and a mistake in
the paper [GA209], neither of which affects the validity of the final results.
On p. 62 of the paper, right after the ”First Empirical Observation”, it
should have been stated that k = 0 in the left graph of Fig. 1 and k = 1
in the right graph. Likewise for Fig. 2 on p. 70. Also on top of p. 67, read
k = 0, 1, 2, . . . , N−1 instead of k = 1, 2, . . . , N−1. Finally, the equation for
Γ(k + 1/2) in the textline after the third displayed formula on p. 69 should
read Γ(k + 1/2) = (1/2)k

√
π and Eq. (4.1), accordingly,

Q2s+1(β) =
2s+1∑

k=0

(−1)k
(

2s+ 1

k

)(
1

2

)

k

β2s+1−k.

The five equations following (4.1), however, are correct.
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Ordinary Differential Equations

John Butcher

See Section 22, Volume 3.
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History

Gerhard Wanner

40.1 A historical note on Gauss–Kronrod quadrature [GA177]
Many famous ideas attributed to famous authors have been found by someone
else much earlier. As Walter Gautschi has discovered, the idea behind Gauss–
Kronrod formulas is no exception from this rule and indeed has been put
forward more than half a century earlier by Rudolf Skutsch [1]. Walter
Gautschi does not speculate as to why this paper went unnoticed for such a
long time. One reason, however, may well be that the paper was written in
a style not all that easy to understand.

40.2 Interpolation before and after Lagrange [GA206]
Lagrange was born 1736 in Turin and died 1813 in Paris. For the occasion
of Lagrange’s 200th anniversary of death, the Department of Mathematics
at the University of Turin invited Walter Gautschi to give a lecture in the
series Lezioni Lagrangiane, which led to the present paper.

After a long career entirely consecrated to academic research of the high-
est level, without any teaching duties, Lagrange, then “le premier des savants
d’Europe” (Fourier), found himself in front of a large heterogeneous class of
“Citoyens” in the newly founded École Normale, who expected “des notions
élémentaires”, but instead ”ils n’y ont trouvés que des notions académiques”.
Consequently, Lagrange had to lower continuously his level and finished his
fifth and last lecture by explaining nicely Newton’s interpolation formula and
then his own version, now called “Lagrange’s interpolation formula”.

With more enthusiasm than Lagrange, Walter Gautschi took this formula
as an occasion for an impressive overview of interpolation “before Lagrange”:
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Newton, a curious (and failed) attempt by Euler to interpolate the common
logarithm from its values at the powers of ten [GA186], Waring [2] predating
Lagrange by 16 years, and “after Lagrange”: the understanding of error and
convergence (Cauchy, Runge) and many modern applications (barycentric
formulas, Hermite–Fejér interpolation, quadrature, ODE’s and PDE’s).
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Miscellanea

Martin J. Gander

The paper to be commented on is [GA222]. I remember well when the work
started which led to this joint paper by Walter Gautschi and Ernst Hairer:
Walter was visiting Geneva and gave a seminar in our numerical analysis
seminar series on June 12th 2018, which contained interesting conjectures
going back to Stenger. After the seminar we had very lively discussions,
and Ernst Hairer showed us on the board in my office a technique used
in the theory of collocation Runge–Kutta methods in ordinary differential
equations, which seemed related to the Stenger conjecture. After Walter
returned back to Purdue University, the discussions continued and Walter
and Ernst managed to prove the Stenger conjecture in several cases, but also
found cases where it does not hold, which led to the present manuscript.

What are the Stenger conjectures? Consider the zeros xj of an orthogonal
polynomial of a fixed degree for a given weight function w(x) on the interval
[a, b], and the Lagrange polynomials which equal one at one of the zeros and
zero at all the others. If one integrates these Lagrange polynomials either
between [a, xj] or [xj, b] and then puts the result into a matrix U resp. V
indexed by the Lagrange polynomial index for the columns and the index of
the zero for the rows, Stenger conjectured that the eigenvalues of the matrices
U and V lie in the open right half of the complex plane. Walter and Ernst
call this the restricted Stenger conjecture, and they also consider the case
when, in the integration of the Lagrange polynomial, one uses the weight
function w, which they call the extended Stenger conjecture, and which can
also be considered for unbounded intervals. If the weight function is the
identity, i.e. for Legendre polynomials, the restricted and extended Stenger
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conjectures coincide, and are simply called the Stenger conjecture.
In the present manuscript Walter and Ernst first prove that the Stenger

conjecture holds, by using a symmetry argument that allows them to study
only the U matrix. They next prove that the restricted Stenger conjecture
also holds for the weight function w(x) = 1− x on [−1, 1], i.e. a special case
of the Jacobi weight functions, and again symmetry is used for the proof.
At first one might think that the proof also works for slightly more general
Jacobi weight functions, but this is not the case, and is illustrated by a
counterexample using a Gegenbauer polynomial of degree five.

This counterexample is typical for many other weight functions as well,
and Walter and Ernst give several conjectures for the restricted Stenger con-
jecture which are thoroughly based on computational evidence, in particular
for Gegenbauer and Jacobi polynomials, and for algebraic/logarithmic weight
functions, where in each case the conjecture only holds under additional con-
ditions.

They then prove for the extended Stenger conjecture that it also holds for
the special case of the Jacobi weight function above, and extensive numerical
evidence is presented that suggests that the extended Stenger conjecture
holds in more cases than the restricted one, namely for Gegenbauer and
Jacobi polynomials, and also algebraic/logarithmic weight functions. In each
case the eigenvalues are also plotted and one can see that they seem to
converge to lie on specific curves in the complex plane as the matrices become
larger.

Walter and Ernst then further investigate Laguerre and generalized La-
guerre weight functions, and Hermite and generalized Hermite weight func-
tions, and still the extended Stenger conjecture seems to hold. To push this
further, Walter and Ernst present a case of a weight function supported on
two disjoint intervals, so the function is not strictly positive, and the extended
Stenger conjecture still seems to hold.

Finally, for discrete weight functions, and also block-discrete and epsilon-
block-discrete weight functions, very carefully crafted numerical experiments
show that the extended Stenger conjecture does not hold any more. So
while it seems that the extended Stenger conjecture is more natural than the
restricted one and holds in many more cases than the restricted one, it is still
false for certain weight functions.
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Abstract-h apparently new expansion of the exponential integral El in incomplete gamma 
functions is presented and shown to be a limiting csse of a more general expansion given by Mcomi  
in 1950 without proof. This latter expansion is proved here by interpreting it as a “multiplication 
theorem”. A  companion result, not mentioned by ‘l+icomi, holds for the complementary incomplete 
gamma function and can be applied to yield an expansion connecting El of different arguments. A  
general method is described for converting a power series into an expansion in incomplete gamma 
functions. In a special case, this provides an alternative derivation of Tricomi’s expansion. Numerical 
properties of the new expansion for El are discussed. @  2003 Elsevier Ltd. All rights reserved. 

1. INTRODUCTION 

The exponential integral El(z) = s 03 e-t 
t dt (14 

2 

occurs widely in applications, most notably in quantum-mechanical electronic structure calcula- 
tions. In view of the extremely large number of evaluations that are often required, there is a 
continuing interest in improving the efficiency of its calculation. In a search for better methods 
of evaluating El, one of us (F.E.H.) discovered the expansion 

O” -Y(vz) El(z) = -y - lnz + c n!, 
n=l 

(14 
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where 

W. GAUTSCHI et al. 

$a, z) = i’ eMttaml dt 

is the incomplete gamma function (cf. [l, Section 6.51). Another of us (W.G,) observed the 
relevance of an expansion given in 1950 by. Tricomi, of which (1.2) is a limiting case. 

2. AN EXPANSION OF TRICbMI 

In 1950, Tricomi [2, equation (45)] stated without proof the expansion 

(2.1) 

For any fixed complex a # 0, -1, -2, . . . , the left-hand side is analytic in the domain Xz E @ \a-, 
where R- is the negative real axis; it is an entire function if a is a positive integer. For fixed a 
and z, the series in (2.1) converges for arbitrary complex X. 

iln interesting proof derives from the observation that (2.1) is a “multiplication theorem” 
(see [3, Volume 1, Section 6.141). Such theorems can usually be obtained when all derivatives 
of the function to be expanded can be expressed in terms of the same family of functions [3, 
Volume 1, Section 6.141. In the present instance, we have the relation 

r(u + n, z) = (-l)“zu+“& (z-Q&, 2)) , 

which follows readily from the integral representation 

Z -ay(u, Z) = l1 emzttaM1 dt. 

When using (2.2) in the right-hand side of (2.1), one obtains 

XaZa 
f$g 

py(u, z)) ) h = (A - 1)z. 
n=O 

The series can be seen to be the Taylor expansion of (z + h)-“?(a, z + h). Since z + h 
expression (2.3) becomes 

XY(Z + h)-“y( a, z + h) = -((a, AZ). 

= 

(2.2) 

(2.3) 

: AZ, 

This completes the proof of (2.1). 
Multiplication theorems (and related addition theorems) are available for many other special 

functions, such as Bessel functions [4, Chapter 11; 1, p. 363; 5, Section 4.10; 6, Chapter 5, Sec- 
tion 5, Chapter 8, Section 6] and orthogonal polynomials [5, Section 9.8; 7, Section 4.10(7)]. 
Equation (2.1) is a special case of a multiplication theorem for confluent hypergeometric func- 
tions [3, Section 6.141. 

3. DERIVATION OF (1.2) FROM TRICOMI’S EXPANSION 
Separating out the first term on the right of (2.1) and bringing it to the left, we write Tricomi’s 

result in the form 
-da, AZ) - X--da, z) 

A” 
= 2 Y(U+p (1 - jj)n. (3.1) 

n=l 

From the power series of ~(a, Xz) (cf. [l, equation 6.5291) one gets 

da, AZ) - Xa7(u? z) = r” 
A” [ 

1 a AZ + 
U a+1 &w+- --Y(%Z>, 

I 

44



Expansions of the Exponential Integral 1097 

which, as X 1 0, has the limit za/u - $a, z). Thus, by (3.1), 

O” r(” + F-4 f -r(%z) = c n! . (3.2) 
n=l 

If $a, z) on the left is replaced by I’(a) - I’(a, z) and I’( a written as I’(u + 1)/u, equation (3.2) ) 
takes the form 

Za - ‘F + ‘) + r(u, z) = 2 +Y(” ‘,!“T ‘). 

n=l 

Now take the limit a 1 0. Applying Bernoulli-1’Hospital’s rule to the first term on the left and 
noting that I?(l) = -y and l?(O, z) = El(z), one gets 

O” r(n,z) In-z-t-y+El(z)=C 7, 
n=l . 

which proves (1.2) 

4. A COMPANION TO TRICOMI’S EXPANSION WITH AN 
APPLICATION TO THE EXPONENTIAL INTEGRAL 

There is a companion result to (2.1), not mentioned by Tricomi, for the complementary incom- 
plete gamma function, 

r(a, xz) = xa 2 ‘(’ Ljny ‘) (1 - ii)“, IX - 11 < 1. 
n=O 

(4.1) 

This follows from (2.1) by inserting the definition $a, z) = I?(u) - I’(u, z) in both sides of the 
expansion and noting that, by Taylor’s series for X-” at X = 1, one has 

M rya + n)(l - X)” 
c n! 

= x-arya), IX - 11 < 1. 
n=O 

Equation (4.1) holds also for a = 0, by analytic continuation, and yields 

El(XZ) = El(Z) + 2 v ( ?%=I 1 - JQn, IX- 

Here, the coefficients are elementary functions 

rw 1 - = - e-‘en-l(z), 
n. I n n L 1, 

(4.2) 

11 < 1. (4.3) 

where e,(z) = 1 + z + z2/2! + . . . + z”/m! are the partial sums of the exponential series. These 
can be generated by recursion in a stable fashion, at least when z is real (cf. [8]). If X = l/2, for 
example, then 

For positive z, the sum converges more rapidly than that of (2%)-l. 
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5. OTHER EXPANSIONS IN 
INCOMPLETE GAMMA FUNCTIONS 

We return to (3.2) and write it as 

%a+k O” y(a+n,z) 
- = gk (n - k)! ’ a+k 

k > 0. (5.1) 

We next form the following series, with arbitrary & (subject to convergence), and insert (5.1) in 
it, 

(5.2) = 2 ‘(‘+-;“) 2 (;)dk 
n=O k=O 

r(” + n, 2) 

where 

n=O 
n! ’ 

&=f: ; dk. 
0 k=O 

(5.3) 

Any power series that can be cast in the form given in the left-hand side of (5.2) can therefore 
be written aa a series in incomplete gamma functions. 

We illustrate the procedure by applying (5.2) to y(a, Xz), which has the power series expansion 

In this example, dk = (-l)kXa+k, and from (5.3) we obtain c, = X”(1 - X)n, thereby recover- 
ing (2.1). 

6. NUMERICAL PROPERTIES OF (1.2) 
Tricomi [2, p. 1481 expressed the thought that some of the series expansions he listed without 

proof, including (2.1), might prove useful also for computational purposes. We discuss here the 
computational merits of the series (1.2), which, as has been shown, is a limiting case of (2.1). 

Compared with the power series in 

O” (-l)n-lp 
El(z)=-y-lnz+C nn! , 

n=l 
(6.1) 

the series in (1.2) has some definite drawbacks. In (6.1), the terms of the series can be generated 
recursively in forward direction, n = 1,2,3,. . . , until they no longer contribute to the sum within 
the desired accuracy. This is not possible with (1.2). Although it is true that the terms in (1.2) 
also satisfy a forward recursion, 

y(n + 1,~) = ny(n, z) - zne-‘, n=1,2,3 ,..., 

y(1, z) = 1 - e-‘, (6.2) 

the recursion becomes severely unstable as n exceeds ]z]. (Th is can be shown by an analysis similar 
to the one in [9, Section 2.41.) To preserve numerical stability when n > Iz(, one must generate 
y(v,z),y(v--l,z),...,y(n,z)b k ac wards with v chosen sufficiently large, whereby y(v+ 1, z) may 
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be replaced by zero. The choice 0f.v depends on the number of terms in (1.2) required for given 
accuracy, which has to be estimated a priori. Thus, summing the series to a prescribed accuracy 
is considerably more involved for the series in (1.2) than it is for the one in (6.1). 

Another important consideration is internal cancellation of terms in a series. In this regard, 
the series in (1.2) and (6.1) complement each other. There is no significant cancellation of terms 
in either series if ]z] is relatively small, say ]z] < 5. For larger values of ]z], the severity of 
cancellation increases with increasing arg z for the series in (1.2) and decreases with increasing 
argz for the series in (6.1). Near the positive real axis (argz M 0) the series (1.2) is practically 
free of cancellation but subject to severe cancellation near the negative real axis (argz x 7r), 
more so the larger ]z]. For the series (6.1), it is just the other way around. 

With regard to speed of convergence, the two series are comparable, since for bounded Z, as 
n -+ 00, one has r(n, z)/n! N Pe-‘/(nn!) (cf. [lo, Section 4.3, equation (3)]). 

Another source of impaired accuracy is the cancellation that may occur when the series in (1 .a), 
respectively, (6.1) is added to -y - lnz. This can be quite pronounced if ]z] is large and z near 
the positive real axis. The severity of the problem diminishes as arg z increases and becomes 
negligible near the negative real axis. 
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Algorithm 957: Evaluation of the Repeated Integral of the Coerror
Function by Half-Range Gauss–Hermite Quadrature

WALTER GAUTSCHI, Purdue University

Nonstandard Gaussian quadrature is applied to evaluate the repeated integral inerfc x of the coerror function
for n ∈ N0, x ∈ R in an appropriate domain of the (n, x)-plane. Relevant software in MATLAB is provided: in
particular, two routines evaluating the function to an accuracy of 12 respective 30-decimal digits.

Categories and Subject Descriptors: G.1.4 [Numerical Analysis]: Quadrature and Numerical Differentia-
tion; G.4 [Mathematical Software]: Algorithm Design and Analysis

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Half-range Gauss–Hermite quadrature, MATLAB software, repeated
integral of the coerror function
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Walter Gautschi. 2016. Algorithm 957: Evaluation of the repeated integral of the coerror function by half-
range Gauss–Hermite quadrature. ACM Trans. Math. Softw. 42, 1, Article 9 (February 2016), 10 pages.
DOI: http://dx.doi.org/10.1145/2735626

1. INTRODUCTION

The integrals in the title are of considerable interest in physics and chemistry, notably
in problems involving heat and mass transfer. They are traditionally evaluated by the
three-term recurrence relation that they satisfy [Gautschi 1961; Amos 1973]. This in-
volves, even if done carefully, controlled loss of accuracy [Gautschi 1977]. On the other
hand, a whole sequence of integrals is produced, as may be required in some applica-
tions. Here, we propose a method based on quadrature that, involving the summation
of a finite sum of positive terms, is perfectly stable and allows the computation of just
one of these integrals. The quadrature entails nonclassical Gaussian integration and
the half-range Hermite polynomials orthogonal with respect to the weight function
exp(−t2) on [0,∞]. An important issue is the determination of a natural domain in the
(n, x)-plane in which to evaluate the function.

2. INTEGRAL REPRESENTATION

The function in question is

fn(x) = in erfc x, n = −1, 0, 1, 2, . . . , x ∈ R, (2.1)

Author’s address: W. Gautschi, Department of Computer Science, Purdue University, West Lafayette, IN
47907-2066; email: wgautschi@purdue.edu.
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components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0098-3500/2016/02-ART9 $15.00
DOI: http://dx.doi.org/10.1145/2735626
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9:2 W. Gautschi

where

f−1(x) = 2√
π

e−x2
,

fn(x) =
∫ ∞

x
fn−1(t)dt, n = 0, 1, 2, . . . .

(2.2)

As is well known from calculus, fn can be expressed as a single integral,

fn(x) = 2√
π

∫ ∞

x

(t − x)n

n!
e−t2

dt, n ≥ 0. (2.3)

Changing variables, t − x = τ , we can write

fn(x) = 2√
π

∫ ∞

0

τn

n!
e−(τ+x)2

dτ, (2.4)

that is,

fn(x) = 2√
π

e−x2

n!

∫ ∞

0
tne−2xte−t2

dt. (2.5)

Our method is based on this integral representation in which the integral will be
evaluated by Gaussian quadrature; see Section 4.

Incidentally, the same integral representation can also be used to extend the meaning
of the function fn(x) from nonnegative integer values of n to arbitrary real values
n = ν > −1 if the factorial n! in Equation (2.5) is replaced by the gamma function
�(ν + 1). Here, however, we will stick to integer values. Likewise, Equation (2.5) could
be used as a basis for computing fn(z) for complex z. Again, we restrict ourselves here
to real values of x.

Before developing computational methods, it seems worthwhile to figure out a nat-
ural (n, x)-domain in which to evaluate fn(x). This will be discussed in Section 3. At
this point, we briefly note that when x is large negative, the integral in Equation (2.5)
is prone to overflow. This can be avoided, or at least deferred, if one places the factor
exp(−x2) inside the integral, that is, if one uses the alternative form

fn(x) = 2√
πn!

∫ ∞

0
tne−(x2+2xt)e−t2

dt, x < 0. (2.6)

We assume, without further notice, that this will be done in any computation involving
negative values of x.

3. AN APPROPRIATE (N, X)-DOMAIN

In this section, we determine a natural domain D in which to evaluate the function
fn(x). With regard to the variable n, we require that n! does not overflow, which implies
n ≤ 171 for IEEE standard double precision. We shall assume, more conservatively,
that n ≤ 150.

When the variable x is nonnegative, the domain D is going to be the one in which fn(x),
evaluated in MATLAB double-precision arithmetic, neither underflows nor overflows.
This is discussed in Sections 3.1 and 3.2. Otherwise, when x < 0, the determining factor
is not under- or overflow, but the numerical quadrature of the integral in Equation (2.6);
see Section 3.3. For large negative values of x, this becomes more difficult and requires
higher-order quadrature rules. Since we use nonstandard Gaussian quadrature rules,
which currently are available only up to order 200, the domain D, when x < 0, will be
determined by the requirement that not more than 200 quadrature points be needed
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Algorithm 957: Evaluation of the Repeated Integral 9:3

to evaluate the integral in Equation (2.6) to 12 significant decimal digits. Under- and
overflow then ceases to be an issue. This is analyzed in Section 4.2.

3.1. Underflow

Since MATLAB’s double-precision arithmetic conforms with the IEEE standard, the
smallest positive floating-point number is realmin= 2.2251e–308; any positive number
smaller than λ = 2.2251 × 10−308 gives rise to underflow.

We first observe that fn(x) never underflows when x < 0 (and 0 ≤ n ≤ 150). Indeed,
let x = −ξ , ξ > 0. Then, by Equation (2.3),

fn(−ξ ) = 2√
π n!

∫ ∞

−ξ

(t + ξ )ne−t2
dt

= 2√
π n!

(∫ ∞

0
(t + ξ )ne−t2

dt +
∫ 0

−ξ

(t + ξ )ne−t2
dt

)
.

Here, the first integral on the right is greater than∫ ∞

0
tne−t2

dt = 1
2

∫ ∞

0
τ (n−1)/2e−τ dτ = 1

2
�

(
n + 1

2

)
.

The second integral is ∫ ξ

0
(ξ − τ )ne−τ 2

dτ ≥ 0,

so that

fn(−ξ ) ≥ 1√
π

�((n + 1)/2)
�(n + 1)

= 1√
π

�((n + 1)/2)
�(2 · (n + 1)/2)

.

Using the duplication formula [Abramowitz and Stegun 1964, 6.1.18] for the gamma
function, we have that

�((n + 1)/2)
�(n + 1)

=
√

2π

2n�((n + 2)/2)
, (3.1)

thus,

fn(−ξ ) ≥
√

2
2n�((n + 2)/2)

≥
√

2
2150�(152/2)

> 3.99 × 10−155 > λ, ξ > 0. (3.2)

Therefore, underflow cannot occur, and we can assume that x ≥ 0. For each n, 0 ≤ n ≤
150, we determine experimentally the value x = x∗(n) of x for which fn(x) underflows.
The tool for this is the routine quad_inerfc.m1 (calling on the routine gauss.m of the OPQ
package [Gautschi 2014]) evaluating fn(x) by numerical quadrature of Equation (2.5);
for details, see Section 4. This routine returns not only y = fn(x), but also two output
variables uflow and oflow, which are 1 or 0 depending on whether or not underflow
of y respective overflow has occurred. This is detected by the routine returning y = 0
respectively y = Inf. Since we are interested in underflow, the procedure, then, is the
following. We increase x from x = 10 in steps of 1 until the routine quad_inerfc.m
returns uflow = 1 for the first time. We call b the corresponding value of x and let
a = b − 1. We thus have an interval [a, b], a < b, with the property that y = fn(a) does
not underflow, but fn(b) does. We take this as the initial stage of a bisection method,
which will halve the interval [a, b] and check whether underflow does or does not occur

1All Matlab programs referenced in this paper can be accessed at http://dx.doi.org/10.4231/R7959FHP.
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9:4 W. Gautschi

Fig. 1. The function x∗
n(n) and its linear approximant.

at the midpoint m. If it does occur, we replace the right end point b; otherwise, we
replace the left end point a, by m. We continue until the interval [a, b] has become
sufficiently small. (The number of bisection steps required can be determined a priori
in a well-known manner; e.g., see Gautschi [2012, Section 4.3.1].) This is implemented
in the routine xunder.m. The resulting function x = x∗

n(n) has been computed in this
manner for n = 0 : 150, and is plotted, using run_xunder.m, in Figure 1 as the solid
line. It is slightly concave and decreasing, and is easily approximated from below by a
straight line, as shown in Figure 1 by the dashed line. Its equation is x = 27 − .084n.
Thus, the trapezoidal domain bounded on top by this straight line, on the left and right
by the vertical lines n = 0 and n = 150, and at the bottom by the real line, is a close
approximation to the desired domain D when x ≥ 0. We denote it by D+.

3.2. Overflow

Overflow occurs if a number is produced that exceeds realmax = 1.8 × 10308. It is clear
that overflow is not an issue when x ≥ 0, since by Equation (2.5),

fn(x) ≤ 2√
π

e−x2

n!

∫ ∞

0
tne−t2

dt = 1√
π

e−x2 �((n + 1)/2)
�(n + 1)

,

and using Equation (3.1),

fn(x) ≤
√

2e−x2

2n�((n + 2)/2)
≤

√
2e−x2 ≤

√
2, x ≥ 0, n = 0, 1, 2, . . . .

For the case x < 0, as in Section 3.1, we let x = −ξ , ξ > 0, and first derive an upper
bound for fn(−ξ ). By Equation (2.4), we have that

√
π

2
n! fn(−ξ ) =

∫ ∞

0
tne−(t−ξ )2

dt, ξ > 0.

Breaking up the integral on the right in two, one from 0 to ξ and the other from ξ to
∞, one finds that

√
π

2
n! fn(−ξ ) = ξn+1

(∫ 1

0
(1 − t)ne−ξ2t2

dt +
∫ ∞

0
(1 + t)ne−ξ2t2

dt

)
,

and since the first integral is bounded by 1,
√

π

2
n! fn(−ξ ) < ξn+1

(
1 +

∫ ∞

0
(1 + t)ne−ξ2t2

dt
)

. (3.3)
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Fig. 2. Logarithm of the bound in Equation (3.4) when ξ = 18.1.

Here again, we split the integral in two, one from 0 to 1 and the other from 1 to ∞,
using 1 + t ≤ 2 in the former and 1 + t ≤ 2t in the latter, to get∫ ∞

0
(1 + t)ne−ξ2t2

dt < 2n
(

1 +
∫ ∞

1
tne−ξ2t2

dt
)

.

In the integral on the right, we change variables, ξ2t2 = τ , and find that∫ ∞

1
tne−ξ2t2

dt = 1
2ξn+1

∫ ∞

ξ2
τ (n−1)/2e−τ dτ

<
1

2ξn+1

∫ ∞

0
τ (n−1)/2e−τ dτ = �((n + 1)/2)

2ξn+1 .

Inserting these inequalities in Equation (3.3) yields
√

π

2
n! fn(−ξ ) < ξn+1(1 + 2n) + 2n−1�((n + 1)/2);

thus, using again Equation (3.1),

fn(−ξ ) <
2(1 + 2n)√

π n!
ξn+1 +

√
2

�((n + 2)/2)
. (3.4)

In Section 4.2, it will be seen that ξ will have to be restricted to ξ ≤ 18.1 for the
numerical evaluation of the integral in Equation (2.6) by Gaussian quadrature to be
possible for all n with 0 ≤ n ≤ 150. But then, the upper bound in Equation (3.4)
is far from overflowing. The logarithm of the bound for ξ = 18.1 has the behavior
shown in Figure 2 as a function of n. The routine bound_Fn_neg.m producing this plot
also determines that the maximum occurs at n = 37 and has the value 36.5031. The
maximum of fn(−ξ ) when ξ is restricted as mentioned, therefore, is exp(36.5031) =
7.1303 × 1015, way too small to cause overflow. Thus, the lower boundary of D must be
taken to be above the straight line x = −18.1. A more precise boundary is determined
in the next section.

3.3. The Lower Boundary of D
Just as in Section 3.1, in which the upper boundary of D was determined experimen-
tally to be the function x = x∗(n)—the smallest (positive) value of x for which fn(x)
underflows—we now determine the lower boundary of D to be the function x = x∗∗(n),
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Fig. 3. The function x∗∗
n (n) and its linear approximant.

the largest (negative) value of x for which Gauss quadrature fails on account of requir-
ing more than 200 quadrature points for 12-digit accuracy. The routine for computing
x = x∗∗(n) is xgo200.m, resembling xunder, but calling on the routine N_inerfc.m that
signals failure of Gauss quadrature by an output variable go200, which is 1 if Gauss
quadrature fails, and 0 otherwise. The graph of the function x = x∗∗(n), practically a
straight line, as generated by the routine run_xgo200.m, is shown in Figure 3. As in
Figure 1, it can be approximated from above by a straight line, x = −17.9 + .024n,
which will be taken to be the lower boundary of D.

4. THE QUADRATURE METHOD

Both integrals in Equations (2.5) and (2.6) can be evaluated by Gaussian quadrature
relative to the weight function w(t) = e−t2

supported on the half-infinite interval [0,∞],
that is, by half-range Gauss–Hermite quadrature. Thus, in the case of Equation (2.5),
for example, ∫ ∞

0
tne−2xtw(t)dt =

N∑
ν=1

λG
ν

(
τ G
ν

)ne−2xτ G
ν + RN, (4.1)

where τ G
ν , λG

ν are the N-point Gauss nodes and weights for the weight function w and
RN is the remainder term. The summation in Equation (4.1) involves only positive
terms, so that the computation is perfectly stable.

With regard to the special (nonstandard) Gaussian quadrature formula required,
it can be generated by well-known methods [Gautschi 2004, Section 3.1.1] from the
eigenvalues and eigenvectors of the Jacobi matrix belonging to the half-range Hermite
weight function. Related software in MATLAB is readily available to carry this out.

Specifically, the MATLAB command

xw = gauss(N,ab) (4.2)

where gauss.m is a routine in the OPQ package [Gautschi 2014], generates the N nodes
τ G
ν and N weights λG

ν and returns them in the first respective second column of the N×2
array xw. The N × 2 input array ab must contain the necessary data for the half-range
Hermite polynomials, namely, in the first column the N coefficients {αk}N−1

k=0 , and in the
second column the N coefficients {βk}N−1

k=0 in the three-term recurrence relation

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, . . . , N − 1,

π0(t) = 1, π−1(t) = 0
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Fig. 4. The number N of Gauss points needed for 12 digit accuracy when the n-intervals, from top left to
bottom right, are [0, 25], [25, 50], [50, 75], [75, 100], [100, 125], and [125, 150].

satisfied by these polynomials. The first 200 coefficients are available in the file
ab_hrhermite to 32-digit accuracy and have been generated in Gautschi [to appear,
Section 1.4] by the classical Chebyshev algorithm in high-precision arithmetic. The
command2

ab = loadvpa(′ab hrhermite′, 3,32,200,2) (4.3)

produces the symbolic 200×2 array ab, which, if necessary, can be converted to a
MATLAB double-precision array ab0 by the command ab0=double(ab). The command
(4.2) can thus be used to produce all N-point Gauss formulae for N = 1, 2, . . . , 200.

It is important, however, to have some idea about the number N of Gauss points
needed to achieve a prescribed accuracy. This is discussed in Sections 4.1 and 4.2 for
x ≥ 0 and x < 0, respectively, and for an accuracy requirement of 12 significant decimal
digits. For 30-digit accuracy, see Section 5.

4.1. The Order of the Gauss Quadrature Rule Necessary for x ≥ 0

In order to find an estimate N+(n, x) of the number N(n, x) of quadrature points needed
to obtain fn(x) for x ≥ 0 accurate to 12 decimal digits, it is convenient to break up the
n-interval 0 ≤ n ≤ 150 into six subintervals,

I(n0) = [n0 ≤ n ≤ n0 + 25], n0 = 0 : 25 : 125.

In each of these intervals, we determine the maximum value Nmax(n0) of N, extended
over all n ∈ I(n0) and x = 0 : 0.2 : 27, x ∈ D+, using the routine N_inerfc.m and
quad_inerfc.m. This is done in the script3 Nplus_pos.m. The results are shown in the
plots of Figure 4. In each plot, it is easy to bound N from above by a straight line

2The routine loadvpa.m is not yet part of the MATLAB symbolic toolbox, but has been developed by the
MathWorks staff at the request of the author.
3In Matlab releases more recent than 2011, this routine may not work properly.
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Fig. 5. The number N of Gauss points needed for 12 digit accuracy when x < 0.

N+ = N+(n, x), 0 ≤ x ≤ 27. Their equations are

N+(n, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

	21.5 + 2.388x
 (0 ≤ n ≤ 25),
	24 + 2.08x
 (25 < n ≤ 50),
	33 + 1.549x
 (50 < n ≤ 75),
	40 + 1.068x
 (75 < n ≤ 100),
	47 + .4348x
 (100 < n ≤ 125),
	54 − .1852x
 (125 < n ≤ 150).

The bounds N+ are fairly close to the true values of N when n ≤ 50, but can be quite
a bit larger when n > 50. The results thus obtained for fn(x) may have an accuracy
exceeding 12 decimal digits; for more on this, see Section 5.

4.2. The Order of the Gauss Quadrature Rule Necessary for x < 0

The routine Nplus_neg.m has the same objective as the routine Nplus_pos.m, namely, to
find a suitable estimate N+(n, x) for N(n, x) when x < 0. Contrary to the latter routine,
however, it examines the values of N on the horizontal lines x = −.9 : −1 : −16.9 for
0 ≤ n ≤ 150 such that (n, x) ∈ D (see Figure 3). The function y = fn(x) on the lower
(straight-line) boundary behaves similar to its bound (Equation (3.4); see Figure 2): it
has the value 2.000 at n = 0, a maximum 9.384 × 106 at n = 17, and the minimum
8.374 × 10−81 at n = 150.

The plots for x = −.9 : −1 : −16.9 are shown in Figure 5. Being rather regular, they
allow us to derive a simple analytic expression for a suitable bound N+, namely,

N+(n, x) = min(200, 	10 + 10.5|x| + (.3223 + .00747|x|)n
)
if (n, x) ∈ D, x < 0.

(4.4)

The condition in the if-clause is equivalent to |x| ≤ 17.9 − .024n, 0 ≤ n ≤ 150, x < 0. As
in Section 4.1, the bound can be fairly conservative, and yields answers that are often
more accurate than the 12 digits striven for.

5. HIGH-PRECISION COMPUTATION

Since the Gauss quadrature rules needed are available to an accuracy of 32 decimal
digits, we may as well try to extend the work described so far from the accuracy level
of ε0 = .5 × 10−12 to the one of, say, ε1 = .5 × 10−30. To do so, we need symbolic
variable-precision analogues of the five routines mentioned in Sections 4.1 and 4.2,
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that is, sgauss.m, sN_inerfc.m, squad_inerfc.m, sNplus_pos.m, and sNplus_neg.m, in
order to produce plots analogous, but at a lower resolution, to those in Figures 4 and 5.
We omit details and simply report on the results obtained for a suitable upper bound
N+.

When x ≥ 0 and 0 ≤ n ≤ 150, then

N+(n, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

	43 + 3.92x
 (0 ≤ n ≤ 25),
	43 + 4.042x
 (25 ≤ n ≤ 50),
	39 + 4.143x
 (50 ≤ n ≤ 75),
	49 + 3.333x
 (75 ≤ n ≤ 100),
	58 + 2.722x
 (100 ≤ n ≤ 125),
	67 + 1.733x
 (125 ≤ n ≤ 150).

Otherwise, when x < 0, severe restrictions on x must be imposed. If the accuracy of 30
significant digits is to be maintained for all 0 ≤ n ≤ 150, the limitation to 200 Gauss
quadrature points essentially means that x must be restricted to x > −1. If we lower
nmax = 150 to nmax = 100, the restriction is x > −3.1, and for nmax = 50, it is x > −5.2.
Assuming, then, that 0 ≤ n ≤ 50 and 0 > x ≥ −5, an appropriate choice of N+ is found
to be

N+(n, x) =
{ 	(47 + 37|x|)/4 + .46n
 (|x| ≤ 4),

	57 + 2.36n
 (|x| > 4).

6. CONCLUSION AND TESTS

We are now in a position to write the final (short) routines, inerfc.m and sinerfc.m,
that evaluate fn(x) to at least 12-digit resp. 30-digit accuracy. The (n, x)-domain in the
former routine is bounded on top by the descending straight line x = 27 − .084n, at the
bottom by the ascending straight line x = −17.9 + .024n, and on the left and right by
the vertical lines n = 0 and n = 150. The same domain is valid in the latter routine
when x ≥ 0, except that the boundary on top is the horizontal line x = 27. For x < 0,
however, the vertical boundaries are at n = 0 and n = 50, and the one at the bottom at
x = −5. Both routines assume that the calling program has downloaded the symbolic
array ab by the command (4.3). The core of the routines is identical with the routines
quad_inerfc.m and squad_inerfc.m, except for handling under- and overflow, which is
no longer needed. Since our routine inerfc.m calls on the routine gauss.m in (4.2), with
ab0=double(ab) in place of ab, the array ab0 must be declared as a global variable in
the calling program. The same applies in the case of sinerfc.m and the file ab.

Extensive checks have been run using the routines run_inerfc.m and run_sinerfc.m
to verify that the accuracy of 12 resp. 30 significant digits, in the respective domains,
have indeed been achieved. This is done by running the routines twice, once with the
estimated value N = N+ of N, and once with N = N+ +5 (when ≤ 200) and comparing
the two results to make sure that the former is as accurate as claimed. The points (n, x)
chosen for testing the double-precision routine inerfc.m are

n = 0 : 25 : 150, x =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 : .2 : 1,
1.5 : .5 : 5,
5.5 : .5 : 8,
8.5 : .5 : 12,
13 : 19,
20 : 27,
−.5 : −.5 : −17.5,

(n, x) ∈ D.
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The maximum relative discrepancy errmax between the results of the two runs were
observed to be 6.53 × 10−14, 6.95 × 10−14, 3.54 × 10−14, 1.33 × 10−14, 3.16 × 10−14,
4.95×10−14 in the six intervals for x ≥ 0, and 2.29×10−13 in the interval for x < 0. The
same points are chosen for the variable-precision routine sinerfc.m, except for x < 0,
where we take n = 0 : 10 : 50, x = −.5 : −.5 : −5, according to the restrictions we
had to impose in this case. Here, the values for errmax were found to be 7.93 × 10−34,
9.08 × 10−35, 4.57 × 10−34, 2.50 × 10−33, 3.28 × 10−32, 1.60 × 10−31, for x ≥ 0, and
6.78 × 10−31 for x < 0. As can be seen, the test results are quite satisfactory; they
also confirm that the accuracy achieved in many parts of the (n, x)-domain is higher
than the one requested, considerably so (by as many as nine digits) in the case of the
variable-precision routine sinerfc.m.

To demonstrate how our routines are used, we refer the reader to the code in the
file Table7_4.m in the accompanying software package, which recomputes Table 7.4 in
Abramowitz and Stegun [1964] of the scaled function 2n�(n/2 + 1)inerfc x, using the
routine inerfc.m, for n = [1 : 6 10 11] and x = 0 : .1 : 5, and at the same time checks
the results against 20-digit values produced by sinerfc.m, using dig = 20. All entries
of Abramowitz and Stegun [1964, Table 7.4] were found to be correct to all six digits
given, except for occasional end-figure errors of one unit. The maximum error of the 12-
digit results generated by Table7_4.m was found to be 8.3 × 10−15, so that, as expected,
the actual accuracy produced by inerfc.m is almost two digits higher than requested.
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MONOTONICITY PROPERTIES OF THE ZEROS OF FREUD

AND SUB-RANGE FREUD POLYNOMIALS:

ANALYTIC AND EMPIRICAL RESULTS

WALTER GAUTSCHI

Abstract. Freud and sub-range Freud polynomials are orthogonal with re-
spect to the weight function w(t) = |t|μ exp(−|t|ν), μ > −1, ν > 0, supported
on the whole real line R, resp. on strict subintervals thereof. The zeros of these
polynomials are studied here as functions of ν and shown, analytically and em-
pirically by computation, to collectively increase or decrease on appropriate
intervals of the variable ν.

1. Introduction

Freud polynomials are commonly defined to be orthogonal with respect to the
weight function

(1.1) w(t) = w(t; μ, ν) = |t|μe−|t|ν , μ > −1, ν > 0,

supported on the whole real line R. Here we also consider “sub-range” Freud
polynomials, which are orthogonal with respect to the same weight function (1.1),
but on strict subintervals of R. Specifically, lower and upper symmetric sub-range
Freud polynomials are orthogonal on an interval [−c, c], 0 < c < ∞, resp. on
two disjoint intervals [−∞, −c] ∪ [c, ∞], and become ordinary Freud polynomials
when c → ∞, resp. c → 0. Likewise, lower and upper one-sided sub-range Freud
polynomials are orthogonal on [0, c], 0 < c < ∞, resp. on [c, ∞], and become half-
range Freud polynomials when c → ∞, resp. c → 0.

Our interest is in the zeros of these polynomials, in particular their monotonicity
properties when considered functions of the parameter ν. Analytic results can
be derived from a well-known theorem dealing with the dependence of the zeros
of orthogonal polynomials on a parameter. While of limited scope, these results
contain statements valid for arbitrary parameters μ > −1 and arbitrary degrees
n. They are presented and discussed in Section 2. A more comprehensive study of
the zeros, at present, is possible only through experimental computation. Results
obtained along these lines are described in Section 3. For computational details,
however, we must refer to [2].
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856 WALTER GAUTSCHI

2. Analytic results

The standard result for dealing with zeros of an orthogonal polynomial that
depends on a parameter is Markov’s theorem (Theorem 6.12.1 of [3]). We apply it
here to Freud and sub-range Freud polynomials, where the parameter in question
is ν.

2.1. One-sided sub-range Freud polynomials.

Theorem 1. (a) Let ν0 > 0 and 0 < c ≤ e−1/ν0 . Denote by πn the lower one-
sided sub-range Freud polynomial of degree n orthogonal on [0, c] with respect to the
weight function

(2.1) w(t; c, μ, ν) = tμe−tν

, t ∈ [0, c].

Then all zeros of πn are monotonically increasing on [ν0, ∞) as functions of ν, for
every μ > −1 and n = 1, 2, 3, . . . .

(b) Let ν0 > 0 and c ≥ e−1/ν0 . Denote by πn the upper one-sided sub-range Freud
polynomial of degree n orthogonal on [c, ∞] with respect to the weight function

(2.2) w(t; c, μ, ν) = tμe−tν

, t ∈ [c, ∞].

Then all zeros of πn are monotonically decreasing on (0, ν0) as functions of ν, for
every μ > −1 and n = 1, 2, 3, . . . .

Proof. (a) Let the zeros of πn, in decreasing order, be

τ1(ν) > τ2(ν) > · · · > τn(ν) > 0.

Then, according to Theorem 6.12.1 of [3], the regularity assumptions of which being
all satisfied, the zero τk(ν), for k fixed, is an increasing [decreasing] function of ν
provided

f(t) :=
∂w(t; c, μ, ν)/∂ν

w(t; c, μ, ν)
, 0 < t < c,

is an increasing [decreasing] function of t on (0, c). An elementary computation will
show that, irrespective of the value of μ,

f(t) = −tν ln t.

Now

f ′(t) = −tν−1(ν ln t + 1),

which is positive on the interval (0, t0) and negative on t > t0, where t0 = e−1/ν .
Since by assumption c ≤ e−1/ν0 , we have, for ν ≥ ν0,

(2.3) 0 < t < c ≤ e−1/ν0 ≤ e−1/ν = t0,

hence f ′(t) > 0 on (0, c). By the cited theorem, therefore, τk(ν) for each k is an
increasing function of ν on [ν0, ∞), as claimed.
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MONOTONICITY PROPERTIES OF THE ZEROS OF FREUD POLYNOMIALS 857

(b) We now have, in place of (2.3), when ν < ν0,

t ≥ c ≥ e−1/ν0 > e−1/ν = t0,

so that f ′(t) is negative on (c, ∞), and the assertion follows as in part (a) from
Theorem 6.12.1 of [3]. �

Part (a) of Theorem 1 is of limited scope insofar as it deals only with intervals
of orthogonality [0, c], 0 < c < 1. (In the limit c = 1, that is, ν0 = ∞, it provides
no information at all.) It is also of limited interest, since the zeros, in this case,
are almost constant functions of ν (see Example 1 below). In this regard, part (b)
of the theorem has a wider scope, covering intervals [c, ∞], 0 < c < ∞, and in the
case c ≥ 1, that is, ν0 = ∞, provides monotonicity information valid on the whole
interval 0 < ν < ∞. (In the other limit case c = 0, that is, ν0 = 0, it again is
devoid of content.)

We illustrate Theorem 1 by numerical examples. To compute the desired zeros,
we first compute the first N recurrence coefficients of the respective orthogonal
polynomials from the first 2N moments of the weight function, using the classical
Chebyshev algorithm in sufficiently high precision (cf. [1, §2.1.7]). The moments
are always expressible in terms of the gamma and incomplete gamma functions.
Thereafter, the zeros of the orthogonal polynomial of degree n can be obtained
(in ordinary working precision) for all n ≤ N by well-known eigenvalue/vector
techniques (cf. [1, §3.1.1]).

Example 1. The zeros of πn (of Theorem 1(a)) for n = 15 and n = 30, when
ν0 = 3, c = e−1/3 = .7165 . . . , μ = 0, and 3 ≤ ν ≤ 10.

Here, the monotone growth of the zeros is extremely slow. When n = 15, the
slope is as small as 3.64 × 10−7 and never larger than 8.78 × 10−4. For n = 30,
the corresponding numbers are 4.77 × 10−8 and 4.52 × 10−4. Thus, the zeros
are practically constant as functions of ν. Plots of them are shown in Figure 1 for
n = 15 and n = 30. It was determined that monotone growth of all zeros holds even
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Figure 1. The zeros of πn in the case ν0 = 3 of Theorem 1(a)
for n = 15 (on the left) and n = 30 (on the right).

for smaller values of ν, namely for ν ≥ 1.6926 when n = 15, and for ν ≥ 1.7064
when n = 30. Thus, Theorem 1(a) is not sharp with regard to the interval of
monotonicity.
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Example 2. The zeros of πn (of Theorem 1(b)) for n = 15 and c = 1 (ν0 = ∞),
μ = 0, and 0 < ν ≤ 10.

In Figure 2 the zeros of πn are shown for n = 15, on the left when 0 < ν < 2,
and on the right when 2 ≤ ν ≤ 10. In the former case, some of the zeros are very
large, so that the plot is logarithmic in the y-axis. It is seen, and has been checked,
that all zeros, as predicted by the theorem, are monotonically decreasing.
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Figure 2. The zeros of πn in the case c = 1 of Theorem 1(b) for
n = 15 on 0 < ν < 2 (on the left) and 2 ≤ ν ≤ 10 (on the right).

The graphs look similar for values of c greater than 1 but, of course, lie above the
horizontal line at height c. They require much higher precision (250-digit arithmetic
when c = 6) to produce.

2.2. Symmetric sub-range Freud polynomials.

Theorem 2. (a) Let ν0 > 0 and 0 < c ≤ e−1/(2ν0). Denote by π∗
n the symmetric

sub-range Freud polynomial of degree n orthogonal on [−c, c] with respect to the
weight function

(2.4) w(t; c, μ, ν) = |t|μe−|t|ν , t ∈ [−c, c].

Then all positive zeros of π∗
n are monotonically increasing on [2ν0, ∞] as functions

of ν, for every μ > −1 and n = 2, 3, . . . .
(b) Let ν0 > 0 and c ≥ e−1/(2ν0). Denote by π∗

n the symmetric sub-range Freud
polynomial of degree n orthogonal on [−∞, −c] ∪ [c, ∞] with respect to the weight
function

(2.5) w(t; c, μ, ν) = |t|μe−|t|ν , t ∈ [−∞, −c] ∪ [c, ∞].

Then all positive zeros of π∗
n are monotonically decreasing on (0, 2ν0) as functions

of ν, for every μ > −1 and n = 2, 3, . . . .

Proof. (a) Since in this case the weight function is even and the interval of orthog-
onality is symmetric with respect to the origin, the orthogonal polynomial of even
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degree 2n is π∗
2n(t) = π+

n (t2) and the one of odd degree is π∗
2n+1(t) = tπ−

n (t2), where

π±
n is orthogonal on [0, c2] relative to the weight function w±(t) = t∓1/2w(t1/2)

(cf. [1, Theorem 1.18]). Thus, the positive zeros of π∗
2n, resp. π∗

2n+1, are the square
root of the zeros of π+

n , resp. π−
n . The weight functions for the latter polynomials

are t(μ−1)/2e−tν/2

, resp. t(μ+1)e−tν/2

. To both of them, part (a) of Theorem 1 can
be applied if ν is replaced by ν/2 and c by c2, showing that the square root of
the zeros of π±

n , hence also the zeros themselves, are monotonically increasing on
[ν0, ∞) if c2 ≤ e−1/ν0 and ν/2 ≥ ν0, that is, if c ≤ e−1/(2ν0) and ν ≥ 2ν0.

(b) The polynomials π±
n are now orthogonal on [c2, ∞] with respect to the weight

function w±. The proof then proceeds as in part (a), but applying part (b) of
Theorem 1, again replacing ν by ν/2 and c by c2. �

As to the scope and sharpness of Theorem 2, here remarks similar to those after
Theorem 1 also apply.

3. Empirical results

For simplicity, we concentrate on the case μ = 0, but will indicate what effect
other values of μ may have on our results. Also with regard to the range of ν-values,
we will generally assume 0 < ν ≤ 10, which seems to be the interval in which the
more interesting monotonicity properties of the zeros play out.

As already noted, there are significant gaps in part (a) of the theorems of Sec-
tion 2 with regard to intervals of orthogonality covered, and deficiencies in part
(b) with regard to sharpness. Here, we fill the gaps and remove the deficiencies by
numerical computation.

3.1. Lower one-sided sub-range Freud polynomials. The interval of orthog-
onality [0, c], 0 < c < 1, is covered by Theorem 1(a) of Section 2.1. It is not a
particularly interesting case, since all zeros are essentially constant as functions of
ν. The same is still true when c = 1 (the limiting case ν0 = ∞ of Theorem 1(a)),
as is shown in Figure 3, depicting the zeros of πn for n = 15 and n = 30.
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Figure 3. The zeros of πn when c = 1 for n = 15 (on the left)
and n = 30 (on the right).
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To provide an idea of how the zeros behave when c > 1, we look at the case
c = 2 and show graphs of them in Figure 4 for n = 1, 7, 15, and 30. The case n = 1
is somewhat special, the zero decreasing to a minimum value and increasing almost
imperceptively thereafter. For n > 1, the appearance of the graphs resembles that
of a waterfall, a gentle one when c is relatively small, and a more precipitous one for
larger c; see, e.g., Figure 5, where c = 6. Although it may appear that all zeros are
collectively decreasing, this is not quite true; there are exceptional intervals early
on, when ν ≤ ν1, where ν1 = 1.392, 1.420, 1.420 for respectively n = 7, 15, 30, and
also for ν much larger than 10. But all these exceptions occur in the flat parts of
the graphs and are quite minute and not visible to the naked eye.
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Figure 4. The zeros of πn when c = 2 for n = 1, 7, 15, 30 (from
top left to bottom right).

3.2. Upper one-sided sub-range Freud polynomials. Theorem 1(b) covers
intervals [c, ∞] with 0 < c < ∞. It is sharp when c ≥ 1 (ν0 = ∞), in which case
all zeros decrease monotonically on 0 < ν < ∞. Plots of them have been shown in
Figure 2, for 0 < ν ≤ 10.

Here we wish to discuss in detail the sharpness of Theorem 1(b) for selected
values of c < 1; specifically, for given ν0 we compute the true interval (0, ν∗

0 ) on
which all zeros decrease monotonically, for all n ≥ 1 and all μ > −1.

To begin with, we found evidence, by numerical experimentation, that any in-
terval of monotonicity expands as either n, μ, or both, are increased. The least
favorable case, therefore, is n = 1 and μ > −1 very close to −1, say, μ = −.99999.
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Figure 5. The zeros of πn when c = 6 for n = 15 (on the left)
and n = 30 (on the right).

In this case it is relatively straightforward to compute the desired interval (0, ν∗
0 )

as a function of ν0. Results for selected values of ν0 are shown in Table 1. It can be
seen that these intervals are significantly larger than the intervals (0, ν0) claimed
in Theorem 1(b), but like the latter become smaller with decreasing ν0, that is,
decreasing c.

Table 1. Worst-case intervals (0, ν∗
0 ) of monotonic decrease of

all zeros (n = 1 and μ ≈ −1).

ν0 c = e−1/ν0 ν∗
0 ν0 c = e−1/ν0 ν∗

0

6 .8464. . . 39.336 .6 .1887. . . 5.1103
4 .7788. . . 26.594 .5 .1353. . . 4.5158
2 .6065. . . 13.877 .4 .0820. . . 3.9393
1 .3678. . . 7.5703 .3 .0356. . . 3.3930
.9 .3291. . . 6.9481 .2 6.738×10−3 2.8985
.8 .2865. . . 6.3295 .1 4.540×10−5 2.4861
.7 .2396. . . 5.7162

Notice that in the last few entries of Table 1 we are getting very close to the
case of half-range Freud polynomials. The fact that the corresponding intervals
(0, ν∗

0 ) remain finite, and even become a bit smaller, suggests that the zeros of the
half-range Freud polynomials are not likely to collectively decrease for arbitrary
n ≥ 1 and μ > −1. We will confirm and quantify this computationally in the next
subsection.

3.3. Half-range Freud polynomials. Here we explore computationally how ν∗
0 ,

the upper endpoint of the interval (0, ν∗
0 ) in which all zeros decrease monotonically,

depends on n for μ = μ− = −.9999999, about the least favorable value of μ, and also
for μ = −1/2, 0, 1/2, and 1. The results are shown in Table 2. Notice the extent of
monotonic expansion of the interval (0, ν∗

0 ) when n and/or μ are increased. We can
see from this table that, for example, all zeros of the half-range Freud polynomial
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862 WALTER GAUTSCHI

πn, for any μ > −1 (more precisely, μ ≥ μ−), decrease monotonically for all ν in
the interval (0, 10] when n ≥ 2, and for all ν in the interval (0, 100] when n ≥ 6.

Table 2. The intervals (0, ν∗
0 ) of monotonic decrease of all zeros

of half-range Freud polynomials πn in dependence of n and μ.

μ = μ− μ = −1/2 μ = 0 μ = 1/2 μ = 1
n ν∗

0 n ν∗
0 n ν∗

0 n ν∗
0 n ν∗

0

1 2.1662 1 4.5574 1 6.8949 1 9.2204 1 11.541
2 11.541 2 15.371 2 19.204 2 23.039 2 26.874
3 26.874 3 32.233 3 37.593 3 42.955 3 48.318
4 48.318 4 55.207 4 62.098 4 68.990 4 75.882
5 75.882 5 84.303 5 92.725 5 101.15
6 109.57
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Figure 6. The zeros of the half-range Freud polynomial πn of
degree n = 15 on the interval 0 < ν < 2 (on the left) and 2 ≤ ν ≤
10 (on the right) when μ = 0.

We show plots of the zeros in Figure 6 for n = 15 and μ = 0.

3.4. Lower symmetric sub-range Freud polynomials. Symmetric intervals
[−c, c] for 0 < c < 1 are covered by Theorem 2(a). Since all zeros are then practically
constant as functions of ν, even in the limit case c = 1 (that is, ν0 = ∞), when the
theorem is devoid of content, the case 0 < c ≤ 1 is not of particular interest. For
the more interesting cases c > 1, we again must rely on computational exploration.

One expects that the behavior of the positive zeros of π∗
n will be similar to that

of all zeros of πn in the asymmetric case. This is indeed borne out by numerical
computation. One finds again the waterfall-like descent of all positive zeros, the
steepness of the descent being larger the larger the parameter c. It does not seem
necessary, therefore, to illustrate this pictorially.
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3.5. Upper symmetric sub-range Freud polynomials. As in the asymmetric
case of Section 3.2, also here in the symmetric case there is a need to sharpen part
(b) of Theorem 2, that is, to determine, for given ν0, the exact interval (0, ν∗

0 ) of
monotone decrease of all positive zeros in the worst-case scenario of μ very close
to −1 and n = 1. (Increasing μ and/or n, as in the asymmetric case, yields larger
intervals (0, ν∗

0 ).) Results analogous to those in Table 1 are shown in Table 3.

Table 3. Worst-case intervals (0, ν∗
0 ) of monotonic decrease of

all positive zeros (n = 1 and μ ≈ −1).

ν0 c = e−1/(2ν0) ν∗
0 ν0 c = e−1/(2ν0) ν∗

0

6 .9200. . . 78.671 .6 .4345. . . 10.221
4 .8824. . . 53.189 .5 .3678. . . 9.0315
2 .7788. . . 27.753 .4 .2865. . . 7.8786
1 .6065. . . 15.141 .3 .1888. . . 6.7860
.9 .5737. . . 13.896 .2 8.208×10−2 5.7970
.8 .5352. . . 12.659 .1 6.737×10−3 4.9722
.7 .4895. . . 11.432

Here again, the last few entries, pertaining to cases very close to ordinary Freud
polynomials, suggest that also the zeros of Freud polynomials are not likely to
collectively decrease without some qualifications.

3.6. Freud polynomials. Computations analogous to those carried out in Sec-
tion 3.3 have been made for the case of Freud polynomials. With notation as in
Section 3.3, the results are shown in Table 4. Notice again the monotonic behavior
of the intervals (0, ν∗

0 ) for increasing n and/or μ. It can be seen that all positive
zeros of the Freud polynomial π∗

n decrease monotonically on the interval (0, 10] if
n ≥ 3, and on the interval (0, 100] if n ≥ 9.

Table 4. The intervals (0, ν∗
0 ) of monotonic decrease of all posi-

tive zeros of Freud polynomials π∗
n in dependence of n and μ.

μ = μ− μ = −1/2 μ = 0 μ = 1/2 μ = 1
n ν∗

0 n ν∗
0 n ν∗

0 n ν∗
0 n ν∗

0

2 4.3325 2 6.7519 2 9.1147 2 11.457 2 13.790
3 13.790 3 16.117 3 18.441 3 20.762 3 23.082
4 23.082 4 26.910 4 30.741 4 34.574 4 38.408
5 38.408 5 42.242 5 46.077 5 49.913 5 53.749
6 53.749 6 59.106 6 64.465 6 69.825 6 75.186
7 75.186 7 80.548 7 85.910 7 91.273 7 96.636
8 96.636 8 103.52
9 124.20
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Figure 7. The positive zeros of the Freud polynomial π∗
n for

n = 15 on 0 < ν < 2 (on the left) and 2 ≤ ν ≤ 10 (on the right).

Plots of the zeros for n = 15 are shown in Figure 7. In the process of producing
these plots it was checked that all zeros indeed decrease on (0, 10].

References

[1] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Numerical Mathe-
matics and Scientific Computation, Oxford University Press, New York, 2004. MR2061539

[2] W. Gautschi, Orthogonal polynomials in Matlab: Exercises and solutions, Software, Environ-
ments, Tools, SIAM, Philadelphia, PA, 2016.
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Elbert and Siafarikas. It is shown that two of the earlier conjectures
are consequences of the ILA conjecture. Computational support is
provided for strengthening several of these conjectures, including the
ILA conjecture, from monotonicity to complete monotonicity.
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1. Introduction

Inequalities and monotonicity properties for zeros of orthogonal polynomi-

als depending on a parameter is a classical subject; see, e.g., [24, Chapter 6].

The last three or four decades, however, have seen a considerable increase

of activity in this area. Several approaches have been pursued concurrently.

One is via differential equations, specifically the Sturm comparison theorem.

Surveys and tutorials on this are given by L. Lorch, A. Laforgia, and

251
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M. E. Muldoon in, respectively, [22, 20], and [21], and further applications

to generalized Laguerre polynomials in [3], to Jacobi polynomials in

[5, Section 3], and to ultraspherical polynomials in [1, 2]. Another approach

uses Markov’s theorem [24, Section 6.12], which has recently been applied

in [11] in connection with Freud and sub-range Freud polynomials, and a

slight extension thereof in [15, Section 3] with applications to Laguerre,

Jacobi, and Meixner polynomials. An approach originating in physics,

and promoted primarily by Mourad Ismail, makes use of the Hellmann–

Feynman theorem, which looks at the zeros of orthogonal polynomials as

eigenvalues of an operator depending on a parameter and states formulas

for the derivatives of the eigenvalues with respect to that parameter. This

is surveyed in the paper [19] and applied there, and in a number of other

papers [14, 17, 18], to zeros of a variety of orthogonal polynomials, including

birth and death process polynomials.

Finally, there is an entirely empirical approach based on numerical

computation, which is an important vehicle to test conjectured inequal-

ities and monotonicity properties, thereby providing stimuli for further

analytical work. Examples of this are a series of papers, [6–8, 13] on

the zeros of Jacobi polynomials and also the paper [11] already cited

on the zeros of Freud polynomials. This is the approach used here in

Section 5 to test conjectured higher monotonicity properties for zeros of

ultraspherical polynomials. Ordinary monotonicity properties are surveyed

in Section 2. Software tools used in this paper are briefly described in

Section 4.

2. Ultraspherical Polynomials and the ILA Conjecture

Ultraspherical polynomials arise in the solution of Laplace’s equation in

high-dimensional spaces, when written in terms of hyperspherical coordi-

nates and solved by the method of separation of variables. The polynomials,

also named after the Austrian mathematician Leopold Gegenbauer (1849–

1903), who introduced them in his doctoral thesis of 1875 and studied them

in subsequent papers, are commonly denoted by C
(λ)
n [23, equation 18.7.1]

(but see also [24, Section 4.7], where the notation P
(λ)
n is used), n being

the degree and λ > −1/2 a parameter. They are orthogonal on the interval

(−1, 1) relative to the weight function wλ(t) = (1 − t2)λ−1/2, that is

∫ 1

−1

C
(λ)
k (t)C

(λ)
� (t)wλ(t)dt = 0 if k �= �. (2.1)
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Fig. 1. The positive zeros of C
(λ)
n for n = 40 and −1/2 < λ ≤ 10.

Important special cases include Chebyshev polynomials of the first and

second kind, corresponding to λ = 0 and λ = 1, and Legendre polynomials,

corresponding to λ = 1/2.

Since the weight function wλ is even, the polynomial C
(λ)
n is even or

odd, depending on whether n is even or odd, and the zeros therefore are

symmetric, or antisymmetric, with respect to the origin. To study them,

it thus suffices to look at the positive zeros z
(λ)
n,k of C

(λ)
n . In Fig. 1 we

show plots of them as functions of λ for −0.49 ≤ λ ≤ 10 and n = 40.

It appears from the graphs, and has been verified computationally, that the

zeros are all monotonically decreasing. This was already known to Stieltjes

(see [24, p. 121]) and a proof using Markov’s theorem in combination

with quadratic transformation of hypergeometric functions is mentioned in

[15, p. 188]. Laforgia [20] conjectured that the zeros multiplied by λ become

monotonically increasing for all λ > −1/2 and all n ≥ 2, and proved this

for 0 < λ < 1 using one of Szegö’s formulations of the Sturm comparison

theorem [24, Theorem 1.82.1]. We verified this computationally for −1/2 <

λ ≤ 10 (in steps of of 1/100) and for all n with 2 ≤ n ≤ 40. Graphs for

n = 40 are shown on the left of Fig. 2. Ahmed, Muldoon, and Spigler [1], also

using Sturmian methods, proved that the zeros multiplied by [λ + (2n2 +

1)/(4n + 2)]1/2 are increasing when −1/2 < λ ≤ 3/2, n ≥ 2, which we

verified computationally for the same values of λ and n as above and show

graphs for n = 40 on the left of Fig. 3. This actually implies the validity of

Laforgia’s conjecture for −1/2 < λ ≤ 3/2 by straightforward differentiation

of λ−1[λ+(2n2+1)/(4n+2)]1/2[λz
(λ)
n,k]. Ismail and Letessier [16] conjectured
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n multiplied by λ (left) for n = 40, −1/2 < λ ≤ 10,
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λ (right) for n = 40, 0 ≤ λ ≤ 10.
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Fig. 3. The positive zeros of C
(λ)
n multiplied by [λ + (2n2 + 1)/(4n + 2)]1/2 (left) and

multiplied by (1 + λ)1/2 (right) for n = 40, −1/2 < λ ≤ 10.

that the zeros multiplied by
√
λ are monotonically increasing for λ ≥ 0

and proved this for the largest zero. We verified the conjecture for all 2 ≤
n ≤ 40 and all positive zeros, for the same values of λ as before, but with

λ ≥ 0. Respective graphs are shown on the right of Fig. 2 for n = 40.

Askey suggested that monotonic growth may also hold when the zeros are

multiplied by (1 + λ)1/2, which has become known as the ILA conjecture,

named after Ismail, Letessier, and Askey. We verified this conjecture for

all 3 ≤ n ≤ 40 (when n = 2 the product in question is constant equal

to 1/
√

2) and for −1/2 < λ ≤ 10 in steps of 1/100; see the graphs on

the right of Fig. 3. The conjecture, in fact, has been proven by Elbert and

Siafarikas [4] by showing that the Ahmed–Muldoon–Spigler result holds for
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all λ > −1/2, which in turn, by straightforward differentiation, implies the

ILA conjecture.

3. Some Implications of the ILA Conjecture

With z(λ) denoting any positive zero of C
(λ)
n , writing

f(λ) =

(
1 + λ

λ

)1/2

[λ1/2z(λ)] = (1 + λ−1)1/2[λ1/2z(λ)]

and using the ILA conjecture f ′(λ) > 0 (proved by Elbert and Siafarikas),

differentiation of the right-hand side yields

(1+λ−1)1/2[λ1/2z(λ)]′ = f ′(λ)+ 1
2 (1+λ−1)−1/2λ−3/2z(λ) > 0 for λ > 0,

that is, the validity of the Ismail–Letessier conjecture. Likewise, writing

f(λ) =

(
1 + λ

λ2

)1/2

[λz(λ)]

and differentiating yields

(
1 + λ

λ2

)1/2

[λz(λ)]′ = f ′(λ) + 1
2 (1 + λ)−1/2(1 + 2/λ)z(λ) > 0 if λ > 0,

proving Laforgia’s conjecture for λ > 0. For λ ≤ 0, the conjecture is trivially

true since [λz(λ)]′ = z(λ) + λz′(λ) > 0 because of z′(λ) < 0.

4. Matlab Software for Orthogonal Polynomials

All computational work in this chapter was done by using the Matlab

software package Orthogonal Polynomials and Quadrature (OPQ), located

at

http : //dx.doi.org/10.4231/R7959FHP,

and its symbolic (variable-precision) counterpart (SOPQ), located at

http : //dx.doi.org/10.4231/R7ZG6Q6T.

We describe and illustrate here the routines most relevant for our purposes.

Many other applications can be found in [10].
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A system {πk}∞
k=0 of monic polynomials πk(t) = tk + · · · is called

orthogonal on the interval (a, b), −∞ ≤ a < b ≤ ∞, with respect to a

positive weight function w, if (cf. also (2.1))

∫ b

a

πk(t)π�(t)w(t)dt = 0 when k �= �. (4.1)

It is known that every such system satisfies a three-term recurrence relation

πk+1(t) = (t− αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . . ,
(4.2)

π−1(t) = 0, π0(t) = 1,

with real αk = αk(w) and positive βk = βk(w) that depend on the weight

function w. Thus, to obtain the polynomial πn of degree n from (4.2)

requires knowledge of the first n of these coefficients, α0, α1, . . . αn−1 and

β0, β1, . . . , βn−1, where β0 can be arbitrary, but is conveniently defined to

be β0 =
∫ b

a
w(t)dt. These are provided by the OPQ routine with syntax

ab = r name(n, . . .), (4.3)

where name specifies the name of the orthogonal polynomial, n the degree,

and ab is the n× 2 array of recurrence coefficients

ab =

⎡
⎢⎢⎢⎢⎢⎣

α0 β0

α1 β1

...
...

αn−1 βn−1

⎤
⎥⎥⎥⎥⎥⎦
.

The dots on the right of (4.3) stand for possible parameters defining the

orthogonal polynomial.

The polynomials that interest us here are exclusively Jacobi polynomials,

which are orthogonal on the interval (−1, 1) relative to the weight function

w(t) = (1 − t)α(1 + t)β , α > −1, β > −1. More specifically, we are

interested in ultraspherical polynomials, which are Jacobi polynomials with

parameters α = β = λ − 1/2, where λ > −1/2. Their first n recurrence

coefficients are produced by the OPQ routine

ab=r_jacobi(n,lambda-1/2)

in Matlab double precision, and by the SOPQ routine

sab=sr_jacobi(dig,n,lambda-1/2)

76



December 21, 2017 10:3 Frontiers in Orthogonal Polynomials and q-Series 9in x 6in b3010-ch13 page 257

On the ILA Monotonicity Conjecture for Zeros of Ultraspherical Polynomials 257

in dig-digit precision. Thus, ab=r jacobi(5,1) and sab=sr jacobi

(42,5,1), which are the same as ab=r jacobi(5,1,1) and sab=sr jacobi

(42,5,1,1), produce

ab =

0 1.333333333333333e+00

0 2.000000000000000e-01

0 2.285714285714286e-01

0 2.380952380952381e-01

0 2.424242424242424e-01

and

sab =

[ 0, 1.33333333333333333333333333333333333333333]

[ 0, 0.2]

[ 0, 0.228571428571428571428571428571428571428571]

[ 0, 0.238095238095238095238095238095238095238095]

[ 0, 0.242424242424242424242424242424242424242424]

that is, the first five recurrence coefficients for the ultraspherical polynomial

C
(3/2)
5 in double and 42-digit precision.

There is no OPQ routine that specifically generates the zeros of orthog-

onal polynomials, but they can be generated by the Gauss quadrature

routine

xw = gauss(n, ab), (4.4)

which obtains in the first column of the n × 2 array xw the n nodes (in

increasing order), and in the second column the corresponding weights, of

the n-point Gaussian quadrature rule associated with the weight function

w specified by the n×2 array ab of its first n recurrence coefficients. The n

Gaussian nodes are nothing but the n zeros of the orthogonal polynomial

of degree n relative to the weight function w. Thus, the n zeros of C
(λ)
n in

increasing order are obtained by the following Matlab routine:

function z=zeros_us(n,lambda)

%ZEROS_US Zeros of ultraspherical polynomials.

% Z=ZEROS_US(N,LAMBDA) generates the N zeros in

% increasing order of the Nth-degree ultraspherical

% polynomial C_N^{(LAMBDA)}.
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ab=r_jacobi(n,lambda-1/2); xw=gauss(n,ab);

z=xw(:,1);

The Matlab script

%PLOT_ZEROS_US

n=40;
n0=floor((n+1)/2)+1;
for k=n0:n

si=(-.49:.01:10)’;
% si=(0:.01:10)’;

s=size(si); y=zeros(s);
i=0;
for lam=-.49:.01:10

% for lam=0:.01:10
i=i+1;
z=zeros_us(n,lam);
y(i,k)=z(k);

% y(i,k)=lam*z(k);
% y(i,k)=sqrt(lam)*z(k);
% y(i,k)=(2*n^2+1+2*lam*(2*n+1))^(1/2)*z(k);
% y(i,k)=(1+lam)^(1/2)*z(k);

end
for i=2:s(1)
if y(i,k)>=y(i-1,k)

% if y(i,k)<=y(i-1,k)
[n i k]
[y(i,k) y(i-1,k)]
error(’wrong sign’)

end
end
plot(si,y(:,k),’LineWidth’,1.5);set(gca,’FontSize’,14)
hold on
axis([-1 11 0 1.1])

% axis([-1 11 -1 11])
% axis([-1 11 -.5 3.5])
% axis([-1 11 -5 70])
% axis([-1 11 -.5 3.5])

xlabel(’\lambda’); ylabel(’z(\lambda)’);
% xlabel(’\lambda’); ylabel(’\lambda*z(\lambda)’)
% xlabel(’\lambda’); ylabel(’\lambda^{1/2}*z(\lambda)’)
% xlabel(’\lambda’);
% ylabel(’(2*n^2+1+2*\lambda*(2*n+1))^{1/2}*z(\lambda)’)
% xlabel(’\lambda’); ylabel(’(1+\lambda)^{1/2}*z(\lambda)’)
end

not only produces all plots in the figures of Section 2 but also checks the

validity of the relevant monotonicity properties by selecting the appropriate

commands from those commented out or currently active.
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5. Conjectured Higher Monotonicity Properties

for Ultraspherical Polynomials

Let again z(λ) be any positive zero of the nth-degree ultraspherical

polynomial C
(λ)
n , λ > −1/2. (For simplicity of notation, we do not show

the dependence of z on n.) The ILA conjecture, proved by Elbert and

Siafarikas [4], states that

f(λ) = (1 + λ)1/2z(λ), λ > −1/2, (5.1)

is an increasing function of λ for λ > −1/2 and n ≥ 3, even though z(λ) is

decreasing. Likewise, the Ahmed–Muldoon–Spigler result, as extended and

proved by Elbert and Siafarikas (see end of Section 2), states that

g(λ) =

(
λ+

2n2 + 1

4n+ 2

)1/2

z(λ), λ > −1/2, (5.2)

is an increasing function of λ for λ > −1/2 and n ≥ 2. The Ismail–Letessier

conjecture, as proved in Section 3, states that

h(λ) =
√
λ z(λ), λ ≥ 0, (5.3)

is monotonically increasing for λ ≥ 0 and n ≥ 2, while Laforgia’s conjecture,

also proved in Section 3, states that

k(λ) = λz(λ), λ > −1/2, (5.4)

is monotonically increasing for λ > −1/2 and n ≥ 2.

The graphs of f and h on the right of Figs. 3 and 2, showing not only

monotonicity, but also concavity of all positive zeros, suggest that these

zeros satisfy also higher monotonicity properties. The same may be true

for the function g and some of the larger zeros in the graph on the left of

Fig. 3, and perhaps even for the function k(λ).

5.1. The function f(λ)

Our conjecture for the function f is as follows.

Conjecture 5.1. For all n ≥ 3 the first derivative f ′ of the function f in

(5.1) is completely monotone on (−1/2,∞), i.e.,

(−1)mf (m+1)(λ) > 0, m = 0, 1, 2, . . . , λ > −1/2. (5.5)

The evidence we provide for this and the subsequent conjectures is for

n ≤ 15. It is based on divided differences. Thus, let s(h) = {sj(h)}∞
j=1,

h > 0, be the infinite sequence with

sj(h) = −1/2 + jh, j = 1, 2, 3, . . . ,
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and dj,m(h; f) = [sj(h), sj+1(h), . . . , sj+m(h)]f the mth-order divided

difference of f relative to m+ 1 consecutive members of s(h) starting with

sj(h). Our objective is to verify computationally that for given integers

J > 1 and M > 0

(−1)mdj,m+1(h; f) > 0, j = 1, 2, . . . , J ; m = 0, 1, . . . ,M. (5.6)

Since the (m + 1)th divided difference of f is equal to a positive constant

times the (m + 1)th derivative of f evaluated at some intermediate point

(see, e.g., [9, equation (2.117)]), it is plausible, especially if h is small, that

(5.6) implies (5.5), at least for the λ-range and the m-values indicated by

(5.6), but very likely for all λ > −1/2 and all m ≥ 0.

In principle, the computational validation of (5.6) is straightforward,

but requires caution when m is large, because of numerical instability. By

virtue of (see, e.g., [9, Chapter 2, Exercise 54])

Δmfj = m!hmdj,m(h; f),

where Δmfj is the mth difference of f at sj , the computation of

divided differences and differences is equally stable. Because of cancellation

errors, however, computing differences becomes increasingly unstable as m

increases, and may even yield the wrong sign. Therefore, high-precision

arithmetic is imperative, though time-consuming, when m is large.

We select h = 0.02, M = 14, and J = 350, which are constants that

remain fixed for the remainder of this section. The choice of these constants

covers divided differences of orders 1–15 and a λ-interval −1/2 < λ ≤ 13/2.

In Matlab double-precision arithmetic, we were able to confirm (5.6)

for all 3 ≤ n ≤ 15 and 0 ≤ m ≤ 4 in a matter of a few seconds runtime.

The differences Δmfj involved were never smaller in absolute value than

1.894×10−13. For the values (n,m) not covered by these computations, that

is, for 3 ≤ n ≤ 15 and 5 ≤ m ≤ 14, it took 36-digit arithmetic in symbolic

Matlab and some 70 h of runtime to confirm (5.6). The absolutely smallest

difference Δmfj observed was 7.774×10−30.

The computations described are implemented in the Matlab scripta

conj geg.m for double precision arithmetic, and in the script sconj geg.m

for variable-precision arithmetic using the Matlab symbolic toolbox. The

former script also uses the OPQ routines r jacobi.m and gauss.m, com-

puting respectively the recurrence coefficients of the relevant ultraspherical

polynomials and the related Gaussian quadrature rules (hence, in partic-

ular, the positive zeros of the ultraspherical polynomials), and the latter

aAll Matlab scripts referenced in this chapter are collected in [12].
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script uses the corresponding variable-precision routines sr jacobi.m and

sgauss.m; cf. Section 4. An additional pair of routines is used, dd.m and

sdd.m, generating (from the bottom up) the appropriate divided differences

in double or variable precision; see, e.g., Machine Assignment 7(a) in

[9, Chapter 2] and its solution on p. 153. The script conj geg.m and

the routine dd.m are shown below. Their variable-precision versions are

straightforward translations from double-precision arithmetic to variable-

precision arithmetic.

%CONJ_GEG

f0=’%12.4e\n’;

h=1/50; J=350; M=15;

for n=3:15

fprintf(’n=%4.0f\n’,n)

nh=floor(n/2); z=zeros(J,1);

for k=1:nh

for j=1:J

b=-1+j*h;

% b=-1/2-h+j*h;

ab=r_jacobi(n,b);

xw=gauss(n,ab);

z(j)=sqrt(b+3/2)*xw(n+1-k,1);

% z(j)=sqrt(b+1/2)*xw(n+1-k,1);

% z(j)=-xw(n+1-k,1);

end

for m=1:M

dmin=10^20; x=zeros(m+1,1); zm=zeros(m+1,1);

for jm=1:J-m

for mu=1:m+1

x(mu)=-1+(jm+mu-1)*h;

zm(mu)=z(jm+mu-1);

end

dm=dd(m,x,zm);

if sign((-1)^m*dm)>0

disp(’wrong sign’)

fprintf(f0,h^m*factorial(m)*dm)

error(’quit’)

end
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if abs(dm)<dmin, dmin=abs(dm); end

end

fprintf(f0,h^m*factorial(m)*dmin)

end

fprintf(’\n’)

end

end

function y=dd(n,x,f)

%DD Divided difference.

% Y=DD(N,X,F) evaluates the Nth divided difference

% Y of F, where X=[X_0,X_1,...,X_N]^T,

% F=[F(X_0),F(X_1),...,F(X_N)]^T.

d=zeros(n+1,1);

d=f;

if n==0

y=d(1);

return

end

for j=1:n

for i=n:-1:j

d(i+1)=(d(i+1)-d(i))/(x(i+1)-x(i+1-j));

end

end

y=d(n+1);

The script conj geg.m, as listed, produces an error message “wrong

sign” already for n = 3 and m = 5 and displays the delinquent difference.

The latter is close in absolute value to the machine precision, in fact equal

to 3.684×10−15, and therefore unreliable. To produce the double-precision

result mentioned above, the m-loop in the script has to be run only up

to m = 5. The 36-digit confirmation of (5.6) is produced by the script

sconj geg.m.

5.2. The function h(λ)

The conjecture for the function h is as follows.
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Conjecture 5.2. For all n ≥ 2 the first derivative h′ of the function h in

(5.3) is completely monotone on [0,∞), i.e.,

(−1)mh(m+1)(λ) > 0, m = 0, 1, 2, . . . , λ ≥ 0. (5.7)

The numerical validation of Conjecture 5.2 is done by the same scripts

conj geg.m and sconj geg.m, slightly modified to deal with the function h

in place of f and the interval λ ≥ 0 instead of λ > −1/2. Here, the double-

precision routine does the job quickly for 2 ≤ n ≤ 15 and 0 ≤ m ≤ 6, and

the 36-digit routine for the remaining cases in about 79 h runtime.

With regard to complete monotonicity, the functions g and k in (5.2),

(5.4) do not quite measure up to the functions f and h in (5.1) and (5.3).

It is true that for the single positive zero z(λ), when n = 2 or n = 3,

the functions g′ and k′ are indeed completely monotone, but for n = 4,

computation suggests that for g this is true only for the larger of the two

positive zeros and not for the other, and for the function k only for the

smaller of the two zeros and not for the other.

5.3. The function g(λ)

Conjecture 5.3. For all n ≥ 4, the first derivative g′ of the function g in

(5.2) is completely monotone when z(λ) is the largest positive zero of C
(λ)
n ,

but not so otherwise.

This was verified in the same manner as Conjectures 5.1 and 5.2,

with the same scripts conj geg.m, sconj geg.m, suitably modified. It took

another 15 h of runtime.

For the positive zeros z(λ) of g other than the largest, additional com-

putations (in 36-digit arithmetic) suggest an “incomplete monotonicity”

property, i.e., the existence of a positive integer m0 such that

(−1)mg(m+1)(λ) > 0 for 0 ≤ m ≤ m0, λ > −1/2, (5.8)

with the opposite inequality holding when m = m0 + 1. If we denote the

positive zeros of C
(λ)
n in decreasing order by z

(λ)
n,k, k = 1, 2, . . . , �n/2�, then

it is found for 4 ≤ n ≤ 30 that

m0 = 1 holds

for k = 2 when 17 ≤ n ≤ 30

m0 = 2 holds

for k = 2 when 4 ≤ n ≤ 16
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for k = 3 when 6 ≤ n ≤ 30

for k = 4 when 8 ≤ n ≤ 30

for k = 5 when 17 ≤ n ≤ 30

for k = 6 when 24 ≤ n ≤ 30

m0 = 3 holds

for k = 5 when 10 ≤ n ≤ 16

for k = 6 when 12 ≤ n ≤ 23

for 7 ≤ k ≤ 15 when 2k ≤ n ≤ 30

5.4. The function k(λ)

It took another 60 h of runtime to verify the following conjecture for the

function k.

Conjecture 5.4. For 4 ≤ n ≤ 10, the first derivative of the function k in

(5.4) is incompletely monotone (in the sense of (5.8), with m0 = 3, 2, 1 for

respectively n = 4, 5 ≤ n ≤ 6, n ≥ 7) when z(λ) is the largest positive zero

of C
(λ)
n , and completely monotone otherwise. For 11 ≤ n ≤ 15, both the

largest and second-largest zero is incompletely monotone (the former with

m0 = 1, and the latter with m0 = 8, 5, 3, 2 for respectively n = 11, n = 12,

13 ≤ n ≤ 14, n = 15), while all the other zeros are completely monotone.

This pattern likely continues for n > 15, with the first few positive zeros

(in decreasing order) being incompletely monotone, and the remaining ones

completely monotone.

5.5. The zeros z(λ)

It seems natural to ask whether higher monotonicity properties may hold

also for the zeros themselves. After all, when n = 2, we have −z′(λ) =

(1/2
√

2)(λ + 1)−3/2, which is clearly completely monotone, and the same

is true for n = 3, where −z′(λ) = (1/2
√

2/3)(λ + 2)−3/2, suggesting that

−z′(λ) might be completely monotone for all n ≥ 2,

(−1)m+1z(m+1)(λ) > 0, m = 0, 1, 2, . . . , λ > −1/2.

Computations (even in Matlab double precision), however, confirm this only

for m = 0, the first counterexample occurring already when n = 6, m = 1,
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and λ = −1/2 + h, and others for n = 7, m = 1, and λ = 0, or n = 8,

m = 1, and λ = 1/2.
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Abstract All positive zeros of subrange Jacobi polynomials, orthogonal on [−c, c],
0 < c < 1, with respect to the weight function w(x) = (1 − x)α(1 + x)β , α > −1,
β > −1, are shown in the ultraspherical case α = β, and partly conjectured in the
general case α < β, to be monotonically increasing as functions of c.
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1 Introduction

Subrange Jacobi polynomials are orthogonal with respect to the Jacobi weight func-
tion w(x) = (1− x)α(1+ x)β , α > −1, β > −1, supported either on the symmetric
subinterval [−c, c], 0 < c < 1, or on an asymmetric interval [−1, c], −1 < c < 1.
Computational aspects of these orthogonal polynomials have been considered in [1]
(under the more restrictive assumption c > 0 in the asymmetric case). Here we are
interested in the zeros of these polynomials, in particular in monotonicity properties
of the zeros when considered functions of c.

The asymmetric case is simpler, in this regard, since it has been proven, for general
weight functions, that all zeros increase monotonically with c ([2, Theorem 2]). Here
we consider the more interesting case of symmetric subintervals.
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2 Symmetric subintervals

The monotonicity behavior of the zeros, as in [2], can be studied starting from the
respective Gaussian quadrature formula,

∫ c

−c

p(x)w(x)dx =
n∑

μ=1

λμ(c)p(xμ(c)), p ∈ P2n−1, (2.1)

where xμ(c) are the zeros of the nth-degree subrange Jacobi polynomial and λμ(c)

the corresponding Christoffel numbers. Differentiating with respect to c, we obtain

p(c)w(c) + p(−c)w(−c) =
n∑

μ=1

dλμ(c)

dc
p(xμ(c)) +

n∑
μ=1

λμ(c)p′(xμ(c))
dxμ(c)

dc
.

(2.2)
The principal idea, going back to A. Markov (cf. [4, §6.12]), is to put here

p(x) = [πn(x)]2
x − xν

,

where πn(x) = π
(α,β)
n (x; c) is the (monic) subrange Jacobi polynomial of degree n,

and xν = xν(c) is some fixed zero of πn. Clearly, p(xμ) = 0 for all μ, and also

p′(xμ) = 0 for μ �= ν, and p′(xν) = [π ′
n(xν)]2.

From (2.2), we therefore obtain

π2
n(c)w(c)

{
1

c − xν

−
[
πn(−c)

πn(c)

]2
w(−c)

w(c)

1

c + xν

}
= λν(c)[π ′

n(xν)]2 dxν(c)

dc
.

(2.3)
In the special case α = β of ultraspherical polynomials, we have w(−c) = w(c)

and π2
n(−c) = π2

n(c), so that (2.3) simplifies to

π2
n(c)w(c)

{
1

c − xν

− 1

c + xν

}
= λν(c)[π ′

n(xν)]2 dxν

dc
. (2.4)

Here,
1

c − xν

− 1

c + xν

= 2xν

c2 − x2
ν

is positive if xν > 0. Since the other factors on the left of (2.4), as well as those on the
right multiplying dxν/dc, are all positive, it follows that dxν/dc > 0. Thus, we have

Theorem 1 All positive zeros of the subrange ultraspherical polynomials, orthogo-
nal on [−c, c], 0 < c < 1, are monotonically increasing as functions of c.

Remark to Theorem 1 From the proof of the theorem, it is clear that it holds for
any symmetric weight function, i.e., for any positive function w satisfying w(−x) =
w(x) on [−a, a], 0 < c < a ≤ ∞.
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Fig. 1 Positive zeros of the
subrange Chebyshev polynomial
of degree n = 30 in dependence
of the parameter c
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Figure 1, produced by the Matlab script plot zeros srchebyshev.m,1

shows the positive zeros of the subrange Chebyshev polynomial (α = β = −1/2) of
degree n = 30 as functions of c.

In the general case α �= β, we may, and will, assume α < β, because of
π

(α,β)
n (x; c) = π

(β,α)
n (−x; c). Since

w(−c)

w(c)
=

(
1 − c

1 + c

)β−α

,

we can write (2.3) in the form

π2
n(c)(1 − c)α(1 + c)β

{
1

c − xν

−
[
πn(−c)

πn(c)

]2 (
1 − c

1 + c

)β−α 1

c + xν

}

= λν(c)[π ′
n(xν)]2 dxν

dc
, (2.5)

so that the sign of the derivative dxν/dc is the same as the sign of the expression in
curled brackets, which will be denoted by κn,ν(c),

κn,ν(c) = 1

c − xν

−
[
πn(−c)

πn(c)

]2 (
1 − c

1 + c

)β−α 1

c + xν

. (2.6)

It should be noted that κn,ν(1) = 1/(1−xν), which is positive since xν < 1. Thus,
in the unlikely scenario where c is very close to 1, some or even all zeros may be
monotonically increasing near c = 1.

With regard to the factor multiplying the second term on the right of (2.6), we
make the following interesting conjecture.

Conjecture For any n ≥ 1, α > −1, β > −1 with α < β, and for any c with
0 < c ≤ 1, there holds

ω :=
[
πn(−c)

πn(c)

]2 (
1 − c

1 + c

)β−α

< 1, (2.7)

1All Matlab scripts and routines referenced in this paper can be accessed at the website http://www.cs.
purdue.edu/archives/2002/wxg/codes/ZSRJAC.html.
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where πn( · ) = π
(α,β)
n ( · ; c) is the subrange Jacobi polynomial of degree n

orthogonal on [−c, c] relative to the weight function w(x) = (1 − x)α(1 + x)β .

Empirical evidence in support of the conjecture is provided in Appendix B.

3 Subrange Chebyshev polynomials of the fourth kind

This is the case of Jacobi polynomials with parameters α = −1/2, β = 1/2,
which merits special attention. We assume the zeros xν of the nth-degree polynomial
ordered increasingly,

− c < x1(c) < x2(c) < · · · < xn(c) < c. (3.1)

The Matlab script plot zeros srchebyshev4.m computes and plots the zeros
of subrange Jacobi polynomials. In the case at hand, all zeros for n = 30 are shown at
the bottom of Fig. 2 for .02 ≤ c ≤ .98. The plot suggests that the negative zeros are
monotonically decreasing, and the positive zeros monotonically increasing as func-
tions of c. Actually, this is not quite true. It is true for all zeros unless c is close to 1.
For the values c = .02 : .02 : .98 of c, exceptions have been observed only for the
largest negative zeros. When n is even, they are monotonically decreasing for c less
than about .89, consistently for all (even) n, and monotonically increasing thereafter.
When n is odd, they are decreasing for c less than about .979, and increasing there-
after. This is illustrated for n = 30 in the top-left plot of Fig. 2, and for n = 29 in the
top-right plot. The behavior described is consistent with the remark made after (2.6).

4 Subrange Jacobi polynomials with parameters α < β

In the case now under consideration, the upper half of the zeros display a more coher-
ent pattern than the lower half, both with regard to the sign of the zeros and their
monotone behavior as functions of c.

For the upper half of the zeros, we have

Theorem 2 Assuming the conjecture in Section 2 is true, all zeros xν , ν = �n/2	+1 :
n, if positive, of the subrange Jacobi polynomial of degree n, n ≥ 1, orthogonal on
[−c, c], 0 < c < 1, with respect to the weight function w(x) = (1 − x)α(1 + x)β ,
α < β, are monotonically increasing as functions of c.

Proof From (2.6) and (2.7), we have

1

c − xν

− ω

c + xν

= (1 − ω)c + (1 + ω)xν

c2 − x2
ν

> 0,

since 0 < xν < c by assumption, and 0 < ω < 1 by the conjecture of Section 2.
Thus, the assertion of Theorem 2 follows from what was said after (2.5).
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Fig. 2 Zeros of the subrange Chebyshev polynomial of the fourth kind in dependence of the parameter c;
n = 30, largest negative zero (top left); n = 29, largest negative zero (top right); n = 30, all zeros (bottom)

Remark 1. All zeros xν in question were found, using the Matlab script
mon zeros subjacobi.m (which also verifies monotonicity of the zeros), to be
positive when n ≤ 30, α, β = −.8 : .2 : 10, α < β, and c = .02 : .02 : .98. The
script may take many hours to run.

2. The conjecture in Section 2 has been proven to be true [3] for Jacobi parameters
α ≤ 0, β ≥ 0. In this case, the claim in Theorem 2 also follows from A. Markov’s
theorem; see Appendix A.

Plots of the zeros xν , ν = �n/2	 + 1 : n, for n = 30, α = −.8, β = 10,
are produced by the Matlab script plot zeros subjacobi.m and shown on
the left of Fig. 3. The plot on the right shows the zeros xν , ν = 1 : �n/2	, for
the same values of n, α, and β. Here, as was determined by the Matlab script
run anal zeros subjacobi.m, the zeros start out decreasing monotonically,
but at some point, sooner the larger the zero, turn around and begin to increase. The
two largest zeros even become positive, the first at about c = .78, the other already
at about c = .3. The same pattern, perhaps in a less pronounced form, persists for
smaller values of β − α.

Both plots were produced by the routine plot zeros subjacobi.m.
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Fig. 3 Zeros of the subrange Jacobi polynomial of degree n = 30 for α = −.8, β = 10 in dependence of
the parameter c; upper half of the zeros (left); lower half of the zeros (right)

Appendix A: A partial result

Denote the subrange Jacobi polynomial of degree n, orthogonal on [−c, c], 0 <

c < 1, relative to the Jacobi weight function w(α,β)(x) = (1 − x)α(1 + x)β , by
πn(x) = π

(α,β)
n (x; c). Let pn(x) = p

(α,β)
n (x; c) be the monic polynomial of degree

n orthogonal on [−1, 1] relative to the weight function v(α,β)(x; c) = w(α,β)(cx),
−1 ≤ x ≤ 1. Then, as is easily seen (also see [1, §2]),

p(α,β)
n (x; c) = 1

cn
π(α,β)

n (cx; c). (A.1)

Since p
(α,β)
n is a polynomial orthogonal with respect to the weight functionw(x; c) =

(1−cx)α(1+cx)β , x ∈ (−1, 1), depending on a parameter, we can apply A.Markov’s
theorem (cf. [4, §6.12]). According to this theorem, all zeros xν of p

(α,β)
n are

monotonically increasing functions of c in (0, 1) provided the Markov function

M(x; c) = ∂w(x; c)/∂c

w(x; c)

is monotonically increasing as a function of x in (−1, 1). We have

∂w(x; c)

∂c
= α(1 − cx)α−1(−x)(1 + cx)β + βx(1 − cx)α(1 + cx)β−1

= x
{
β(1 − cx)α(1 + cx)β−1 − α(1 − cx)α−1(1 + cx)β

}
,

so that

M(x; c) = x

{
β

1 + cx
− α

1 − cx

}
, −1 < x < 1.

Since (
x

1 + cx

)′
= 1

(1 + cx)2
,

(
x

1 − cx

)′
= 1

(1 − cx)2
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(primes indicate derivatives with respect to x), there holds

M ′(x; c) = β

(1 + cx)2
− α

(1 − cx)2
.

Therefore, if α ≤ 0 and β ≥ 0 and not both, α and β, are zero, in which case
Theorem 1 applies, we have M ′(x; c) > 0 on (−1, 1). Hence, by Markov’s theo-
rem, all zeros of the orthogonal polynomial p

(α,β)
n are monotonically increasing as

functions of c. Since the zeros of π
(α,β)
n are ξν = c xν and

dξν

dc
= xν + c

dxν

dc
,

it follows that all positive zeros of π
(α,β)
n ( · ; c) are monotonically increasing func-

tions of c in (0, 1).

Appendix B: Empirical evidence supporting the conjecture in Section 2

Using (A.1), we get from (2.7)

ω =
[

p
(α,β)
n (−1; c)

p
(α,β)
n (1; c)

]2 (
1 − c

1 + c

)β−α

. (B.1)

Since w(α,β)(0) ≡ 1, the polynomial p
(α,β)
n (x; c), as c ↓ 0, tends to the monic

Legendre polynomial of degree n, and hence ω = 1 for c = 0. What we conjecture,
in fact, is that for any n ≥ 1 and any α, β with β > α > −1, the quantity ω in (B.1)
decreases monotonically as a function of c, c ∈ (0, 1]. Since ω = 1 for c = 0, it then
follows that 0 < ω < 1 for c in (0, 1], as conjectured in (2.7).

To prove this analytically, by differentiating ω with respect to c, is virtually impos-
sible, and even unlikely to succeed in symbolic computation, since the dependence
of p

(α,β)
n ( · ; c) on c is very complicated. However, we provide rather compelling

empirical evidence that ω indeed decreases as a function of c.
We begin by computing and plotting ω for n = 30, for c = 0 : .01 : 1, and for

selected values of α, β, namely the seven values α = [−1/2, 0, 1/2, 1, 2, 5, 10] of α

and for each α the five values β = α + [1/2, 1, 2, 5, 10] of β. The seven plots are
produced by the Matlab routine conj omega.m, which also verifies monotonicity.
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Fig. 4 The function ω in dependence of c for n = 30 and selected values of (α, β), β > α
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0 0.5 1
0

0.5
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Fig. 5 The function ω in dependence of c for n = 10, n = 30, n = 50 (from left to right), and for integer
values of (α, β), β > α

Since all these plots look quite alike, we show, in the far left of Fig. 4, only the fourth
plot as a representative for all seven. The same routine also plots ω for α = −1/2,
β = 30 and for α = 5, β = 50, the result of which is shown in the second and third
plot of Fig. 4. The flatness at the bottom of these curves, of course, is caused by the
second factor in (B.1).

Clearly, when β = α, we have ω = 1, since not only the second factor in (B.1), but
also the first, is equal to 1. Thus, when β is close to, but larger than α, inevitably ω

will be close to 1 for quite a while, but eventually will have to vanish at c = 1 owing
to the second factor vanishing there. This explains the behavior of the curves near the
top (corresponding to β ≈ α) of the first plot in Fig. 4, and also makes plausible the
behavior of ω shown in the other two plots of the figure, typical for values of α and
β far apart.

The plots in Fig. 5 show ω for α = 0 : 20, β = α + [1 : 20], that is, for inte-
ger values of α, β, for which the computation (by 1-component discretization) of
the polynomials p

(α,β)
n ( · ; c) is fast, since the weight function w(α,β)(cx) is a poly-

nomial of degree α + β; cf. [1, §2]. The three plots, produced by the Matlab script
run0 omega.m, are respectively for n = 10, n = 30, and n = 50.

The evidence for the validity of our conjecture produced so far relates mostly to
the rapid descent of ω to 0 with c approaching 1; see, however, Fig. 4. The more
delicate behavior for small c, say 0 ≤ c ≤ .1, requires further scrutiny. Figure 6,
produced by the script run1 omega.m, shows plots of ω for c in the interval [0, .1],
for β = α + [1 : 20] (from top to bottom), superimposed as α varies from 0 to
20 in steps of 1. It can be seen that each plot is practically a linearly decreasing
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Fig. 6 The function ω in dependence of c on [0, .1] for n = 10, n = 30, n = 50 (from left to right), and
in each plot for β = α + [1 : 20] (where α = 0 : 20)
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Fig. 7 The coefficient λ(n) in
(B.2)
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Table 1 Approximation errors
for ω n maxerr α β c minerr α β c

5 3.94 (− 2) 0 20 .1 5.45 (− 6) 11 26 .06

10 9.94 (− 3) 0 20 .1 2.84 (− 7) 0 14 .06

15 4.44 (− 3) 0 20 .1 6.08 (− 7) 17 37 .04

20 2.50 (− 3) 0 20 .1 1.17 (− 8) 19 32 .07

25 1.61 (− 3) 0 20 .1 1.29 (− 7) 8 21 .06

30 1.12 (− 3) 0 20 .1 1.10 (− 7) 8 22 .05

35 8.22 (− 4) 0 20 .1 2.22 (− 7) 15 26 .09

40 6.30 (− 4) 0 20 .1 1.87 (− 8) 10 28 .03

45 4.98 (− 4) 0 20 .1 2.23 (− 8) 0 13 .04

50 4.03 (− 4) 0 20 .1 1.82 (− 8) 3 13 .06

Fig. 8 The function ω in
dependence of c for n = 30 and
selected values of (α, β) in the
domain 0 ≥ β > α > −1
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Fig. 9 The function ω in dependence of c on [0, .1] for n = 10, n = 30, n = 50 (from left to right), and
in each plot for β = α + [.05 : .05 : 1] ≤ 0 (where α = −.95 : .05 : −.05)

function of c and (judging from the thickness of the curve) essentially independent
of α, aslight dependence showing only when c is near .1 and β near 20. The slopes of
the curves, using the script run2 omega.m, are found to depend essentially linearly
on β − α, with coefficient −λ depending less on β the larger n. Taking appropriate
mean values, one finds

ω ≈ 1 − λ(n)(β − α)c, 0 ≤ c ≤ .1, 5 ≤ n ≤ 50. (B.2)

The coefficients λ(n) for n = 5 : 50 are generated by the script run2 omega.m
and plotted by the script plot lambda.m. The curve produced is shown in Fig. 7.

The maximum and minimum relative error in ω, taken over all α = 0 : 20, β =
α + [1 : 20], c = .01 : .01 : .1, are shown in Table 1, where the columns headed by
α, β, c show the values of these parameters at which the maxima resp. minima are
attained.

As can be seen, the maximum error, attained consistently at α = 0 and at the
largest values of β and c, decreases from about 4×10−2 to 4×10−4 as n increases
from 5 to 50, whereas the minimum error, not unexpectedly, is always attained near
c = 0.

The (α, β)-domain covered so far is β > α ≥ 0. It remains to look at the small
triangular domain 0 ≥ β > α > −1, since for α < 0, β > 0 the conjecture has been
proved; see Remark 2 in Section 4. The evidence in this case is very similar to the one
already presented. In fact, the findings analogous to those depicted in the first plot of
Fig. 4, but for α, β = −.9 : .1 : 0, β > α, are shown in Fig. 8 produced by the script
conj omega0.m, while those analogous to Fig. 6 are shown in Fig. 9 produced by
the script run1 omega0.m.
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2. Gautschi, W., Milovanović, G.V.: Binet-Type Polynomials and Their Zeros, in preparation
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Chapter 14

A Discrete Top-Down Markov
Problem in Approximation Theory
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The Markov brothers’ inequalities in approximation theory concern
polynomials p of degree n and assert bounds for the kth derivatives
|p(k)|, 1 ≤ k ≤ n, on [−1, 1], given that |p| ≤ 1 on [−1, 1]. Here we go
in the other direction, seeking bounds for |p|, given a bound for |p(k)|.
For the problem to be meaningful, additional restrictions on p must be
imposed, for example, p(−1) = p′(−1) = · · · = p(k−1)(−1) = 0. The
problem then has an easy solution in the continuous case, where the
polynomial and their derivatives are considered on the whole interval
[−1, 1], but is more challenging, and also of more interest, in the discrete
case, where one focuses on the values of p and p(k) on a given set of
n− k+1 distinct points in [−1, 1]. Analytic solutions are presented and
their fine structure analyzed by computation.

Keywords : Markov problem; discrete; top-down.

Mathematics Subject Classification 2010: 41A10, 41A17

1. Introduction

For a polynomial p of degree n = 2 such that

|p(t)| ≤ 1 for − 1 ≤ t ≤ 1, (1.1)

267
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the 19th-century chemist Dmitri I. Mendeleev (the creator of the periodic

table of elements) raised the question of what this implies with regard to

the magnitude of |p′(t)| on [−1, 1]. He found the answer to be 4 and told

this to one of his colleagues, the mathematician Andrei A. Markov, who in

turn generalized and solved the question in 1890 for arbitrary n by showing

that

|p′(t)| ≤ n2 for − 1 ≤ t ≤ 1. (1.2)

For higher, say kth-order, derivatives, 1 ≤ k ≤ n, the same problem was

solved by the younger brother Vladimir A. Markov, who showed, rather

remarkably, that

|p(k)(t)| ≤ n2(n2 − 12) · · · [n2 − (k − 1)2]

1 · 3 · · · (2k − 1)
for − 1 ≤ t ≤ 1. (1.3)

The results of the brothers Markov have generated a great deal of interest

in the approximation theory community and led to a considerable body of

literature; see, e.g., the historical review of Shadrin [5].

We may call these problems “bottom-up”, since they go from the 0th

derivative up to the kth derivative. Here we look at top-down Markov

problems, assuming

|p(k)(t)| ≤ 1 for − 1 ≤ t ≤ 1, (1.4)

and seeking a bound for |p(t)| on [−1, 1]. Since we can always add a

polynomial of degree k − 1 to p without affecting (1.4), top-down Markov

problems become meaningful only if additional restrictions are imposed

on the polynomial p. The simplest ones are to prescribe the values of the

polynomial and its first k − 1 derivatives to be zero at the left endpoint

of the interval, p(−1) = p′(−1) = · · · = p(k−1)(−1) = 0. Even then, the

answer is fairly trivial, since p(t) is the k-times iterated integral from −1

to t of p(k), i.e., because of the initial conditions imposed,

p(t) =

∫ t

−1

(t− τ)k−1

(k − 1)!
p(k)(τ)dτ. (1.5)

Therefore, by (1.4),

|p(t)| ≤
∫ t

−1

(t− τ)k−1

(k − 1)!
dτ =

(t+ 1)k

k!
≤ 2k

k!
for − 1 ≤ t ≤ 1. (1.6)

The bound is sharp, being attained when p(k)(t) ≡ 1.
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This straightforward answer is probably the reason why top-down

Markov problems have never been given any attention. However, if we

replace (1.4) by

|p(k)(τν)| ≤ 1, ν = 1, 2, . . . , n− k + 1, (1.7)

for a set of n − k + 1 distinct points {τν} in [−1, 1] and, as before,

assume p(−1) = p′(−1) = · · · = p(k−1)(−1) = 0, we can ask, for each

ν = 1, 2, . . . , n−k+1, the question of bounding |p(τν)| over all polynomials

satisfying the constraints imposed. This problem is meaningful and not

without interest; we call it a discrete top-down Markov problem. To the

best of our knowledge, the problem has never been studied before. The

special case k = 1 of the problem, however, came up recently in work of

Hager et al. [4] on orthogonal collocation methods in optimal control. The

n points {τν} in this application are the zeros of the Legendre polynomial

of degree n, and the authors conjectured for |p(τn)| the bound τn + 1 and

corresponding extremal polynomial p∗(t) = t + 1 and the same bound for

|p(τν)|, 1 ≤ ν < n.

Thus, the problem we propose is the following.

Problem 1.1 (Discrete Top-Down Markov Problem). Given integers

n ≥ 1 and 1 ≤ k ≤ n, and given n − k + 1 distinct points T(k)
n = {τν} in

[−1, 1], −1 ≤ τ1 < τ2 < · · · < τn−k+1 ≤ 1, consider the following class of

polynomials of degree n,

Q(k)
n = {p ∈ Pn : p(−1) = p′(−1) = · · · = p(k−1)(−1) = 0,

(1.8)
and |p(k)(τν)| ≤ 1 for ν = 1, 2, . . . , n− k + 1}.

For each ν, ν = 1, 2, . . . , n− k + 1, determine the maximum possible value

M
(k)
n,ν of |p(τν)| when p ∈ Q(k)

n ,

M (k)
n,ν = max

p∈Q(k)
n

|p(τν)|, ν = 1, 2, . . . , n− k + 1. (1.9)

It may be instructive to look at two very special cases, in which not

only the continuous, but also the discrete problem has an easy solution.

The first case is n = k = 1, and τ1 ∈ (−1, 1]. Here we are dealing with

the class of linear functions p(t) that vanish at t = −1. In the continuous

problem one adds the condition |p′(t)| ≤ 1 on the interval [−1, 1], and in

the discrete problem, the condition |p′(τ1)| ≤ 1 at some point τ1 in (−1, 1].

In both problems the extremal polynomials are p(t) = t + 1, for which
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Fig. 1. Continuous vs. discrete top-down Markov problem in the case n = k = 1.

max|t|≤1 |p(t)| = 2 in the continuous case, and M
(1)
1,1 = 1+ τ1 in the discrete

case; see Fig. 1.

The second special case is k = n, τ1 ∈ (−1, 1]. Here, the initial conditions

in the problem yield p(t) = p(n)(−1)(t+ 1)n/n! and the assumption about

p(n), which is a constant, is |p(n)| ≤ 1. Therefore, max|t|≤1 |p(t)| = 2n/n! in

the continuous problem, and

M
(n)
n,1 =

(1 + τ1)
n

n!
(k = n) (1.10)

in the discrete one, the extremal polynomials being (t + 1)n/n! in both

cases.

In the general case, explicit answers to the discrete top-down problem

can still be given, but seem to require computational work to get detailed

information about their properties for concrete choices of the support

points. In Section 2 we give a complete solution of our problem and

introduce terminology for further study. Computer software to evaluate

the solution is provided in Section 3, and specific examples are discussed in

Section 4.

2. Solution of the Problem

We present the solution of our problem in the form of a theorem.

Theorem 2.1. Let �μ, μ = 1, 2, . . . , n− k+1, be the elementary Lagrange

interpolation polynomials of degree n−k associated with the n−k+1 support
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points of T(k)
n ,

�μ(τ) =
∏

κ=1
κ �=μ

n−k+1
τ − τκ
τμ − τκ

, μ = 1, 2, . . . , n− k + 1 if k < n;

�1(τ) = 1 if k = n. (2.1)

Let s
(k)
ν = [s

(k)
ν,1 , s

(k)
ν,2 , . . . , s

(k)
ν,n−k+1] be the vector with entries s

(k)
ν,μ = 1 if the

integral

I(k)
ν,μ =

∫ τν

−1

(τν − τ)k−1�μ(τ)dτ (2.2)

is positive, s
(k)
ν,μ = −1 if it is negative, and an arbitrary value, for example

s
(k)
ν,μ = 0, otherwise. Define the polynomial p∗

ν,k of degree n by

p∗
ν,k(t) =

1

(k − 1)!

∫ t

−1

(t− τ)k−1pn−k(τ ; s(k)
ν )dτ, (2.3)

where pn−k( · ; s(k)
ν ) is the interpolation polynomial of degree ≤ n−k passing

through the n− k + 1 points (τμ, s
(k)
ν,μ). Then

M (k)
n,ν =

1

(k − 1)!

n−k+1∑

μ=1

∣∣∣∣
∫ τν

−1

(τν − τ)k−1�μ(τ)dτ

∣∣∣∣ ,

ν = 1, 2, . . . , n− k + 1, (2.4)

and p∗
ν,k in (2.3) is the associated extremal polynomial, for which

M (k)
n,ν = p∗

ν,k(τν), ν = 1, 2, . . . , n− k + 1. (2.5)

Proof. Let p ∈ Q(k)
n , 1 ≤ k ≤ n. Because of p(−1) = p′(−1) = · · · =

p(k−1)(−1) = 0, one has (cf. (1.5))

p(t) =

∫ t

−1

(t− τ)k−1

(k − 1)!
p(k)(τ)dτ. (2.6)

Since the (n − k + 1)-point Lagrange interpolation formula produces an

exact identity when applied to any polynomial of degree ≤ n − k, we can
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write

p(k)(τ) =

n−k+1∑

μ=1

p(k)(τμ)�μ(τ), (2.7)

with �μ as defined in (2.1). Therefore, by (2.6),

p(t) =

∫ t

−1

(t− τ)k−1

(k − 1)!

n−k+1∑

μ=1

p(k)(τμ)�μ(τ)dτ,

that is,

p(t) =
1

(k − 1)!

n−k+1∑

μ=1

p(k)(τμ)

∫ t

−1

(t− τ)k−1�μ(τ)dτ. (2.8)

Now consider the case t = τν . We have

|p(τν)| =
1

(k − 1)!

∣∣∣∣∣
n−k+1∑

μ=1

p(k)(τμ)

∫ τν

−1

(τν − τ)k−1�μ(τ)dτ

∣∣∣∣∣ ,

ν = 1, 2, . . . , n− k + 1. (2.9)

The only way we can control the magnitude of this expression is by choosing

the values p(k)(τμ) subject to the constraints of the problem. To maximize

|p(τν)|, we select p(k)(τμ) = 1 if the integral in (2.9), that is, I
(k)
ν,μ in (2.2),

is positive, p(k)(τμ) = −1 if it is negative, and an arbitrary value p(k)(τμ)

otherwise. This is always possible, since p(k) is a polynomial of degree n−k,
and yields (2.4).

The extremal polynomial, by construction and the definition of the sign

vector s
(k)
ν is (2.8) with p(k)(τμ) = s

(k)
ν,μ, μ = 1, 2, . . . , n − k + 1, that is,

(2.3). �

We remark that the integral (2.2) may indeed vanish for some μ, in which

case s
(k)
ν,μ can be chosen arbitrarily. A simple example is n = 2, k = 1, and

τ1 = −1/3, τ2 = 1/3. Then I
(1)
2,2 =

∫ 1/3

−1
�2(τ)dτ =

∫ 1/3

−1
[(3/2)τ+1/2]dτ = 0.

If we choose s
(1)
2,2 = σ, with σ arbitrary, one gets from (2.3) and (2.5),

M
(1)
2,2 =

∫ 1/3

−1

p1(τ ; s
(1)
2 )dτ =

∫ 1/3

−1

[
3

2
(σ − 1)τ + 1 +

1

2
(σ − 1)

]
dτ

=

[
3

4
(σ − 1)τ2 + (1 +

1

2
(σ − 1))τ

]1/3

−1

=
4

3
,

which is the correct answer, regardless of the choice of σ.
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Note that for k = n, since �1(τ) = 1, we get from (2.4)

M
(n)
n,1 =

(1 + τ1)
n

n!
,

in agreement with (1.10).

The value of M
(k)
n,ν in (2.4) could be further estimated by

M (k)
n,ν <

1

(k − 1)!

n−k+1∑

μ=1

∫ τν

−1

(τν − τ)k−1|�μ(τ)|dτ

<
(τν + 1)k−1

(k − 1)!

∫ τν

−1

n−k+1∑

μ=1

|�μ(τ)|dτ

=
(τν + 1)k−1

(k − 1)!

∫ τν

−1

λn−k+1(τ)dτ

<
(τν + 1)k

(k − 1)!
Λn−k+1, ν = 1, 2, . . . , n− k + 1,

where λn−k+1(τ) is the Lebesgue function for (n− k+ 1)-point polynomial

interpolation and Λn−k+1 = max−1≤τ≤1 λn−k+1(τ) the Lebesgue constant.

However, when k is fixed and n large, this may be a gross over-estimation,

since, even in the best of circumstances, Λn−k+1 grows logarithmically to

∞ as n → ∞ whereas the bounds M
(k)
n,ν , as will be seen in Section 4.1.2,

are often smaller than 2.

The sign pattern for the integrals I
(k)
ν,μ in (2.2) is characterized by the

(n− k + 1) × (n− k + 1) “sign-pattern matrix”

Sn−k+1 = [s
(k)
i,j ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

s
(k)
1

s
(k)
2

...

s
(k)
n−k+1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.10)

where each row vector s
(k)
ν exhibits the signs of the integrals I

(k)
ν,μ for μ =

1, 2, . . . , n−k+1. The matrix Sn−k+1 is uniquely determined by the n−k+1

support points τν if all integrals I
(k)
ν,μ are different from zero. Its features

greatly influence the way the bounds M
(k)
n,ν behave.

We illustrate this in the case k = 1 and τν the zeros of the Legendre

polynomial of degree n. In this case (and in many others, cf. the end of
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Section 4.1.2), the matrix Sn is found to have the following characteristic

structure: all elements on the diagonal and below are 1, and those in

successive upper side diagonals are −1, +1, −1, . . . ,

si,j = 1 if j ≤ i,
(2.11)

si,i+r = (−1)r if r = 1, 2, . . . , n− i.

We call this the canonical sign pattern. Thus, in successive rows of Sn, the

number of sign changes diminishes by 1 from one row to the next, being

n − 1 in the first row, and 0 in the last. In particular, for ν = n, by (2.5)

and (2.3), since pn−1( · ; s(1)
n ) ≡ 1, we get the bound M

(1)
n,n = 1 + τn, which

is slightly smaller than the one for k = 1 in the continuous case (cf. (1.6)).

But is M
(1)
n,n the largest of all individual bounds M

(k)
n,ν?

The graphs in Fig. 2, produced by the scripta plot pnmk leg20.m, show

the polynomials pn−1( · ; s(1)
ν ) in the case n = 20, for ν = 1, 7, 13, and 19.
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Fig. 2. The polynomial p19( · ; s(1)ν ) for ν = 1, 7, 13, 19 (from top left to bottom right).

aAll Matlab scripts referenced in this chapter are collected in [3].
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As expected, the oscillations (about 0) diminish with increasing ν and also

shift to the right. Combined with the fact that the interval of integration

in (2.2) also increases, this contributes to the bounds M
(k)
n,ν likely to exhibit

monotonic behavior as functions of ν.

Definition 2.2. The set T(k)
n of n−k+1 support points τν is said to have

Property Mk (“M for “monotone”) if

0 ≤ M
(k)
n,1 < M

(k)
n,2 < · · · < M

(k)
n,n−k+1. (2.12)

A collection of sets {T(k)
n }, k = 1, 2, . . . , n, is said to have Property M, if

each set T(k)
n has Property Mk.

An explicit criterion for the validity of Property M1 can be given in the

case n = 2, k = 1, using (2.5) and (2.3). One finds

M
(1)
2,1 = (1 + τ1)

[
1 +

1 + τ1
τ2 − τ1

]
, M

(1)
2,2 = 1 + τ2,

so that Property M1 holds precisely if

τ2 − τ1
1 + τ1

> 1,

that is, if the interval [τ1, τ2] is larger than the interval [−1, τ1]. In particular,

it holds when τ1 = −1. Also note that Property Mn, involving only one

bound, M
(n)
n,1 , always holds trivially.

In the case where Property Mk holds, we may further distinguish

between the largest bound M
(k)
n,n−k+1 to be normal or nonnormal according

to the following definition.

Definition 2.3. When Property Mk holds, the largest bound M
(k)
n,n−k+1

is called normal if the associated sign-pattern vector s
(k)
n−k+1 consists of 1s

only, so that, by (2.5) and (2.3) with ν = n− k + 1,

M
(k)
n,n−k+1 =

(τn−k+1 + 1)k

k!
(normal). (2.13)

It is said to be supnormal (respectively, subnormal) if M
(k)
n,n−k+1 is larger

(respectively smaller) than (τn−k+1 + 1)k/k!.

The fine structure of the solution as defined by these concepts will be

examined for concrete support points T(k)
n by computation in Section 4.
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3. Software

A main piece of software, in Matlab double precision, for computing the

quantities M
(k)
n,ν is the routine Mnu.m, shown below, using (2.4). It first

transforms the required integrals to integrals extended over [−1, 1] before

computing them (exactly) by �(n + 1)/2	-point Gaussian quadrature. We

also prepared an analogous symbolic routine sMnu.m that can be run in

variable-precision arithmetic to check the accuracy of the double-precision

answers. Both routines call on routines ellmu.m resp. sellmu.m evaluating

the elementary Lagrange interpolation polynomials. A number of additional

Matlab routines and scripts, which are identified in the proper context, have

been written, making freely use of routines from the software package OPQ [2,

Section 1], for example the routine gauss.m in the program displayed below.

Among them is the routine pstar.m evaluating the extremal polynomial

p∗
ν,k of (2.3).

Here, we list the principal routines Mnu.m and pstar.m.

function [M,S]=Mnu
%MNU The vector of the quantities in Eq. (1.9) and the
%sign-pattern matrix S of Eq. (2.10).
% Given the (n-k+1)x1 array tau of support points, the
% function [M,S]=Mnu generates the (n-k+1)x1 array M of
% the quantities M_{n,1},M_{n,2},...,M_{n,n-k+1} in Eq. (2.4),
% using floor((n+1)/2)-point Gaussian quadrature to (exactly)
% compute the integrals in Eq. (2.4). The global variable ab0
% is the N0x2 array, N0=floor((N+1)/2), of recurrence
% coefficients for monic Legendre polynomials, useful when
% the routine is run for many values of n<=N.

global n k tau ab0
M=zeros(n-k+1,1); S=zeros(n-k+1);
n0=floor((n+1)/2);
xw0=gauss(n0,ab0); x0=xw0(:,1); w0=xw0(:,2);
for nu=1:n-k+1

L=0;
for mu=1:n-k+1
if tau(nu)==-1

s=0;
else

t=.5*(tau(nu)-1+(tau(nu)+1)*x0); y=ellmu(mu,t);
s=sum(w0.*(tau(nu)-t).^(k-1).*y);

end
if abs(s)<1e-14

S(nu,mu)=0;
elseif s>0
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S(nu,mu)=1;
else

S(nu,mu)=-1;
end
L=L+abs(s);

end
M(nu)=.5*(tau(nu)+1)*L/factorial(k-1);

end

function y=pstar(nu,t)
%PSTAR Extremal polynomial
% Y=PSTAR(NU,T) evaluates the extremal polynomial p_{NU,K}^*(T),
% given the (N-K+1)x1 array TAU of support points and the
% (N-K+1)x(N-K+1) array S of sign patterns. The variable T has
% to be a single value.

global n k tau S ab0
xw0=gauss(floor((n+1)/2),ab0); x0=xw0(:,1); w0=xw0(:,2);
sx=size(x0); t1=(t-1+(t+1)*x0)/2;
pnmk=zeros(sx);
for mu=1:n-k+1

pnmk=pnmk+S(nu,mu)*ellmu(mu,t1);
end
y=sum(w0.*(t-t1).^(k-1).*pnmk);
y=(t+1)*y/(2*factorial(k-1));

4. Examples

4.1. Zeros of Jacobi polynomials

In this subsection, T(k)
n = {τν} will be the zeros of the Jacobi polynomial

P
(α,β)
n−k+1 of degree n− k + 1 with parameters α > −1, β > −1.

4.1.1. Property M

We first try to find out in which part of the (α,β)-plane Property M holds

for {T(k)
n }. We do this by letting β, for fixed α, move upwards from β = −0.9

(where Property M holds) in steps of 0.1 until Property M fails for the first

time. If this happens at β = β0, we will have two values of β, βlow = β0−0.1

and βhigh = β0, at the first of which Property M holds, and at the second

of which it does not. We then apply a bisection type method to determine

a more accurate value of β∗ such that Property M holds for β < β∗ and

fails to hold for β > β∗. If we do this for α = −0.9:0.1:5 and plot β∗

vs. α, we obtain a curve in the (α,β)-plane, β = β∗(α), −0.9 ≤ α ≤ 5,

below of which Property M holds, and above of which it does not. This
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Fig. 3. Domains DM for zeros of Jacobi polynomials

is implemented in the script Mnu test2.m and the routine PropM.m, for

n = 10, 20, and 40. The curves produced are shown in Fig. 3, generated by

the script plot bestar.m.

The domains DM in the (α,β)-plane in which Property M holds

are quite large, containing most likely the whole strip −1<α<∞,

−1<β≤ 0.15. The important case α=β=0 of Legendre polynomials

is well within this domain. It looks as if the upper boundary, when

n→ ∞, would become a horizontal line at the height of about 0.15, an

expectation that was reinforced when the script Mnu test2.m was run

with n = 80.

It may be thought that the discrete Markov problem yields solutions

that are similar to those of the continuous problem, that is, producing

bounds for |p| nearly equal, or less than 2. The present discussion provides

an opportunity to dispel this notion. As can be seen from Fig. 3, Property

M holds in a domain that extends far (probably infinitely far) to the right

and includes the positive real axis. So, let us look at the following exotic

example.

Example 4.1. The case α = 20, β = 0.

For simplicity, we take k = 1 and n = 10. The bounds M
(1)
10,ν, produced

by the script Ex4 1.m, are then as shown in Table 1. We can see that M
(1)
10,10

is anything but “nearly equal, or less than to 2”! (See also Example 4.2.)
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Table 1. Bounds for α = 20, β = 0.

ν M
(1)
10,ν

1 1.801846843051301e−02
2 5.842152063398374e−02
3 1.268621727178132e−01
4 2.226277805868339e−01
5 3.440754243906574e−01
6 4.890625971135910e−01
7 6.552254810765432e−01
8 1.088942247153418e+00
9 4.231399671654690e+00

10 4.323112886064376e+01

−1 −0.5 0 0.5 1
−0.2

0

0.2

Fig. 4. Zeros of the Jacobi polynomial P
(20,0)
10 .

The corresponding sign-pattern matrix is

S
(1)
10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1 1 −1 1 −1 1 −1

1 1 −1 1 −1 1 −1 1 −1 1

1 1 1 −1 1 −1 1 −1 1 −1

1 1 1 1 −1 1 −1 1 −1 1

1 1 1 1 1 −1 1 −1 1 −1

1 1 1 1 1 1 −1 1 −1 1

1 1 1 1 1 1 1 −1 1 −1

1 −1 1 −1 1 1 1 1 −1 1

−1 1 −1 1 −1 1 −1 1 1 −1

1 −1 1 −1 1 −1 1 −1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Interestingly, it has the canonical ±1 Toeplitz pattern in the upper

triangular part, but quite a few −1s in the lower triangular part. The

support points τν , plotted by the script plot tau20.m and displayed in

Fig. 4, are considerably “left-heavy” and therefore allow the interpolation

polynomial p9( · ; s(1)
10 ), plotted by the script plot pnmk jac10.m, in the
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Fig. 5. The interpolation polynomial p9( · ; s(1)10 ) on [−1, τ10].

last quarter of the interval [−1, 1] to unimpededly soar to great heights in

absolute value. Just before t = τ10 it has a large hump as shown in Fig. 5,

causing the last bound in Table 1 to be unusually large.

Returning to Fig. 3, what can be said about the bounds M
(k)
n,ν (for

n = 10, 20, 40) when β is above the respective curve in Fig. 3? The matter

is then more complicated since the zeros of the Jacobi polynomials, when

β becomes large, become increasingly “right-heavy” and, as a result, at

least when k = 1, the interpolation polynomial pn−1 in (2.3) is large

(possibly very large) at the left end of the interval [−1, 1], regardless of

the value of ν. This makes the bounds M
(1)
n,ν large for all ν, and the issue of

monotonicity becomes blurred. There may no longer prevail any particular

pattern with regard to the relative magnitudes of the bounds. This changes,

however, when k becomes larger, because of the mitigating influence of the

factor (τν − τ)k−1 in (2.3). Indeed, already when k = 2, the bounds are

monotonically increasing for n = 10, 20, 40, at least when β ≤ 10, but very

likely even beyond that.

When k = 1, it is meaningful to ask for what values of α, β we have

M
(1)
n,ν ≤ M

(1)
n,n for all 1 ≤ ν < n. This was determined by the script

Mnu test5.m and the routine PropMax.m similarly as before and led to

the curves (in red) of Fig. 6, below of which this maximum property holds.

They were produced by the script plot bestarMax.m. The figure, at the

bottom, also reproduces the three curves of Fig. 3.
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Fig. 6. Domains for zeros of Jacobi polynomials in which M
(1)
n,n is the largest bound.

Here is another somewhat exotic example.

Example 4.2. The case α = 0, β = 5 (above the red curves in Fig. 6) and

k = 1.

Taking again n = 10, the script Ex4 2.m now obtains uniformly large

bounds shown in Table 2 and the sign-pattern matrix

S
(1)
10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As can be seen, the columns of S
(1)
10 are alternately all 1s and all −1s. The

support points τν , plotted by the script plot tau5.m and shown in Fig. 7,

are now “right-heavy”, as already mentioned, causing the interpolation
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Table 2. Bounds for α = 0, β = 5.

ν M
(1)
10,ν

1 9.451771476864684e+01
2 9.197235521181210e+01
3 9.282549856814146e+01
4 9.241442728995621e+01
5 9.263482633418995e+01
6 9.252393392561106e+01
7 9.256151952490204e+01
8 9.257534088982851e+01
9 9.252776896050197e+01

10 9.259039977486584e+01

−1 −0.5 0 0.5 1
−0.2

0

0.2

Fig. 7. Zeros of the Jacobi polynomial P
(0,5)
10 .

−1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7

−200

0

200

400

600

800

1000

1200

1400

1600

t

p

τ
1

−1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7

−10

0

10

20

30

40

50

60

70

80

90

100

t

p*

τ
1

Fig. 8. The interpolation polynomial p9( · ; s(1)ν ) and extremal polynomial p∗
ν,1 on

[−1, τ1].

polynomial p9( · ; s(1)
ν ), which, by the way, is the same for each ν, to be very

large at the left end of the interval [−1, 1], as shown on the left of Fig. 8.

The extremal polynomial p∗
ν,1(t) (also the same for each ν), accordingly,

raises quickly to a large number at t = τ1, see the graph on the right of

Fig. 8, and stays at that level for the rest of the interval [−1, 1], which
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explains the uniformly large magnitude of all the bounds in Table 2. The

graphs of Fig. 8 were produced in the script Ex4 2.m.

4.1.2. Normality of M
(k)
n,n−k+1 for k = 1

Now that we know of a fairly large domain DM (cf. Fig. 3) of the

(α,β)-plane in which Property M holds, i.e., in which the bounds

M
(k)
n,1 ,M

(k)
n,2 , . . . ,M

(k)
n,n−k+1 are monotonically increasing for each k, it is

of interest to determine in which subdomain DN the largest of these,

M
(k)
n,n−k+1, is normal according to Definition 2.3 in Section 2. Because then,

by (2.3) and (2.5), we will have

0 ≤ M
(k)
n,1 < M

(k)
n,2 < · · · < M

(k)
n,n−k <

(1 + τn−k+1)
k

k!
, 1 ≤ k ≤ n. (4.1)

We analyze this only in the case k = 1, since for k > 1, normality of the

last bound is more the exception than the rule.

Before we proceed, let us digress just a little. Normality of M
(1)
n,n, by

definition, means that the sign-pattern vector s
(1)
n consists of all 1s, hence,

by (2.2),
∫ τn

−1

�μ(τ)dτ > 0, μ = 1, 2, . . . , n. (4.2)

Since τn, the largest zero of P
(α,β)
n , is usually very close to 1, the inequality

(4.2) is almost the same as
∫ 1

−1
�μ(τ)dτ > 0, which would mean that the

Newton–Cotes quadrature formula on [−1, 1] with the nodes being the zeros

of the Jacobi polynomial P
(α,β)
n is positive. This is a property not easy to

establish rigorously, but has been studied in the 1970s by R. Askey, and in

the 1980s by G. Sottas (for references, see [1]). In particular, a conjecture of

Askey, slightly revised in [1, Section 4.1], is positivity of the Newton–Cotes

formulas in the (α, β)-domain DNC shown in Fig. 9.

We have used our script Mnu test3.m and routine normal.m to verify

(4.2) for n = 10, 20, 40 on a grid on DNC with spacing 0.01. We were

successful in all cases except for various values of β near the left boundary

α = −1 (more precisely, when α = −0.99).

Resuming our analysis of normality, we now proceed similarly as in

Section 4.1.1, but search for fixed β, −1 < β ≤ 0.2, for the alpha-value α∗

for which normality of M
(1)
n,n holds for all α < α∗, but does not hold for

α > α∗. We can then develop plots of α = α∗(β), or by reversing, plots

of β = β∗(α), to delineate the domain DN . The results for n = 10, 20, 40,

obtained by the script Mnu test3.m and plotted by plot bestar low.m,
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Fig. 9. Positivity domain DNC for Newton–Cotes formulas with nodes equal to the

zeros of the Jacobi polynomial P
(α,β)
n .
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Fig. 10. Domains DN for zeros of Jacobi polynomials when k = 1.

are shown in Fig. 10. Here, it appears that as n → ∞, there might be a

vertical limit boundary at about α = 1.3. To the right of the curves, as

was determined by the script Mnu test4.m, the bound M
(1)
n,n is consistently

supnormal (cf. Definition 2.3 in Section 2), for α as large as 10, and probably

remains so for all α > 10.

By comparing the domains DM of Fig. 3 with the domains DN of Fig. 10,

and taking approximate intersections, one can conclude with confidence

that, when k = 1, the inequalities (4.1) hold in the rectangular domain
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−1 < α ≤ 1, −1 < β ≤ 0.15, for any value of n. In the rectangle −1 < α ≤ 1,

−1 < β ≤ 0.5, we used the script Mnu test1.m to verify that (on a grid

with spacing 0.05) the sign-pattern matrix S
(k)
n−k+1, when k = 1, rather

remarkably, is always canonical (cf. Section 2), at least for n ≤ 40, but very

likely for all n ≥ 2.

4.1.3. Monotonicity of M
(k)
n

The script Mnu test6.m was written to explore in what part of the (α, β)-

plane the inequalities

M (1)
n > M (2)

n > · · · > M (n)
n (4.3)

hold, where

M (k)
n = max

1≤ν≤n−k+1
M (k)

n,ν.

It was found that, for 2 ≤ n ≤ 40, the inequalities (4.3) are valid on a

grid with spacing 0.05 within the square Q = {α, β : |α| < 0.5, |β| < 0.5},

suggesting that they may hold for all α, β ∈ Q, perhaps even for all n ≥ 2.

With regard to monotonicity in the variable n,

M
(k)
2 < M

(k)
3 < M

(k)
4 < · · · , (4.4)

the script Mnu test7.m, analogous to Mnu test6.m, suggests that, at least

for n ≤ 40, the inequalities are valid on the square −1 < α, β ≤ 1 when

k = 1, on the square −0.5 ≤ α, β < 0.5 when k = 2, and on |α|, |β| ≤ 0.25

when k = 3 and n ≥ 3. They hold for still larger values of k and n ≥ k, in

sufficiently smaller (α, β)-domains, in particular for Legendre polynomials

(α = β = 0), when 4 ≤ k ≤ 26, but not when k = 27, where the inequality

fails to hold for n = 32, 33.

4.2. Gauss–Lobatto quadrature points

In this subsection, T(k)
n = {τν} are the (n − k + 1)-point Gauss–Lobatto

quadrature points relative to the Jacobi weight function when n − k ≥ 2,

the points τ1 = −1, τ2 = 1, when n− k = 1, and the point τ1 = −1, when

n − k = 0. Results analogous to those in Section 4.1 can be obtained by

making relatively minor changes to the software used before.

4.2.1. Property M

The scripts Mnu test2.m, plot bestarlob.m in combination with the

routine PropM.m, adjusted to deal with Gauss–Lobatto points, yield Fig. 11,
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Fig. 11. Domains DM for Gauss–Lobatto points.

showing the domains DM (below the curves) in which Property M holds.

They extend to β-values considerably larger than those in Fig. 3, but

otherwise there is not much change.

The analogue of Fig. 6, for Gauss–Lobatto quadrature points, is Fig. 12,

produced by the routine plot bestarlobMax.m and the suitably adjusted

script Mnu test5.m and routine PropMax.m, showing the domains (below

the red curves) in which M
(1)
n,ν ≤ M

(1)
n,n for ν = 1, 2, . . . , n− 1.

4.2.2. Normality of M
(k)
n,n−k+1 for k = 1

The analogue of Fig. 10 showing the domains DN (to the left of the

curves) in which M
(1)
n,n is normal, is Fig. 13, produced by the routine plot

bestarlob low.m and the suitably adjusted script Mnu test3.m and routine

normal.m.

Comparison of the domains DM and DN again allows us to conclude

with confidence that the inequalities (4.1) with k = 1 hold for all n ≥ 2 in

the rectangular domain −1 < α ≤ 1, −1 < β ≤ 0.5, except, possibly, when

β is very close to −1.

The startling property of canonical sign-pattern matrices S
(1)
n that we

noted at the end of Section 4.1.2 to hold for zeros of Jacobi polynomials

does no longer hold for all n when the support points are Gauss–Lobatto
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Fig. 12. Domains for Gauss–Lobatto points in which M
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Fig. 13. Domains DN for Gauss–Lobatto points when k = 1.

points, not even in the special case of Legendre polynomials. In that case,

however, it does hold sporadically for selected values of n; those ≤100 are

shown in Table 3. When it does not hold, the offending elements in the

matrix S
(1)
n are consistently located in the first row, either in position 2

through n, or in position 1, 3, 5, . . . , 2�(n+ 1)/2	 − 1.
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Table 3. Values of n ≤ 100 for which S
(1)
n is canonical for

Gauss–Lobatto points in the case α = β = 0.

3 10 17 23 35 39 46 61 70 76 84 92
5 12 19 25 36 40 52 64 73 80 87 94
6 13 20 30 37 41 56 68 74 82 89
8 16 21 32 38 45 58 69 75 83 91

4.3. Equally spaced points

4.3.1. Equally spaced points on (−1, 1)

In this subsection, T(k)
n will be the points τν = −1 + 2ν/(n − k + 2), ν =

1, 2, . . . , n− k + 1, equally spaced in the open interval (−1, 1).

The following properties are found to hold: The canonical sign-pattern

matrix Sn−k+1 is the (n− k + 1) × (n− k + 1) matrix whose columns are

alternately all 1s and all −1s (cf. also Example 4.2),

si,j = (−1)j−1, 1 ≤ i, j ≤ n− k + 1, (4.5)

disregarding occasional zero elements. This was verified by the

script Mnu test1 equal.m and the routine Prop canon equal.m for all

n ≤ 100.

With regard to the bounds M
(k)
n,ν, the properties are markedly different

depending on whether k is equal to 1 or larger than 1.

In the case k = 1, the interpolation polynomial pn−1 in (2.3), which by

the previous property is the same for each ν, is even if n is odd, and odd if

n is even. As a consequence, by (2.5), we have

M
(1)
n,ν = M

(1)
n,n+1−ν, ν = 1, 2, . . . , n (n even),

(4.6)
M

(1)
n,ν −M

(1)
n,(n+1)/2 = −[M

(1)
n,n+1−ν −M

(1)
n,(n+1)/2],

ν = 1, 2, . . . , n (n odd),

that is symmetry when n is even, and anti-symmetry with respect to the

middle bound M
(1)
n,(n+1)/2 when n is odd.

In the case k > 1, we consistently have Property Mk,

M
(k)
n,1 < M

(k)
n,2 < · · · < M

(k)
n,n−k+1 (1 < k < n), (4.7)

as was verified by the script Mnu test2 equalO.m and routine Prop mon

equal.m for all n ≤ 100.
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4.3.2. Equally spaced points on [−1, 1]

Here, T(k)
n are the points τν = −1+2(ν−1)/(n−k), ν = 1, 2, . . . , n−k+1,

where n ≥ 2, 1 ≤ k ≤ n− 1, which are equally spaced in the closed interval

[−1, 1].

In this case, no canonical sign-pattern matrix Sn−k+1 could be detected.

It was found, however, by the script Mnu test2 equalC.m and the same

routine Prop mon equal.m as before, that Property Mk, that is (4.7), holds

precisely if

(2 ≤ n ≤ 5 and 1 ≤ k ≤ n− 1) or (n ≥ 6 and 2 ≤ k ≤ n− 1),

at least as long as n ≤ 100, but very likely also for n > 100.
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Abstract Moment-based methods and related Matlab software are provided for gen-
erating orthogonal polynomials and associated Gaussian quadrature rules having as
weight function the exponential integral Eν of arbitrary positive order ν supported on
the positive real line or on a finite interval [0, c], c > 0. By using the symbolic capa-
bilities of Matlab, allowing for variable-precision arithmetic, the codes provided can
be used to obtain as many of the recurrence coefficients for the orthogonal polyno-
mials as desired, to any given accuracy, by choosing d-digit arithmetic with d large
enough to compensate for the underlying ill-conditioning.

Keywords Orthogonal polynomials · Exponential integrals · Chebyshev
algorithm · Matlab software

Mathematics Subject Classification (2010) 33C47 · 65D30

1 Introduction

Integrals having as weight function the exponential integral Eν(x) =∫ ∞
1 e−xtdt/tν , ν > 0, on the positive real line, x ∈ R+, or on a finite interval,

x ∈ [0, c], c > 0, are of interest in radiative transfer when ν = m ≥ 1 is an inte-
ger. Early attempts by A. Reiz to compute them by means of 2- and 3-point Gaussian
quadrature are reported on, and tables to 3–4 digits provided in, the monograph
[2, §23] of 1950. More accurate values to 7 digits, for m = 1 : 5, also for 4-point
quadratures (ifm ≤ 3), are published in [10]. The case of finite intervals [0, c], c > 0,
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was dealt with in [9], where 3- and 4-point Gaussian quadrature rules are tabulated
for m = 1, m = 2, and c = .1 : .1 : 1.0, 1.2 : .2 : 4.0, 4.5 : .5 : 8.0, 9 : 15 to 4–6
decimal digits. Further progress has been made in the late 1960s and early 1970s. In
[4, p. 436], 8-digit values were published for the 20-point Gaussian quadrature rule
in the case m = 1 and support interval [0, ∞]. (Some of the terminal figures are
in error by one or a few units, and two terminal figures in the case of the smallest
node.) They were obtained from the respective orthogonal polynomial, generated by
the author’s discretization procedure. Ad hoc methods were used in [3] to compute
the same 20-point formula to 12 (correct) digits; see Table 4 in the cited reference.
To the best of our knowledge, no further work on this topic has been published
since.

In the present paper we take advantage of the intervening progress made in
the constructive theory of orthogonal polynomials, especially the development of
variable-precision codes (for example, see [5, Ch. 2; 6–8]), to compute as many of
the respective orthogonal polynomials as desired, to arbitrarily high accuracy, and
for arbitrary positive values of ν. Once the first n recurrence coefficients of these
orthogonal polynomials have been obtained, to whatever accuracy, this immediately
provides access to all corresponding k-point Gaussian quadrature rules, 1 ≤ k ≤ n,
to the same accuracy.

2 The weight function Eν , ν > 0, on [0, ∞]

Our approach is to compute the first n orthogonal polynomials (that is, their recur-
rence coefficients) from the first 2n moments of the weight function. It is known
(cf. [5, §2.1]) that the underlying numerical condition of the process is typically
very bad. We determine estimates of the respective condition numbers empirically
as a function of n and ν, and use this information to choose the number of digits in
variable-precision arithmetic that are needed to compensate for the loss of accuracy
due to ill-conditioning.

The software we need comes from two packages of Matlab programs, the
package OPQ for ordinary Matlab double-precision computation, and the sym-
bolic Matlab package SOPQ for variable-precision computation. The former can be
downloaded from (http://dx.doi.org/10.4231/R7959FHP), and the latter from the file
SOPQ.html in (https://www.cs.purdue.edu/archives/2002/wxg/codes/). All other
Matlab routines and files referenced in this paper reside on the same website (https://
www.cs.purdue.edu/archives/2002/wxg/codes/) in the file POEXPINT.

The OPQ routine chebyshev.m resp. the SOPQ routine schebyshev.m
implements the Chebyshev algorithm (cf. [5, §2.1.7]) in ordinary Matlab dou-
ble precision resp. symbolic/variable precision. It uses the moments (or modified
moments) of the weight function to generate the recurrence coefficients αk , βk of the
corresponding (monic) orthogonal polynomials πk ,

π0(t) = 1, π−1 = 0,

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . . . (2.1)
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For the weight function Eν(x), ν > 0, on [0, ∞], the moments are especially simple,

μk =
∫ ∞

0
tkEν(t)dt =

∫ ∞

0
tkdt

∫ ∞

1

e−tu

uν
du

=
∫ ∞

1

du

uν

∫ ∞

0
tke−utdt =

∫ ∞

1

du

uν

∫ ∞

0

(τ

u

)k

e−τ dτ

u

= k!
∫ ∞

1

du

uν+k+1
,

that is,

μk = k!
ν + k

, k = 0, 1, 2, . . . , (2.2)

or, evaluated recursively,

μk = k
ν + k − 1

ν + k
μk−1, k = 1, 2, . . . ,

μ0 = 1

ν
.

(2.3)

This is implemented in the symbolic Matlab routine smomEnu.m,

%SMOMENU
%
function mom=smomEnu(dig,N,nu)
digits(dig);
mom=vpa(zeros(2*N,1)); snu=vpa(nu);
mom(1)=1/snu;
for k=1:2*N-1

mom(k+1)=(k*(snu+k-1)/(snu+k))*mom(k);
end

The routine sr Enu.m can then be used to produce in dig-digit arithmetic the
desired recurrence coefficients.

%SR_ENU
%
function ab=sr_Enu(dig,N,nu)
digits(dig);
mom=smomEnu(dig,N,nu);
ab=schebyshev(dig,N,mom’);
%ab

The firstN coefficients αk , βk , k = 0, 1, . . . , N−1, are returned in the first, resp. sec-
ond, column of the N × 2 array ab. The double-precision analogue of these routines
are momEnu.m and r Enu.m.

Insight into the conditioning of the process can be obtained by comparing dig0-
digit results with dig1-digit results, dig1�dig0. If the absolute value of the
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relative discrepancies are divided by .5 × 10-dig0, this gives fairly reliable estimates
of the condition numbers involved. The routine condEnu.m,

%CONDENU
% function [cond,lcond]=condEnu(N,nu)
f0=’%8.0f %12.4e %12.4e\n’;
dig0=32; dig1=48;
cond=zeros(N,1); lcond=zeros(N,1);
tic
ab0=sr_Enu(dig0,N,nu);
ab1=sr_Enu(dig1,N,nu);
toc
err=subs(abs((ab0-ab1)./ab1));
eps0=.5*10ˆ(-dig0); c=err/eps0;
for n=1:N

cond(n)=max(c(n,1),c(n,2));
lcond(n)=log10(cond(n));

% fprintf(f0,n,cond(n),lcond(n))
end
plot((2:N)’,lcond(2:N));set(gca,’FontSize’,14)
axis([0 42 -10 30])
hold on

computes condition numbers (cond) and their base-10 logarithms (lcond) for
n = 1 : N and ν > 0. With dig0=32, dig1=48, N = 40, and ν = m = 1 : 5, it
produces condition numbers whose logarithm to base 10 are plotted in Fig. 1. It can
be seen that they are relatively insensitive to the particular values of m. For n = 40,
one must expect a condition number of the order 1028.

Suppose now that we want the first 40 recurrence coefficients accurate to 32
decimal digits. According to Fig. 1, we would need a working precision of about
28 + 32 = 60 digits. Indeed, with dig=60, the maximum relative errors in the
recurrence coefficients, as determined by run sr Enu.m,

%RUN_SR_ENU
%
f0=’%8.0f %12.4e\n’;
N=40;
disp(’ m err’)
for m=1:5

ab1=sr_Enu(60,N,m);
ab2=sr_Enu(68,N,m);
err=max(max(subs(abs((ab1-ab2)./ab2))));
fprintf(f0,m,err)

end
%vpa(ab1,32)
%xw=sgauss(60,10,ab1(1:10,:))
%xw=sgauss(60,20,ab1(1:20,:))
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are as follows,

m maxerr

1 4.31(–34)

2 4.37(–33)

3 6.27(–34)

4 1.03(–33)

5 8.34(–34)

which should be sufficient to get 32 correct significant digits.
When m = 1, the result for ab1, rounded to 32 significant digits, is shown below.

ab1 =
[ 0.5, 1.0 ]
[ 2.3, 0.41666666666666666666666666666667]
[ 4.2346938775510204081632653061224, 2.6133333333333333333333333333333]
[ 6.1991728899520653289533363162975, 6.7549479383590170762182423990004]
[ 8.1760287637692264292699317909546, 12.870010159219961694306927947982]
[ 10.159422455949061212251865164385, 20.968994696423940837568730033392]
[ 12.146763033936533447023591073777, 31.057006630936801273572544890070]
[ 14.136701121356747300993633150615, 43.136954134511657222301719712458]
[ 16.128455652762927469396958109060, 57.210668436970122333167134416654]
[ 18.121539082321841623319665520066, 73.279386245227974471651536115340]
[ 20.115629289875337430432917374549, 91.343987098052228799027821345184]
[ 22.110503786849051613944146941994, 111.40512190727557194747483078212]
[ 24.106003312846896348414485714247, 133.46328782636285119890864794111]
[ 26.102010469568827217617261947703, 157.51887442601060579760842747446]
[ 28.098436563081088211003295397313, 183.57219352081384881254732894186]
[ 30.095213170671117434692239911288, 211.62349918475516842026740943688]
[ 32.092286550163055045719930642234, 241.67300161999396798681139359024]
[ 34.089613824796098217389455425773, 273.72087703234213807690738866538]
[ 36.087160313621981482166959580906, 307.76727483055256287082400203899]
[ 38.084897621989801207054976553018, 343.81232298324062012406026193200]
[ 40.082802248959441625185033380225, 381.85613207730455797274502171017]
[ 42.080854554029524135012861596701, 421.89879844200106929659826020412]
[ 44.079037978530591076723802015299, 463.94040658821755047472100884584]
[ 46.077338450692653888311066112066, 507.98103113750578852555793347317]
[ 48.075743925290319796558902187815, 554.02073836527156158227868335729]
[ 50.074244023312606062481483917045, 602.05958744825363192208568506608]
[ 52.072829746951336550343267893564, 652.09763148259506560518308426530]
[ 54.071493251985063900848805331302, 704.13491832195542993299333320163]
[ 56.070227664382534174913972818239, 758.17149127300924746037495398821]
[ 58.069026931320505158868382006277, 814.20738967686282687226088956636]
[ 60.067885699236479946825157355040, 872.24264939842125436311466446771]
[ 62.066799213304285759238786765347, 932.27730324088594660987318727380]
[ 64.065763234022944743541101952352, 994.31138129890265056912092917402]
[ 66.064773967579491409986408284564, 1058.3449112610896454434310771559]
[ 68.063828007376281312836671975265, 1124.3779186705290316748905178572]
[ 70.062922284667550360700504894342, 1192.4104271501374685786630141720]
[ 72.062054026674477715769790223624, 1262.4424585985283766786742605580]
[ 74.061220720875801808371126074796, 1334.4740333609488353760830067157]
[ 76.060420084426113329606309812572, 1408.5051703790570651814974233587]
[ 78.059650037853873322599060693536, 1484.5358873226525872793900026879]

>>
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Fig. 1 Condition numbers for Em(x), m = 1 : 5 on [0,∞]

It took 34 seconds to produce (on an Intel Pentium D 830 3GHz Dual core pro-
cessor with 1GB DDR2 non-ECC SDRAM 2DIM memory). The first 12 lines in the
output, incidentally, confirm the 12-digit results in Table 3 of [3], and also, if used in
the SOPQ routine sgauss.m, those in Table 4 except for two end-figure errors of
one unit.

In order to check the 7-digit results in [10] (for the N-point Gaussian quadrature
rules, N ≤ 4), ordinary Matlab double precision is more than enough. This is done
by the routine Reiz.m, which calls on the OPQ routine gauss.m,

%REIZ
%
N=4;
for m=1:5

fprintf(’ m=%1.0f\n’,m)
ab=r_Enu(N,m);
for n=2:N

xw=gauss(n,ab)
fprintf(’\n’)

end
end
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There is agreement with the results in the cited reference except for occasional
end-figure discrepancies of one unit.

We could have applied Chebyshev’s algorithm also with modified moments,

μk =
∫ ∞

0
pk(t)Eν(t)dt, k = 0, 1, 2, . . . ,

for example with pk being Laguerre polynomials. It was found, however, that the
procedure involved is considerably slower and moreover, surprisingly, the underlying
conditioning worse than in the case of ordinary moments.

3 The weight function Eν , ν > 0, on [0, c], c > 0

In the case of a finite interval [0, c], the moments are

μk =
∫ c

0
tkEν(t)dt, k = 0, 1, 2, . . . .

By elementary manipulations, using the definition of Eν and an interchange of
integrals, one finds

μk =
∫ ∞

1
t−(ν+k+1)γ (k + 1, ct) dt, (3.1)

where γ (a, x) is the incomplete gamma function

γ (a, x) =
∫ x

0
ta−1e−tdt.

Integration by parts in (3.1), integrating the first factor and differentiating the second,
yields

μk = 1

ν + k
[γ (k + 1, c) + cν+k �(1 − ν, c)], k = 0, 1, 2, . . . , (3.2)

where

�(a, x) =
∫ ∞

x

ta−1e−tdt.

For large c, we have γ (k + 1, c) ∼ k! and �(1 − ν, c) ∼ c−νe−c (cf. [1, 6.5.32]), so
that, for fixed k,

μk ∼ 1

ν + k
(k! + cke−c), c → ∞,

recovering (2.2) in the limit as c → ∞.
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In order to compute μk from (3.2) in variable-precision arithmetic, one needs
symbolic routines for incomplete gamma functions. The Matlab Symbolic Toolbox
has a routine for �(a, x), but currently none for γ (a, x). While the latter func-
tion could be obtained in terms of the former, this would entail, in the context of
(3.2), very large cancellation errors, especially when k is large. To avoid this, we
wrote our own symbolic routine sgammastar.m for Tricomi’s form γ ∗(a, x) of
γ (a, x),

%SGAMMASTAR Symbolic counterpart of gammastar.m
%
function y=sgammastar(dig,a,x)
syms y y0 t
digits(dig)
eps0=.5*10ˆ(-dig);
a=vpa(a,dig); x=vpa(x,dig);
if rem(subs(a),1)==0 & subs(a)<0

y=xˆ(-subs(a));
return

end
t=vpa(1/gamma(a+1),dig); y0=vpa(0); y=t; k=0;
while subs(abs((y-y0)/y))>eps0

k=k+1; y0=y; t=vpa(x*t/(a+k),dig); y=y0+t;
end
y=vpa(exp(-x),dig)*y;

which is an entire function in both a and x. It uses the power series ([1, 6.5.29])

γ ∗(a, x) = e−x
∞∑

k=0

xk

�(a + k + 1)
,

which allows a very stable and rapid evaluation when x > 0 (but not excessively
large) and a ≥ 0, all terms of the series being positive. The function γ (a, x) can then
be obtained from γ ∗(a, x) by γ (a, x) = �(a)xaγ ∗(a, x).

The resulting symbolic routine for μk , k = 0, 1, . . . , 2n− 1, is smomEnufin.m.

%SMOMENUFIN Symbolic counterpart of momEnufin.m
%
function mom=smomEnufin(dig,n,nu,c)
digits(dig);
c=vpa(c,dig);
mom=vpa(zeros(2*n,1));
y=feval(symengine,’igamma’,1-nu,c);
y=vpa(y,dig);
for k=1:2*n

y1=gamma(vpa(k,dig))*cˆk*sgammastar(dig,k,c);
mom(k)=(y1+cˆ(nu+k-1)*y)/vpa(nu+k-1,dig);

end
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There is, however, again the question of conditioning. We can estimate condition
numbers similarly as in Section 2 by a routine named condEnufin.m. It uses a
routine sr Enufin.m analogous to the routine sr Enu of Section 2.

%CONDENUFIN
%

function [cond,lcond]=condEnufin(N,nu,c)
f0=’%8.0f %12.4e %12.4e\n’;
dig0=64; dig1=120;
cond=zeros(N,1); lcond=zeros(N,1);
tic
ab0=sr_Enufin(dig0,N,nu,c);
ab1=sr_Enufin(dig1,N,nu,c);
toc
err=subs(abs((ab0-ab1)./ab1));
eps0=.5*10ˆ(-dig0); c=err/eps0;
for n=1:N

cond(n)=max(c(n,1),c(n,2));
lcond(n)=log10(cond(n));

% fprintf(f0,n,cond(n),lcond(n))
end
plot((2:N)’,lcond(2:N));set(gca,’FontSize’,14)
axis([0 42 -10 60])

In the routine run condEnufin.m,

%RUN_CONDENUFIN
%
N=40; m=1;
for c=[.1 .5 1 2 4 8 16 32 64 128]

if c>.1&m==1, hold on; end
condEnufin(N,m,c);

end

for each m = 1 : 5 we ran it with N = 40, c = [.1 .5 1 2 4 8 16 32 64 128] and
plotted the graphs analogous to the ones in Fig. 1 superimposed on each other; they
are shown in Fig. 2 for for m = 1 (on top) and m = 5 (at the bottom).

As in the case c = ∞ (cf. Fig. 1), it is evident that the condition numbers are
relatively insensitive to the choice of m. For moderately large values of c (say, 0 <

c ≤ 16), and n = 40, the condition number is of the order 1053, suggesting that, to
obtain results to 32 correct digits, the number d of digits to be used should be about
85. As c becomes larger, the condition numbers slowly approach the ones for c = ∞,
being of the order 1046 when c = 32, of the order 1039 when c = 64, and of the order
1027 when c = 128.
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Fig. 2 Condition numbers for Em(x), m = 1 and m = 5, on [0, c], c = [.1 .5 1 2 4 8 16 32 64 128]
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Actually, the routine run sr Enufin.m,

%RUN_SR_ENUFIN
%
N=40; m=1; c=.1;
tic
ab1=sr_Enufin(82,N,m,c);
ab2=sr_Enufin(90,N,m,c);
toc
err=max(subs(abs((ab1-ab2)./ab2)))
%ab1

can be used to determine by trial and error the exact number of digits d needed.
In the first call to the routine sr Enufin.m, the number of digits (the first input
argument) is guessed (82 in the above display for m = 1, c = .1), and then adjusted,
either upward or downward, in accordance with the maximum error produced. In the
second call to sr Enufin.m, the number of digits is kept fixed (at 90). The results
agree very closely with the estimates given above: for the values c = [16 32 64 128]
(and N = 40), the required number d of digits is shown in Table 1 for m = 1 : 5.

Note also that the results are pracically independent of m in the range 1 ≤ m ≤ 5.
To conclude, we use the routine Kegel.m, calling on the double-precision routine

r Enufin.m and the OPQ routine gauss.m,

%KEGEL
%
f0=’%8.0f %5.1f %12.8f %12.8f %12.8f\n’;
f1=’%27.8f %12.8f %12.8f\n’;
f2=’%8.0f %5.1f %12.8f %12.8f %12.8f %12.8f\n’;
f3=’%27.8f %12.8f %12.8f %12.8f\n’;
disp(’ m c nodes/weights’)
for m=1:2

for c=[.1:.1:1 1.2:.2:4 4.5:.5:8 9:15]
ab=r_Enufin(4,m,c);
xw=gauss(3,ab); x=xw(:,1); w=xw(:,2);
fprintf(f0,m,c,x(1),x(2),x(3))
fprintf(f1,w(1),w(2),w(3))
xw=gauss(4,ab); x=xw(:,1); w=xw(:,2);
fprintf(f2,m,c,x(1),x(2),x(3),x(4))
fprintf(f3,w(1),w(2),w(3),w(4))
fprintf(’\n’)

end
end

to reproduce Tables 1–4 of [9] (for the N-point Gaussian quadrature rules, N ≤ 4).
Spotchecking the output supports the author’s claim of accuracy up to one or two
units in the last decimal digit.
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Table 1 Number d of digits needed to get results to 32 correct decimal digits

m c d m c d m c d m c d m c d

1 16 83 2 16 84 3 16 84 4 16 84 5 16 84

32 79 32 79 32 79 32 79 32 79

64 72 64 72 64 72 64 72 64 72

128 61 128 61 128 60 128 60 128 60
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Abstract A stable and efficient discretization procedure is developed to compute
the recurrence coefficients for orthogonal polynomials whose weight function is a
polynomial cardinal spline of order m ≥ 1. The procedure is compared with a sym-
bolic moment-based method developed recently by G. V. Milovanović. Numerical
examples are provided for illustration.

Keywords Orthogonal polynomial · B-spline weight function · Recurrence
coefficients

1 Introduction

In the interesting paper [4], G.V. Milovanović developed techniques and software in
Mathematica to obtain in symbolic form the first 60 recurrence coefficients for poly-
nomials orthogonal on [0, m] with respect to the cardinal B-spline weight function
of order m. The method used is based on the moments of the weight function, from
which the recurrence coefficients of the orthogonal polynomials are obtained by the
classical Chebyshev algorithm [1, §2.1.7]. We implement the same approach in sym-
bolic Matlab, which allows us to generate in variable-precision arithmetic as many
recurrence coefficients as desired, using sufficiently many working digits. To obtain,
for example, the first 100 pairs of coefficients to an accuracy of 16 digits, the number
of working digits required is 164, essentially regardless of the value of m (at least in
the range 2 ≤ m ≤ 20 and probably beyond). This large number of digits is due to
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the highly ill-conditioned nature of the mapping from the first 200 moments to the
first 100 pairs of recurrence coefficients. More details are provided in Section 2.

The problem, actually, may be viewed as a textbook example for another approach
based on multicomponent discretization. The cardinal B-spline of order m consists
of m different polynomial pieces of degree m − 1 supported on the m intervals
Ik = [k − 1, k], k = 1, 2, . . . , m. The pieces are joined together to form a piecewise
polynomial function of smoothness class Cm−2[R]. The intervals Ik are taken to be
the m component intervals of the multicomponent discretization method [1, §2.2.4],
which will produce exact results for the first n recurrence coefficients if the dis-
cretization on each interval Ik is carried out by (n + �m/2� − 1)-point Gauss
quadrature. Moreover, the method is quite stable if a stable method is used to evalu-
ate the B-spline on each interval Ik . The fact that ordinary Matlab double precision
yields highly accurate results at a cost incomparably lower than the one involved
in the moment-based approach requiring variable-precision arithmetic, is the main
advantage of our alternative approach. A variable-precision version of the latter is
made available, if needed. All this is discussed in Section 3. Numerical illustrations
are provided in Section 4.

All Matlab scripts used in this paper are downloadable from https://dx.doi.org/10.
4231/R7NG4NKC.

2 Moment-based method

The moments μ
(m)
k = ∫ m

0 tkϕm(t)dt of the cardinal B-spline ϕm of order m are easily
obtained recursively by [4, Eq.(8)]

μ
(m)
k = m

m + k

(
kμ

(m)
k−1 + μ

(m−1)
k

)
, k = 0, 1, 2, . . . , m ≥ 1, (2.1)

using the boundary conditions

μ
(m)
−1 = 0, μ(m)

0 = 1, m ≥ 1; μ
(0)
0 = 1, μ(0)

k = 0, k ≥ 1. (2.2)

Indeed, each entry μ
(m)
k (in the (k, m)-plane) can be computed from the entries

immediately to the left and immediately below. This is implemented in the sym-
bolic Matlab routine smom Bspline.m. The symbolic routine schebyshev.m
(cf. [2, Appendix B]) then applies Chebyshev’s algorithm to generate the desired
recurrence coefficients α

(m)
k , β(m)

k in

πk+1(t) = (t − α
(m)
k )πk(t) − β

(m)
k πk−1(t), k = 0, 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1
(2.3)

for the monic orthogonal polynomials πk( · ) = πk( · ; ϕm).
The number of decimal digits (in units of 4) needed to obtain the first n

pairs of recurrence coefficients to 16-digit accuracy, as determined by the routines
dig Bspline.m, run dig Bspline.m is shown in Table 1 for selected values
of n and m.
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Table 1 Number of decimal
digits required for 16-digit
recurrence coefficients

n m = 2 4 6 8 10 12 15 20

20 40 40 40 40 44 44 44 44

40 72 72 72 72 72 72 72 72

60 100 100 100 100 100 100 100 100

80 132 132 128 128 128 128 128 132

100 164 160 160 160 160 160 160 160

The symbolic Matlab routine sr cBspline cheb.m then computes the first n

pairs of recurrence coefficients in dig-digit arithmetic.

3 Method based on multicomponent discretization

The method to be described, already used for splines of order 2 in [2, Exercise
2.16], requires the evaluation of cardinal B-splines ϕm of order m. The spline can
be defined in terms of the divided difference of order m relative to the integer knots
0, 1, 2, . . . , m of the truncated power function

ωm(t; x) = (t − x)m−1+ =
⎧
⎨

⎩

(t − x)m−1 ift ≥ x,

0 otherwise

considered a function of t . Thus,

ϕm(x) = m[0, 1, 2, . . . , m]ωm( · ; x). (3.1)

It is a polynomial of degree m − 1 on each interval Ik = [k − 1, k], k = 1, 2, . . . , m,
and overall a piecewise polynomial function on R of smoothness class C

m−2[R],
when m ≥ 2. It vanishes identically outside the interval [0, m]. When m = 1, then
ϕm equals 1 on [0, 1] and 0 elsewhere.

Numerically, the evaluation of ϕm(x) as defined in (3.1) is subject to loss of accu-
racy due to cancelation errors, which become worse the larger m. A more stable
evaluation can be based on the recurrence relation [4, Eq. (5)],

ϕm(x) = 1

m − 1
(xϕm−1(x) + (m − x)ϕm−1(x − 1)) , m ≥ 2 x ∈ R. (3.2)

Indeed, if we define

ϕm,k = ϕm|x∈Ik
, k = 1, 2, . . . , m,

where ϕm,k = 0 if k ≤ 0 or k ≥ m + 1, then by (3.2)

ϕ1,1 = 1,

and for μ = 2, 3, . . . , m

ϕμ,k = 1

μ − 1

(
xϕμ−1,k + (μ − x)ϕμ−1,k−1

)
, k = 1, 2, . . . , μ.

(3.3)
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This is implemented in the Matlab routines cBspline.m and scBspline.m,
which compute the m values of the cardinal B-spline ϕm of order m at the points
k − 1 + x, 0 < x < 1, k = 1, 2, . . . , m, in Matlab double resp. variable-precision
arithmetic. The former is used in the script plot cBspline.m to compute and
plot the cardinal B-splines for m = 1 : 10 and m = 12, 15, 20. The plots are shown
in Fig. 1.

We now use the method (3.3) of evaluating ϕm in the multicomponent discretiza-
tion procedure (cf. [1, §2.2.4], [2, p. 8]), which in our application requires the
evaluation of integrals

∫

Ik

p(t)ϕm(t)dt, k = 1, 2, . . . , m, (3.4)

for polynomials p(t), which are either π2
ν (t) or tπ2

ν (t) with ν ≤ n − 1, where n

is the number of pairs of recurrence coefficients that we want to compute. Since
ϕm on each interval Ik is a polynomial of degree m − 1, the integrand in (3.4)
is a polynomial of degree at most 2n − 1 + m − 1 = 2n + m − 2, which can
be integrated exactly by (n + �m/2� − 1)-point Gauss quadrature (relative to the
interval Ik). Our method, therefore, produces exact answers in exact arithmetic, and
turns out to be effective also in finite-precision arithmetic. It is implemented in the
routine r cBspline dis.m producing the first n pairs of recurrence coefficients
for the polynomials orthogonal with respect to the weight function ϕm. The cor-
responding symbolic routine is sr cBspline dis.m. An effort has been made
to render these routines as efficient as possible. Thus, for example, when n and m

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2
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0.8

1

1.2

Fig. 1 Cardinal B-splines for m = 1 : 10, 12, 15, 20
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are given, the quadrature formula used to carry out the discretization in the routine
mcdis.m resp. smcdis.m is generated only once at the beginning of the rou-
tines r cBspline dis.m, sr cBspline dis.m and transmitted to the routines
quad cBspline.m, quad scBspline.m in mcdis.m, smcdis.m as a global
variable. Even so, the symbolic routine sr cBspline dis.m may be slow, espe-
cially if m is large, even slower than sr cBspline cheb.m, because of m calls to
the routine scBspline.m evaluating the spline function ϕm in variable-precision
arithmetic. The double-precision routine r cBspline dis.m, however, is quite
fast.

In order to establish the stability and efficiency of the procedure, we compare
the results produced by the double-precision routine r cBspline dis.m with the
results produced by the dig-digit routine sr cBspline cheb.m (with dig as in
Table 1) and the 18-digit routine sr cBspline dis.m. The same values of n are
used as in Table 1 and the values m = [2 : 6, 10, 20]. We select Stieltjes’s method
to obtain the recurrence coefficients from the discretized measure, since Lanczos’s
method is much slower in this application. The relative error in the β-coefficients
was found to be always close to machine precision, never larger than 1.3 × 10−14

and as small as 6.32 × 10−16. The errors are displayed in Table 2 and below each
error the timings in seconds, first for the variable-precision Chebyshev algorithm
and the 18-digit multicomponent discretization procedure, and next to them for the
double-precision multicomponent discretization routine. Evidently, the two former
are substantially larger than the last, because both use variable-precision arithmetic.
Among the two variable-precision routines, the second is usually considerably faster,
unless m is large. Table 2 was generated by the script test cBspline.m.

The recurrence coefficients β
(m)
k were observed to converge (however slowly) to

limit values as k → ∞, while by symmetry, α(m)
k = m/2 for all k. The existence of

the limit β(m)∞ = limk→∞ β
(m)
k in fact is a consequence of our weight function being

in the Szegö class (for the latter, cf. [3]), so that the α- and β-coefficients for the

Table 2 Accuracy of the multicomponent discretization procedure and timings for variable-precision
Chebyshev and 18-digit discretization vs double-precision discretization

n m = 2 m = 3 m = 4 m = 5 m = 6 m = 10 m = 20

20 2.56 (–15) 1.81 (–15) 1.94 (–15) 1.33 (–15) 6.66 (–16) 6.32 (–16) 8.92 (–16)

[8, 4, .07] [7, 4, .01] [8, 5, .002] [8, 7, .003] [8, 8, .003] [10, 20, .003] [13, 86, .07]

40 8.11 (–15) 3.57 (–15) 2.90 (–15) 2.61 (–15) 1.42 (–15) 1.36 (–15) 2.34 (–15)

[31, 8, .07] [31, 9, .01] [32, 12, .005] [34, 16, .005] [36, 20, .005] [39, 44, .006] [40, 180, .08]

60 7.44 (–15) 4.55 (–15) 3.79 (–15) 3.29 (–15) 2.98 (–15) 1.45 (–15) 1.10 (–15)

[74, 15, .08] [75, 19, .01] [77, 24, .007] [78, 30, .007] [80, 37, .007] [84, 82, .008] [89, 284, .01]

80 8.00 (–15) 5.73 (–15) 5.45 (–15) 4.42 (–15) 4.75 (–15) 2.88 (–15) 2.24 (–15)

[138, 27, .13] [142, 32, .02] [145, 40, .01] [148, 50, .01] [151, 68, .01] [158, 155, .06] [171, 454, .02]

100 1.30 (–14) 8.30 (–15) 6.33 (–15) 4.55 (–15) 3.17 (–15) 2.44 (–15) 1.79 (–15)

[230, 43, .08] [232, 52, .03] [236, 62, .02] [239, 88, .02] [241, 100, .03] [250, 219, .02] [267, 632, .03]
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Fig. 2 Relative errors of Gauss quadrature of the integral I1a (left) and the integral I1b (right)

(monic) polynomials orthogonal on [−1, 1] have limits equal, respectively, to 0 and
1/4, hence to m/2 and m2/16 for polynomials orthogonal on [0, m]. Thus,

β(m)∞ = m2

16
. (3.5)

This can be confirmed, at least to about 3 or more decimal places, by running the
routine r cBspline dis.m with N = 500; cf. the script run r cBspline.m.
(For N that large, Stieltjes’s procedure experiences underflow problems, in contrast
to Lanczos’s procedure, which works flawlessly.)

4 Numerical illustrations

Example 1 (a) The integral

I1a =
∫ m

0
10 sin x ϕm(x)dx, m = 3, 4, 5, 6, 10.

(b) The integral

I1b =
∫ m

0

(

1 − 2 sin
19x

3

)3

sinh
(
1 − x

2

)
ϕm(x)dx.

This is Example 1 from [4]. As shown in Fig. 2, the relative errors of n-
point Gaussian quadrature, n = 5 : 5 : 50, relative to the weight function
ϕm, on the left for the integral I1a and on the right for the integral I1b, are very
much in agreement with those found in [4]. The figures were produced by the

Table 3 Timings (in s) for
Example 1 Ex m = 3 4 5 6 10

1a 62.6 67.1 74.7 83.3 157

1b 51.3 56.3 63.7 71.6 124
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Fig. 3 Relative errors of Gauss quadrature of the integral I2

scripts cBspline Ex1a.m and cBspline Ex1b.m in 200-digit resp. 50-digit
variable-precision arithmetic. Timings (in seconds) for each curve are shown in Table 3.

Example 2 The integral

I2 =
∫ m

0

10

1 + 16
(
2x
m

− 1
)2 ϕm(x)dx.

This is Example 2 in [4]. The script cBspline Ex2.m, using the double-
precision routine r cBspline dis.m, produces graphs of the relative errors
shown in Fig. 3 and corresponding timings in Table 4, similarly as in Exam-
ple 1. Note, however, the much smaller run times, due to the exclusive use of
double-precision arithmetic. The graphs are in agreement with those in [4].

The integrands in Example 1 are analytic functions, while the one in Example
2 has two conjugate complex poles relatively close to the real axis, about halfway

Table 4 Timings (in s) for
Example 2 Ex m = 3 4 5 6 10

2 .0203 .0203 .0199 .0202 .0220
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Fig. 4 Relative errors of Gauss quadrature of the integral I3

through the interval [0, m]. In the next example, we take an integrand having an
algebraic singularity to the left, and close to, the interval [0, m].

Example 3 The integral

I3 =
∫ m

0
(1 + 10x)−1/2ϕm(x)dx.

Gauss quadrature converges surprisingly fast: relevant graphs for m =
3, 4, 5, 6, 10 and timings, produced by cBspline Ex3.m, are shown above (Fig. 4)
and below (Table 5).

In all examples, the “exact” answers, for computing errors, were obtained by high-
precision Gaussian quadrature involving 65 points and 200-digit, 50-digit arithmetic,
respectively, in Example 1a, 1b, and 100 points and double-precision arithmetic in
Examples 2 and 3.

Table 5 Timings (in s) for
Example 3 Ex m = 3 4 5 6 10

3 .0203 .0204 .0200 .0203 .0222
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BINET-TYPE POLYNOMIALS AND THEIR ZEROS∗
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Abstract. Procedures based on moments are developed for computing the three-term recurrence relations for
orthogonal polynomials relative to the Binet, generalized Binet, squared Binet, and related subrange weight functions.
Monotonicity properties for the zeros of the respective orthogonal polynomials are also established.
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1. Introduction. The Binet weight function may be defined by

(1.1) w1(x) = − log(1− e−|x|) on [−∞,∞].

It has been introduced, in connection with a number of summation formulas [2, 3, 4], in [4,
eq. (5.4)], where the Binet distribution is defined by wB(x) = w1(2πx)/(2π), and has been
used in Binet’s summation formula, ibid., eq. (5.15). More generally,

(1.2) w1(x;α) = − log(1− αe−|x|) on [−∞,∞], 0 < α < 1,

is what may be called the generalized Binet weight function. We are interested in the poly-
nomials orthogonal with respect to the weight functions (1.1) and (1.2), in particular, in the
recurrence formulas

πk+1(x) = (x− αk)πk(x)− βkπk−1(x), π−1(x) = 0, k = 0, 1, 2, . . . ,

satisfied by the respective monic polynomials. The coefficients αk, βk can be obtained by the
classical Chebyshev algorithm since the moments of both weight functions are known in terms
of factorials and generalized polylogarithm functions. It is true that the classical Chebyshev
algorithm is notoriously unstable, but we get around this problem by using sufficiently high
precision. This is discussed for the Binet and generalized Binet weight functions in Section 2.
The same can be done with the squares of the Binet and generalized Binet weight functions
(Section 3), with the halfrange Binet and generalized Binet weight functions (Section 4),
as well as with the squares of the halfrange weight functions (Section 5). Upper and lower
subrange Binet weight functions are also considered in Section 6.

In the case of the generalized weight functions with parameter α, we prove that all
zeros, respectively positive zeros when the weight function is symmetric, are monotonically
decreasing as functions of α. They are shown to be monotonically increasing as functions
of the upper or lower limit of the orthogonality interval. We do this by applying Markov’s
theorem and two variants thereof and by a new related theorem of our own.
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2. Binet and generalized Binet weight functions. Moment-related methods and their
implementation, both in Matlab and Mathematica, are considered in Section 2.1 for the Binet
weight function and in Section 2.2.1 for generalized Binet weight functions. Section 2.2.2 is
devoted to a study of the zeros of orthogonal polynomials depending on a parameter and, in
particular, to the monotone behavior of the zeros of generalized Binet polynomials παn when
considered as functions of the parameter α.

2.1. The Binet weight function. Since the weight function in (1.1) is symmetric with
respect to the origin, its moments are

(2.1) µk =





0 if k is odd,

−2
∫ ∞

0

xk log(1− e−x) dx if k is even.

Substituting e−x = t in the integral of (2.1), one gets

µk = 2(−1)k+1

∫ 1

0

logk t log(1− t) dt
t
,

and thus

(2.2) µk = 2 k!Sk+1,1(1) = 2 k!Lik+2(1) = 2 k! ζ(k + 2), k even,

where

(2.3) Sn,p(x) =
(−1)n+p−1
(n− 1)!p!

∫ 1

0

logn−1(t) logp(1− xt) dt
t

is the Nielsen generalized polylogarithm [11, eq. (1.1)] and Lin(x) the ordinary polylogarithm
[10, eq. (1.1)]. We can thus apply the classical Chebyshev algorithm (cf., e.g., [5, §2.1.7])
in sufficiently high precision to generate any number N of recurrence coefficients αk, βk,
k = 0, 1, . . . , N − 1, to any desired accuracy.

To implement this in Matlab, one needs, foremost, the routine smom_binet.m1 that
generates in dig-digit arithmetic the 2N× 1 array mom of the first 2N moments (2.1),

mom=smom_binet(dig,N).

In addition, the routine dig_binet.m is provided, which, by the command

(2.4) [ab,dig]=dig_binet(N,dig0,dd,nofdig),

helps to determine the number dig of digits needed to obtain the N×2 array ab of the first N
recurrence coefficients αk, βk, k = 0, 1, . . . ,N − 1, to an accuracy of nofdig digits. The
way this routine works is as follows: It first calculates the array ab with an estimated number
dig0 of digits (which is printed) and then successively increases (and prints) the number of
digits in units of dd digits until the desired accuracy is achieved. If this happens after just
one increment, then the value of dig0 must be lowered until at least two increments have
occurred. The last value of dig printed can then be taken as the number of digits needed. A
typical value of dd is 4. The command

(2.5) ab=sr_binet(dig,nofdig,N),

1All Matlab routines and textfiles referenced in this paper can be accessed at
https://www.cs.purdue.edu/homes/wxg/archives/2002/codes/BINET.html.
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finally, computes directly, in dig-digit arithmetic, the first N recurrence coefficients and places
them to nofdig digits into the N×2 array ab.

EXAMPLE 2.1 (The first 100 recurrence coefficients to 32 digits of the Binet weight
function). With N = 100, dig0 = 56, dd = 4, nofdig = 32, the routine (2.4) yields
dig = 64 after two increments and also produces the 100×2 array ab of the first 100
recurrence coefficients to an accuracy of 32 digits. The α- and β-coefficients are displayed
in the second and third plot of Figure 2.1, the first showing the Binet weight function. The
recurrence coefficients are also made available in the textfile coeff_binet.txt, which
can be loaded into the Matlab working window by the routine loadvpa.m. For the latter, see
[6, p. ix]; see also [8, 2.3.8]. The array ab can also be obtained directly with the routine (2.5)
using dig = 64, nofdig = 32, and N = 100.
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FIG. 2.1. The Binet weight function and its recurrence coefficients.

The same 100 recurrence coefficients have been obtained in symbolic form by the Mathe-
matica package OrthogonalPolynomials ([1, 13]) using the commands

<<orthogonalPolynomials‘
momGB[k_,alpha_]:=If[OddQ[k],0,2 k!PolyLog[k+1,1,alpha]];
mom = Table[momGB[k,1], {k,0,199}];
{alBSym,beBSym}=aChebyshevAlgorithm[mom,Algorithm->Symbolic]

The βk, for 0 ≤ k ≤ 11, so obtained are given in [12, p. 457] in rational form and those for
12 ≤ k ≤ 39 to 60 decimals on page 458 of the same reference. There is complete agreement
to all 32 digits between the coefficients obtained in Matlab and those obtained in Mathematica
rounded to 32 digits. The fact that the recurrence coefficients are rational numbers multiplied
by π2 makes the computation in symbolic Mathematica extremely fast. For example, on a
MacBook Pro Retina OSX 10.12.6 laptop, the first 100 recurrence coefficients in symbolic
form are obtained in 1.04 s. These symbolic formulae can then be used to compute the
coefficients to arbitrary precision. For example, N[beBSym,32] produces the β-coefficients
to 32 digits in 1.1 ms, and N[beBSym,500] yields the same coefficients to 500 digits in
1.3 ms. If one uses the numerical calculation option in the Chebyshev algorithm,

{alB,beB}=aChebyshevAlgorithm[mom,WorkingPrecision->58]

with 58-digit working precision (WP), then the first 100 recurrence coefficients are obtained
to 32 digits in 77.3 ms. With 86-digit WP, they are obtained to 60 digits in 81.8 ms and with
160-digit WP to 135 digits in 84.8 ms. In contrast, Matlab, on a Dell Optiplex 790 computer,
takes 186 s to compute the same 100 coefficients to 32 digits.
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2.2. The generalized Binet weight function.

2.2.1. The recurrence coefficients. The weight function (1.2), again being symmetric,
has moments

(2.6) µk =





0 if k is odd,

−2
∫ ∞

0

xk log(1− αe−x)dx if k is even.

Similarly as in Section 2.1, one finds

(2.7) µk = 2 k!Sk+1,1(α) = 2 k!Lik+2(α), k even.

The moments (2.6) are generated by the Matlab command

mom=smom_gbinet(dig,N,a),

where a is the value of α and 0 < α < 1.
EXAMPLE 2.2 (The first 100 recurrence coefficients to 32 digits of the generalized Binet

weight function for α = 1/2). The Matlab command

[ab,dig]=dig_gbinet(N,a,dig0,dd,nofdig),

when run with N = 100, a = 1/2, dig0 = 56, dd = 4, nofdig = 32, yields dig = 64.
The same command, or more directly, the command ab=sr_gbinet(dig,nofdig,N,a)
with dig = 64, produces the 100×2 array ab of the first 100 recurrence coefficients to an
accuracy of 32 digits. They are displayed in the second and third plot of Figure 2.2, the first
showing the generalized Binet weight function for α = 1/2. They are also made available in
the textfile coeff_gbinet.txt.
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FIG. 2.2. The generalized Binet weight function for α = 1/2 and its recurrence coefficients.

Unlike the case α = 1, when the recurrence coefficients are simply rational numbers
multiplied by π2, in the general case 0 < α < 1, the symbolic expressions of the recurrence
coefficients βk become rapidly more complicated with increasing k and hence, the runtime
correspondingly larger. Yet, using the numerical calculation option in both the computation of
the moments and Chebyshev’s algorithm yields fast algorithms similarly to those described in
Example 2.1.

2.2.2. The zeros of orthogonal polynomials. The first objective of this section is to
investigate the zeros of orthogonal polynomials depending on a parameter and to prove some
monotonicity results. For this we use Markov’s theorem and two simple corollaries thereof as
well as a new, but related theorem. The second objective is to provide appropriate plots.
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We first recall Markov’s theorem ([14, Theorem 6.12.1]).
THEOREM 2.3 (A. Markov). Let w(x;α) be a positive weight function on [a, b],

−∞ ≤ a < b ≤ ∞, depending on a parameter α, α1 < α < α2. Assume that the first
2n moments of w and of ∂w

∂α exist, and let παn denote the monic polynomial of degree n
orthogonal with respect to the weight function w( · ;α). Then each zero of παn is an increasing
(decreasing) function of α on (α1, α2) provided that

(2.8) M(x;α) :=
1

w(x;α)

∂w(x;α)

∂α

is an increasing (decreasing) function of x on [a, b].
Here are two simple corollaries to Markov’s theorem.
COROLLARY 2.4. Let w(x;α) be as in the theorem, and wr(x;α) = [w(x;α)]r, r > 0,

have finite moments of order≤ 2n−1. Then each zero of the nth-degree polynomial orthogonal
with respect to the weight function wr is increasing (decreasing) on (α1, α2) depending on
whether (2.8) is increasing (decreasing) on [a, b].

Proof. We have

1

wr(x;α)

∂wr(x;α)

∂α
=
r [w(x;α)]r−1

[w(x;α)]r
∂w(x;α)

∂α
=

r

w(x;α)

∂w(x;α)

∂α
.

If r < 0, then the type of monotonicity is reversed, from increasing to decreasing and
vice versa.

COROLLARY 2.5. Let w(x;α) be symmetric on the interval [−a, a], 0 < a ≤ ∞, i.e.,
w(−x;α) = w(x;α), for 0 ≤ x ≤ a, but otherwise as in Theorem 2.3. Then each positive
zero of παn is increasing (decreasing) on (α1, α2) depending on whether (2.8) is increasing
(decreasing) on [0, a].

Proof. Suppose first that n = 2k is even. Then, as is well known (see, e.g., [5, Theo-
rem 1.18]),

πα2k(x;α) = π+
k (x

2;α),

where π+
k ( · ;α) is orthogonal on [0, a2] with respect to the weight function

w+(t;α) = t−1/2w(t1/2;α) on [0, a2]. Now the positive zeros of πα2k(x;α) are the posi-
tive square roots of the zeros of π+

k ( · ;α), hence they are increasing (decreasing) on [α1, α2]
if the same is true for the zeros of π+

k ( · ;α). But there holds

1

w+(t;α)

∂w+(t;α)

∂α
=

t−1/2

t−1/2w(t1/2;α)

∂w(t1/2;α)

∂α
=

1

w(t1/2;α)

∂w(t1/2;α)

∂α
,

from which Corollary 2.5 follows.
For odd n, the proof is similar using πα2k+1(x;α) = xπ−k (x

2;α), where π−k ( · ;α) is
orthogonal on [0, a2] with respect to the weight function w−(t) = t1/2w(t1/2;α).

For later purposes, we consider the case where the parameter is not contained in the weight
function but is the upper limit of the interval of orthogonality, i.e., the (monic) polynomials
{πk} are orthogonal on [a, c], −∞ ≤ a < c <∞, with respect to a weight function w,

∫ c

a

πk(x)π`(x)w(x)dx = 0, k 6= `.

THEOREM 2.6. Let w(x) be a positive weight function on [a, c], −∞ ≤ a < c < ∞,
having finite moments µk, for 0 ≤ k ≤ 2n − 1. Then each zero xν = xν(c) of πn is
monotonically increasing as a function of c.
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Proof. The proof follows the same line of arguments as the proof of Markov’s theorem
given in [14, Theorem 6.12.1] being based on the Gauss quadrature formula

(2.9)
∫ c

a

p(x)w(x)dx =
n∑

µ=1

λµ(c) p(xµ(c)), p ∈ P2n−1.

Differentiating (2.9) with respect to c, we have

(2.10) p(c)w(c) =
n∑

µ=1

λµ(c) p
′(xµ(c))

dxµ
dc

+
n∑

µ=1

dλµ
dc

p(xµ(c)).

Let

p(x) =
π2
n(x)

x− xν
, p′(xν) = [π′n(xν)]

2.

Then, since p(xµ) = 0 for all µ and p′(xµ) = 0 for µ 6= ν, we get from (2.10) that

(2.11)
π2
n(c)

c− xν
w(c) = λν(c) [π

′
n(xν)]

2 dxν
dc

.

Since on the right-hand side, both factors multiplying dxν/dc are positive and on the left-hand
side, w(c) > 0, xν < c, it follows that dxν/dc > 0.

REMARK 2.7. Theorem 2.6 is valid also if c is the lower limit of the orthogonality interval,
by the same proof. Indeed, the left-hand side of equation (2.10) will then have a minus sign in
front of it and so does the left-hand side of (2.11). But now, xν > c.

Returning to Theorem 2.3, the weight function is w1(x;α) in (1.2), which is clearly sym-
metric on (−∞,∞), so that according to Corollary 2.5, the positive zeros of the generalized
Binet polynomial παn are increasing (decreasing) depending on whether

(2.12)
1

w1(x;α)

∂w1(x;α)

∂α
=

−1
(ex − α) log(1− αe−x)

is increasing (decreasing) for x in (0,∞).
Let the right-hand side of (2.12), as a function of x, be denoted by f(x) and the denomi-

nator by g(x). Then

f(x) =
−1
g(x)

, f ′(x) =
g′(x)
g2(x)

.

So the matter depends on whether g′(x) is positive (negative) on [0,∞). Using the product
rule of differentiation, we have

g′(x) = (ex − α) αe−x

1− αe−x + ex log(1− αe−x)

= (ex − α) α

ex − α + ex log(1− αe−x) = α+ ex log(1− αe−x)

= ex[αe−x + log(1− αe−x)].

Letting t = αe−x, 0 < t < 1, and y(t) = t + log(1 − t), we have y(0) = 0 and
y′(t) = −t/(1− t) < 0, so that y(t) < 0 on (0, 1), i.e., the function in brackets is nega-
tive for x in (0,∞), that is, g′(x) < 0. Thus, we have the following theorem:

THEOREM 2.8. All positive zeros of the generalized Binet polynomial παn are monotoni-
cally decreasing as functions of α.
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In order to plot the zeros, we first use the Matlab routine dig_gbinet.m to determine
the number dig of digits needed to obtain the first 30 recurrence coefficients to an accuracy of
6 digits (more than enough for plotting purposes). The result, for any α in (0, 1], is dig = 16.
Once the respective variable-precision array ab has been obtained, one can revert to double
precision for the rest of the computations.
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FIG. 2.3. The positive zeros for n = 30 of the generalized Binet polynomial παn in dependence of the parameter
α, 0 < α ≤ 1; the smallest and largest positive zero (top); all positive zeros (bottom).

The Matlab script plot_zeros_gbinet.m with N = 30 plots the 15 positive zeros of
παn and at the same time verifies their monotonic descent as functions of α. That descent is
relatively small, almost imperceptible; see the third plot in Figure 2.3. The first two plots show
the smallest and largest positive zero, plotted in a scale that makes their monotone descent
visible. The plots indeed suggest not only monotonicity but also concavity and perhaps even
complete monotonicity. In general, monotonicity was found to be consistently weaker the
larger the zero. For example, when n = 30, the relative decrement of the smallest zero varies
in absolute value between 4.41×10−3 and 4.52×10−1, whereas the one for the largest zero
varies between 3.83×10−6 and 1.59×10−5.

3. Squared Binet and squared generalized Binet weight functions. Moment-related
methods and their implementation, both in Matlab and Mathematica, are considered in Sec-
tion 3.1 for the squared Binet weight function and in Section 3.2.1 for squared generalized
Binet weight functions. Section 3.2.2 deals with zeros of squared generalized Binet polynomi-
als.

3.1. The squared Binet weight function. The squared Binet weight function,

(3.1) w2(x) = log2(1− e−|x|) on [−∞,∞],
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being symmetric, has the moments

(3.2) µk =





0 if k is odd,

2

∫ ∞

0

xk log2(1− e−x)dx if k is even.

Putting e−x = t in the integral of (3.2), we get

µk = 2(−1)k
∫ 1

0

logk t log2(1− t) dt
t
.

For k = 0 we have µ0 = 4 ζ(3) ([9, eq. 4.261.12 for n = 0]) while for k (even) > 0

µk = 4 k!Sk+1,2(1),

with Sn,p as defined in (2.3). We have ([11, pp. 39, 41] or [10, p. 1236])

sn = Sn−1,1(1) =
∞∑

j=1

1

jn
= ζ(n)

and [11, eq. (4.16)]

Sn−1,2(1) =
1

2
nsn+1 −

1

2
(s2sn−1 + s3sn−2 + · · ·+ sn−1s2),

so that

(3.3) µk = 2k!

[
(k + 2)ζ(k + 3)−

k+1∑

ν=2

ζ(ν)ζ(k + 3− ν)
]
, k (even) > 0.

The first N moments (3.3) are generated in dig-digit arithmetic by the Matlab command

mom=smom_sqbinet(dig,N).

EXAMPLE 3.1 (The first 100 recurrence coefficients to 32 digits of the squared Binet
weight function). The Matlab command

[ab,dig]=dig_sqbinet(N,dig0,dd,nofdig),

when run with N= 100, dig0 = 108, dd = 4, nofdig = 32, yields dig = 116. The
same command, or more directly, the command ab=sr_sqbinet(dig,nofdig,N) with
dig = 116, produces the 100×2 array ab of the first 100 recurrence coefficients to 32 digits.
They are displayed in the second and third plot of Figure 3.1, the first showing the squared
Binet weight function. They are also made available in the textfile coeff_sqbinet.txt;
see also [8, 2.3.9].

Symbolic computation in Mathematica of the first 200 moments is accomplished by the
command

momSGB = Table[If[k == 0, 4 Zeta[3], If[OddQ[k], 0, 2k!
((k+2)Zeta[k+3]-Sum[Zeta[v]Zeta[k+3-v],
{v,2,k+1}])]], {k,0,199}];

taking 170.1 ms to run. With the numerical calculation option in Chebyshev’s algorithm using
working precision WP= 108 yields the first 100 recurrence coefficients to 32 digits in 136.2 ms,
with WP = 136 to 60 digits in 147.7 ms, and with WP = 196 to 120 digits in 168.4 ms.
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FIG. 3.1. The squared Binet weight function and its recurrence coefficients.

3.2. The squared generalized Binet weight function.

3.2.1. The recurrence coefficients. The squared generalized Binet weight function,

(3.4) w2(x;α) = log2(1− αe−|x|) on [−∞,∞], 0 < α < 1,

has the moments

(3.5) µk =





0 if k is odd,

2

∫ ∞

0

xk log2(1− αe−x)dx if k is even.

Similarly as in Section 3.1, one finds

(3.6) µk = 4 k!Sk+1,2(α),

where Sn,p(x) is the Nielsen generalized polylogarithm function (2.3). We have [10, eq. (2.9)]

Sk+1,2(α) =
∞∑

ν=1

(
ν∑

µ=1

1

µ

)
αν+1

(ν + 1)k+2
, 0 < α < 1.

The series converges fairly rapidly for all k ≥ 0 provided α is not too close to 1. The
moments (3.5) are generated by the Matlab command

mom=smom_sqg_binet(dig,N,a).

EXAMPLE 3.2 (The first 100 recurrence coefficients to 32 digits of the squared generalized
Binet weight function for α = 1/2). The Matlab command

[ab,dig]=dig_sqgbinet(N,a,dig0,dd,nofdig),

when run with N= 100, a= 1/2, dig0= 56, dd= 4, nofdig= 32, yields dig= 64. The
same command, or more directly, the command ab=sr_sqgbinet(dig,nofdig,N,a)
with dig = 64, produces the 100×2 array ab of the first 100 recurrence coefficients to 32
digits. They are displayed in the second and third plot of Figure 3.2, the first showing the
squared generalized Binet weight function for α = 1/2. They are also made available in the
textfile coeff_sqgbinet.txt; see also [8, 2.3.11].

Symbolic computation in Mathematica of the first 200 moments is accomplished by the
command

momSGB=Table[If[OddQ[k],0,4k!PolyLog[k+1,2,1/2]],{k,0,199}];

taking 3.3 ms to run (equally fast for every α < 1). With the numerical calculation option in
Chebyshev’s algorithm using working precision WP = 64, the first 100 recurrence coefficients
to 32 digits are obtained in 2.12 s, with WP = 92 to 60 digits in 2.90 s, and with WP = 152 to
120 digits in 5.55 s.
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FIG. 3.2. The squared generalized Binet weight function for α = 1/2 and its recurrence coefficients.

3.2.2. The zeros of the orthogonal polynomials. By virtue of Corollary 2.4 to Markov’s
theorem and of what was proved in Section 2.2.2, we have

THEOREM 3.3. All positive zeros of the squared generalized Binet polynomial παn are
monotonically decreasing as functions of α.

The zeros behave similarly as those for the generalized Binet polynomials but are only
about half as large. For n = 30, the smallest and largest positive zero are presented in the
first two plots of Figure 3.3 and all 15 positive zeros in the third plot; cf. the Matlab script
plot_zeros_sqgbinet.m.
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FIG. 3.3. The positive zeros for n = 30 of the squared generalized Binet polynomials in dependence of the
parameter α, 0 < α < 1; the smallest and largest positive zero (top); all positive zeros (bottom).

4. Halfrange Binet and halfrange generalized Binet weight functions. Moment-
related methods and their implementation in Matlab are considered in Section 4.1 for the
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halfrange Binet weight function and in Section 4.2.1 for halfrange generalized Binet weight
functions. Section 4.2.2 deals with zeros of halfrange generalized Binet polynomials.

4.1. The halfrange Binet weight function. The halfrange Binet weight function is the
weight function (1.1) supported on [0,∞]. Its moments are (cf. equations (2.1), (2.2))

(4.1) µk = k! ζ(k + 2), k = 0, 1, 2, . . .

They are generated by the Matlab command

mom=smom_hrbinet(dig,N).

EXAMPLE 4.1 ( The first 100 recurrence coefficients to 32 digits of the halfrange Binet
weight function). The Matlab command

[ab,dig]=dig_hrbinet(N,dig0,dd,nofdig),

when run with N = 100, dig0 = 116, dd = 4, nofdig = 32, yields dig = 124. The
same command, or more directly, the command ab=sr_hrbinet(dig,nofdig,N) with
dig = 124, produces the 100×2 array ab of the first 100 recurrence coefficients to 32 digits.
They are displayed in the second and third plot of Figure 4.1, the first showing the halfrange
Binet weight function. They are also made available in the textfile coeff_hrbinet.txt;
see also [8, 2.9.26].
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FIG. 4.1. The halfrange Binet weight function and its recurrence coefficients.

4.2. The halfrange generalized Binet weight function.

4.2.1. The recurrence coefficients. The halfrange generalized Binet weight function is
the weight function (1.2) supported on [0,∞]. Its moments are (cf. equations (2.6), (2.7))

(4.2) µk = k!Sk+1,1(α) = k!Lik+2(α), k = 0, 1, 2, . . .

They are generated by the Matlab command

mom=smom_hrgbinet(dig,N,a),a = α.

EXAMPLE 4.2 (The first 100 recurrence coefficients to 32 digits of the halfrange general-
ized Binet weight function for α = 1/2). The Matlab command

[ab,dig]=dig_hrgbinet(N,a,dig0,dd,nofdig),

when run with N = 100, a = 1/2, dig0 = 120, dd = 4, nofdig = 32, yields dig = 128.
As before, the same command or the command ab=sr_hrgbinet(dig,nofdig,N,a)
with dig = 128 produces the 100×2 array ab of the first 100 recurrence coefficients to 32
digits. They are displayed in the second and third plot of Figure 4.2, the first showing the
halfrange generalized Binet weight function for α = 1/2. They are also made available in the
textfile coeff_hrgbinet.txt; see also [8, 2.9.30].
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FIG. 4.2. The halfrange generalized Binet weight function for α = 1/2 and its recurrence coefficients.

4.2.2. The zeros of the orthogonal polynomials. By what was proved in Section 2.2.2,
we have

THEOREM 4.3. All zeros of the halfrange generalized Binet polynomial παn are monotoni-
cally decreasing as functions of α.

For n = 15, the smallest and largest zero are presented in the first two plots of Figure 4.3
and all zeros in the third plot; cf. plot_zeros_hrgbinet.m.
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FIG. 4.3. The zeros for n = 15 of the halfrange generalized Binet polynomials in dependence of the parameter
α, 0 < α ≤ 1; the smallest and largest zero (top); all zeros (bottom).

5. Halfrange squared Binet and halfrange squared generalized Binet weight func-
tions. Moment-related methods and their implementation in Matlab are considered in Sec-
tion 5.1 for the halfrange squared Binet weight function and in Section 5.2.1 for halfrange
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squared generalized Binet weight functions. Section 5.2.2 deals with zeros of halfrange
squared generalized Binet polynomials.

5.1. The halfrange squared Binet weight function. The halfrange squared Binet weight
function is the weight function (3.1) supported on [0,∞]. Its moments are (cf. equations (3.2),
(3.3))

µ0 = 2 ζ(3),

µk = k!

[
(k + 2)ζ(k + 3)−

k+1∑

ν=2

ζ(ν)ζ(k + 3− ν)
]
, k = 1, 2, 3, . . .

The first N of them are generated in dig-digit arithmetic by the Matlab command

mom=smom_hrsqbinet(dig,N).

EXAMPLE 5.1 (The first 100 recurrence coefficients to 32 digits of the halfrange squared
Binet weight function). The Matlab command

[ab,dig]=dig_hrsqbinet(N,dig0,dd,nofdig),

when run with N = 100, dig0 = 160, dd = 4, nofdig = 32, yields dig = 168. The
same command, or more directly, the command ab=sr_hrsqbinet(dig,nofdig,N)
with dig = 168, produces the 100×2 array ab of the first 100 recurrence coefficients to
32 digits. They are displayed in the second and third plot of Figure 5.1, the first showing
the halfrange squared Binet weight function. They are also made available in the textfile
coeff_hrsqbinet.txt; see also [8, 2.9.31].
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FIG. 5.1. The halfrange squared Binet weight function and its recurrence coefficients.

5.2. The halfrange squared generalized Binet weight function.

5.2.1. The recurrence coefficients. The halfrange squared generalized Binet weight
function is the weight function (3.4) supported on [0,∞]. Its moments are (cf. equations (3.5),
(3.6))

µk = 2 k!Sk+1,2(α), k = 0, 1, 2, . . .

They are generated by the Matlab command

mom=smom_hrsqgbinet(dig,N,a).

EXAMPLE 5.2 (The first 100 recurrence coefficients to 32 digits of the halfrange squared
generalized Binet weight function for α = 1/2). The Matlab command

[ab,dig]=dig_hrsqgbinet(N,a,dig0,dd,nofdig),
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when run with N = 100, a = 1/2, dig0 = 116, dd = 4, nofdig = 32, yields dig = 124.
The same command or the direct command ab=sr_hrsqgbinet(dig,nofdig,N,a)
with dig = 124 produces the 100×2 array ab of the first 100 recurrence coefficients to
32 digits. They are displayed in the second and third plot of Figure 5.2, the first showing
the halfrange squared generalized Binet weight function for α = 1/2. They are also made
available in the textfile coeff_hrsqgbinet.txt; see also [8, 2.9.32].
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FIG. 5.2. The halfrange squared generalized Binet weight function for α = 1/2 and its recurrence coefficients

5.2.2. The zeros of the orthogonal polynomials. Since, according to Section 4.2.2, all
zeros of the halfrange generalized Binet polynomial are monotonically decreasing, the same is
true, by Corollary 2.4 of Markov’s theorem (cf. Section 2.2.2), for the square of the weight
function. Thus we have

THEOREM 5.3. All zeros of the halfrange squared generalized Binet polynomial παn are
monotonically decreasing as functions of α.

For n = 15, the smallest and largest zero are displayed in the first two plots of Figure 5.3
and all zeros in the third plot; cf. plot_zeros_hrsqgbinet.m.

6. Subrange Binet weight functions. Moment-related methods and their implementa-
tion in Matlab are considered in Section 6.1.1 for an upper subrange Binet weight function,
in Section 6.2.1 for a lower subrange Binet weight function, and in Section 6.3.1 for a lower
symmetric subrange Binet weight function. Sections 6.1.2, 6.2.2, and 6.3.2 deal with the zeros
of the respective subrange Binet polynomials.

6.1. An upper subrange Binet weight function.

6.1.1. The recurrence coefficients. The weight function (1.1) is now assumed to be
supported on the interval [c,∞], 0 < c <∞. The approach via moments,

µk = −
∫ ∞

c

xk log(1− e−x)dx,

is still a valid option, giving, with the substitution of variables t = ec−x,

(6.1) µk =
k∑

ν=0

k(ν)ck−νLiν+2(e
−c), k = 0, 1, 2, . . . ,

where

k(ν) =

{
1 if ν = 0,

k(k − 1) · · · (k − ν + 1) if ν > 0,
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FIG. 5.3. The zeros for n = 15 of the halfrange squared generalized Binet polynomials in dependence of the
parameter α, 0 < α < 1; the smallest and largest zero (top); all zeros (bottom).

is the descending factorial power and Lin(x) the polylogarithm (cf. Section 2.1). The mo-
ments (6.1) are generated by the Matlab routine smom_usrbinet.m.

It is, however, considerably simpler, and hence faster, to make use of a linear translation of
the upper subrange Binet weight function on [c,∞] to the halfrange generalized Binet weight
function with parameter α = e−c (cf. Section 4.2). Denoting the recurrence coefficients of the
latter by ak(α), bk(α), k = 0, 1, 2, . . ., it is easy to see that

αk = ak(α) + c, βk = bk(α), k = 0, 1, 2, . . . , α = e−c.

The moments needed to generate the ak(α), bk(α) are then those in (4.2), which are definitely
simpler than those in (6.1). They are produced by the Matlab command

mom=smom_usrbinet_alt(dig,N,c).

EXAMPLE 6.1 (The first 100 recurrence coefficients to 32 digits of the upper subrange
Binet weight function for c = 1). The Matlab command

[ab,dig]=dig_usrbinet_alt(N,c,dig0,dd,nofdig),

when run with N = 100, c = 1, dig0 = 120, dd = 4, nofdig = 32, yields dig = 128. As
before, this or the more direct command ab=sr_usrbinet_alt(dig,nofdig,N,c)
with dig = 128, c = 1, produces the 100×2 array ab of the first 100 recurrence coefficients
to 32 digits. They are displayed in the second and third plot of Figure 6.1, the first showing the
upper subrange Binet weight function on [1,∞]. They are also made available in the textfile
coeff_usrbinet.txt; see also [8, 2.9.28].
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FIG. 6.1. The upper subrange Binet weight function and its recurrence coefficients.

6.1.2. The zeros of the orthogonal polynomials. Our interest is now in the behavior of
the zeros of the upper subrange Binet polynomials as functions of c. Here, applying Remark 2.7
to Theorem 2.6 of Section 2.2.2 gives the following result.

THEOREM 6.2. All zeros of the upper subrange Binet polynomial πn, orthogonal on
[c,∞], are monotonically increasing as functions of c.

The zeros for n = 15 are displayed in Figure 6.2; cf. plot_zeros_usrbinet.m.

0 0.5 1 1.5 2 2.5 3

c

0

0.5

1

1.5

2

2.5

3

3.5

z
e
ro

s

0 0.5 1 1.5 2 2.5 3

c

48

48.5

49

49.5

50

50.5

51

51.5

z
e
ro

s

0 0.5 1 1.5 2 2.5 3

c

0

10

20

30

40

50

60

z
e
ro

s

FIG. 6.2. The zeros for n = 15 of the upper subrange Binet polynomials in dependence of the parameter c,
0 < c ≤ 3; the smallest and largest zero (top); all zeros (bottom).

6.2. A lower subrange Binet weight function.

6.2.1. The recurrence coefficients. We consider here the weight function (1.1) sup-
ported on the interval [0, c], 0 < c < ∞. We take the simple approach of computing the
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respective moments as the difference between the halfrange and upper subrange moments,

(6.2) µk = µhr
k − µusr

k (c), k = 0, 1, 2, . . . ,

where µhr
k are the moments in (4.1) and µusr

k (c) those in (6.1) although (6.2) may be subject to
severe cancellation, especially if c is small. This must be compensated by an increase of the
precision used to compute the moments.

The moments (6.2) are generated in dig-digit arithmetic by the Matlab command

mom=smom_lsrbinet(dig,N,c).

EXAMPLE 6.3 (The first 100 recurrence coefficients to 32 digits of the lower subrange
Binet weight function on [0, c] for c = 1). The Matlab command

[ab,dig]=dig_lsrbinet(N,c,dig0,dd,nofdig),

when run with N= 100, c= 1, dig0= 520, dd= 4, nofdig= 32, yields dig= 528. This
large number of dig is due to extremely severe cancellation in (6.2) causing a loss of as many
as 375 digits! The same or the direct command ab=sr_lsrbinet(dig,nofdig,N,c)
with dig = 528, c = 1, produces the 100×2 array ab of the first 100 recurrence coefficients
to 32 digits. They are displayed in the second and third plot of Figure 6.3, the first showing
the lower subrange Binet weight function on [0, 1]. They are also made available in the textfile
coeff_lsrbinet.txt; see also [8, 2.9.27].
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FIG. 6.3. Lower subrange Binet weight function with c = 1 and its recurrence coefficients.

6.2.2. The zeros of the orthogonal polynomials. By Theorem 2.6 of Section 2.2.2, we
have

THEOREM 6.4. All zeros of the lower subrange Binet polynomial πn, orthogonal on [0, c],
are monotonically increasing as functions of c.

Using the routine dig_lsrbinet.m with N = 15, it was found that dig = 90 digits
are required to obtain the first 15 recurrence coefficients to an accuracy of 6 digits whenever
c ≥ 1/10. The zeros obtained are displayed in Figure 6.4; cf. plot_zeros_lsrbinet.m.

6.3. A lower symmetric subrange Binet weight function.

6.3.1. The recurrence coefficients. Here, the weight function (1.1) is supported on the
interval [−c, c], 0 < c <∞. The moments µk, therefore, are 0 if k is odd and twice of those
in (6.2) if k is even, and they are generated by the routine smom_lssrbinet.m.

EXAMPLE 6.5 (The first 100 recurrence coefficients to 32 digits of the lower symmetric
subrange Binet weight function on [−c, c] for c = 1). The Matlab routine

dig_lssrbinet(N,c,dig0,dd,nofdig),
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FIG. 6.4. The zeros for n = 15 of the lower subrange Binet polynomial πn, orthogonal on [0, c], in dependence
of the parameter c, 0 < c ≤ 3.

run with N= 100, c= 1, dig0= 460, dd= 4, nofdig= 32, yields dig= 468 as the num-
ber of digits needeed to obtain the 100×2 array ab of the desired recurrence coefficients. The
same array can be obtained by the command ab=sr_lssrbinet(dig,nofdig,N,c)
with dig = 468, c = 1. The recurrence coefficients are displayed in the second and third plot
of Figure 6.5, the first showing the lower symmetric subrange Binet weight function on [−1, 1],
and they are also made available to 32 digits in the textfile coeff_lssrbinet.txt; see
also [8, 2.9.29].
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FIG. 6.5. The lower symmetric subrange Binet weight function with c = 1 and its recurrence coefficients.

6.3.2. The zeros of the orthogonal polynomials. Since the lower symmetric subrange
Binet weight function is symmetric on [−c, c], we can apply the Remark 2.7 to Theorem 2.3
to obtain:

THEOREM 6.6. All positive zeros of the lower symmetric subrange Binet polynomial πn,
orthogonal on [−c, c], 0 < c <∞, are monotonically increasing as functions of c.

Plots of the positive zeros for n = 30 are displayed in Figure 6.6; cf. the Matlab script
plot_zeros_lssrbinet.m.
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[1] A. CVETKOVIĆ AND G. V. MILOVANOVIĆ, The Mathematica package “OrthogonalPolynomials”, Facta
Univ. Ser. Math. Inform., 19 (2004), pp. 17–36.

[2] G. DAHLQUIST, On summation formulas due to Plana, Lindelöf and Abel, and related Gauss–Christoffel
rules, I., BIT, 37 (1997), pp. 256–295.

167



ETNA
Kent State University and

Johann Radon Institute (RICAM)

70 W. GAUTSCHI AND G.V. MILOVANOVIĆ
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Abstract

Moment-based methods are used to generate the three-term recurrence
relation for polynomials orthogonal with respect to the Prudnikov, the
generalized Prudnikov, and Prudnikov-type weight functions and their
symmetric extensions. All procedures developed are implemented, and
made available, in Matlab software.
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1 Introduction

Let
ρν(x) = 2 xν/2Kν(2

√
x), x > 0, ν ∈ R,

where Kν is the second-kind modified Bessel function of order ν ([6, §10.25]).
Prudnikov polynomials [10, §3] are polynomials orthogonal with respect to
the weight function

(1.1) wν(x) = ρν(x), 0 < x < ∞, ν ≥ 0.
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A. P. Prudnikov (1927–1999) advocated their study in [7, Problem 2] and
dealt with the case ν = 0 in [ibid., Problem 1]. S. Yakubovich, in [10],
considered also generalized Prudnikov polynomials orthogonal with respect
to the weight function

(1.2) wα
ν (x) = xαρν(x), 0 < x < ∞, α > −1,

as well as Prudnikov-type polynomials, in [9, §2] of type 1, orthogonal with
respect to

(1.3) w+
ν (x) = e−xρν(x), 0 < x < ∞, ν > −1,

and in [9, §3] of type 2, orthogonal with respect to

(1.4) w−
ν (x) = x−1e−1/xρν(x), 0 < x < ∞, ν ∈ R.

Symmetric extensions of all these polynomials will also be considered,
where x in the weight function is replaced by |x|, and the support interval is
extended to the whole real line.

Multiple orthogonal polynomials relative to the pair xαρν(x), x
αρν+1(x)

of weight functions are studied in [8]; see also [1] and [11, §IIA].
Weight functions involving modified Bessel functions Kν(x) (rather than

Kν(2
√
x)) have been used previously in connection with wave functions for

nonlocal potentials [5]; see also [2, Exercise 2.32], [3, §2.1.3], [4, §2.1.3].
The object of this note is to develop the respective orthogonal polynomi-

als and their symmetric extensions, in particular, to obtain the three-term
recurrence relations they satisfy and to provide related Matlab software. The
approach used in all cases is the classical Chebyshev algorithm, computing
the recurrence coefficients from the moments of the weight function. Because
of the underlying ill-conditioning, high-precision computation is required.

2 Moments

The nth-order moment of the generalized Prudnikov weight function is

(2.1) µν,α
n =

∫ ∞

0

xnwα
ν (x)dx = Γ(n+α+ν+1)Γ(n+α+1), ν ≥ 0, α > −1,
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as follows from [10, Eq. (2.4)] where µ is replaced by n + α. For the first
Prudnikov-type weight function, the moment of order n is

µ+
n =

∫ ∞

0

xnw+
ν (x) dx =

∫ ∞

0

xne−xρν(x) dx = 2

∫ ∞

0

xn+ν/2e−xKν(2
√
x) dx,

ν > −1.

Using Mathematica 12.2, one finds (cf. also [9, Eq. (1.8)])

µ+
n = n!Γ(n+ ν + 1)U(n + ν + 1, ν + 1, 1),

where U(a, b, x) is the confluent hypergeometric function (also known as
Tricomi’s function) or, in terms of generalized hypergeometric functions,
U(a, b, x) = x−a

2F0(a, a − b+ 1;−;−x−1) [6, §13.6(vi)]. Thus,

(2.2) µ+
n = n!Γ(n+ ν + 1) 2F0(n+ ν + 1, n+ 1;−;−1).

For the second Prudnikov-type weight function, the moments have been given
in [9, Eq. (1.9)], though involving (in the last line of the equation) the gamma
function at a nonpositive integer, that is, ∞. We have, however,

(2.3) µ−
n =

∫ ∞

0

xnw−
ν (x)dx = 2

∫ ∞

0

xn+ν/2−1e−1/xKν(2
√
x)dx, ν ∈ R.

Here, the second integral can be expressed in terms of the Meijer G-function,
for which we use here the Matlab notation on the right of

Gm,n
p,q

(
z;

a1, a2, . . . , ap
b1, b2, . . . , bq

)

= meijerG ( [a1, . . . , an], [an+1, . . . , ap], [b1, . . . bm], [bm+1, . . . , bq], z)

0 ≤ n ≤ p, 0 ≤ m ≤ q.

(The content between brackets may be empty. For example, if p = 0, the
first two arguments of meijerG are empty, or only the second one if p = n.)

To begin with, the term on the far right of (2.3) can be written as a Mellin
transform of the function f(x) = 2 e−1/xKν(2

√
x),

µ−
n = (M f)(s) =

∫ ∞

0

xs−1 f(x)dx, s = n + ν/2.

Using the Mathematica 12.2 command
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MellinTransform[2 BesselK[v,2Sqrt[x]]Exp[-1/x],x,s]

yields
(2.4)

(M f)(s) =
22s−2

π3/2
meijerG ( [1/2, 1, (2 − 2s − ν)/4, (4 − 2s − ν)/4,

(2 − 2s+ ν)/4, (4 − 2s+ ν)/4], [ ], [ ], [ ], 64).

Letting

a1 = 1, a2 = 1 − s − ν/2, a3 = 1 − s+ ν/2 and p = n = 3, q = m = 0,

the right-hand side of (2.4) is

2p+1−n−a1−a2−a3

πn−p/2
meijerG ( [ a1/2, (a1 + 1)/2, a2/2, (a2 + 1)/2, a3/2, (a3 + 1)/2],

[ ], [ ], [ ], 4p),

which, by [6, Eq. 16.19.4] and s = n+ ν/2, equals

meijerG ( [a1, a2, a3], [ ], [ ], [ ], 1) = meijerG ( [1, 1−(n+ν), 1−n], [ ], [ ], [ ], 1).

Thus, simplifying by employing [6, Eq. 16.19.1], we get

(2.5) µ−
n = meijerG ( [ ], [ ], [0, n+ ν, n], [ ], 1).

The moments of the symmetric extension of all the weight functions above
are twice the moments stated, if n is even, and zero if n is odd.

3 Orthogonal polynomials and recurrence co-

efficients

It is well known that (monic) orthogonal polynomials πk relative to a positive
weight function w(x) on some finite or infinite interval [a, b] satisfy a three-
term recurrence relation

(3.1)
πk+1(x) = (x − αk)πk(x) − βkπk−1(x), k = 0, 1, 2, . . . ,

π−1 = 0, π0 = 1,
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where the coefficients αk are real and βk > 0. Conventionally, β0 is taken to be
β0 =

∫ b

a
w(x)dx. For any computational work with orthogonal polynomials,

knowledge of this recurrence relation, that is, of its recurrence coefficients, is
indispensable.

There is Matlab software available that generates to any given accuracy
the first N recurrence coefficients αk, βk, k = 0, 1, 2, . . . , N − 1, and places
them into the first, respectively second, column of an N × 2 array ab; see,
e.g., [2, §1]. The procedure used here is the Chebyshev algorithm, gener-
ating the first N recurrence coefficients from the first 2N moments of the
weight function. Given the ill-conditioned nature of this proposition, it is
important to know how many working digits are required to obtain all N
coefficients βk (and thus, presumably, also all αk 6= 0) to a given relative
accuracy. For the three weight functions of Prudnikov type, this is an-
swered by the Matlab routines dig gprudnikov.m, dig prudnikov type.m,
and for the respective symmetric extensions by dig gprudnikov symm.m,
dig prudnikov type symm.m. These routines not only provide the desired
number dig of working digits, but also the respective array ab of recur-
rence coefficients to the accuracy requested. Once this number dig of re-
quired working digits is known, the array ab can be generated directly by the
routines sr gprudnikov.m, sr prudnikov type.m, sr gprudnikov symm.m,
sr prudnikov type symm.m.

For all Matlab routines needed, visit

https://www.cs.purdue.edu/archives/2002/wxg/codes/PRUD.html.

3.1 Generalized Prudnikov polynomials

Our target precision for the recurrence coefficients, in this and the next two
subsections, is 15-digit accuracy. For generalized Prudnikov polynomials, the
results of the routine dig gprudnikov.m are shown in Table 1 for selected
values of ν and for α = ±1/2. (Other values of α > −1, including α = 0,
in the range from −.9 to 10.6, have led to basically the same results, except,
occasionally, somewhat larger ones, but never by more than 3 units.) It
can be seen that, for each N shown, the results are more or less the same,
which means that the underlying conditioning is essentially independent of
the parameters ν and α. The results, in fact, suggest condition numbers of
the order 1010 −1012 when N = 25, 1028 −1030 when N = 50, and 1063 −1067

when N = 100.
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N ν α dig N ν α dig N ν α dig

25 0 −1/2 25 50 0 −1/2 43 100 0 −1/2 78
1/2 25 1/2 44 1/2 79

1/3 −1/2 27 1/3 −1/2 45 1/3 −1/2 81
1/2 27 1/2 45 1/2 82

2/3 −1/2 27 2/3 −1/2 45 2/3 −1/2 81
1/2 27 1/2 45 1/2 82

1 −1/2 25 1 −1/2 43 1 −1/2 80
1/2 25 1/2 43 1/2 80

3 −1/2 25 3 −1/2 44 3 −1/2 80
1/2 26 1/2 43 1/2 81

6 −1/2 26 6 −1/2 44 6 −1/2 81
1/2 26 1/2 43 1/2 81

Table 1: The number dig of digits required in the Chebyshev algorithm

to obtain the first N recurrence coefficients of the generalized Prudnikov

polynomials to an accuracy of 15 decimal digits

We used our routine sr gprudnikov(dig,nofdig,N,nu,alpha) with dig

=30, nofdig=18, N=11, nu=alpha=0, to check Table 9.1 in [7] containing
the values of an =

√
βn for n = 1, 2, . . . , 10. Agreement to all digits was

observed except for the last digit, which occasionally is off by one unit.

3.2 Prudnikov-type polynomials of the first type

Here the results of the routine dig prudnikov type.m with type=1 (for the
weight function w+

ν ) are shown in Table 2 for selected values of ν > −1.
As before in the case of generalized Prudnikov polynomials, the results are
practically independent of ν.

The condition numbers for N = 25, 50, 100 are now about 1020, 1040, and
1085, that is, substantially larger than in the case of generalized Prudnikov
weight functions.
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N ν dig N ν dig N ν dig

25 −2/3 34 50 −2/3 55 100 −2/3 102
−1/3 35 −1/3 55 −1/3 102
0 35 0 54 0 100
1/3 35 1/3 55 1/3 102
2/3 35 2/3 55 2/3 102
1 35 1 54 1 100
3 35 3 54 3 101
6 35 6 54 6 101

Table 2: The number dig of digits required in the Chebyshev algo-

rithm to obtain the first N recurrence coefficients of the Prudnikov-

type polynomials of type 1 to an accuracy of 15 decimal digits

N ν dig N ν dig N ν dig

25 −6 23 50 −6 42 100 −6 79
−3 25 −3 42 −3 79
−1 25 −1 43 −1 79

−2/3 26 −2/3 44 −2/3 81
−1/3 26 −1/3 44 −1/3 81
0 24 0 42 0 79
1/3 26 1/3 44 1/3 81
2/3 26 2/3 44 2/3 81
1 24 1 43 1 79
3 26 3 43 3 80
6 25 6 44 6 80

Table 3: The number dig of digits required in the Chebyshev algo-

rithm to obtain the first N recurrence coefficients of the Prudnikov

polynomials of type 2 to an accuracy of 15 decimal digits

3.3 Prudnikov-type polynomials of the second type

Here the results of the routine dig prudnikov type.m with type=2 (for the
weight function w−

ν ) are shown in Table 3 for selected values of ν ∈ R. They
are quite similar to the ones in §3.1 where applicable, and so is the degree of
ill-contitioning.
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Knowing the degree of ill-conditioning, it is easy to estimate the number
of digits needed to get any desired accuracy. Thus, for example, when N =
100, to get 32-digit accuracy will require something like 32+67=99 digits
in the case of generalized Prudnikov weight functions and Prudnikov weight
functions of type 2, and 32+87=119 digits for Prudnikov weight functions of
type 1. Both these numbers have been corroborated numerically.

3.4 Polynomials orthogonal relative to the symmetric
extension of weight functions of Prudnikov type

Symmetry usually lowers condition numbers. This is the case here, where,
compared with the case of generalized Prudnikov polynomials in subsection
3.1, the number dig of required digits is now about one half of those in
Table 1 when N is 25 and 50, and even somewhat smaller when N = 100.
More specifically, dig is never greater than 16, 22, 35 for, respectively, N =
25, 50, 100 and parameters ν and α as in Table 1. Similarly, for symmetric
Prudnikov-type polynomials of type 1, the largest numbers dig are 20, 27, 45
for, respectively N = 25, 50, 100 and for ν as in Table 2, and for symmetric
Prudnikov-type polynomials of type 2 they are 15, 21, 34 for ν as in Table
3.
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Abstract

The computation of the three-term recurrence relation for the orthog-
onal polynomials in the title from modified moments is revisited and
related Matlab software provided.
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1 Introduction

Orthogonal polynomials relative to the exponential integral weight function,
also called generalized exponential integral [3, §8.19],

w(x) = Eν(x), Eν(x) =

∫ ∞

1

e−xt

tν
dt, ν > 0,

have recently been considered in [1] and [2, Exercise 2.26], for the infinite
support interval [0,∞] as well as for a finite one, [0, c], c > 0. In the former
case, to compute recurrence coefficients, we applied both, the Chebyshev
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algorithm based on ordinary moments, and a modified Chebyshev algorithm
based on appropriate modified moments. It was stated that, surprisingly,
the former performed better than the latter. In retrospect, we realize that
this statement is misleading in so far as the analysis dealt not only with the
performance of the Chebyshev algorithm but included also the performance
of generating the modified moments, which happened to be a process subject
to massive cancellation errors. To make a fair comparison of the Chebyshev
algorithm with the modified Chebyshev algorithm, one must assume that
the moments, resp. modified moments, which are input variables to these
aLgorithms, are given accurately, and that their generation should not be
part of the analysis. If done so, the modified Chebyshev algorithm will remain
the superior one, even, to a lesser extent, in the case of infinite intervals, as
will be documented in this article. At the same time we will develop a more
satisfactory way of generating modified moments.

2 Modified moments

For ordinary moments, see [2, Exercise 2.26 (a) and (c)].

2.1 Analysis

We need the first 2n modified moments mk in order to obtain the n × 2
array ab of recurrence coefficients for the weight function w by means of the
modified Chebyshev algorithm.

2.1.1 Infinite support interval [0,∞)

The modified moments, relative to any monic polynomials pk of degree k, are
given by

mk =

∫ ∞

0

pk(t)Eν(t), Eν(t) =

∫ ∞

1

e−tu

uν
du, k = 0, 1, 2, . . . , 2n− 1,

where ν > 0. Thus,

mk =

∫ ∞

0

pk(t) dt

∫ ∞

1

e−tu

uν
du.
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Changing variables, tu = s, in the inner integral yields

mk =

∫ ∞

0

pk(t) dt

∫ ∞

t

(s
t

)−ν

e−s ds

t

=

∫ ∞

0

pk(t) t
ν−1dt

∫ ∞

t

s−νe−sds,

that is,

(2.1) mk =

∫ ∞

0

pk(t) t
ν−1 Γ(1− ν, t) dt,

where Γ(a, x) is the upper incomplete gamma function [3, Eq. 8.2.2]. Since
k ≤ 2n−1 and the pk are polynomials of degree at most 2n−1, the integral in
(2.1) can be evaluated exactly by the n-point Gauss quadrature rule relative
to the weight function

(2.2) v(x) = xν−1 Γ(1− ν, x), ν > 0,

supported on the interval [0,∞). Thus, if the nodes and weights of this

quadrature rule are τ
(n)
i and λ

(n)
i , both depending on ν, we have

(2.3) mk =
n∑

i=1

λ
(n)
i pk(τ

(n)
i ), k = 0, 1, 2, . . . , 2n− 1.

For the polynomials pk we will take monic generalized Laguerre polyno-
mials with parameter a = −1/4.

2.1.2 Finite support interval [0, c], c > 0

The modified moments, relative to any monic polynomials pk of degree k, are
now given by

mk =

∫ c

0

pk(t)Eν(t)dt, Eν(t) =

∫ ∞

1

e−tu

uν
du, k = 0, 1, 2, . . . 2n− 1.

In the same way as in §2.1.1 one finds

(2.4) mk =

∫ c

0

pk(t) t
ν−1 Γ(1− ν, t) dt,
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that is, the same relation as in (2.1) but with the weight function (2.2)

supported on [0, c]. Therefore, (2.3) holds again, with the τ
(n)
i and λ

(n)
i , both

depending on ν and c, the nodes and weights of the n-point Gauss quadrature
rule for the weight function (2.2) supported on [0, c].

For the polynomials pk we will take the monic Legendre polynomials on
the interval [0, c].

It remains to show how the arrays ab of recurrence coefficients for the
weight functions (2.2), supported either on [0,∞) or on [0, c], and hence the
required Gaussian quadrature rules, can be obtained. We propose to use, in
either case, the Chebyshev algorithm in sufficiently high precision. For this,
we need the moments of the weight function (2.2),

µk(v) =

∫ c

0

tk+ν−1 Γ(1− ν, t) dt, k = 0, 1, 2, . . . , 2n− 1.

These can be obtained explicitly, using integration by parts. One finds, for
k = 0, 1, 2, . . . , 2n− 1,
(2.5)

µk(v) =
1

k + ν





Γ(k + 1) if c = ∞,

[
Γ(1− ν, c) ck+ν + Γ(k + 1)− Γ(k + 1, c)

]
if 0 < c < ∞.

The Chebyshev algorithm has been applied, with working precision of as
much as 500 digits, to compute 32-digit N × 2 arrays ab with N = 100 for
ν = 1/2, 1, 2 and c = 1, 3, 5,∞; see §2.2.

2.2 Matlab implementation and numerical results

All our numerical results are consistently assuming a target precision of 15
digits, that is, about Matlab double precision.

2.2.1 Infinite support interval [0,∞)

We begin with presenting the Matlab software used for computing the n× 2
array ab of the desired recurrence coefficients from either the moments of
the weight function w or from the modified moments. The Matlab function
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generating the first 2n moments is smom Enu.m1 while the first 2n modified
moments are generated by the function smmom Enu.m. Both are used, respec-
tively, in the function dig Enu.m and dig Enumod.m to produce the n × 2
array ab of recurrence coefficients of the desired orthogonal polynomials to a
prescribed accuracy along with the number dig of digits required to achieve
this accuracy. If this number is known, the array ab can be obtained more
directly by the function sr Enu.m resp. sr Enumod.m.

For the values 1/2, 1, 2 of the parameter ν, the auxiliary N × 2 arrays
ab of the recurrence coefficients for the weight function v in (2.2) have been
computed for N = 100 to an accuracy of 32 digits and are made avail-
able in the text files ab powigaminf 1half.txt, ab powigaminf 1.txt, and
ab powigaminf 2.txt. For any other values of the parameter ν, they can
easily be produced by the function dig powigaminf.m.

Computation of the moments by the routine smom Enu.m is quite stable
since they are simple rational functions; see [2, Eq. (2.56)]. It is found, like-
wise, using dig mmEnu.m, that the computation of the modified moments by
the routine smmom Enu.m is also fairly stable, involving a loss of no more than
1 or 2 digits. With regard to the number of digits needed to obtain the re-
currence coefficients to an accuracy of 15 digits, our routines dig Enu.m and
dig Enumod.m found them to be as shown in Table 1, where the numbers

n ν = 1 ν = 1/2 ν = 2
20 23 (25) 25 (24) 24 (25)
40 43 (44) 44 (44) 43 (44)
60 62 (64) 63 (64) 62 (64)
80 81 (83) 82 (81) 80 (82)
100 100 (101) 102 (101) 100 (101)

Table 1: Number of digits required to obtain the
recurrence coefficients accurate to 15 digits when
the interval is [0,∞]

in parentheses refer to moments, and those preceding them to modified mo-
ments. It can be seen, in accord with previous experience with unbounded

1All Matlab functions and text files relevant to implement the work in this paper,
are accessible on the website https://www.cs.purdue.edu/archives/2002/wxg/codes/
ALAOPEXPINT.html.
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intervals, that the modified Chebyshev algorithm is only marginally better
than the ordinary Chebyshev algorithm, and sometimes even a bit worse, and
both are facing a considerable amount of ill-conditioning. Variable-precision
arithmetic is therefore a necessity here, and ordinary Matlab double-precison
arithmetic not an option.

2.2.2 Finite support interval [0, c], c > 0

The moments of the weight function w can be expressed explicitly in terms of
incomplete gamma functions, see [2, Eq. (2.61)], while the modified moments
require Gaussian quadrature in (2.4) and therefore are more time-consuming
to compute. The Matlab functions generating the first 2n of them are now
smom Enufin.m resp. smmom Enufin.m. As before, they are used in the func-
tions dig Enufin.m resp. dig Enufinmod.m to produce the n× 2 array ab of
recurrence coefficients for the desired orthogonal polynomials to a prescribed
accuracy along with the number dig of digits required to achieve this accu-
racy. If this number is known, one can use directly the functions sr Enufin.m

and sr Enufinmod.m. In the latter, the modified moments are computed in
(dig+2)-digit arithmetic rather than dig-digit arithmetic as in the rest of
the routine. The computation of the moments and modified moments, as

n c = 1 c = 3 c = 5
20 16 (40) 16 (40) 16 (38)
40 16 (69) 16 (69) 16 (69)
60 16 (99) 16 (99) 16 (99)
80 16 (129) 16 (130) 16 (130)
100 16 (160) 16 (160) 16 (160)

Table 2: Number of digits required to obtain the
recurrence coefficients accurate to 15 digits when
the interval is [0, c] and ν = 1

in §2.2.1, is found, using dig mEnufin.m and dig mmEnufin.m, to be again
quite stable. Computing the recurrence coefficients from the modified mo-
ments, however, is now fundamentally different. This is shown in Table 2,
generated for ν = 1 and c = 1, 3, 5 by the Matlab functions dig Enufin.m

and dig Enufinmod, both in variable-precision arithmetic. (For ν = 1/2 and
ν = 2, the results are practically identical, being different only occasionally
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by one unit.) As is clearly visible, the routine dig Enufinmod, using mod-
ified moments, is perfectly stable, and in fact, when run entirely in Matlab
double precision, produces almost fully accurate results. Thus, if an accu-
racy of 13 decimal digits is acceptable, no variable-precision routine is needed
in this case, and the Matlab double-precision function ab=r Enufinmod.m is
adequate and substantially faster.

If we compare the runtime of the two routines sr Enufin.m and sr Enu

finmod.m, both run in variable-precision arithmetic with the appropriate
number of digits, we find that the former is faster by about 30% than the
latter, evidently because of the more complicated nature of modified mo-
ments. So one may prefer to use the former routine rather than the latter.

3. The author declares that he has no conflict of interest.
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Abstract Procedures and corresponding Matlab software are presented for generat-
ing Gauss–Turán quadrature rules for the Laguerre and Hermite weight functions to
arbitrarily high accuracy. The focus is on the solution of certain systems of nonlinear
equations for implicitly defined recurrence coefficients. This is accomplished by
the Newton–Kantorovich method, using initial approximations that are sufficiently
accurate to be capable of producing n-point quadrature formulae for n as large as 42
in the case of the Laguerre weight function, and 90 in the case of the Hermite weight
function.
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1 Introduction

We recall that a Gauss–Turán quadrature rule for any positive weight function (or
measure dλ) is a formula of the type

∫
R
f (t)dλ(t) =

n∑
ν=1

2s∑
σ=0

λ(σ)ν f (σ)(τν)+ Rn,s(f ), (1.1)

where n and s are positive integers n ≥ 1, s > 0, and the formula has maximum
degree of exactness d = (2s + 2)n− 1,

Rn,s(f ) = 0 for all f ∈ P(2s+2)n−1, (1.2)
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where Pk denotes the set of polynomials of degree ≤ k (cf., e.g., [1, Section
3.1.3.1]). If s = 0, this is the usual Gaussian quadrature rule. We are inter-
ested here in computing the nodes τν and weights λ

(σ)
ν for values of n as large

as possible, and for 1 ≤ s ≤ 5, which is probably sufficient for most practical
applications.

The task is usually divided into two parts: the calculation of the nodes τν , and
the calculation of the weights λ

(σ)
ν . The former necessarily requires the solution of

nonlinear systems of equations. Early work on this subject ([6]) is focused directly
on the n nodes τν and a system of n nonlinear equations satisfied by them. The
same is true for more recent work such as [3–5] (dealing with more general Gauss–
Turán type formulae with multiplicities varying from node to node). Here we use a
different system of equations, originally proposed by Milovanović in [2] (see also [1,
Section 3.1.3.2]), namely a system of 2n− 1 nonlinear equations satisfied by certain
recurrence coefficients of implicitly defined orthogonal polynomials. With regard to
the weights λ(σ)ν , they are computed for each fixed ν from an upper triangular system
of 2s + 1 linear equations.

The main problem to be considered in this work is the solution of the system of
2n − 1 nonlinear equations for the 2n − 1 recurrence coefficients in question. We
propose to use the Newton–Kantorovich method for this purpose. For this, as is well
known, it is critical to have at hand sufficiently accurate initial approximations. In
the case of Laguerre and Hermite weight functions, considered here, this happens to
be relatively simple, owing to a startling property satisfied by the desired recurrence
coefficients.

It is well known that the three-term recurrence relation for the monic Laguerre
polynomials,

Lk+1(x) =
(
x − αL

k

)
Lk(x)− βL

k Lk−1(x), k = 0, 1, 2, . . . ,

has coefficients αL
k = 2k + 1 and βL

k = k2, that is, the α-coefficients are lin-
ear in k and the β-coefficients quadratic. Surprisingly, a similar property holds,
at least approximately, for the recurrence coefficients of interest here. Likewise,
the recurrence coefficients for the Hermite polynomials are αH

k = 0, βH
k = 1

2 k,
that is, the β-coefficients are linear in k, while the α-coefficients vanish by sym-
metry. Something similar happens to be true for the coefficients of interest here,
at least approximately in the case of the β-coefficients. These remarkable proper-
ties allow us to obtain very accurate initial approximations for Newton’s method,
giving rise to convergence (to machine precision or better) in as few as 4–8 iter-
ations and for n as large as 42 in the Laguerre case (when s = 1), i.e., for
systems of as many as 83 nonlinear equations, and even for larger n in the
Hermite case. Considering that only ten years ago the author had convergence prob-
lems already for n = 5 resp. n = 7 (cf. [1, Example 3.24]), this constitutes
real progress!

There is, however, another difficulty to cope with: the increasingly (with n and s)
ill-conditioned and normwise large Jacobian matrices in Newton’s method. High-
precision computation, therefore, is essential in this context.
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2 Numerical approach

For fixed n and s, the nodes τν = τ
(n)
ν,s of (1.1) are the zeros of the (monic) polynomial

πn,s of degree n, which is the last member of the sequence of polynomials {πk,s} (all
depending on n) defined by

πk+1,s (t) = (t − αk,s)πk,s(t) − βk,sπk−1,s(t), k = 0, 1, 2, . . . , n− 1,

π0,s(t) = 1, π−1,s = 0, (2.1)

where αk,s = α
(n)
k,s , βk,s = β

(n)
k,s are suitable real resp. positive coefficients. (The

superscripts are to emphasize that all these quantities depend on n. Also, we set here
β
(n)
0,s = 0.). This looks like the three-term recurrence relation for orthogonal polyno-

mials. That’s in fact what it is, but the orthogonal polynomials π0,s , π1,s, . . . , πn,s are
defined implicitly, their measure being dλn,s(t) = [πn,s(t)]2sdλ(t) (cf. [1, Section
3.1.3.2]). The 2n − 1 coefficients αk = α

(n)
k,s , βk = β

(n)
k,s satisfy a system of 2n − 1

nonlinear equations,

f (ρn) = 0, ρT
n = [α0, α1, . . . , αn−1; β1, . . . , βn−1], (2.2)

where each component fν of f = [f1, f2, . . . , f2n−1]T is a highly nonlinear function
of the 2n− 1 variables α0, α1, . . . , αn−1; β1, . . . , βn−1, namely (cf. [1, Eq. (3.1.66)])

f2ν+1 =
∫

R
(αν − t)π2

ν,s(t)π
2s
n,s(t)dλ(t), ν = 0, 1, . . . , n− 1,

f2ν =
∫

R

(
βνπ

2
ν−1,s (t)− π2

ν,s(t)
)
π2s
n,sdλ(t), ν = 1, . . . , n− 1.

(2.3)

Once this system is solved, the nodes τν are computed as the eigenvalues of the
Jacobi matrix of order n associated with the three-term recurrence relation (2.1). The
weights λ(σ)ν , σ = 0, 1, . . . , 2s, for each ν, can be determined as the solution of an
upper triangular system of 2s + 1 linear equations,

Âλ̂ = μ̂, Â ∈ R(2s+1)×(2s+1), λ̂ =
[
λ(σ)ν

]2s

σ=0
, (2.4)

where μ̂ is a vector, and Â an upper triangular Toeplitz matrix, both computable from
the nodes τ1, τ2, . . . , τn and depending on ν (cf. [1, Eq. (3.1.68)]).

In the next two sections, the procedure, as applied to the Laguerre and Hermite
weight functions, is described in more detail. It suffices to discuss the procedure
for solving the system of nonlinear equations (2.2), which is the core problem. The
remaining part of the computation, i.e., the computation of the nodes τν and weights
λ
(σ)
ν , is straightforward and does not require further discussion.

3 Gauss–Turán formulae for the Laguerre weight function

In this section, we let throughout dλ(t) = e−tdt on [0,∞]. In a first subsection,
Section 3.1, we look at the case n = 1, which involves just one nonlinear (in fact,
algebraic) equation. In general, the problem consists of solving the system (2.2) of
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2n−1 nonlinear equations for n = 1, 2, . . . , N , where N is a given (hopefully large)
integer. Each of these systems will have a solution which we denote by

α
(n)
0 , α

(n)
1 , . . . , α

(n)
n−1; β(n)

1 , . . . , β
(n)
n−1, n = 1, 2, . . . , N, (3.1)

suppressing the dependence on s. Our objective is to compute the matrix R of dimen-
sion N × (2N − 1) containing in the nth row the solution (3.1) followed by zeros if
n < N , that is,

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(1)
0 0 0 0 0 0 0 · · · 0 0 0

α
(2)
0 α

(2)
1 β

(2)
1 0 0 0 0 · · · 0 0 0

α
(3)
0 α

(3)
1 α

(3)
2 β

(3)
1 β

(3)
2 0 0 · · · 0 0 0

...
...

...
. . .

. . .
. . .

. . . · · · 0 0 0
α
(N−1)
0 α

(N−1)
1 α

(N−1)
2 · · · α

(N−1)
N−2 β

(N−1)
1 β

(N−1)
2 · · · β(N−1)

N−2 0 0

α
(N)
0 α

(N)
1 α

(N)
2 · · · α

(N)
N−2 α

(N)
N−1 β

(N)
1 · · · β

(N)
N−3 β

(N)
N−2 β

(N)
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.2)

Notice that the kth subdiagonal of R, k = 0, 1, . . . , N − 1, contains the elements
α
(m+k)
m−1 , m = 1, 2, . . . , N − k, the last subdiagonal containing just one element,

α
(N)
0 . The analogous β-elements, β(m+k)

m , m = 1, 2, . . . , N − k, lie on what we call
the kth staircase-supdiagonal, k = 1, 2, . . . , N − 1, since to get from one of these
elements to the next, one has to go down vertically one place and horizontally to the
right two places (not one place as for ordinary diagonals). The last of these staircase-
diagonals again constains just one element, β(N)

1 . The elements on these diagonals
resp. staircase-diagonals were found to have the following striking properties.

First Empirical Observation. (a) The elements α(m+k)
m−1 , m = 1, 2, . . . , N − k, on

the kth subdiagonal of R, k = 0, 1, . . . , N − 1, for all practical purposes, and
irrespective of the value of s, lie on a straight line, i.e., are a linear function of
m. (For k = N − 2 and k = N − 1, this of course is a trivial statement). (b) The
elements β

(m+k)
m , m = 1, 2, . . . , N − k, on the kth staircase-supdiagonal of R,

k = 1, 2, . . . , N − 1, for all practical purposes, and irrespective of the value of s,
lie on a parabola, i.e., are a quadratic function of m. (For k = N−1, N−2, N−3,
this again is a trivial statement).

This empirical observation is illustrated in Fig. 1 for s = 1 and N = 40.
(The reason for this, as already hinted at in Section 1, may well be that the recur-
sion coefficients αL

k and βL
k for the Laguerre polynomials are exactly linear resp.

quadratic functions of k.)
Second Empirical Observation. The linear and quadratic functions in (a) resp.

(b) of the First Empirical Observation are more or less independent of k.

In Section 3.2 we describe a sequential row-by-row computation of the matrix R,
using the results obtained for the α’s and β’s in the (n − 1)st row as initial approx-
imations for the corresponding α’s and β’s in the nth row and estimating the new
α
(n)
n−1, β(n)

n−1, which have no matching entries in the preceding row, by an interpolation
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Fig. 1 Linear approximation for α
(n)
n−1,1, 1 ≤ n ≤ 40, (left) and quadratic approximation for β

(n+1)
n,1 ,

1 ≤ n ≤ 39, (right). The true (computed) values are indicated by stars, the approximations by a solid line

process. Examining the results so obtained led to the discovery of the two empirical
observations above and the determination of the coefficients of the respective lin-
ear and quadratic functions. Further examination of these coefficients will suggest a
close analytic approximationRa of R, the first 2n−1 entries in the nth row of Ra pro-
viding excellent initial approximations for the solution of (2.2). This is incorporated
in Section 3.3 into a final production code.

3.1 The case n = 1

Here, there is just one unknown, α0 = α
(1)
0,s . By (2.1) for k = 0, we have π1,s (t) =

t − α0, and therefore, by (2.3) for ν = 0,

f1 =
∫ ∞

0
(α0 − t)π2s

1,s(t)dλ(t) =
∫ ∞

0
(α0 − t)2s+1e−tdt.

Thus, by the binomial formula, we have f1 = 0 if

P2s+1(α) = 0, s ≥ 1, (3.3)

where α = α0 and

P2s+1(α) =
2s+1∑
k=0

(−1)k(2s + 2 − k)k α
2s+1−k. (3.4)

For the first five values of s, one finds

P3(α) = α3 − 3α2 + 6α − 6 (s = 1),

P5(α) = α5 − 5α4 + 20α3 − 60α2 + 120α − 120 (s = 2),

P7(α) = α7 − 7α6 + 42α5 − 210α4 + 840α3 − 2520α2 + 5040α − 5040 (s = 3),

P9(α) = α9 − 9α8 + 72α7 − 504α6 + 3024α5 − 15120α4 + 60480α3 − 181440α2

+362880α − 362880 (s = 4),

P11(α) = α11 − 11α10 + 110α9 − 990α8 + 7920α7 − 55440α6 + 332640α5

−1663200α4+6652800α3−19958400α2+39916800α−39916800 (s = 5).
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Each of these polynomials has exactly one positive zero α = α0, namely

α0 = 1.596071637983321 . . . (s = 1),

α0 = 2.180607124035125 . . . (s = 2),

α0 = 2.759002709962271 . . . (s = 3),

α0 = 3.333551485269048 . . . (s = 4),

α0 = 3.905451757616910 . . . (s = 5). (3.5)

3.2 Numerical procedure for exploration

The procedure1 described in this section, named sturan laguerre explore.m,
is strictly a preliminary one, serving mainly as a vehicle for exploration. The required

recurrence coefficients
[
α
(n)
0,s , α

(n)
1,s , . . . , α

(n)
n−1,s; β(n)

1,s , . . . , β
(n)
n−1,s

]
will be generated

successively for n = 1, 2, 3, . . . . When n = 1, we need only α
(1)
0,s , which is computed

for s = 1, 2, . . . , 5 to the desired (high) accuracy by Newton’s method applied to the
algebraic equation (3.3), using as initial approximation the respective value of α0 in
(3.5) truncated to Matlab double precision.

For each n > 1, we need to solve the nonlinear system (2.2). We do this by
applying the Newton–Kantorovich method, a description of which can be found in

[1, Section 3.1.3.2]. To compute ρn =
[
α
(n)
0,s , α

(n)
1,s , . . . , α

(n)
n−1,s; β(n)

1,s , . . . , β
(n)
n−1,s

]
, we

use the already computed ρn−1 to provide the initial approximations

α
(n)
0,s ≈ α

(n−1)
0,s , . . . , α

(n)
n−2,s ≈ α

(n−1)
n−2,s; β

(n)
1,s ≈ β

(n−1)
1,s , . . . , β

(n)
n−2,s ≈ β

(n−1)
n−2,s . (3.6)

We still need, however, initial approximations for α(n)
n−1,s , β

(n)
n−1,s .

Since a quadratic function is uniquely determined by three of its values, we begin
by computing ρn for n = 2, 3, 4, using the procedure outlined above. Suitable
initial approximations for α

(n)
n−1, β(n)

n−1, required for ρn, are sought in terms of the
corresponding Laguerre coefficients αL

n−1, βL
n−1. By simple trial-and-error we find

α
(2)
1 ≈ 1.9αL

1 , β
(2)
1 ≈ 3.2βL

1
α
(3)
2 ≈ 2.0αL

2 , β
(3)
2 ≈ 3.7βL

2
α
(4)
3 ≈ 2.0αL

3 , β
(4)
3 ≈ 3.9βL

3

⎫⎪⎬
⎪⎭ s = 1,

α
(2)
1 ≈ 2.8αL

1 , β
(2)
1 ≈ 6.7βL

1
α
(3)
2 ≈ 2.9αL

2 , β
(3)
2 ≈ 8.2βL

2
α
(4)
3 ≈ 3.0αL

3 , β
(4)
3 ≈ 8.6βL

3

⎫⎪⎬
⎪⎭ s = 2,

1All Matlab procedures referenced or used in this paper can be downloaded from www.cs.purdue.edu/
archives/2002/wxg/codes/HPGT.html.
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α
(2)
1 ≈ 3.7αL

1 , β
(2)
1 ≈ 11.3βL

1
α
(3)
2 ≈ 3.9αL

2 , β
(3)
2 ≈ 14.4βL

2
α
(4)
3 ≈ 3.9αL

3 , β
(4)
3 ≈ 15.3βL

3

⎫⎪⎬
⎪⎭ s = 3,

α
(2)
1 ≈ 4.6αL

1 , β
(2)
1 ≈ 17.1βL

1
α
(3)
2 ≈ 4.8αL

2 , β
(3)
2 ≈ 22.2βL

2
α
(4)
3 ≈ 4.9αL

3 , β
(4)
3 ≈ 23.8βL

3

⎫⎪⎬
⎪⎭ s = 4,

α
(2)
1 ≈ 5.5αL

1 , β
(2)
1 ≈ 24.1βL

1
α
(3)
2 ≈ 5.8αL

2 , β
(3)
2 ≈ 31.8βL

2
α
(4)
3 ≈ 5.9αL

3 , β
(4)
3 ≈ 34.2βL

3

⎫⎪⎬
⎪⎭ s = 5.

The procedure with these initial approximations converges in 6–7 Newton itera-
tions, even for accuracies as high as 64 decimal digits.

Now that α(n)
n−1,s , β

(n)
n−1,s have been accurately computed for n = 2, 3, 4, we deter-

mine the linear function in the First Empirical Observation, part (a), by finding the
linear interpolant (in the variable n) taking on the values α(2)

1,s and α
(4)
3,s at n = 2 and

n = 4. Likewise, the quadratic function in part (b) is taken to be the quadratic inter-
polant based on the values β

(2)
1,s , β(3)

2,s , and β
(4)
3,s at n = 2, 3, and 4. We obtain (to 4

decimals):

α
(n)
n−1 ≈ 4.0747n− 2.4358

β
(n)
n−1 ≈ 4.1540n2 − 9.0846n+ 4.803

}
s = 1,

α
(n)
n−1 ≈ 6.1534n− 3.8822

β
(n)
n−1 ≈ 9.4751n2 − 21.3243n+ 11.4453

}
s = 2,

α
(n)
n−1 ≈ 8.2335n− 5.333

β
(n)
n−1 ≈ 16.9644n2 − 38.7275n+ 20.9285

}
s = 3,

α
(n)
n−1 ≈ 10.3142n− 6.786

β
(n)
n−1 ≈ 26.6224n2 − 61.2983n+ 33.2533

}
s = 4,

α
(n)
n−1 ≈ 12.3954n− 8.2407

β
(n)
n−1 ≈ 38.4493n2 − 89.0384n+ 48.4185

}
s = 5.

These initial approximations, along with those in (3.6), can now be used to run our
procedure for n > 4 (cf. runSTL.m). The largest value N of n for which it worked
satisfactorily is shown in Table 1 for the five values of s, along with the condition
number of the Jacobian when n = N , the magnitude of its absolutely largest element,
and the number of digits used in the computation. (Numbers in parentheses indicate
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Table 1 Performance data for
the explorative procedure in the
case of the Laguerre weight
function

s N Cond Max element Digits

1 42 1.2(58) 2.1(250) 80

2 32 1.4(51) 6.2(297) 68

3 20 4.6(36) 1.7(236) 64

4 18 3.0(35) 2.0(275) 64

5 15 3.3(35) 6.8(275) 64

exponents of 10.) By “satisfactory” we mean that the α
(n)
n−1,s and β

(n)
n−1,s follow the

linear resp. quadratic growth with n shown in Fig. 1. What typically happens, as n

is increased in steps of 1, is that the condition of the Jacobian matrix in Newton’s
method gets worse and some of its elements rapidly become very large, so much so
that eventually overflow may occur when computing the condition number in Matlab
double precision, or Newton’s method may fail to converge within 20 iterations. Such
breakdowns are usually preceded by a change in the growth pattern shown in Fig. 1,
which thus signals trouble ahead.

For each value of s we compute not only the matrix R for the appropriate number
N , but also the matrix C of dimension N × 5, where ck+1,1, ck+1,2 (k ≥ 0) are the
coefficients of the N − 1 linear functions

α
(n+k)
n−1 ≈ ck+1,1n+ ck+1,2, 1 ≤ n ≤ N − k, k = 0, 1, . . . , N − 2, (3.7)

approximating the α-coefficients along the kth subdiagonal of R, with cN,1 = 0,
cN,2 = α

(N)
0 , and ck,3, ck,4, ck,5 are the coefficients of the N − 3 quadratic functions

β(n+k)
n ≈ ck,3n

2 + ck,4n+ ck,5, 1 ≤ n ≤ N − k, k = 1, 2, . . . , N − 3, (3.8)

approximating the β-coefficients shown on the left, with cN−2,3 = 0, cN−1,4 = 0,
cN−1,5 = β

(N)
1 and cN,3 = cN,4 = cN,5 = 0.

The quality of these approximations is quite remarkable and tends to get better
with larger k. Selected values of the maximum relative error for the α’s and β’s, taken
over all n with 1 ≤ n ≤ N − k, are shown in Table 2 for s = 1. They are similar for
larger values of s.

A careful look at the matrix C not only confirmed the First and Second Empirical
Observations stated at the beginning of Section 3, but also revealed further patterns
that allowed us to express the required initial approximations as functions of m and s

(at least for 1 ≤ s ≤ 5). Specifically, with regard to the α-coefficients, we found that

Table 2 Quality of the
approximations (3.7) and (3.8)
when s = 1 for selected values
of k

k Maxerr α Maxerr β

0 1.7(−2) −
1 1.2(−2) 5.5(−2)

5 2.4(−3) 2.0(−2)

15 3.5(−4) 3.7(−3)

35 1.8(−4) 1.2(−5)
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for k = 1, 2, . . . , N − 1, 1 ≤ s ≤ 5, with N = N(s) as in Table 1,

α
(m+k)
m−1 ≈ 2(s + 1)m− 1

2 (3s + 2), m = 1, 2, . . . , N − k. (3.9)

As to the β-coefficients, we found that for k = 1, 2, . . . , N − 1, 1 ≤ s ≤ 5, with
N = N(s) as in Table 1,

β(m+k)
m ≈ (s + 1)m

(
(s + 1)m− 1

2 s
)
, m = 1, 2, . . . , N − k. (3.10)

The fact that the approximations in both (3.9) and (3.10) are independent of k is in
close agreement with reality when k is relatively large, but less so otherwise.

3.3 A production code for the Laguerre weight function

All ingredients for a production code having been assembled in Section 3.2, it
remains to incorporate them into a final routine, named sturan laguerre.m.
From (3.9), (3.10) we get for the n-point Gauss–Turán formula the following initial
approximations for the 2n− 1 recursion coefficients,

α
(n)
ν−1 ≈ 2(s + 1)ν − 1

2 (3s + 2), ν = 1, 2, . . . , n (1 ≤ n ≤ N) (3.11)

and

β(n)
ν ≈ (s + 1)ν

(
(s + 1)ν − 1

2 s
)
, ν = 1, 2, . . . , n− 1 (2 ≤ n ≤ N). (3.12)

These initial approximations have been found quite satisfactory for all 1 ≤ s ≤ 5
and n ≤ N (where N = N(s) as in Table 1), with only one exception, s = 5 and
n = 7, in which case Newton’s iteration failed to converge within 20 iterations. For
this reason, we provide in the routine sturan laguerre.m the more accurate
approximations

α
(n)
ν−1 ≈ cn−ν+1,1 ν + cn−ν+1,2, ν = 1, 2, . . . , n,

β(n)
ν ≈ cn−ν,3 ν

2 + cn−ν,4 ν + cn−ν,5, ν = 1, 2, . . . , n− 1, (3.13)

in terms of the matrix C. Newton’s method then converges without exceptions, taking
typically 6–8 iterations (but 10 iterations when n = 6).

Table 3, produced by the routine timingSTL.m and run on an IntelR , CoreTM2,
CPU at 1.86GHz with 2 GB main memory, is intended to provide some more infor-
mation about timing and the number of Newton iterations in the cases s = 1, 2, . . . , 5
for selected values n. The letter “c” in the heading of the table gives the order of mag-
nitude (in powers of 10) of the condition number of the Jacobian matrix in Newton’s
method. (These were obtained during the explorative work described in Section 3.2.)
The letter “d” stands for the number of digits used in the computation. The three
values chosen for d are such that the results are expected to have 8, 16, and 32 cor-
rect decimal digits. In reality, and in conformity with the nature of Newton’s method,
they are generally considerably more accurate. In some cases, marked by an asterisk
in Table 3, the estimated number d , however, is not sufficient to produce satisfactory
results and must be enlarged by as little as 4 (when s = 3) and by as much as 20
(when s = 5). The reason for this is not entirely clear, but probably has to do with the
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Table 3 Timing (in minutes)
and number of Newton iterations
for the Laguerre weight function
in the cases s = 1 : 5

s n c d = c + 8 d = c+ 16 d = c + 32

1 9 16 2 [5] 2 [6] 3 [7]

20 35 12 [5] 17 [6] 20 [7]

31 49 40 [5] 51 [6] 61 [7]

42 58 130 [5] 187 [7] 215 [8]

2 8 17 1 [5] 2 [6] 2 [7]

16 34 19 [6] 12 [7] 14 [8]

24 40 63 [6] 36 [7] 42 [8]

32 52 100 [7]∗ 102 [7] 117 [8]

3 5 10 1 [5] 1 [6] 1 [7]

10 23 4 [6] 4 [7] 5 [8]

15 34 11 [6] 12 [7] 14 [8]

20 37 30 [8]∗ 30 [8]∗ 34 [9]

4 6 14 1 [6] 1 [7] 1 [8]

10 24 4 [6] 5 [7] 6 [8]

14 34 13 [8]∗ 13 [8] 15 [9]

18 36 27 [8]∗ 26 [8]∗ 30 [9]

5 6 17 2 [9] 2 [10] 2 [11]

9 23 4 [7] 5 [8] 5 [9]

12 30 9 [7]∗ 8 [6] 9 [7]

15 35 3 [1]∗ 5 [2]∗ 7 [3]

Jacobian matrix in Newton’s method not only being ill-conditioned, but also having
extremely large elements (of the order 10275).

The timings shown in Table 3 are in minutes and include the computation of the
weights. The numbers in brackets indicate how many iterations it took for Newton’s
method to converge. All results are checked by recomputations with d increased by
4 and verifying consistency of the results.

It is to be noted that in the last line for s = 5, the number of iterations is excep-
tionally small. This is so because the initial approximations used in this case, based
as they are on the matrix C, are the true values accurate to Matlab double preci-
sion, owing to the interpolation scheme adopted to produce the approximations in
(3.7), (3.8).

4 Gauss–Turán formulae for the Hermite weight function

In this section we let dλ(t) = e−t2
dt on R. Because of symmetry, α(n)

ν,s = 0 for
ν = 0, 1, . . . , n − 1 and all n and s. The first set of n equations f2ν+1 = 0 in (2.3),
therefore, is trivially satisfied. We need to be concerned only with the second set of
n − 1 equations f2ν = 0, assuming n ≥ 2. (The Gauss–Turán formula (1.1) in the
case n = 1 is simply obtained by Taylor expansion of f (t) at the point t = τ1 = 0.)
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4.1 The case n = 2

There is just one unknown, β1 = β
(2)
1,s , the first nonlinear equation being f2 = 0.

From (2.3) with ν = 1, we have

f2 =
∫

R
(β1 − t2)π2s

2,s(t)dλ(t) = 2
∫ ∞

0
(β1 − t2)2s+1e−t2

dt.

Letting t2 = τ and β = β1, we get

f2 =
∫ ∞

0
(β − τ)2s+1τ−1/2e−τ dτ,

hence, by the binomial formula,

f2 =
2s+1∑
k=0

(−1)k
(

2s + 1

k

)
	(k + 1/2)β2s+1−k.

Since 	(k + 1/2) = (−1)k(−1/2)k
√
π , the equation f2 = 0 yields the algebraic

equation

Q2s+1(β) = 0, s ≥ 1,

where

Q2s+1(β) =
2s+1∑
k=0

(
2s + 1

k

)
(−1/2)k β

2s+1−k. (4.1)

For the first five values of s, one finds, after clearing all fractions,

Q3(β) = 8β3 − 12β2 + 18β1 − 15 (s = 1),

Q5(β) = 32β5 − 80β4 + 240β3 − 600β2 + 1050β − 945 (s = 2),

Q7(β) = 128β7 − 448β6 + 2016β5 − 8400β4 + 29400β3 − 79380β2

+ 145530β − 135135 (s = 3),

Q9(β) = 512β9 − 2304β8 + 13824β7 − 80640β6 + 423360β5 − 1905120β4

+ 6985440β3 − 19459440β2 + 36486450β − 34459425 (s = 4),

Q11(β) = 2048β11 − 11264β10 + 84480β9 − 633600β8 + 4435200β7

− 27941760β6 + 153679680β5 − 713512800β4 + 2675673000β3

− 7581073500β2 + 14404039650β − 13749310575 (s = 5).

Each of these polynomials has exactly one real zero, namely

1.053573782217666 . . . (s = 1),

1.609349223985799 . . . (s = 2),

2.165699416895352 . . . (s = 3),

2.722281296487453 . . . (s = 4),

3.278979167347799 . . . (s = 5).

(4.2)
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4.2 A production code for the Hermite weight function

Preliminary explorative work is similar to what was done for the Laguerre weight
function in Section 3.2, but simpler, because all α-coefficients are zero and only the
β-coefficients need to be determined. We therefore omit details. Rather than writing
new software specifically for symmetric measures (which, in fact, would be prefer-
able), we simply use existing software and take zero initial approximations for the
α’s.

What was found empirically can again be expressed in two observations.

First Empirical Observation The elements β(m+k)
m , m = 1, 2, . . . , N − k, on the

kth staircase-supdiagonal of R, k = 1, 2, . . . , N − 1, for all practical purposes,
and irrespective of the value of s, lie on a straight line, i.e., are linear functions of
m. (For k = N − 2 and k = N − 1, this is a trivial statement.)

This is illustrated in Fig. 2 for s = 1 and N = 40.
Second Empirical Observation The linear functions of the First Empirical Obser-

vation are more or less independent of k.

The coefficients of these linear functions are stored in a (N − 1) × 2 array C, so
that

β(m+k)
m ≈ ck,1m+ ck,2, m = 1, 2, . . . , N − k, (4.3)

where for k = N − 1 (hence m = 1),

cN−1,1 = 0, cN−1,2 = β
(N)
1 . (4.4)

Setting m+k = n, we can write β(n)
n−k ≈ ck,1(n−k)+ck,2, and since 1 ≤ n−k ≤ n−1

(the first inequality coming from m ≥ 1, the second from k ≥ 1), letting n− k = ν,
we get

β(n)
ν ≈ cn−ν,1ν + cn−ν,2, ν = 1, 2, . . . , n− 1, (4.5)

0 5 10 15 20 25 30 35 40
0

5
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20
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30
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40

Fig. 2 Linear approximation for β(n)
n−1,1, 2 ≤ n ≤ 40
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Table 4 Performance data for
the production procedure in the
case of the Hermite weight
function, including timing (in
hours)

s N Cond Max element Digits Timing

1 90 6.9(65) 6.4(274) 86 65.8

2 65 2.2(53) 3.9(304) 72 45.0

3 49 5.1(47) 1.4(307) 72 16.5

4 39 1.9(40) 6.9(306) 64 8.1

5 32 1.7(36) 3.7(301) 64 5.7

which provides good initial approximations for Newton’s method. (Note that (4.5)
is in fact an equality when n = N and ν = 1, because of (4.4)). By the Second
Empirical Observation, the coefficients cn−ν,1 and cn−ν,2 are practically independent
of ν. The coefficients, however, depend on s. Looking at the numerical values stored
in C, we find that with an error of at most a few percent, there holds

β(n)
ν ≈ s + 1

2
ν, 1 ≤ s ≤ 5. (4.6)

Using the simple initial approximations (4.6), one finds that the largest value of N
for which the procedure works satisfactorily is now considerably larger than in the
case of the Laguerre weight function, but the run times are correspondingly large.

Table 5 Timing (in minutes)
and number of Newton
iterations for the Hermite
weight function in the cases
s = 1 : 5

s n c d = c + 8 d = c+ 16 d = c + 32

1 9 6 1 [4] 2 [5] 2 [6]

20 20 12 [5] 17 [6] 20 [7]

31 31 39 [5] 50 [6] 59 [7]

42 37 128 [5] 156 [6] 184 [7]

2 8 7 1 [5] 2 [6] 2 [7]

16 17 9 [5] 11 [6] 13 [7]

24 25 25[5] 32 [6] 39 [7]

32 33 86 [6] 101 [7] 118 [8]

3 5 4 1 [5] 1 [6] 1 [7]

10 10 3 [5] 4 [6] 5 [7]

15 18 11 [6] 13 [7] 15 [8]

20 27 23 [6] 27 [7] 31 [8]

4 6 6 1 [6] 1 [7] 2 [8]

10 11 4 [6] 5 [7] 6 [8]

14 17 11 [6] 13 [7] 14 [8]

18 26 21 [6] 24 [7] 28 [8]

5 6 7 1 [6] 2 [7] 2 [8]

9 10 4 [6] 5 [7] 5 [8]

12 15 8 [6] 10 [7] 11 [8]

15 21 17 [7] 19 [8] 21 [9]
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This is shown in Table 4, the analogon to Table 1 in Section 3.2, which is produced
by the routine runSTH.m, using sturan hermite.m. For s = 1, it is possible
that values of N larger than 90 may still be satisfactory. We have not examined this in
detail because of the very large run time involved. The number of Newton iterations
is relatively modest: 7 for s ≤ 3 and 8 for s = 4 and 5.

To facilitate comparison with the Laguerre case (and to avoid very long run
times), we provide more information about timings and number of Newton itera-
tions for the same values of s and n as in Table 3. They are produced by the routine
timingSTH.m and listed in Table 5. It can be seen that run times, and often also
the number of Newton iterations, are generally smaller than in the Laguerre case.

Acknowledgments The author is indebted to Gradimir V. Milovanović for useful comments.
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Summary. The idea of Gauss-Kronrod quadrature, in a germinal form, is 
traced back to an 1894 paper of R. Skutsch. 

Mathematics Subject Classification (2000): 0 t-08, 65032 

The idea of inserting n + t nodes into ann-point Gaussian quadrature rule 
and choosing them and the weights of the resulting (2n + 1 )-point quadrature 
rule in such a manner as to maximize the polynomial degree of exactness is 
generally attributed to A.S. Kronrod [2], [3 ]. This is entirely justified, given 
that Kronrod developed the underlying theory and produced extensive numer
ical tables. The same idea, nevertheless, can be traced back at least to 1894, 
when R. Skutsch [5] pointed out the possibility of obtaining in this way a 
(2n + I)-point formula of degree of exactness 3n + l (resp. 3n + 2 if n is 
odd). He also notes that the degree of exactness of then-point Gauss formula 
cannot be improved by inserting fewer than n + l points (ibid., p. 81), a result 
proved later by Monegato [4, Lemma l]. 

On p. 83, the paper also gives numerical results to 11 decimal digits for the 

integral J ~ 1 dx / (x + 3) = In 2. The 7 -point extension of the 3-point Gauss 
formula is compared in this example with, among others, the 3-point and 
7-point Gauss formulae. Only end results are stated, none of the respective 
quadrature formulae. They are all correct to 11 digits, except for the result 
for the 7 -point extension, which is off in the last two digits. 

Could it be that Stieltjes knew about Skutsch's paper? In his last letter 
to Hermite [1, Vol. 2, p. 439], dated November 8, 1894, Stieltjes consid
ered orthogonal polynomials relative to a sign-variable weight function (a 
Legendre polynomial), which are relevant to the Kronrod extension of Gauss 
formulae, but makes no reference to mechanical quadrature. 
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Abstract
The conjectures in the title deal with the zeros xj , j = 1, 2, . . . ,n, of an orthogonal
polynomial of degree n > 1 relative to a nonnegative weight function w on an interval
[a,b] and with the respective elementary Lagrange interpolation polynomials �(n)k of
degree n – 1 taking on the value 1 at the zero xk and the value 0 at all the other zeros
xj . They involve matrices of order n whose elements are integrals of �(n)k , either over
the interval [a, xj] or the interval [xj ,b], possibly containing w as a weight function. The
claim is that all eigenvalues of these matrices lie in the open right half of the complex
plane. This is proven to be true for Legendre polynomials and a special Jacobi
polynomial. Ample evidence for the validity of the claim is provided for a variety of
other classical, and nonclassical, weight functions when the integrals are weighted,
but not necessarily otherwise. Even in the case of weighted integrals, however, the
conjecture is found by computation to be false for a piecewise constant positive
weight function. Connections are mentioned with the theory of collocation
Runge–Kutta methods in ordinary differential equations.

Keywords: Zeros of orthogonal polynomials; Lagrange interpolation; Matrix
eigenvalues; Conjectured location of eigenvalues in the complex plane

1 Introduction
Let w be a nonnegative weight function on [a, b], –∞ ≤ a < b ≤ ∞, and pn be the orthonor-
mal polynomial of degree n relative to the weight function w. Let {xj}n

j=1 be the zeros of pn

and

�
(n)
k (x) =

∏

1≤j≤n
j �=k

x – xj

xk – xj
, k = 1, 2, . . . , n, (1)

the elementary Lagrange interpolation polynomial of degree n – 1 having the value 1 at
xk and 0 at all the other zeros xj. The Stenger conjectures relate to the eigenvalues of ma-
trices of order n whose elements are certain integrals involving the elementary Lagrange
polynomials (1), the claim being that the real part of all eigenvalues is positive. We distin-
guish between the restricted Stenger conjecture [8, §2.3, Remark 2.2], in which the matrices

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.
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are

Un =
[
u(n)

jk
]
, u(n)

jk =
∫ xj

a
�

(n)
k (x) dx,

Vn =
[
v(n)

jk
]
, v(n)

jk =
∫ b

xj

�
(n)
k (x) dx,

j, k = 1, 2, . . . , n, (2)

and the extended Stenger conjecture (called “new conjecture” in [8, §2.4]), in which the
matrices are

Un =
[
u(n)

jk
]
, u(n)

jk =
∫ xj

a
�

(n)
k (x)w(x) dx,

Vn =
[
v(n)

jk
]
, v(n)

jk =
∫ b

xj

�
(n)
k (x)w(x) dx,

j, k = 1, 2, . . . , n, (3)

where w is assumed to be positive a.e. on [a, b]. (For the fact that this assumption is essen-
tial, see Sects. 7 and 8.) Thus, in the latter conjecture the elements of Un, Vn depend on the
weight function w not only through the polynomials �

(n)
k , but also by virtue of w being part

of the integration process. Note that, unlike for the extended conjecture, the restricted
conjecture requires [a, b] to be a finite interval, at least for one of the two matrices Un,
Vn.

We also note that the order in which the xj are arranged is immaterial since a permuta-
tion of j = {1, 2, 3, . . . , n} implies the same permutation of k = {1, 2, 3, . . . , n}, which amounts
to a similarity transformation of Un resp. Vn, and therefore leaves the eigenvalues un-
changed.

The weight function w(x) = 1 on [–1.1] is special in the sense that the extended con-
jecture is the same as the restricted one and will be simply called the Stenger conjecture.
Its proof will be given in Sect. 4. In Sect. 2 we will prove that the eigenvalues of Un and
Vn in the restricted as well as in the extended Stenger conjecture are the same if w is a
symmetric weight function. In Sect. 3 we show that, both in the restricted and extended
conjecture, the matrix U (α,β)

n belonging to the Jacobi weight function w(x) = (1–x)α(1+x)β

on [–1, 1] with parameters α, β is the same as the matrix V (β ,α)
n with the Jacobi parameters

interchanged. Section 5, devoted to the restricted Stenger conjecture, shows, partly by nu-
merical computation, that the conjecture may be true for large classes of weight functions,
but can also be false for other classes of weight functions. In contrast, Sect. 6 provides am-
ple computational support for the validity of the extended Stenger conjecture for a variety
of classical and nonclassical weight functions. Discrete weight functions are considered in
Sect. 7. In Sect. 8 the extended Stenger conjecture is challenged in the case of a piecewise
constant positive weight function. Related work on collocation Runge–Kutta methods is
mentioned in the Appendix.

2 Symmetric weight functions
We assume here the weight function w(x) to be symmetric, i.e., w(–x) = w(x) on [–b, b],
0 < b ≤ ∞, and the zeros xj of the corresponding orthonormal polynomial pn ordered
increasingly:

–b < x1 < x2 < · · · < xn < b.
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We then have, by symmetry,

xj + xn+1–j = 0, j = 1, 2, . . . , n. (4)

Theorem 1 If w is symmetric, the eigenvalues of Vn are the same as those of Un, both in
the case of the restricted (where b < ∞) and the extended Stenger conjecture.

Proof We present the proof for the extended conjecture, the one for the restricted conjec-
ture being the same (just drop the factor w(t) in all integrals). From the definition of Vn in
(3), we have

vjk =
∫ b

xj

�
(n)
k (x)w(x) dx =

∫ –xj

–b
�

(n)
k (–t)w(t) dt,

and, therefore, by (4),

vjk =
∫ xn+1–j

–b
�

(n)
k (–t)w(t) dt.

Since �
(n)
k (–t) = 1 if –t = xk , that is, t = –xk = xn+1–k , and �

(n)
k (–t) = 0 if t = xj, j �= n + 1 – k,

we get

vjk =
∫ xn+1–j

–b
�

(n)
n+1–k(x)w(x) dx,

thus, by (3) (with a = –b),

vjk = un+1–j,n+1–k .

In matrix form, this can be written as

Vn =

⎡

⎢⎢⎢⎢⎣

1
...

1
1

⎤

⎥⎥⎥⎥⎦
Un

⎡

⎢⎢⎢⎢⎣

1
...

1
1

⎤

⎥⎥⎥⎥⎦
,

which is a similarity transformation of Un. Hence, Vn and Un have the same eigenvalues. �

3 Jacobi weight functions
In this section we look at Jacobi weight functions

w(α,β)(x) = (1 – z)α(1 + x)β on [–1, 1], (5)

where α, β are greater than –1.
Switching Jacobi parameters has the effect of turning a U-matrix into a V -matrix and

vice versa. More precisely, we have the following.
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Theorem 2 Let U (α,β)
n be the matrix Un for Jacobi polynomials with parameters α, β , and

V (β ,α)
n be the matrix Vn for Jacobi polynomials with parameters β , α. Then

U (α,β)
n = V (β ,α)

n , (6)

both in the restricted and extended Stenger conjecture.

Proof We give the proof for the restricted Stenger conjecture. It is the same for the ex-
tended conjecture, using w(α,β)(–x) = w(β ,α)(x).

We denote quantities x related to Jacobi parameters α, β by x∗ after interchange of
the parameters. Since the Jacobi polynomial satisfies P(α,β)

n (x) = (–1)nP(β ,α)
n (–x) (cf. [9,

Eq. (4.1.3)]), we can take x∗
j = x(β ,α)

j = –xj = –x(α,β)
j for the zeros of P(β ,α)

n . Noting that

�
(n)
k (x;α,β) =

∏

j �=k

x – xj

xk – xj
= –

∏

j �=k

x + x∗
j

x∗
k – x∗

j
=

∏

j �=k

(–x) – x∗
j

x∗
k – x∗

j
= �

(n)
k (–x;β ,α),

we get

u(α,β)
jk =

∫ xj

–1
�

(n)
k (t;α,β) dt =

∫ xj

–1
�

(n)
k (–t;β ,α) dt =

∫ 1

x∗
j

�
(n)
k (x;β ,α)) dx = v(β ,α)

jk . �

4 Proof of the Stenger conjecture for Legendre polynomials
By virtue of Theorem 1, it suffices to consider the matrix Un.

Let λ ∈ C be an eigenvalue of Un and y = [y1, y2, . . . , yn]T ∈ Cn be a corresponding eigen-
vector,

Uny = λy, y �= [0, 0, . . . , 0]T , (7)

so that

∫ xi

–1

( n∑

j=1

�
(n)
j (x)yj

)
dx = λyi, i = 1, 2, . . . , n. (8)

Let y(x) ∈ Pn–1 be the unique polynomial of degree ≤ n – 1 interpolating to yj at xj, j =
1, 2, . . . , n. By the Lagrange interpolation formula and (8), we then have

∫ xi

–1
y(t) dt = λy(xi), i = 1, 2, . . . , n. (9)

With wi, i = 1, 2, . . . , n, denoting the weights of the n-point Gauss–Legendre quadrature
formula, multiply (9) by wiy(xi) and sum over i to get

n∑

i=1

wiy(xi)
∫ xi

–1
y(t) dt = λ

n∑

i=1

wi
∣∣y(xi)

∣∣2.

Since y(x)
∫ x

–1 y(t) dt is a polynomial of degree 2n–1, and n-point Gauss quadrature is exact
for any such polynomial, and since |y(x)|2 is a polynomial of degree 2n – 2, we have

∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx = λ

∫ 1

–1

∣∣y(x)
∣∣2 dx. (10)
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Integration by parts on the left yields the identity

∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx +

∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx =

∣∣∣∣
∫ 1

–1
y(t) dt

∣∣∣∣
2

. (11)

The real part of the left-hand side of (10) is

1
2

[∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx +

∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx

]
,

which, by (11), equals 1
2 | ∫ 1

–1 y(t) dt|2. Therefore, taking the real part on the right of (10)
yields

Reλ

∫ 1

–1

∣∣y(x)
∣∣2 dx =

1
2

∣∣∣∣
∫ 1

–1
y(t) dt

∣∣∣∣
2

. (12)

From this, it follows that Reλ ≥ 0.
To prove strict positivity of Reλ, we have to show that the integral on the right of (12)

does not vanish. To do this, we look at
∫ x

–1 y(t) dt – λy(x), which is a polynomial of degree
n vanishing at xi, i = 1, 2, . . . , n, by (9). Therefore,

∫ x

–1
y(t) dt – λy(x) = const Pn(x), (13)

where Pn is the Legendre polynomial of degree n. We now multiply (13) by (1 – x)k–1,
1 ≤ k ≤ n, and integrate over [–1, 1]. Then, by orthogonality, we get

∫ 1

–1
(1 – x)k–1

(∫ x

–1
y(t) dt

)
dx = λ

∫ 1

–1
(1 – x)k–1y(x) dx.

On the left, integrating by parts, letting

u(x) =
∫ x

–1
y(t) dt, v′(x) = (1 – x)k–1,

u′(x) = y(x), v(x) =
∫ x

1
(1 – t)k–1 dt = –(1 – x)k/k,

and noting that u(–1) = v(1) = 0, we get

∫ 1

–1

(1 – x)k

k
y(x) dx = λ

∫ 1

–1
(1 – x)k–1y(x) dx, 1 ≤ k ≤ n. (14)

Now suppose that
∫ 1

–1 y(x) dx = 0. Then (14) for k = 1 implies that y(x) is orthogonal to
all linear functions. Putting k = 2 in (14) then implies orthogonality of y(x) to all quadratic
functions. Proceeding in this manner up to k = n – 1, we conclude that y(x) is orthogonal
to all polynomials of degree n – 1, in particular to itself, so that

∫ 1
–1 y2(x) dx = 0, hence

y(x) ≡ 0. This contradicts (7). Thus, by (12), Reλ > 0. �
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5 The restricted Stenger conjecture
5.1 Proof of the restricted Stenger conjecture for a special Jacobi polynomial
Here we consider the weight function w(x) = 1 – x on [–1, 1], that is, the Jacobi weight
function (1 – x)α(1 + x)β with parameters α = 1, β = 0, and denote by xi, i = 1, 2, . . . , n,
the zeros of the Jacobi polynomial P(1,0)

n and by Un the matrix in (2) formed with these
zeros xi. As is well known, the xi are the internal nodes of the (n + 1)-point Gauss–Radau
quadrature formula

∫ 1

–1
f (x) dx =

n∑

i=1

wif (xi) + wn+1f (xn+1), f ∈ P2n, (15)

where xn+1 = 1.
Let again λ ∈ C be an eigenvalue of Un and y = [y1, y2, . . . , yn] ∈ Cn be a corresponding

eigenvector, and y(x) be as defined in Sect. 4. Multiplying (9) now by wi(1 – xi)y(xi) and
summing over i = 1, 2, . . . , n + 1, we obtain

n+1∑

i=1

wi(1 – xi)y(xi)
∫ xi

–1
y(t) dt = λ

n+1∑

i=1

wi(1 – xi)
∣∣y(xi)

∣∣2.

(The last term in the sums on the left and right, of course, is zero.) Therefore, by (15),
since (1 – x)y(x)

∫ x
–1 y(t) dt is a polynomial of degree ≤ 2n and (1 – x)|y(x)|2 a polynomial

of degree ≤ 2n – 1,

∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t) dt

)
dx = λ

∫ 1

–1
(1 – x)

∣∣y(x)
∣∣2 dx. (16)

The real part of the left-hand side of (16) is

1
2

[∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t) dt

)
dx +

∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t) dt

)
dx

]

=
1
2

∫ 1

–1
(1 – x)

d
dx

∣∣∣∣
∫ x

–1
y(t) dt

∣∣∣∣
2

dx, (17)

having used the product rule of differentiation on the right. Integration by parts then yields

1
2

∫ 1

–1

∣∣∣∣
∫ x

–1
y(t) dt

∣∣∣∣
2

dx = Reλ

∫ 1

–1
(1 – x)

∣∣y(x)
∣∣2 dx.

Since the integral on the right is positive, and so is the integral on the left, there follows
Reλ > 0. �

It may be thought that the same kind of proof might work also for Jacobi weight functions
with parameters α = 0, β = 1, or α = β = 1 using Gauss–Radau quadrature with fixed node
–1 or Gauss–Lobatto quadrature, respectively. The last step in the proof (integration by
parts of the integral on the right of (17)), however, fails to produce the desired conclusion,
the first factor in that integral being 1 + x, resp. 1 – x2.
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5.2 A counterexample
The simplest counterexample we came across involves a Gegenbauer polynomial of small
degree.

Counterexample

pn(x) = C(α)
n (x), n = 5,α = 10, (18)

where C(α)
n is the Gegenbauer polynomial of degree n.

From [1, Eq. 22.3.4] one finds

C(α)
5 (x) = α(α + 1)(α + 2)x

[
4

15
(α + 3)(α + 4)x4 –

4
3

(α + 3)x2 + 1
]

.

One zero of C(α)
5 , of course, is 0, while the other four are the zeros of the polynomial P in

brackets. When α = 10, one finds

P(x) =
1
3

(
728

5
x4 – 52x2 + 3

)
.

This is a quadratic polynomial in x2, the zeros of which could be found explicitly. However,
we proceed computationally, using Matlab, since eventually, to obtain eigenvalues, one has
to compute anyway.

The Matlab routine doing the computations is counterex.m.a It computes the ele-
ments of Un in (2) (where n = 5) exactly by 3-point Gauss–Legendre quadrature of the last
integral in

ujk =
∫ xj

–1
�

(5)
k (x) dx =

1
2

(1 + xj)
∫ 1

–1
�

(5)
k

(
1
2

(1 + xj)t –
1
2

(1 – xj)
)

dt (19)

and uses a routine lagrange.m for calculating the elementary Lagrange interpolation
polynomials as well as the OPQ routines r_jacobi.m, gauss.m. For the latter, see [4,
pp. 301, 304].

The output, showing the five eigenvalues d of U5, is
>> counterex

d =

.431796388637445 + 0.000000000000000i

.285123529721968 + .272861054932517i

.285123529721968 - .272861054932517i

-.001021724040688 + .286723270044925i

-.001021724040688 - .286723270044925i

>>

The last pair of eigenvalues has negative real part, disproving, at least computationally,
the restricted Stenger conjecture. The extended conjecture, however, seems to be valid for
this example; see Sect. 6.2, Example 1.
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5.3 Conjectures
The counterexample in Sect. 5.2 is symptomatic for more general counterexamples, not
only regarding Gegenbauer, but also many other weight functions. They are formulated
here as separate conjectures, all firmly rooted in computational evidence.

5.3.1 Gegenbauer polynomials
Conjecture 5.1 The restricted Stenger conjecture for Un (and, by Theorem 1, also for Vn)
is true for all Gegenbauer polynomials C(α)

n with 2 ≤ n ≤ 4, but for n ≥ 5 it is true only for
α > –1 up to some αn > 1.

The routine Uconj_restr_jac.m evaluates the matrix Un (for Jacobi polynomials)
in Matlab double-precision arithmetic and its eigenvalues in 32-digit variable-precision
arithmetic. Since the eigenvalues become more ill-conditioned as n increases, we first
make sure that they are accurate to at least four significant decimal digits by running the
routine entirely in 32-digit arithmetic for selected values of α (and also of β) in (–1, 1]
and selected values of n, using the routine sUconj_restr_jac.m, and comparing the
results with those obtained in double precision.

Conjecture 5.1 has then been confirmed for all α = –0.9 : 0.1 : 10, using the routine
run_Uconj_restr_jac.m. Estimates of αn have been obtained by a bisection-type
procedure and are shown in Table 1. They are “estimates” in the sense that the conjecture
is true for α ≤ αn, but false for α = αn + 0.001.

It appears that αn converges monotonically down to 1 as n → ∞.

5.3.2 Jacobi polynomials
Conjecture 5.2 The restricted Stenger conjecture for Un holds true in the case of Jacobi
polynomials P(α,β)

n for all n > 1 if –1 < α,β ≤ 1, but not necessarily otherwise.

The positive part of the conjecture has been confirmed for [α,β] = –0.9 : 0.1 : 1, and
in each case for n = 2 : 40, using the routine run_Uconj_restr_jac.m. The negative
part follows from Conjecture 5.1, Table 1 (if true). By Theorem 2, the same conjecture can
be made for the matrix Vn.

5.3.3 Algebraic/logarithmic weight functions
Here we first examine weight functions of the type

wα(x) = xα log(1/x) on[0, 1] with α > –1. (20)

Conjecture 5.3 For the matrix Un, the restricted Stenger conjecture holds true in the case
of the weight function (20) for all n > 1 if –1 < α ≤ α1, where 1 < α1 < 2, but not necessarily
otherwise. For the matrix Vn, in contrast, the conjecture is true for all α > –1.

Table 1 Estimates of αn , n = 5 : 5 : 40

n αn n αn

5 9.000 25 1.025
10 1.264 30 1.017
15 1.081 35 1.012
20 1.041 40 1.009
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In order to compute the zeros xj of the required orthogonal polynomials (needed to
obtain the Lagrange polynomials �

(n)
k ) for degrees 2 ≤ n ≤ 40 and arbitrary α > –1, we

need a routine that generates the respective recurrence coefficients for the orthogonal
polynomials. This can be done by applying a multicomponent discretization procedure,
using appropriate quadrature rules to discretize the integral

∫ 1
0 f (x)xα log(1/x) dx, where

f is a polynomial of degree ≤ 2n – 1. It was found to be helpful to split the integral in
two integrals, one extended from 0 to ξ , and the other from ξ to 1, 0 < ξ < 1, and use
ξ to optimize the rate of convergence (that is, to minimize the parameter Mcap in the
discretization routine mcdis.m). Using obvious changes of variables, one finds

∫ ξ

0
f (x)xα log(1/x) dx = ξα+1

[
log(1/ξ )

∫ 1

0
f (tξ )tα dt

+
1

(1 + α)2

∫ ∞

0
f
(
ξe–t/(1+α))te–t dt

]
, (21)

∫ 1

ξ

f (x)xα log(1/x) dx = (1 – ξ )
∫ 1

0
f
(
x(t)

)[
x(t)

]α
log

(
1/x(t)

)
dt, (22)

where in (22), x(t) = (1 – ξ )t + ξ maps the interval [0, 1] onto [ξ , 1]. In (21), the first in-
tegral on the right can be discretized (without error) by n-point Gauss–Jacobi quadra-
ture on [0, 1] with Jacobi parameters 0 and α, and the second integral (with small error)
by sufficiently high-order generalized Gauss–Laguerre quadrature with Laguerre param-
eter 1. The integral in (22) can be discretized by sufficiently high-order Gauss–Legendre
quadrature on [0, 1]. For the optimal ξ , one can use, as found empirically (using the routine
run_r_alglog1.m),

ξ =

⎧
⎨

⎩
[1 + 10(α + 0.9)]/1000 if – 0.9 ≤ α ≤ 1,

0.02 if α > 1.

This is implemented in the routine r_alglog1.m.
The routine sUconj_restr_log1.m, run with dig = 32, generates the matrix Un

and its eigenvalues in 32-digit arithmetic. It relies on the global n×2 arraysab andableg
containing the first n recurrence coefficients of the (monic) orthogonal polynomials rela-
tive to the weight functions wα and 1, respectively (both supported on [0, 1]). The array ab,
when α = –1/2, 0, 1/2, 1, 2 is available, partly in [5, 2.3.1,2.41,2.4.3], to 32 digits for n at least
as large as 100, whereas ableg can easily be generated by the routine sr_jacobi01.m.
For these five values of α, we can therefore produce reference values to high precision for
the eigenvalues of Un.

The Matlab double-precision routine Uconj_restr_log1.m, also run with dig =
32, generates the matrix Un in double-precision arithmetic and the eigenvalues in 32-digit
arithmetic for arbitrary values of α > –1, its global array ab being produced by the rou-
tine r_alglog1.m. When the eigenvalues so obtained are compared with the reference
values, for the above five values of α, it is found that for n ≤ 40 they all are accurate to
at least four decimal digits (cf. test_Uconj_restr_log1.m). This provides us with
some confidence that the routine Uconj_restr_log1.m, when n ≤ 40, will produce
eigenvalues to the same accuracy, also when α is arbitrary in the range from –1/2 to 2.
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The routine run_Uconj_restr_log1.m validates the restricted Stenger conjecture
for the matrix Un when α = –1/2, 0, 1/2, 1, at least for all n between 2 and 40, but re-
futes it when α = 2 and n = 8, producing a pair of eigenvalues with negative real part
–1.698 . . . (–3). This provides some indication that Conjecture 5.3 for the matrix Un may
be valid. We strengthen this expectation by running the routine for additional values of
α, and at the same time try to estimate the value of α1 in dependence of n by applying a
bisection-type procedure. It is found that, when n ≤ 40, Conjecture 5.3 for Un is true with
α1 as shown in Table 2.

It appears that α1 is monotonically decreasing. Since it is bounded below by 1, it would
then have to converge to a limit value (perhaps = 1).

The routines dealing with the matrix Vn are Vconj_restr_log1.m and run_

Vconj_restr_log1.m. They validate Conjecture 5.3 for the matrix Vn when α =
–1/2, 0, 1/2, 1, 2, 5, 10, in each case for 2 ≤ n ≤ 40.

For illustration, the eigenvalues of Un are shown in Fig. 1 for α = 0 and n = 10, 20, 40,
and those of Vn in Fig. 2 for the same α and n.

For the weight function

w(x) = xα log2(1/x) on [0, 1], with α > –1, (23)

our conjecture for Un is the same as the one in Conjecture 5.3, but not so for Vn.

Table 2 The values of α1 in Conjecture 5.2 in dependence of n

n α1

10 1.511
20 1.253
30 1.203
40 1.179

Figure 1 Eigenvalues of the matrix Un for a logarithmic weight function and n = 10, 20, 40 (from left to right)

Figure 2 Eigenvalues of the matrix Vn for a logarithmic weight function and n = 10, 20, 40 (from left to right)
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Table 3 The values of α2 in Conjecture 5.4 in dependence of n

n α2

10 1.852
20 1.480
30 1.394
40 1.353

Figure 3 Eigenvalues of the matrix Un for a square-logarithmic weight function and n = 10, 20, 40 (from left to
right)

Conjecture 5.4 For the matrix Un, the restricted Stenger conjecture holds true in the case
of the weight function (23) for all n > 1 if –1 < α < α2, where α2 is a number between 1 and
2, but not necessarily otherwise. For the matrix Vn, the conjecture is false for all α > –1.

The routines used to make this conjecture are the same as those used for Conjecture 5.3
but with “log1” replaced by “log2”. The statements regarding the matrix Un are arrived
at in the same way as in Conjecture 5.3, the values of α2 now being as shown in Table 3.

With regard to Vn, the conjecture is found to be false for α = –1/2, 0, 1/2, 1, 2, 5 and n = 7
in each case, there being a single pair of conjugate complex eigenvalues with negative real
part.

We illustrate by showing in Fig. 3 the eigenvalues of Un for α = 0 and n = 10, 20, 40.

5.3.4 Laguerre and generalized Laguerre weight functions
For generalized Laguerre weight functions

w(x) = xαe–x on [0,∞],α > –1, (24)

it only makes sense to look at the U-conjecture.

Conjecture 5.5 For the matrix Un, the restricted Stenger conjecture is true in the case of
the weight function (24) for all n > 1 if –1 < α ≤ α0, where 1 < α0 < 2, but not necessarily
otherwise.

The routines written for this conjecture are Uconj_restr_lag.m and run_Uconj_
restr_lag.m. The latter, run for α = –0.9 : 0.1 : 2, n = 2 : 40, confirms the conjecture up
to, and including, α = 1.2, but refutes it when α = 1.3 and n = 40, producing a single pair
of conjugate complex eigenvalues with negative real part. The case α = 1.3 was checked
by running the routine run_sUconj_restr_lag.m in 32-digit arithmetic, which pro-
duced eigenvalues agreeing with those obtained in double precision to at least 12 digits.
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Table 4 The values of α0 in Conjecture 5.5 in dependence of n

n α0

10 2.475
20 1.522
30 1.317
40 1.228

Figure 4 Eigenvalues of the matrix Un for the Laguerre weight function and n = 10, 20, 40 (from left to right)

(This check may take as many as five hours to run.) A bisection-type procedure, run in
double precision, yields the values of α0 shown in Table 4 in dependence of n.

Figure 4 shows the eigenvalues of Un when α = 0 and n = 10, 20, 40.

6 The extended Stenger conjecture
To avoid extensive and time-consuming Matlab variable-precision computations, we re-
strict ourselves in Sects. 6.2–6.6 to values of n that are less than, or equal to, 30. Also note
that in all figures of this section the horizontal axis carries a logarithmic scale.

6.1 Proof of a weak form of the extended Stenger conjecture for a special Jacobi
polynomial

We consider here, as in Sect. 5.1, the Jacobi weight function w(x) = (1 – x)α(1 + x)β on
[–1, 1], with α = 1, β = 0, and continue using the same notations as in that section. In
particular, we again use the (n + 1)-point Gauss–Radau quadrature formula

∫ 1

–1
f (x) dx =

n+1∑

i=1

wif (xi) + Rn(f ), (25)

where xn+1 = 1, but this time we include the remainder term

Rn(f ) = –γn
f (2n+1)(ξ )
(2n + 1)!

, γn = 22n+1 (n + 1)n!4

(2n + 1)!2
(26)

(cf. [3, top of p. 158, where γ b should read γ b
n ]). In place of (9), we now have

∫ xi

–1
y(t)(1 – t) dt = λy(xi), i = 1, 2, . . . , n. (27)

Multiplying this, as in Sect. 5.1, by wi(1 – xi)y(xi) and summing over i = 1, 2, . . . , n + 1, we
obtain

n+1∑

i=1

wi(1 – xi)y(xi)
∫ xi

–1
y(t)(1 – t) dt = λ

n+1∑

i=1

wi(1 – xi)
∣∣y(xi)

∣∣2. (28)
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Since

f (x) := (1 – x)y(x)
∫ x

–1
y(t)(1 – t) dt (29)

is a polynomial of degree 2n + 1 and the left-hand side of (28) is equal to the quadrature
sum on the right of (25) with f as in (29), we get

n+1∑

i=1

wi(1 – xi)y(xi)
∫ xi

–1
y(t)(1 – t) dt

=
∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t)(1 – t) dt

)
dx + γn

f (2n+1)(ξ )
(2n + 1)!

,

where f (2n+1) is a nonnegative constant, namely

f (2n+1)(ξ ) =
(2n + 1)!

n + 1
|an–1|2,

with an–1 the leading coefficient (of xn–1) of the polynomial y(x). Thus,

n+1∑

i=1

wi(1 – xi)y(xi)
∫ xi

–1
y(t)(1 – t) dt

=
∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t)(1 – t) dt

)
dx + Cn, (30)

where

Cn =
γn

n + 1
|an–1|2.

Now the real part of the left-hand side of (28), by (30), is

1
2

[∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t)(1 – t) dt

)
dx

+
∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t)(1 – t) dt

)
dx

]
+ Cn

=
1
2

∫ 1

–1

d
dx

∣∣∣∣
∫ x

–1
y(t)(1 – t) dt

∣∣∣∣
2

dx + Cn

=
1
2

∣∣∣∣
∫ 1

–1
y(t)(1 – t) dt

∣∣∣∣
2

+ Cn,

so that, by (28),

1
2

∣∣∣∣
∫ 1

–1
y(t)(1 – t) dt

∣∣∣∣
2

+ Cn = Reλ

∫ 1

–1
(1 – x)

∣∣y(x)
∣∣2 dx. (31)

the integrand on the right being a polynomial of degree 2n – 1. From this, it follows that
Reλ ≥ 0. �
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Table 5 The minimum values min int of | ∫ 1
–1 y(t)(1 – t)dt| and |an–1|

n min int min |an–1| n min int min |an–1|
5 2.273(–1) 4.425(–1) 25 4.906(–1) 1.088(–1)
10 4.228(–1) 2.062(–1) 30 4.809(–1) 1.126(–1)
15 4.200(–1) 1.358(–1) 35 4.595(–1) 1.162(–1)
20 4.966(–1) 1.193(–1) 40 4.435(–1) 1.295(–1)

Strict positivity of Reλ holds if |an–1| > 0, that is, if y(x) is a polynomial of exact degree
n – 1, or if the integral on the left of (31) does not vanish. Computation, using the routines
check_pos.m and run_check_pos.m, confirms that both are indeed the case, at least
for n ≤ 40. Table 5 shows, for selected values of n, the minimum values of | ∫ 1

–1 y(t)(1– t) dt|
and |an–1|, the minimum being taken over all eigenvalues/vectors. For checking purposes,
the computations have also been carried out entirely in 32-digit arithmetic.

6.2 Jacobi weight functions
The element u(n)

jk of the matrix Un in (3) for the Jacobi weight function w(x) = (1–x)α(1+x)β

on [–1, 1] is

u(n)
jk =

∫ xj

–1
�

(n)
k (x)w(x) dx =

1
2

(1 + xj)
∫ 1

–1
�

(n)
k

(
x(t)

)
w

(
x(t)

)
dt,

where

x(t) =
1
2

(1 + xj)t –
1
2

(1 – xj)

maps [–1, 1] onto [–1, xj]. An elementary computation yields

u(n)
jk =

(
1 + xj

2

)α+β+1 ∫ 1

–1
�

(n)
k

(
x(t)

)[3 – xj

1 + xj
– t

]α

(1 + t)β dt. (32)

Although the second factor in the integrand of (32) may be algebraically singular at a
point close to, but larger than, 1 (when xj < 1 is close to 1), we simply apply Gauss–Jacobi
quadrature with Jacobi parameters 0 and β to the integral in (32) and choose the num-
ber of quadrature points large enough so as to produce eigenvalues of Un accurate to at
least four decimal places (which is good enough for plotting purposes). This is imple-
mented by the Matlab function Uconj_ext_jac.m and can be run with the Matlab
script run_Uconj_ext_jac.m.

Example 1 Gegenbauer weight function w(x) = (1 – x2)α on [–1, 1] with α = 10.
This is the weight function for which the restricted Stenger conjecture is false already

for n = 5 (cf. Sect. 5.2). The extended conjecture, however, is found to be true for all 2 ≤
n ≤ 30; see Fig. 5 for the cases n = 5, 15, 30.

Example 2 Jacobi weight function with parameters (α,β) = [–0.9 : 0.6 : 0.9, 1.7 : 0.7 :
3.8, 4.7 : 0.9 : 7.4].

We used the script run_Uconj_ext_jac.m to check the extended U-conjecture for
all these Jacobi weight functions, separately for n = 5, 15, 30, and found in every case that
the conjecture is valid. By Theorem 2, the same is true for the matrix Vn.

304



Gautschi and Hairer Journal of Inequalities and Applications        (2019) 2019:159 Page 15 of 27

Figure 5 Eigenvalues of the matrix Un for a special Gegenbauer polynomial of degrees n = 5, 15, 30 (from left
to right)

Figure 6 Eigenvalues of the matrix Un , n = 30, for selected Jacobi polynomials

To illustrate, we show in Fig. 6 the eigenvalues of Un for the three parameter choices
α = β = –0.9, α = –0.3, β = –0.9, and α = 5.6, β = 1.7, in each case with n = 30.

6.3 Algebraic/logarithmic weight functions
6.3.1 The weight function w(x) = xα log(1/x) on [0, 1]
Here, for the matrix Un, we use the change of variables x = xjt in

u(n)
jk =

∫ xj

0
�

(n)
k (x)xα log(1/x) dx = xα+1

j

∫ 1

0
�

(n)
k (xjt)tα log

(
1/(xjt)

)
dt

to get

u(n)
jk = xα+1

j

[
log(1/xj)

∫ 1

0
�

(n)
k (xjt)tα dt +

∫ 1

0
�

(n)
k (xjt)tα log(1/t) dt

]
. (33)

Both integrals can be evaluated exactly, the first by m-point Gauss–Jacobi quadrature
on [0, 1] with Jacobi parameters 0 and α, where m = �n/2�, and the second by m-
point Gauss quadrature relative to the weight function w(t) = tα log(1/t) on [0, 1]. For
the latter, the recurrence coefficients for the relevant orthogonal polynomials (when
α = 0, –1/2, 1/2, 1, 2, 5) are available to 32 decimal digits, partly in [5, 2.3.1, 2.4.1, 2.4.3],
which allow us to generate the Gaussian quadrature rule in a well-known manner (cf.,
e.g., [3, §3.1.1]) using the OPQ routine gauss.m (see [4, p. 304]). This is implemented
by the Matlab function Uconj_ext_log1.m and can be run with the Matlab script
run_Uconj_ext_log1.m.

Alternatively, when n ≤ 40, we may compute the recurrence coefficients for arbitrary
α > –1 as described in Sect. 5.3.3. This is implemented by the routines r_alglog1.m,
Uconj_ext_log1.m, and run0_Uconj_ext_log1.m.
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Figure 7 Eigenvalues of Un in the case of a logarithmic weight function for n = 5, 15, 30 (from left to right)

Figure 8 Eigenvalues of Un in the case of an algebraic/logarithmic weight function with parameter α = –1/2
for n = 5, 15, 30 (from left to right)

Figure 9 Eigenvalues of Un in the case of an algebraic/logarithmic weight function with parameter α = 1/2
for n = 5, 15, 30 (from left to right)

Example 3 Algebraic/logarithmic weight function w(x) = xα log(1/x) on [0, 1] with α =
(–0.9 : 0.1 : 5)(5.2 : 0.2 : 7)(7.5 : 0.5 : 10).

Our routines validate the extended Stenger conjecture for all these values of α and 2 ≤
n ≤ 30. The eigenvalues of Un are shown in the case α = 0 in Fig. 7, and in the cases α =
–1/2, 1/2 in Figs. 8 and 9, respectively, for n = 5, 15, 30. They are similar when α = 1, 2, 5.

With regard to Vn, the conjecture has been similarly validated, using the routines
Vconj_ext_log1 and run_Vconj_ext_log1.m, for the same values of n and α as
in Example 3. To compute the matrix Vn, we have used

v(n)
jk =

∫ 1

0
�

(n)
k (x)xα log(1/x) dx – u(n)

jk (34)

with u(n)
jk as in (33) and the integral evaluated by �n/2�-point Gaussian quadrature relative

to the weight function w(x). The eigenvalues of Vn are found to be similar to those for Un

shown in Figs. 7–9.
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Figure 10 Eigenvalues of Un in the case of an algebraic/square-logarithmic weight function, with exponent
α = –1/2, for n = 5, 15, 30 (from left to right)

Figure 11 Eigenvalues of Un in the case of an algebraic/square-logarithmic weight function, with exponent
α = 1/2, for n = 5, 15, 30 (from left to right)

6.3.2 Algebraic/square-logarithmic weight function w(x) = xα log2(1/x) on [0, 1], α > –1
Similarly as in Sect. 6.3.1, one finds

u(n)
jk = xα+1

j

[
log2(1/xj)

∫ 1

0
�

(n)
k (xjt)tα dt + 2 log(1/xj)

∫ 1

0
�

(n)
k (xjt)tα log(1/t) dt

+
∫ 1

0
�

(n)
k (xjt)tα log2(1/t) dt

]
, (35)

where again the integrals can be evaluated exactly and some of the required recurrence
coefficients taken from [5, 2.3.2], [5, 2.4.5], [5, 2.4.7]. This is implemented by the Matlab
function Uconj_ext_log2.m and driver run_Uconj_ext_log2.m.

Example 4 Algebraic/square-logarithmic weight function w(x) = xα log2(1/x) on [0, 1]
with α = 0, –1/2, 1/2, 1, 2, 5.

Our routines validate the extended Stenger conjecture for all these values of α and 2 ≤
n ≤ 30. The eigenvalues of Un in the case α = 0 are found to be similar to those depicted
in Fig. 7 for the weight function log(1/x). For the cases α = –1/2, 1/2, 5, they are shown
respectively in Figs. 10–12 for n = 5, 15, 30. Interestingly, all eigenvalues appear to be real
when α– = –1/2.

Similar results and validations, using the routines Vconj_ext_log2.m and run_

Vconj_ext_log2.m, are obtained for the matrix Vn, which, as in (34), is computed
exactly by

v(n)
jk =

∫ 1

0
�

(n)
k (x)xα log2(1/x) dx – u(n)

jk (36)

with u(n)
jk as in (35).
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Figure 12 Eigenvalues of Un in the case of an algebraic/square-logarithmic weight function, with exponent
α = 5, for n = 5, 15, 30 (from left to right)

6.4 Laguerre and generalized Laguerre weight functions
Here, the weight function is assumed to be w(x) = xαe–x on [0,∞], where α > –1. We write

u(n)
jk =

∫ ∞

0
�

(n)
k (x)xαe–x dx –

∫ ∞

xj

�
(n)
k (x)xαe–x dx

and, in the second integral, make the change of variables x = xj + t to get

u(n)
jk =

∫ ∞

0
�

(n)
k (x)xαe–x dx – e–xj

∫ ∞

0
�

(n)
k (xj + t)(xj + t)αe–t dt. (37)

The first integral can be evaluated exactly by �n/2�-point generalized Gauss–Laguerre
quadrature. The second integral, similarly as in (32) for Jacobi weight functions, has an al-
gebraic singularity close to, and to the left of, the origin when xj is close to zero (and α not
an integer). As in Sect. 6.2, we ignore this and simply apply Gauss–Laguerre quadrature
of sufficiently high order so as to obtain plotting accuracy for all the eigenvalues of Un.
However, there is yet another complication: Around n = 25, the Gauss–Laguerre weights,
in Matlab double precision, start becoming increasingly inaccurate (in terms of relative
accuracy) and adversely affect the accuracy of the second integral in (37). For this rea-
son, we use 32-digit variable-precision arithmetic to compute these weights and convert
them to Matlab double precision, once computed. At the same time we lower the accuracy
requirement from 4- to 3-digit accuracy.

Example 5 Generalized Laguerre weight function w(x) = xαe–x dx on [0,∞] for the same
values of α and n as in Example 2.

The Matlab routines implementing this and validating the conjecture in each case are
Uconj_ext_lag.m andrun_Uconj_ext_lag.m. They may take several hours to run
because of the extensive variable-precision work involved. The accuracy achieved for the
eigenvalues is consistently of the order of 10–4 or better, but the necessary number of
quadrature points is found to be as large as 440 (for α = –0.9 and n = 30).

For illustration, we show in Fig. 13 the eigenvalues obtained in the case of the ordinary
Laguerre weight function (α = 0) and for n = 5, 15, 30. Notice the extremely small real
eigenvalues when n = 30, the smallest being of the order 10–43.

Using

v(n)
jk =

∫ ∞

0
�

(n)
k (x)xαe–x dx – u(n)

jk (38)
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Figure 13 Eigenvalues of Un in the case of the Laguerre weight function for n = 5, 15, 30 (from left to right)

with u(n)
jk as in (37), the conjecture has been similarly validated with the help of the routines

Vconj_ext_lag.m, run_Vconj_ext_lag.m.

6.5 Hermite and generalized Hermite weight functions
These are the weight functions w(x) = |x|2μe–x2 on [–∞,∞], μ > –1/2. Since they are sym-
metric, it suffices, by Theorem 1, to consider Un. To simplify matters, we assume 2μ to be
a nonnegative integer.

For the evaluation of u(n)
jk , we distinguish the cases xj < 0 and xj ≥ 0. In the former case,

by the change of variables x = xj – t, one gets

u(n)
jk = e–x2

j

∫ ∞

0
�

(n)
k (xj – t)(t – xj)2μe2xjte–t2

dt, xj < 0. (39)

Here, half-range Gauss–Hermite quadrature (cf. [5, 2.9.1]) is expected to converge rapidly.
When xj ≥ 0, breaking up the first integral in (3) (with a = –∞) into two parts, one ex-
tended from –∞ to 0 and the other from 0 to xj, and making appropriate changes of vari-
ables in each yield

u(n)
jk =

∫ ∞

0
�

(n)
k (–t)t2μe–t2

dt + x2μ+1
j

∫ 1

0
�

(n)
k (xjt)e–x2

j t2
t2μ dt, xj ≥ 0. (40)

The first integral can be evaluated exactly by �(n + 2μ)/2�-point half-range Gauss–
Hermite quadrature. The second integral may be approximated by Gauss–Jacobi quadra-
ture on [0, 1] with Jacobi parameters 0 and 2μ. This, too, is expected to converge quickly.

Example 6 Generalized Hermite weight function w(x) = |x|2μe–x2 on [–∞,∞], μ = 0 :
1/2 : 25 and n = 5, 15, 30.

The conjecture has been validated in all cases using the routinesUconj_ext_herm.m,
run_Uconj_ext_herm.m. For illustration, the eigenvalues of Un are shown in Fig. 14
for the case μ = 0.

6.6 A weight function supported on two disjoint intervals
We now consider a weight function which is not positive a.e.:

w(x) =

⎧
⎨

⎩
|x|(x2 – ξ 2)p(1 – x2)q if x ∈ [–1, –ξ ] ∪ [ξ , 1],

0 otherwise,
(41)
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Figure 14 Eigenvalues of Un in the case of the Hermite weight function for n = 5, 15, 30 (from left to right)

where 0 < ξ < 1, p > –1, q > –1. This weight function, of interest in theoretical chemistry
when p = q = –1/2, has been studied in [2]. In our present context, we assume, for sim-
plicity, that p and q are nonnegative integers. Then only integrations of polynomials are
required, which, as before, can be done exactly.

Since the weight function w is symmetric, it suffices, by Theorem 1, to look at the ma-
trices Un only.

Any polynomial πn orthogonal with respect to w can have at most one zero in the in-
terval [–ξ , ξ ] where w is zero [3, Theorem 1.20]. By symmetry, therefore, all zeros of πn

are located in the intervals (–1, –ξ ) or (ξ , 1), except when n is odd, in which case there is
a zero at the origin.

The recurrence coefficients αk , βk for the (monic) polynomials πn are known explicitly
[2, Eq. (4.1)]: All αk = 0, by symmetry, and

β0 =
(
1 – ξ 2)p+q+1

Γ (p + 1)Γ (q + 1)/Γ (p + q + 2),

β1 =
1
2
(
1 – ξ 2)αJ

0 +
1
2
(
1 + ξ 2),

β2k = ( 1
2 (1 – ξ 2))2β

J
k/β2k–1

β2k+1 = 1
2 (1 – ξ 2)αJ

k + 1
2 (1 + ξ 2) – β2k

}
k = 1, 2, 3, . . . ,

where α
J
k , β

J
k are the recurrence coefficients of the monic Jacobi polynomials with pa-

rameters α = q, β = p. Therefore, the zeros of πn are easily computed by the OPQ routine
gauss.m (see [4, p. 304]).

The computation of u(n)
jk is different, depending on where the zero xj is located. In fact,

u(n)
jk = –

1 + xj

2

∫ 1

–1
�

(n)
k

(
x1(t)

)
x1(t)

(
x2

1(t) – ξ 2)p(1 – x2
1(t)

)q dt if xj < –ξ ,

where x1(t) = 1+xj
2 t + xj–1

2 maps [–1, 1] onto [–1, xj];

u(n)
jk = –

1 – ξ

2

∫ 1

–1
�

(n)
k

(
x2(t)

)
x2(t)

(
x2

2(t) – ξ 2)p(1 – x2
2(t)

)q dt if xj = 0,

where x2(t) = 1–ξ

2 t – 1+ξ

2 maps [–1, 1] onto [–1, –ξ ]; and

u(n)
jk =

(
u(n)

jk
)

xj=0 +
xj – ξ

2

∫ 1

–1
�k

(
x3(t)

)
x3(t)

(
x2

3(t) – ξ 2)p(1 – x2
3(t)

)q dt if xj > ξ ,

where x3(t) = xj–ξ

2 t + xj+ξ

2 maps [–1, 1] onto [ξ , xj].
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Figure 15 Eigenvalues of Un in the case of a two-interval weight function for n = 5, 15, 30 (from left to right)

All integrals can be computed exactly by (�(n + 1)/2� + p + q)-point Gauss–Legendre
quadrature.

Example 7 The weight function (41) with ξ = 0.1 : 0.2 : 0.9 and p, q = 0 : 5 for n = 5, 15, 30.
The routines Uconj_ext_twoint.m, run_Uconj_ext_twoint.m can be used to

validate the conjecture in all cases, even though the weight function is not in the class of
weight functions assumed in the conjecture. (For another such example, see Example 9
with N = 1.)

To illustrate, we show in Fig. 15 the eigenvalues of Un, n = 5, 15, 30, in the case ξ = 1/2,
p = q = 0, i.e., for the weight function w(x) on [–1, 1] equal to |x| outside of [–1/2, 1/2] and
0 inside.

7 Discrete weight functions
To demonstrate that an assumption about the weight function like the one made for the
extended Stenger conjecture is called for, we now consider a discrete measure dλN+1 sup-
ported on N + 1 points 0, 1, 2, . . . , N with jumps wk > 0 at the points k, k = 0, 1, . . . , N . The
corresponding orthogonal polynomials, now N + 1 in number, are again denoted by pn,
n = 0, 1, . . . , N . If w0 = w1 = · · · = wN = 1, we are dealing with the classical discrete orthog-
onal polynomials attributed to Chebyshev [3, Example 1.15]). They are the special case
α = β = 0 of Hahn polynomials with parameters α, β (cf. [3, last entry of Table 1.2]). Both
the weight function and the zeros of pn are symmetric about the midpoint N/2. In partic-
ular, when N is even and n odd, one of the zeros is equal to N/2, hence an integer.

For the elements of Un, we have

u(n)
j,k =

ij∑

i=0

wi�
(n)
k (i), ij = �xj�, (42)

where xj are the zeros of pn (assumed in increasing order). These can be generated by the
functions r_hahn.m and gauss.m.

Example 8 The measure dλN+1, N ≥ 2, with w0 = w1 = · · · = wN = 1, and pn with 2 ≤ n ≤
N .

It is important to note that when the zeros of pn are computed by the routine gauss.m,
and when N is even and n odd, the integer zero xj = N/2 may end up becoming slightly less
than N/2, in which case �xj� in (42) will yield an incorrect result. Similarly, the smallest
zero, when computed, may turn out to become negative, or the largest zero equal to N . To
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Table 6 The presence of delinquent eigenvalues of Un in the case of a discrete weight function

N n N n

11 11 21 18–21
12 12 22 18–22
13 13 23 19–22 23∗
14 13 14 24 16 19–23 24∗
15 14 15 25 16 18 20–24 25∗
16 15 16 26 18 20–25 26∗
17 15–17 27 17 21∗22∗23∗ 24–26 27∗
18 16–18 28 20–25 26∗27∗28∗
19 16–19 29 18 19 22∗ 23 24 25∗26∗ 27 28∗29∗
20 17–20 30 20 22–27 28∗ 29∗ 30∗

Figure 16 Eigenvalues of Un in the case of discrete weight functions for n = N = 11, 15, 30 (from left to right)

avoid these pitfalls, we overwrite the zero, once computed, by N/2 or reset �xj�, j = 1, n,
by 0 resp. N – 1.

On running the script run_Uconj_ext_hahn.m, using Uconj_ext_hahn.m, to
compute Un and its eigenvalues, we found that the extended Stenger conjecture is still true
for all N ≤ 10 and all 2 ≤ n ≤ N , but no longer when N > 10. The values of N and n for
which eigenvalues with negative real parts appear are shown in Table 6 for 11 ≤ N ≤ 30.

Asterisks indicate the presence of two pairs of delinquent complex conjugate eigenvalues
rather than the usual single pair. (48-digit arithmetic was used for the last two entries in
Table 6.)

Since the weight function is symmetric (with respect to the midpoint N/2), by Theo-
rem 1 the same pattern of validity and nonvalidity holds also for the V -conjecture.

We illustrate by showing in Fig. 16 the eigenvalues of Un, n = N , for N = 11, 15, 30.
Since there are no approximations involved, the results obtained should be quite accu-

rate. In fact, we reran Example 8 in 48-digit arithmetic and found the double-precision
eigenvalues accurate to 13, 12, and 10 digits for, resp., n = 11, 15, 30.

With regard to the restricted Stenger conjecture, the routines used are run_Uconj_
restr_hahn.m and Uconj_restr_hahn.m. They, too, confirm the validity of the
conjecture for N ≤ 10 and 2 ≤ n ≤ N . But for N > 11, there are now more values of n
than shown in Table 6 for which there are eigenvalues with negative real parts, and there
can be as many as four pairs of delinquent eigenvalues.

8 Block-discrete and ε-block-discrete weight functions
It may be interesting to see whether the eigenvalues of Un behave similarly as in Example 8
when the weight function is not (N + 1)-discrete, but (N + 1)-block-discrete, that is, of the
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form

w(x; N + 1) =

⎧
⎨

⎩
wν if 2ν ≤ x ≤ 2ν + 1,ν = 0, 1, . . . , N ,

0 otherwise,
(43)

where w0, w1, . . . , wN , N ≥ 1, are positive numbers. Thus, the weight function is made up
of N + 1 “blocks” with base 1 and heights wν , ν = 0, 1, . . . , N , any two consecutive blocks
being separated by a zero-block. More generally, we may consider (N +1)-ε-block-discrete
weight functions, where the separating zero-blocks are replaced by ε-blocks, that is,

w(x; N + 1, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

wν if 2ν ≤ x < 2ν + 1,ν = 0, 1, . . . , N ,

ε if 2ν – 1 ≤ x < 2ν,ν = 1, 2, . . . N ,

0 otherwise.

(44)

The orthogonal polynomials pn associated with the weight function w(x; N + 1, ε) can be
generated from their three-term recurrence relation, which in turn can be computed (ex-
actly) by a (2N + 1)-component discretization procedure (cf. [3, §2.2.4]) using �n/2�-point
Gauss–Legendre quadrature on [0, 1]. This is implemented in Matlab double and vari-
able precision by the routines ab_blockhahn.m, sab_blockhahn.m. (For checking
purposes, the same recurrence relation was also computed by a moment-based routine in
sufficiently high precision.)

The elements ujk of the matrix Un

ujk =
∫ xj

0
�

(n)
k (x)w(x; N + 1, ε) dx,

where xj are the zeros of pn, can be computed (exactly) as follows. Let m = �xj�.
If m = 0,

u(n)
jk = w0

∫ xj

0
�

(n)
k (x) dx = w0xj

∫ 1

0
�

(n)
k (xjt) dt;

if m = 1,

ujk = w0

∫ 1

0
�

(n)
k (x) dx + ε

∫ xj

1
�

(n)
k (x) dx

=
∫ 1

0

[
w0�

(n)
k (t) + ε(xj – 1)�(n)

k
(
(xj – 1)t + 1

)]
;

if m > 0 is even,

ujk =
(m–2)/2∑

ν=0

wν

∫ 2ν+1

2ν

�
(n)
k (x) dx + wm/2

∫ xj

m
�

(n)
k (x) dx + ε

m/2∑

ν=1

∫ 2ν

2ν–1
�

(n)
k (x) dx

=
∫ 1

0

((m–2)/2∑

ν=0

wν�
(n)
k (2ν + t) + wm/2(xj – m)�(n)

k
(
(xj – m)t + m

)

+ ε

m/2∑

ν=1

�
(n)
k (2ν – 1 + t)

)
dt;
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Table 7 The presence of delinquent eigenvalues of Un in the case of a block-discrete weight
function

N n

2 9 17 18 20–22 25 28–30
3 11 14 21 22 24 27 28 30
4 13 14 16 18 20–22 24∗ 25∗ 29∗ 30
5 14 17 18 20 22–26 27∗ 28∗ 30
6 10 15–17 20–25 26∗ 27 29 30
7 11 17 20 21 23–28
8 14 18 20 23∗ 24 25∗ 27 28∗ 29∗ 30
9 15 19 21 23 24 26 27∗ 29∗ 30
10 13 14 16 18 20 22 26∗ 28∗ 29∗

if m > 1 is odd,

ujk =
(m–1)/2∑

ν=0

wν

∫ 2ν+1

2ν

�
(n)
k (x) dx + ε

(m–1)/2∑

ν=1

∫ 2ν

2ν–1
�

(n)
k (x) dx + ε

∫ xj

m
�

(n)
k (x) dx

=
∫ 1

0

(
w0�

(n)
k (t) +

(m–1)/2∑

ν=1

[
wν�

(n)
k (2ν + t) + ε�

(n)
k (2ν – 1 + t)

]

+ ε(xj – m)�(n)
k

(
(xj – m)t + m

)
)

dt.

All integrals on the far right of these equations can be computed exactly by �n/2�-point
Gauss–Legendre quadrature on [0, 1]. The first pitfall mentioned in Example 8, associated
with computing the floor of xj, is no longer an issue since the midpoint is now N + 1/2, a
half-integer, not an integer.

Example 9 The (N + 1)-block-discrete Hahn weight function with parameters α = β = 0
and pn with 2 ≤ n ≤ N .

This is the weight function (43) with w0 = w1 = · · · = wN = 1. To check the behavior of the
eigenvalues in this case, we have run the script run_Uconj_ext_blockhahn.m using
the function Uconj_ext_blockhahn.m and epsilon = 0 for N = 1 : 10 and 2 ≤ n ≤
30 for each N . It was found that the extended Stenger conjecture is still true for 2 ≤ n ≤ 30
(and probably for all n ≥ 2) when N = 1, i.e., for a 2-block-discrete Hahn weight function.
When N > 1, however, eigenvalues with negative real parts again show up, starting from
some n ≥ 9, and frequently, but not always, thereafter. The values of N and n, for which this
occurs, are shown in Table 7. There is usually one pair of delinquent complex conjugate
eigenvalues, but in some cases there are two such pairs. These are identified by an asterisk
in Table 7.

The validity of the extended Stenger conjecture for N = 1 is interesting. It may well be
for the same (unknown) reason that validates the conjecture in the case of the two-interval
weight function of Sect. 6.6; cf. Example 7.

To illustrate, we show in Fig. 17 the eigenvalues in the cases (N , n) = (2, 30), (5, 28),
(10, 26).

The restricted Stenger conjecture, in this example, fares much better, though fail-
ing also in a few cases. Using the routines run_Uconj_restr_blockhahn.m and
Uconj_restr_blockhahn.m for N = 1 : 10, 2 ≤ n ≤ 30, we found the conjecture
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Figure 17 Eigenvalues of Un in the case of the (N + 1)-block-discrete Hahn weight functions with
(N,n) = (2, 30), (5, 28), (10, 26) (from left to right)

Figure 18 Eigenvalues of Un in the case of the (N + 1)-block-discrete Hahn weight functions with
(N,n) = (2, 30), (6, 28), (10, 25) (from left to right)

to be true for N = [1, 2, 3, 4, 9], 2 ≤ n ≤ 30, and false in only the five cases: (N , n) =
(5, 30), (6, 28), (7, 30), (8, 28), (10, 25). To rule out the presence of severe numerical insta-
bilities as a cause for this unexpected behavior, all cases have been rerun, and confirmed,
in 32-digit arithmetic. The double-precision eigenvalues were compared with those ob-
tained in 32-digit precision and found to agree to 5–15 digits, the delinquent ones always
to at least 11 digits.

For illustration, we show in Fig. 18 the eigenvalues in the cases (N , n) = (2, 30), (6, 28),
(10, 25), the last two containing a pair of eigenvalues with negative real part.

The presence of delinquent eigenvalues in this example, strictly speaking, does not inval-
idate the extended Stenger conjecture, since the weight function (43) does not satisfy the
positivity a.e. condition imposed by Stenger. However, the matrix Un associated with the
weight function (44), depending on the positive parameter ε, by a continuity argument
will have the same pattern of delinquent eigenvalues as the matrix Un associated with
the weight function (43) when ε is sufficiently small. This then shows that the extended
Stenger conjecture cannot be valid for all admissible weight functions. We illustrate this
with the final example,

Example 10 The (N + 1)-ε-block-discrete weight function (44) for N = 2, ε = 1/100, and
n = 9.

This relates to the first item in Table 7. The routine run_Uconj_ext_epsilon_

blockhahn_N2_n9.m, using r_blockhahn to generate the required recurrence co-
efficients by an (N + 1)-component discretization procedure (N = 2) implemented by the
routines mcdis.m and quad_blockhahn.m, computes the eigenvalues of Un for n = 9.
They are shown in Table 8.

Recomputing them in 32-digit arithmetic proves them correct to all digits shown.
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Table 8 The eigenvalues λk of Un , n = 9, for the weight function of Example 10

k λk k λk

1 0.269543881598 + 0.100451106056i 6 0.113959909084 + 0.146440180631i
2 0.269543881598 – 0.100451106056i 7 0.113959909084 – 0.146440180631i
3 0.257834699637 8 –0.000421036373 + 0.156050111474i
4 0.242999895873 + 0.190318565957i 9 –0.000421036373 – 0.156050111474i
5 0.242999895873 – 0.190318565957i

Appendix: Relation to Runge–Kutta methods
Let x1, x2, . . . , xn be distinct real numbers (typically in the interval [0, 1]). The correspond-
ing (collocation) Runge–Kutta method (see [6, Theorem II. 7.7] is then given by the coef-
ficients

ajk =
∫ xj

0
�k(x) dx, bk =

∫ 1

0
�k(x) dx, (45)

where �k(x) is the kth elementary Lagrange interpolation polynomial of degree n – 1. We
collect the coefficients in the n × n matrix A = (ajk)n

j,k=1, in the column vector b = (bk)n
k=1,

and we denote the column vector with all elements equal to 1 by 1.
An application of the Runge–Kutta method with step size h to the Dahlquist test equa-

tion ẏ = λy yields (with z = hλ)

y1 = R(z)y0, R(z) = 1 + zbT(I – zA)–11, (46)

where R(z) is the stability function of the method. Note that for an invertible matrix A, its
eigenvalues are the reciprocal of the poles of the rational function R(z).

The adjoint method of (45) is given by the coefficients (cf. [6, Theorem II. 8.3])

a∗
n+1–j,n+1–k = bk – ajk =

∫ 1

xj

�k(x) dx, b∗
n+1–k = bk . (47)

Its stability function is related to that of (45) by R∗(z) = 1/R(–z).
Connection to the Stenger conjecture. The n × n matrix with coefficients ajk of (45) is

equal to the matrix Un (with a = 0) of (2) in Sect. 1, and the matrix with coefficients a∗
jk

of (47) is equal to Vn (with b = 1). Since the nonzero eigenvalues of A are the reciprocal
of the poles of the stability function (46), there is a close connection between the Stenger
conjecture and A-stability of a Runge–Kutta method.

The (shifted) Legendre polynomials are orthogonal with respect to the constant weight
function w(x) = 1 on [0, 1]. The corresponding collocation Runge–Kutta method is the
so-called Gauss method of order 2n, which is A-stable (see [7, Section IV.5]). Its stability
function is the diagonal Padé approximation Rn,n(x), for which all poles are in the right half
of the complex plane. This provides another proof of the Stenger conjecture for Legendre
polynomials.

Acknowledgements
The authors thank Martin J. Gander for having alerted them to the sensitivity, when n is large, of the eigenvalues of the
matrices Un , Vn to small changes in their elements, and they acknowledge helpful correspondence with Frank Stenger.

Funding
Not applicable.

316



Gautschi and Hairer Journal of Inequalities and Applications        (2019) 2019:159 Page 27 of 27

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have equal contributions. All authors read and approved the final manuscript.

Author details
1Department of Computer Science, Purdue University, West Lafayette, USA. 2Section de mathématiques, Université de
Genève, Genève, Switzerland.

Endnote
a All Matlab routines referenced in this paper, and all textfiles used, can be accessed at CONJS of the website
https://www.cs.purdue.edu/archives/2002/wxg/codes.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 March 2019 Accepted: 20 May 2019

References
1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Appl. Math. Ser., vol. 55 National Bureau of

Standards, Washington (1964)
2. Gautschi, W.: On some orthogonal polynomials of interest in theoretical chemistry. BIT Numer. Math. 24, 473–483

(1984) [Also in SelectedWorks, v. 2, 101–111.]
3. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific

Computation. Oxford University Press, Oxford (2004)
4. Gautschi, W. Orthogonal Polynomials in MATLAB: Exercises and Solutions. SIAM, Philadelphia (2016)
5. Gautschi, W.: A Software Repository for Orthogonal Polynomials. SIAM, Philadelphia (2018)
6. Hairer, E., Nørsett, P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd rev. edn. Springer

Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)
7. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd rev. edn.

Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (1996)
8. Stenger, F., Baumann, G., Koures, V.G.: Computational methods for chemistry and physics, and Schrödinger in 3 + 1. In:

Sabin, J.R., Cabrera-Trujillo, R. (eds.) Advances in Quantum Chemistry, pp. 265–298. Academic Press, San Diego (2015)
Ch. 11

9. Szegö, G.: Orthogonal Polynomials, 4th edn. Colloquium Publications, vol. 23. Am. Math. Soc., Providence (1975)

317


