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We give examples of problem areas in interpolation, approximation, and quad
rature, that call for orthogonal polynomials not of the classical kind. We then 
discuss numerical methods of computing the respective Gauss-type quadrature 
rules and orthogonal polynomials. The basic task is to compute the coefficients 
in the three-term recurrence relation for the orthogonal polynomials. This can 
be done by methods relying either on moment information or on discretization 
procedures. The effect on the recurrence coefficients of multiplying the weight 
function by a rational function is also discussed. Similar methods are applic
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The subject of orthogonal polynomials, if not in name then in substance, is 
quite old, having its origin in the 19th-century theories of continued fractions 
and the moment problem. Classical orthogonal polynomials, such as those of 
Legendre, Laguerre and Hermite, but also discrete ones, due to Chebyshev, 
Krawtchouk and others, have found widespread use in all areas of science and 
engineering. Typically, they are used as basis functions in which to expand 
other more complicated functions. In contrast, polynomials orthogonal with 
respect to general, nonstandard, weight functions and measures have received 
much less attention in applications, in part because of the considerable diffi
culties attending their numerical generation. Some progress, nevertheless, has 
been made in the last fifteen years or so, both in novel applications of non
classical orthogonal polynomials and in methods of their computation. The 
purpose of this article is to review some of these recent developments. 

In Part I, we outline a number of (somewhat disconnected) problem areas 
that have given rise to unconventional orthogonal polynomials. These include 
problems in interpolation and least squares approximation, Gauss quadrature 
of rational functions, slowly convergent series, and moment-preserving spline 
approximation. Part II then takes up the problem of actually generating the 
respective orthogonal polynomials. Since most applications involve Gauss 
quadrature in one way or another, the computation of these quadrature rules is 
discussed first. Constructive methods for generating orthogonal polynomials, 
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including those of Sobolev type, then follow, among them moment-based 
methods, discretization methods, and modification algorithms. Vl/e conclude 
by giving a brief account of available software. 

The choice of topics treated here reflects the author's past interest and in
volvement in orthogonal polynomials. There are other applications and com
putational aspects that would deserve equal treatment. Foremost among these 
are applications to iterative methods of solving large (and usually sparse) sys
tems of linear algebraic equations and eigenvalue problems. The pioneering 
work on this was done in the 1950s by Stiefel (1958) and Lanczos (1950); mod
ern accounts can be found, for instance in Hageman and Young (1981), Golub 
and Van Loan (1989) and Freund, Golub and Nachtigal (1991). Among addi
tional computational issues there is the problem of constructing the measure 
underlying a set of orthogonal polynomials, given their recursion coefficients. 
Some discussion of this can be found in Askey and Ismail (1984), and Dom
browski and Nevai (1986). 

Before we start, we recall two items of particular importance in the con
structive theory of orthogonal polynomials: the Gaussian quadrature formula, 
and the basic three-term recurrence relation. This will also provide us with 
an opportunity to introduce relevant notation. 

0.1. Gauss-type quadrature rules 

The concept of orthogonality arises naturally in the context of quadrature 
formulae, when one tries to maximize, or nearly maximize, their degree of 
exactness. Thus suppose we are given a positive measure1 dA. on the real 
line lR with respect to which polynomials can be integrated, that is, for which 
Jlll. tk dA.(t) exists for each nonnegative integer kENo. A quadrature formula 

1 J(t) dA.(t) = t Avj(Tv) + Rn(J), 
lll. v=l 

(0.1) 

1 For our purposes it suffices to assume that d.\. is either a discrete measure, d.\.(t) = 
d.\.N(t), concentrated on a finite number N of points t1 < t2 < · · · < tN, that is, .\.(t) is 
constant on each open interval ( ti, ti+l), i = 0, 1, ... , N (where to = -oo, t N +l = +oo), 
and has a positive jump w; = .\.(ti+O) -.\.(ti -0) at ti, i = 1, 2, ... , N, or d.\.(t) = w(t) dt 
is an absolutely continuous measure, where w;::: 0 is integrable on lR and Jllt w(t)dt > 0, 
or a combination of both. Then for suitable functions f, 

1 J(t)d.\.(t) = { L:l wi](ti), 
lll. fsupp(dA.) j(t)w(t) dt, 

d.\. discrete, 
d.\. absolutely continuous, 

where supp( d.\.) denotes the support of d.\., typically an interval or a union of disjoint 
intervals. 
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with distinct nodes Tv E lR and real weights Av, is said to have degree of 
exactness d if 

Rn(p) = 0, all p E JP'd, (0.2) 

where lP' d is the set of polynomials of degree ::; d. It is well known that for 
given Tv we can always achieve degree of exactness n- 1 by interpolating at 
the points Tv and integrating the interpolation polynomial instead of f. The 
resulting quadrature rule ( 0.1) is called the Newton-Cotes formula (relative to 
the points Tv and the measure dA.). Indeed, any quadrature formula having 
degree of exactness d = n - 1 can be so obtained, and is therefore called 
interpolatory. A natural question to ask is: what conditions must the nodes 
Tv and weights Av satisfy in order for (0.1) to have degree of exactness larger 
than n- 1, say d = n- 1 + m, where m > 0 is a given integer? The complete 
answer is given by the following theorem, essentially due to Jacobi (1826). 

Theorem 1 Given an integer m > 0, the quadrature rule (0.1) has degree 
of exactness d = n- 1 + m if and only if the following two conditions are 
satisfied: 

(i) The formula (0.1) is interpolatory. 

(ii) The node polynomial Wn(t) = rr~=1(t- Tv) satisfies 

L Wn(t)p(t) d,\(t) = 0 for each p E lP'm-1· (0.3) 

Condition (ii) is clearly a condition involving only the nodes Tv of (0.1); 
it says that the node polynomial must be orthogonal to all polynomials of 
degree ::; m- 1. Here, orthogonality is in the sense of the inner product 

(u,v)dA = L u(t)v(t)d>..(t), u, v E lP', (0.4) 

in terms of which ( 0.3) can be stated as ( Wn, p) dA = 0 for every p E lP' m-1· 

Once a set of distinct nodes Tv has been found that satisfies this orthogonality 
constraint, condition (i) then determines uniquely the weights Av, for example 
by requiring that (0.1) be exact for each power f(t) = tk, k = 0, 1, ... , n-
1. This is a system of linear equations for the weights Av whose matrix is 
a Vandermonde matrix in the nodes Tv, hence nonsingular, since they are 
assumed distinct. 

It is clear that m ::; n; otherwise, we could take p = Wn in (ii) and get 
JJF. w;(t) dA.(t) = 0, which is impossible if dA. has more than n points of 
increase. (In the context of quadrature rules, dA. indeed is usually assumed to 
be absolutely continuous and thus to have infinitely many points of increase.) 
Thus, m = n is optimal and gives rise to the condition 

all p E lP'n-1· (0.5) 
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This means that Wn must be orthogonal to all polynomials of lower degree, 
hence (see Section 0.2 below) is the unique (monic) orthogonal polynomial 
of degree n relative to the measure d-\. We will denote this polynomial by 
7rn( ·) = 7rn( ·; d-\). The formula (0.1) then becomes the n-point Gaussian 
quadrature formula (with respect to the measure d-\), that is, the interpol
atory quadrature rule of maximum degree of exactness d = 2n - 1 whose 
nodes are the zeros of 7rn( ·; d-\). It is known from the theory of orthogonal 
polynomials (Szego 1975) that these zeros are all simple and contained in the 
smallest interval containing the support of d-\. 

There are other interesting special cases of Theorem 1. vVe mention four: 

(1) Assume that the infimum a= inf supp ( d-\) is a finite number. We choose 
one of the nodes Tv to be equal to a, say Tt =a. Then wn(t) = (t-a)wn-l(t), 
where Wn-l(t) = II~=2 (t- Tv), and condition (ii) requires that 

100 
Wn-l(t)p(t)(t- a) d-\(t) = 0, all p E lP'm-1· (0.6) 

The optimal value of m is now clearly m = n - 1, in which case Wn-l is 
the unique (monic) polynomial of degree n- 1 orthogonal with respect to 
the modified measure dAa(t) = (t- a) d-\(t)- also a positive measure- that 
is, Wn-l ( t) = 7r n-l ( · ; dAa). Again, all zeros of Wn-l are distinct and larger 
than a; the resulting formula (0.1) is called then-point Gauss-Radau formula 
(with respect to the measure d-\). 

(2) Similarly, if both a = inf supp ( d-\) and b = sup supp ( d-\) are finite 
numbers, and n 2: 2, and if we want t1 =a and (say) tn = b, then wn(t) = 
-(t- a)(b- t)wn-2(t), and Wn-2( ·) = 1fn-2( ·; dAa,b) for optimal m = n- 2, 
where dAa,b(t) = (t -a)(b- t) d-\(t) is again a positive measure. The formula 
(0.1) with the interior nodes being the (distinct) zeros of 1fn-2( ·; dAa,b) then 
becomes the n-point Gauss-Lobatto quadrature rule (for the measure d-\). 

(3) Replace n in (0.1) by 2n + 1, let Tv= TSn) be the zeros of 7rn( ·; d-\) for 
some positive measure d-\, and choose n + 1 additional nodes f 11 such that 
the (2n + 1)-point formula (0.1) with nodes Tv and f 11 has maximum degree 
of exactness d 2: 3n + 1. By Theorem 1 (with n replaced by 2n + 1), the 
n + 1 nodes f 11 to be inserted must be the zeros of the (monic) polynomial 
ir n+ 1 satisfying 

l Trn+l(t)p(t)7rn(t; d-\) d-\(t) = 0, all p E lPn. (0.7) 

Here, the measure of orthogonality is d,\(t) = 7rn(t; d-\) d-\(t), which is no 
longer positive, but oscillatory. This calls for special techniques of computa
tion; see, for instance, Monegato (1982), Kautsky and Elhay (1984), Calio, 
Gautschi and Marchetti (1986, Section 2) and Laurie (1996). While frn+l 

can be shown to exist uniquely, its zeros are not necessarily contained in 
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the support of d,\ and may even be complex. The resulting (2n + 1)-point 
quadrature formula is called the Gauss-Kronrod rule. It has an interesting 
history and has received considerable attention in recent years. For surveys, 
see Monegato (1982), Gautschi (1988) and ~otaris (1994). 

( 4) Consider s > 1 different measures d.Xa, a = 1, 2, ... , s, with common 
support, and for each ann-point quadrature rule (0.1) with a common set of 
nodes {Tv} but individual weights { Av,a }, a = 1, 2, ... , s. Assume n = ms to 
be an integer multiple of s. Finds such quadrature rules, each having degree 
of exactness n ~ 1 + m. (This is expected to be optimal since there are n( s + 1) 
unknowns and (n+m)s = ns+s conditions imposed.) According to Theorem 
1, each quadrature rule has to be interpolatory, and the node polynomial Wn 
must be orthogonal to polynomials of degree m ~ 1 with respect to each 
measure, 

l Wn(t)p(t) d.Aa(t) = 0, allpEIP'rn-1, a=1,2, ... ,s. (0.8) 

One obtains the shared-nodes quadrature rules recently introduced by Borges 
(1994) in connection with computer graphics illumination models, where the 
models d.Aa are colour matching functions. Instead of assuming n = ms, 
one could require (0.8) to hold for p E IP'rnu-1, where 2.::~= 1 ma = n, and 
thus 'distribute' the degrees of exactness differently among the s measures 
d.Aa. The construction of such quadrature rules calls for quasi-orthogonal 
polynomials, that is, polynomials that are only partially orthogonal, as in 
(0.8), and not fully orthogonal, as in (0.5). 

0.2. The three-term recurrence relation 

Next to the Gauss formula, another important fact about orthogonal polyno
mials is that they always satisfy a three-term recurrence relation. The reason 
for this is the basic property 

( tu, v) d.\ = ( u, tv) d.\ (0.9) 

satisfied by the inner product (0.4). Indeed, assume that d.A has at least N 
points of increase. Then the system of orthogonal polynomials 7rk( ·; d.A), 
k = 0, 1, ... , N- 1, is easily seen to form a basis of IP'N-1· For any integer 
k "S N ~ 1, therefore, since the polynomial 

7fk+l(t) ~ t7rk(t) 

is a polynomial of degree "S k (both 7rk+l and t7rk being monic of degree 
k + 1), there exist constants O'.k, Pk and 'Ykj such that 

k-2 

7rk+l(t) ~ t1rk(t) = ~ak7rk(t) ~ Pk7rk-1(t) + L "!kj1fj(t), 
j=O 
k = 0, 1, ... ,N ~ 1, 

(0.10) 
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where it is understood that 7Ll ( t) = 0 and empty sums are zero. To determine 
ak, take the inner product of both sides of (0.10) with 1fk; this yields, by 
orthogonality, 

hence 
(t1fk, 1fk) 

O:k = . 
( 1fk, 1fk) 

Similarly, forming the inner product with 1fk-l ( k 2': 1) gives 

-(t1fk, 1fk-d = -f3k(1fk-l, 1fk-d· 

This can be simplified by noting (t1fkJ1fk-d = (1fk,t1fk-d = (1fkJ1fk + ···), 
where dots stand for a polynomial of degree < k. By orthogonality, then, 
(t1fk,1fk-d = (1fk,1fk), and we get 

f3k = (1fk,1fk) 
(1fk-1, 1fk-d 

Finally, taking the inner product with 1fi, i < k- 1, in (0.10), we find 

-(t1fk,1fi) = rki(1fi,1fi). 

It is here where (0.9) is crucially used to obtain rki = 0, since (1fi, 1fi) f= 0 
and (t1fk, 1fi) = (1fkJ t1fi) = 0 because of t1fi E lP'k-1· Thus, we have shown 
that 

1fk+I(t) = (t- ak)1fk(t)- f3k1fk-1(t), k = 0, 1, ... , N- 1, 

where 

1f-l(t) = 0, 1fo(t) = 1, 

(t1fk, 1fk) 

(1fk, 1fk) ' 
( 1fk, 1fk) 

(1fk-1, 1fk-d ' 

k = 0,1, . .. ,N- 1, 

k = 1, 2, ... , N - L 

(0.11) 

(0.12) 

This is the basic three-term recurrence relation satisfied by orthogonal poly
nomials. Since 1f_l = 0, the coefficient f3o in (0.11) can be arbitrary. It is 
convenient, however, to define it by 

f3o = (1fo, 1fo) = i d.\(t). (0.13) 

Note that by construction, 1f N is orthogonal to all polynomials of degree 
< N. If d.\ = dAN is a discrete measure with exactly N points of increase, 
there can be at most N orthogonal polynomials, 1fQ, 1fl, ... , 1fN-1, which 
implies that ( 1f N, 1f N) = 0, that is, 1f N vanishes at all the support points of 
dAN. On the other hand, if N = oo, then (0.11) holds for all k E No. Vice 
versa, if (0.11) holds for all k E No, with f3k > 0, then by a well-known 



52 W. GAUTSCHI 

theorem of Favard (see, for instance, Natanson 1964/65, Volume II, Chapter 
VIII, Section 6) the system of polynomials { 1rk} is orthogonal relative to some 
positive measure d). having infinitely many support points. 

The recurrence relation (0.11) is generally quite stable, numerically, and 
indeed provides an excellent means of computing the orthogonal polynomials 
7rk( ·; d>.), both inside and outside the interval of orthogonality. For discrete 
measures dAN, however, there is a good chance that the recurrence rela
tion exhibits a phenomenon of 'pseudostability' ( cf. Gautschi 1993a; Gautschi 
1996b, Section 3.4.2), particularly if the support points of d).N are equally 
spaced. As a consequence, the accuracy of the 7rk( ·; dAN), if computed by 
(0.11), may severely deteriorate as k approaches N. 

PART I: APPLICATIONS 

1. Interpolation 

1.1. Extended Lagrange interpolation 

Our interest here is in the convergence of Lagrange interpolation and quadrat
ure processes on a finite interval [ -1, 1], assuming only that the function to be 
interpolated is continuous on [ -1, 1]. A well-known negative result of Faber 
(see, for instance, Natanson 1965, Volume III, Chapter II, Theorem 2) tells 
us that there is no triangular array of nodes for which Lagrange interpolation 
would be uniformly convergent for every continuous function. In response 
to this, Erdos and Tunin (1937) showed that if one considers convergence in 
the mean, then there indeed exist triangular arrays of nodes - for example 
the zeros of orthogonal polynomials - on which convergence holds for every 
continuous function. More precisely, given a positive weight function w on 
(-1, 1), we have 

lim II J - Lnf llw= 0, 
n->CXJ 

for all f E C[-1, 1], (1.1) 

where 

(1.2) 

and Lnf is the Lagrange interpolation polynomial of degree < n interpolating 

fat then zeros li = Ti(n), i = 1, 2, ... , n, of 7rn( ·; w), the nth-degree poly
nomial orthogonal on [ -1, 1] relative to the weight function w. Convergence 
of the related quadrature process, that is, 

nli_.~ [ 1
1 [j(t)- (Lnf)(t)]w(t) dt = 0 for all f E C[-1, 1], (1.3) 
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also holds, since the quadrature rule implied by (1.3) is simply the Gaussian 
rule (see Section 0.1), which is known to converge for any continuous function. 

With this as a backdrop, suppose we wish to improve on Lnf by considering 
an extended set of 2n + 1 nodes, 

i = 1,2, ... , n; fj, j = 1, 2, ... , n + 1, (1.4) 

the first n being as before the zeros of 7r n ( · ; w), and forming the corresponding 

Lagrange interpolant L2n+d of degree< 2n + 1. Is it true that (1.1) and/or 

(1.3) still hold if Lnf is replaced by L2n+lf? 
The answer cannot be expected to be an unqualified 'yes', as the choice of 

the added nodes { Tj} has a marked influence on the convergence behaviour. 
A natural choice for these nodes is the set of zeros of 7f n+l ( · ; w), for which 
it has recently been shown (see Criscuolo, Mastroianni and Nevai (1993), 
Theorem 3.2; and Mastroianni and Vertesi (1993), Theorem 2.3) that the 
analogue of (1.1), when w is a 'generalized Jacobi weight' (see Section 6.1, 
Example 6.2), holds if and only if the Jacobi parameters a, (3 are both strictly 
between -1 and 0. The analogue of (1.3) holds for any weight function w 
since the underlying quadrature rule turns out to be simply the ( n + 1 )-point 
Gaussian rule for w (all nodes Ti receive the weight zero). 

Another interesting choice for the nodes Tj 1 first proposed by Bellen (1981, 
1988) 1 is the set of zeros of Kn+l( ·) = 1fn+1( ·; 7r~W) 1 

1fn+l(fj; 1f~W) = 0, j = 1,2, ... ,n+ 1 (7rn( ·) = 1fn( ·; w)). (1.5) 

Here the polynomial Kn+l is the (n + 1)st-degree polynomial of an infinite 
sequence of polynomials 7rm( ·; 1r~w), m = 0, 1, 2, ... 1 studied in Gautschi 
and Li (1993) and termed there orthogonal polynomials induced by 1fn· Both 

questions (1.1) and (1.3), for L2n+d, then become considerably more diffi
cult, and no precise results are known except for the four Chebyshev weight 
functions w(a,f3)(t) = (1 - t)a(l + t)f3, a, (3 = ±!. For these it has been 

shown in Gautschi (1992) that (1.1) is false unless a = (3 = +!, in which X 

case 1fnKn+1 is a constant multiple of the 2nd-kind Chebyshev polynomial of 
degree 2n + 1, and hence (1.1) (for L2n+lj) is a consequence of the Erdos
Tunin result. More recently (Gautschi and Li 1996), the analogue of (1.3) was 
established for all four Chebyshev weight functions by showing that the re
spective quadrature rules are positive and therefore convergent, by a classical 
result of Polya (1933). In the case a= (3 = -!, for example, the weights of 
the quadrature rule are given by Gautschi and Li (1996, Theorem 1). 

Ai = 3:, i = 1, 2, ... , n, 
. _ 2n)3 

f.lJ - n+ 1 j = 1, 2, ... , n + 1. 
9-87'2 

J 

For Jacobi weight functions w = w(a,{3), there are only conjectural results, 
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obtained by extensive computation based on the methods of Section 7.2. From 
these it appears that the analogue of (1.1) for L2n+d holds in the Gegenbauer 
case _g_::::; a = (3::::; a, where Q = -.31 and a= 1.6 (perhaps even in a slightly 
larger interval), and in the Jacobi case when 0 ::::; a, (3 ::::; a (again possibly 
in some slightly larger domain; see Gautschi (1992, Conjectures 5.1-5.3). 
The case a < 0 remains open. The analogue of ( 1.3) is conjectured to hold 
for Jacobi weight functions with lal ::::; ~' 1!31 ::::; ~ (Gautschi and Li 1996, 
Conjecture 3.1). 

1. 2. Rational interpolation 

Given N + 1 distinct points { ti}~0 on lR and corresponding function values 
fi = f(ti), i = 0, 1, ... , N, the problem now is to find a rational function 

p(t) 
T'mn(t) = -(), , q t rn+n = N, 

with q assumed monic of degree n and p of degree ::::; m, such that 

i = 0, 1, ... , N. 

(1.6) 

(1. 7) 

To derive an algorithm, one starts from the interpolation conditions (1. 7), 
written in the form 

i = 0, 1, ... , N. (1.8) 

Now recall that the Nth divided difference of a function g can be represented 
in the form 

N 

Wi = ll(ti- tj)· 
j=O 
#i 

(1.9) 

Letting 7/Jj(t) = tj, j = 0, 1, ... , n- 1, multiplying (1.8) by 1/Jj(ti)/wi and 
summing, yields 

hence, by (1.9), 

[to, t1, ... , tN](7/Jjp) =[to, t1, ... , tN]('ljJjfq), j=0,1, ... ,n-l. 

But 1/JjP is a polynomial of degree m+n-1 < N, hence the divided difference 
on the left vanishes. The same is therefore true of the divided difference on 
the right, that is, 

j = 0, 1, ... , n- 1. (1.10) 
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Defining the discrete measure d)w to have support points {to, ... , t N}, and 
jumps Wi = fi/Wi at ti, we can write (1.10) as 

~ q(t)'ljJ(t) dAN(t) = 0, all'I/J E IP'n-1· (1.11) 

Thus, q( ·) = lfn( ·; dAN) is the nth-degree monic polynomial orthogonal with 
respect to the (indefinite) measure dAN. 

The denominator q( ·) = 7rn( ·; dAN), when generated by methods to be 
discussed in Section 6, can be checked to see whether it vanishes at any of 
the points ti and, thus, whether the existence of the rational interpolant (1.6) 
is in doubt. 

If all function values are different from zero, then the numerator polynomial 
p or, more precisely, its monic companion, Pmon E IP'm, can also be charac
terized as a discrete orthogonal polynomial. Indeed, it is orthogonal relative 

to the measure dA~l) having the same support points as dAN, but jumps 

w~ - 1) = fi- 1 /wi instead of fdwi. This follows immediately from (1.8) if we 
write it in the form 

i = 0, 1, ... , N, (1.12) 

and apply the same reasoning as above to find 

~ Pmon (t)cp( t) dA~l) ( t) = 0, all cp E IP'm-1· ( 1.13) 

To obtain p itself, it suffices to multiply Pmon( ·) = 7rm( ·; dA~1)) by a suit
able normalization factor c, for example, c = foq(to)/Pmon(to) (assuming, of 
course, that q(to) ~ 0, Pmon(to) ~ 0). 

The procedure described is particularly attractive if all rational interpolants 
r m,n with m+n = N are to be obtained, since the numerator and denominator 
of rm,n, being orthogonal polynomials, can be generated efficiently by the 
three-term recurrence relation { cf 0.2). Some caution, nevertheless, is advised 
because of possible build-up of computational errors. These are caused by 
the indefiniteness of the inner product ( · , · ) d.\N, in particular by the fact 

that the weights Wi and wi-l) typically alternate in sign. One expects these 
errors to be more prevalent the larger the moduli of these weights, hence the 
smaller the interval [to, tN]. 

Notes to Section 1 

1.1. The potential failure of Lzn+lf to converge in the mean to f for the special 
choices of nodes studied here must not so much be regarded as a critique of these 
choices, but rather as a reflection of the very large class - C[-1, 1] - of functions 
f. Adding only a slight amount of regularity, for example Lipschitz continuity with 
a parameter larger than one half, would restore (mean) convergence. For smoother 
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functions, numerical evidence presented in Gautschi (1992, Table 6.1) suggests very 
fast convergence. 

An analogue of the Erdos-Tunin result for a class of rational interpolants has 
been established in Van Assche and Vanherwegen (1993, Theorem 7). 

Mean convergence of extended Lagrange interpolation with rj the Gauss-Kronrod 
points is studied in Li (1994). Other types of extended Lagrange interpolation 
by polynomials are studied in Bellen ( 1981) for Lipschitz-continuous functions 
f E Lip')', /' > ~' and in Criscuolo, Mastroianni and Occorsio (1990, 1991) and 
Criscuolo, Mastroianni and Vertesi (1992) with a view toward uniform convergence; 
see also Criscuolo et al. (1993) and Mastroianni and Vertesi (1993). For yet other 
extended interpolation processes and their Lp-convergence for arbitrary continuous 
functions, see Mastroianni (1994). 

1.2. There are well-established algorithms for constructing a rational interpolant 
when one exists; see, for instance, Stoer and Bulirsch (1980, Section 2.2) and Graves
Morris and Hopkins (1981). The approach described in this subsection, based on 
discrete orthogonal polynomials (though relative to an indefinite measure) can be 
traced back to Jacobi (1846) and has recently been advocated in Egecioglu and Ko<; 
(1989). A numerical example illustrating its weaknesses and strengths is given in 
Gautschi (1989). 

2. Approximation 

2.1. Constrained least squares approximation 

The problem of least squares ties in with the early history of orthogonal 
polynomials. We thus begin by looking at the classical version of the problem. 

Given a positive measure d,.\ on the real line R and a function f defined 
on the support of d,.\, we want to find a polynomial p of degree at most n 
minimizing the £~>.-error, 

minimize l[p(t)- f(t)] 2 d>.(t): P E lP'n. (2.1) 

Often, the measure d,.\ is a discrete measure d,.\N concentrated on N distinct 
points of R, with N > n ( cf footnote e) of Section 0.1). If not, we must 
assume that f is in L~>-' and we will also assume that all polynomials are in 
L~>.· On the space lP' (of all real polynomials), respectively lP'N-1 (if d,.\ = 
d,.\N ), we introduce the inner product (0.4), 

(u, v) d>. = l u(t)v(t) d,.\(t), u, v E lP' (resp. u, v E lP'N_l), (2.2) 

which renders these spaces true inner product spaces. There exist, therefore, 
unique polynomials 

7rk ( t; d,.\) = tk + lower-degree terms , k = 0, 1, 2, ... ' (2.3) 
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satisfying 

(2.4) 

These are the (monic) orthogonal polynomials relative to the measure d). ( cf 
Section 0.2). There are infinitely many of them if the support of d). is infinite, 
and exactly N of them (0::; k::; N- 1 in (2.3)) if d).= dAN. The solution 
of ( 2.1) is then given by 

n 

p(t) = 2.:>k1fk(t; d).), (2.5) 
k=O 

the ( n + 1 )st partial sum of the Fourier series of f in the orthogonal system 

{7rk}· 
Suppose now that we wish to minimize (2.1) among all polynomials p E IP'n 

satisfying the constraints 

j = 0,1, ... ,m; m<n, (2.6) 

where Sj are given distinct points on lR where f is defined. It is then natural 
to seek p of the form 

p(t) = Pm(t; f)+ sm(t)b(t), (2.7) 

where 
m 

Sm(t) = IJ (t- Sj), (2.8) 
j=O 

Pm( ·;f) being the unique polynomial in lP'm interpolating f at the points 
{ Sj }0 and b a polynomial of degree n - m- 1. Every polynomial of the form 
(2.7) is indeed in IP'n and satisfies the constraints (2.6). Conversely, every such 
polynomial can be written in the form (2.7). It thus remains to determine b. 

We have 

1 fp(t)- f(t)] 2 dA(t) = 1[Pm(t; f)+ sm(t)b(t)- j(t)]2 dA(t) 
lR lR 2 

= { [ f(t)- Pm(t; f) - b(t)] s~(t) dA(t), 
JJR Sm(t) 

so that our minimization problem (2.1), (2.6) becomes 

bE lP'n-m-1 1 (2.9) 

where 
f(t)- Pm(t; f) 

~(t) := () = [so,sl, ... ,sm,t]f. 
Sm t 

(2.10) 

Here, the expression· on the far right is the divided difference of f of order 
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m + 1 with respect to the points so, s1, ... , Sm, t, and its equality with .6.. 
is a consequence of the well-known remainder term of interpolation. We 
see that the desired polynomial 8 is the solution of an unconstrained least 
squares problem, but for a new function, .6.., and a different measure, s~ d.\. 
Therefore, the solution of the constrained least squares problem is given by 
(2.7) with 

8(t) = 2: dkirk(t), (2.11) 
k=O 

where 

(2.12) 

It is required, therefore, to construct the orthogonal polynomials relative 
to the measure s~ d.\, assuming those for d). are known. This is an instance 
of a modification problem; its solution by 'modification algorithms' will be 
discussed in Section 7.2. 

The same idea can be applied to least squares approximation by a rational 
function 

p(t) 
r(t) = q(t) , 

where q is a prescribed polynomial satisfying 

(2.13) 

q(t) > 0 for t E supp (d.\); j=O,l, ... ,m. (2.14) 

One finds that 

m1mm1ze 1 [~~;~ _ f(t)r d>.(t) : P E IP'n, (2.15) 

subject to the constraints 

p(sj) = f( -) 
( ) SJ ' q Sj 

j = 0, 1, ... ,m, (2.16) 

is now equivalent to 

mm1m1ze 1 [.6..(t)- 8(t)] 2 :;g; d>.(t): {j E IP'n-m-1, (2.17) 

where 

q(t)j(t)- Pm(t; qj) 
.6..(t) = () = [so,sl, ... ,sm,t](qf). 

Sm t 
(2.18) 

With 8 so obtained, the desired pin (2.13) is then given by 

p(t) = Pm(t; qf) + Sm(t)8(t). (2.19) 

The modification of the measure now involves not only multiplication but 
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also division by a polynomial. This requires additional algorithms for gen
erating the respective orthogonal polynomials, which will be the subject of 
Section 7.3. 

2.2. Least squares approximation in Sobolev spaces 

In order to approximate (in the least squares sense) not only functions, but 
also, simultaneously, some of their derivatives, we may pose the problem 

minimize Ltofp(u)(t)- j(u)(t)]2 d>.u(t): (2.20) 

where d>.o, ... , d>.8 are positive measures on JR. and each derivative j(u) is 
defined on the support of the corresponding measure d>.u. The natural scen
ario in which to consider this problem is the Sobolev space 

Hs(lR) = {f -: to 1. (f(u)]2 d>.u < 00} (2.21) 

of functions f whose successive derivatives of order a ::; s are square integ
rable against the respective measures d>.u. If we assume that the measures 
d>..u are such that the space JID of polynomials is a subspace of H 8 (JR.), the 
problem (2.20) can be written as 

minimize II p- f ilk.: p E Pn, (2.22) 

where the norm II u II Hs = J ( u, u) Hs is defined in terms of the inner product 

(u, v)H. = toL u(u)(t)v(u)(t) d>..u(t). (2.23) 

If d>.o has infinitely many points of increase, then, regardless of whether or 
not some or all of the other measures d>..u, a 2: 1, are discrete, the inner 
product (2.23) is positive definite on H8 (JR.) and therefore defines a unique 
set of (monic) orthogonal polynomials 1fk( ·) = 1fk( ·; H8 ), k = 0, 1, 2, ... , 
satisfying 

(2.24) 

These are called Sobolev orthogonal polynomials. In terms of these functions, 
the solution of (2.20), as in (2.5), is given by a finite Fourier series, 

n 

p(t) = L Ck1fk(t; Hs), (2.25) 
k=O 

It is important to note that the inner product in (2.23), if s > 0, no longer 
satisfies the basic property (0.9), that is, 

(tu, v)H. -=/: (u, tv)H. (s > 0), (2.26) 
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which means that we can no longer expect the orthogonal polynomials to 
satisfy a simple three-term recurrence relation. The numerical computation of 
Sobolev orthogonal polynomials (not to speak of their algebraic and analytic 
properties!) is therefore inherently more complicated; we will give a brief 
account of this in Section 8. 

A widely used choice of measures is 

dA.a(t) = Ia d.\(t), (7 = 0, 1' 2, ... ' s, (2.27) 

where d,\ is a (positive) 'base measure' and the Ia > 0 are positive constants 
with 10 = 1. The latter allow us to assign different weights to different 
derivatives. The most studied case, by far, is (2.27) with s = 1. 

2.3. Moment-preserving spline approximation 

Given a function f on [0, oo ), we wish to approximate it by a spline function 
of degree m with n positive knots. The approximation is not to be sought 
in any of the usual Lp-metrics, but is to share with f as many of the initial 
moments as possible. This is a type of approximation favoured by physicists, 
since moments have physical meaning, and the approximation thus preserves 
physical properties. 

The most general spline in question can be written in the form 
n 

Sn,m(t) = l: av(Tv- t)~, 
v=l 

where m 2: 0 is an integer, u+ = max(O, u), av are real numbers, and 

0 < Tt < T2 < · · · < Tn < 00 

(2.28) 

(2.29) 

are the knots of the spline. The arbitrary polynomial of degree m that one 
could add to (2.28) must be identically zero if the moments of Sn,m are to be 
finite. Since we have 2n parameters to choose from - the n coefficients av 
and then knots Tv -we expect to be able to match the first 2n moments, 

fooo Sn,m(t)tj dt = fooo j(t)tj dt, j = 0, 1, ... , 2n- 1. (2.30) 

This problem, not surprisingly, leads to a problem of Gaussian quadrature. 
Assume, indeed, for fixed n EN and mE No, that 

(i) j E cm+l[JR+], 

(ii) L::>a j(t)ti dt exists for j = 0, 1, ... , 2n- 1, 

(iii) j(J.Ll(t) = o(r2n-J.L) as t-+ oo, for J-L = 0, 1, ... , m, 

and define the measure 

d,\m(t) = ( -l)m+l tm+l j(m+l)(t) dt 
m! 

on JR+. (2.31) 
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Then we have the following result. 

Theorem 2 Given a function f on [0, oo) satisfying assumptions (i)-(iii), 
there is a unique spline function Sn,m, (2.28), matching the first 2n moments 
of J, (2.30), if and only if the measure d..\m in (2.31) admits a Gaussian 
quadrature formula 

100 g(t) d..\m(t) = t ..\;! g(t;f) + R~m(g), 
0 v=1 

R~,m(JP'2n-d = 0, (2.32) 

having distinct positive nodes 

0 < tf < t~ < ... < t~. (2.33) 

If that is the case, then the desired spline Sn,m is given by 

>...C a - v 
v- (tf)m+l ' v = 1, 2, ... ,n. (2.34) 

Proof. Since Tv is positive, substituting (2.28) in (2.30) yields 

tav.{Tv tj(Tv-t)mdt= roo tij(t)dt, 
v=1 lo lo 

j=0,1, ... ,2n-l. (2.35) 

We now apply m (respectively m + 1) integrations by parts to the integrals 
on the left (respectively right) of ( 2.35). On the left, we obtain 

m![(j + 1)(j + 2) · · · (j + m)]-1 t av lTv tHm dt 
v=1 ° n (2.36) 

= m![(j + 1)(j + 2) · · · (j + m)(j + m + 1)]-1 L avTt+m+l_ 
v=1 

On the right, we carry out the first integration by parts in detail to exhibit 
the reasonings involved. We have, for any b > 0, 

rb tiJ(t)dt = -.-1- ti+lJ(t)lb - -.-1- rb ti+lf'(t)dt. 
lo J + 1 0 J + 1 lo 

(2.37) 

The integrated term clearly vanishes at t = 0 and tends to zero as t = b ----> oo 
by assumption (iii) with J.L = 0, since j + 1 ::; 2n. The integral on the left 
converges as b ----> oo by assumption (ii); the same is true, therefore, for the 
integral on the right. We conclude that 

roo ti f(t) dt = --.-1- roo ti+l j'(t) dt. 
lo J + 1 lo 

Continuing in this manner, using assumption (iii) to show convergence to 
zero of the integrated term at the upper limit (its value at t = 0 always being 
zero) and the existence of J000 tHJl j(Jl) ( t) dt already established to infer the 
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existence of J000 tJ+~t+l j(~t+ll(t) dt, 11 = 1, 2, ... , m, we arrive at 

f 00 tjf(t)dt= . . (-l)m+l. f 00 tj+m+lf(m+l)(t)dt. 
lo (J+1)(J+2)···(J+m+1)}o 

In particular, this shows that the first 2n moments of d.>.m all exist. Since 
the last expression obtained, by (2.35), must be equal to the one in (2.36), 
we see that (2.30) is equivalent to 

n . roo (-1)m+l 
~(avT~+l)Tt = Jo m! tm+lj(m+l)(t) · tj dt, 

j = 0, 1, ... , 2n- 1. 

These are precisely the conditions for Tv to be the nodes of the Gauss formula 
(2.32) and for avTJ:'+l to be the respective weights. Both, if indeed they exist, 
are uniquely determined. 0 

The measure d.>.m in (2.31) is neither one of the classical measures nor is 
it necessarily positive, in generaL Thus we need constructive methods that 
also work for sign-changing measures. 

The simplest example is the exponential function, f(t) = e-t, in which 
case 

1 
d.Xm(t) = - tm+le-t dt 

m! 
(2.38) 

is a generalized Laguerre measure with parameter a = m+ 1, hence indeed one 
of the classical measures. Examples of positive measures d.>.m are furnished 
by completely monotone functions, that is, functions f satisfying 

k=0,1,2, .... (2.39) 

The physically important example of the Maxwell velocity distribution, f ( t) = 

e-t2 , is an example leading to a sign-variable measure, 

1 m+l ( -t2 
d.Xm(t) = - 1 t Hm+l t)e dt 

m. 
(2.40) 

where Hm+l is the Hermite polynomial of degree m+ 1. If m > 0, then Hm+l 

has L(m + 1}/2J positive zeros, hence the measure (2.40) changes sign that 
many times. 

Although the spline Sn,m was constructed to match the moments of f, it 
also provides a reasonably good pointwise approximation. Its error indeed 
can be shown to be related to the remainder R;f m of the Gauss formula (2.32} 

' in the sense that for any t > 0 one has 

J(t)- Sn,m(t) = R~m(ht,m), (2.41) 

where 

0:::; u < 00. (2.42) 
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From a known convergence theorem for Gauss quadrature on [0, oo) ( cf Freud 
(1971, Chapter3, Theorem 1.1)) it follows, in particular, that for fixed m, 

lim Sn m(t) = f(t), 
n---+oo ' 

t > 0, 

iff satisfies the assumptions of Theorem 2 for all n = 1, 2, 3, ... and if dAm 
is a positive measure for which the moment problem is determined. 

Similar approximation problems can be posed on a finite interval, which 
then give rise to generalized Gauss-Lobatto and Gauss-Radau quadrature for 
a measure dAm which again depends on j(m+l). 

Notes to Section 2 

2.1. Least squares approximation by polynomials was considered as early as 1859 
by Chebyshev (1859) in the case of discrete measures dA = dAN. Although Cheby
shev expressed the solution in the form (2.5), he did not refer to the polynomials 
1Tk( ·; dAN) as 'orthogonal polynomials' - a concept unknown at the time - but 
characterized them, as did other writers of the period, as denominators of certain 
continued fractions. A more recent treatment of discrete least squares approxim
ation by polynomials, including computational and statistical aspects, is Forsythe 
(1957). Tlle idea of reducing the constrained least squares problem for polynomials 
to an unconstrained one involving a new objective function and a new measure can 
be found in Walsh (1969, p. 320). For the extension to rational functions, see Lin 
(1988). 

2.2. In the case of measures (2.27) with s = 1, the Sobolev-type least squares 
approximation problem (2.20) was first considered by Lewis (1947), largely, however, 
with a view toward analysing the error of approximation (via the Peano kernel, 
as it were). The respective Sobolev orthogonal polynomials were studied later by 
Altlillmmer (1962) and Grabner (1967) in the case of the Legendre measure, dA(t) = 
dt in (2.27). Other choices of measures dAa in (2.23), especially discrete ones for 
a- 2: 1, have been studied extensively in recent years. For surveys, see Marcellan, 
Alfaro and Rezola (1993), Marcelhin, Perez and Pi:iiar (1995), and for a bibliography, 
Marcelhin and Ronveaux (1995). Special pairs of measures { dAo, dAI} in the case 
s = 1, termed 'coherent', are studied in Iserles, Koch, N0rsett and Sanz-Serna 
(1990; 1991) and shown to allow efficient evaluation not only of the Sobolev-Fourier 
coefficients Ck in (2.25), but also of the Sobolev polynomials 1Tk(·; H 1 ) themselves. 
For zeros of such polynomials, see Meijer (1993), and de Bruin and Meijer (1995). 

An application of Sobolev-type least squares approximation to the solution of 
systems of linear algebraic equations is proposed in Moszynski (1992). Here, s + 1 
is the dimension of the largest Jordan block in the matrix of the system. 

2.3. Piecewise constant approximations on R.+ to the Maxwell velocity distribu
tion that preserve the maximum number of moments were used in computational 
plasma physics by Calder, Laframboise and Stauffer (1983), and Calder and La
framboise (1986), under the colourful name 'multiple-water-bag distributions'. The 
connection with Gaussian quadrature was pointed out in Gautschi (1984b). Since 
piecewise constant functions are a special case of polynomial spline functions, it is 
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natural to extend the idea of moment-preserving approximation to spline functions 
of arbitrary degree. This was done in Gautschi and Milovanovic (1986), where one 
can find Theorem 2 and the error formulae (2.41), (2.42), along with their proofs. 
In the same paper, the sign-variable measure (2.40) was examined numerically and 
shown to lead, on occasion, to Gauss formulae with negative, or even conjugate 
complex, nodes. The analogous approximation on a finite interval, mentioned at 
the end of Section 2.3, was studied in Frontini, Gautschi and Milovanovic (1987). 
Further extensions can be found in MilovanoviC and Kovacevic (1988, 1992), Mic
chelli (1988), Frontini and Milovanovic (1989), Gori and Santi (1989, 1992) and 
Kovaeevic and Milovanovic (1996), with regard to both the type of spline function 
and the type of approximation. 

3. Quadrature 

3.1. Gauss quadrature for rational functions 

Traditionally, Gauss quadrature rules ( cf Section 0.1) are designed to integ
rate exactly (against some measure) polynomials up to a maximum degree. 
This makes sense if one integrates functions that are 'polynomial-like'. Here 
we are interested in integrating functions that have poles, perhaps infinitely 
many. In this case, the use of rational functions, in combination with poly
nomials, seems more appropriate. The rational functions should be chosen so 
as to match the most important poles of the given function. This gives rise 
to the following problem. 

Let d.\ be a (usually positive) measure on JR, and let there be given M 
nonzero complex numbers (I, ... , (M such that 

(11 # 0, on supp (d.\), J-L= 1,2, ... ,M. (3.1) 

For given integers m, n with 1 ::;; m ::;; 2n, find an n-point quadrature rule 
that integrates exactly (against the measure d.\) the m rational functions 

where s11 2': 1 and 

J-L= 1,2, ... M, 

M 

2:s11 = m, 
11=1 

s = 1,2, ... ,s11 , (3.2) 

(3.3) 

as well as polynomials of degree ::;; 2n - m - 1. If m = 2n, a polynomial 
of degree -1 is understood to be identically zero. We then have the extreme 
case of 2n rational functions (with poles of multiplicities s11 at -1/(11 ) being 
integrated exactly, but no nontrivial polynomials. The quadrature rule is then 
optimal for rational functions, just as the classical Gaussian rule is optimal 
for polynomials; cf Section 0.1. The latter corresponds to the limit case 
M=m=O. 
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In principle, it is straightforward to construct the desired quadrature rule 
according to the following theorem. 

Theorem 3 Define 
M 

Wm(t) = IT (1 + (flt) 8~", (3.4) 
fl=l 

by (3.3) a polynomial of degree m. Assume that the measure d.X/wm admits 
a (polynomial) n-point Gauss quadrature formula, that is, 

r J(t) d.\(t) 
JJR Wm(t) 

and define 

Then 

where 

n 

L w~ f(t~) + R~(f), 
v=l 

(3.5) 

v = 1, 2, ... ,n. (3.6) 

(3.7) 

Rn(g) = 0 if g E lP'2n-m-1, or g(t) = (1 + (flt)-s, 1 :S f.L :S M, 1 :S s :SSw 
(3.8) 

Once again, we are led to a modification problem that involves division by 
a polynomial, so that the algorithms of Section 7.3 become relevant. 

Proof of Theorem 3. For JL = 1, 2, ... , M; s = 1, 2, ... , sfl, define 

Since m ::; 2n and s 2: 1, we have qfl,s E 1P'm-s C lP'2n-1, and therefore, by 
(3.5), 

where (3.6) has been used in the last step. 
:J>~(3.8). 

To prove the hloiJtoHl par~ of (3.8), let p be an arbitrary polynomial in 
fidf~t~~ 
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IP'2n-m-l· Then, since PWm E IP'2n-1, again by (3.5) and (3.6), 

v=l v=l 

0 

The existence of the Gaussian quadrature formula in Theorem 3 is assured 
if it exists for the measure d..\ and the polynomial Wm has constant sign on 
supp (d..\). This is typically the case if the complex poles -1/ (,JL (if any) 
occur in conjugate complex pairs and the real ones are all outside the support 
interval of d..\. 

Quantum statistical distributions provide important examples of integrals 
amenable to rational Gauss-type quadrature. Thus, the Fermi-Dirac distri
bution gives rise to the generalized Fermi-Dirac integral 

00 tk J1 + ~Bt 
Fk(17, B) = { +t dt, 

Jo e-'TJ + 1 
B 2: 0, 17 E JR, (3.9) 

where the k-values of physical interest are the half-integers ~, ~ and ~. Sim
ilarly, Bose-Einstein distributions lead to the generalized Bose-Einstein in
tegral 

00 tk J 1 + ! Bt 
Gk(17, B) = { _ +t dt, 

Jo e 'TJ - 1 
a:::: o, 17 ::; 0, (3.10) 

with the same values of k as before. For the integral in (3.9), the poles are 
located at 

t = 17 ± (2J.L- 1) i7f, J.L = 1, 2, 3, ... ' (3.11) 

whereas for the one in (3.10) they are at 

J.L = 0, 1, 2, ... (3.12) 

This suggests taking for the (,JL in (3.1) the negative reciprocals of (3.11) and 
(3.12), respectively. If in the integral (3.9) we match the first n pairs of 
complex poles, we are led to apply Theorem 3 with m = 2n and 

n 

W2n(t) = II [(1 + ~f.Lt) 2 + 17~t2], 
JL=l 

where ~JL and 17~-t are the real and imaginary parts, respectively, of (,JL = 
-(17 + (2J.L- 1) i1r)-1. Similarly for the integral (3.10), where we need to 
match the real pole (at 17) and the first n - 1 pairs of complex poles. This 
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calls for Theorem 3 with m = 2n ~ 1 and 

n-1 

W2n-1(t) = (1 + .;ot) II [(1 + ~11 t) 2 + ry~t2 ], 
tL=1 

where ~11 and ry11 are the real and imaginary parts of ( 11 = - ( 1} + 2p, i1r) - 1 . 

3.2. Slowly convergent series 

It may seem strange, at first, to see infinite series dealt with in a section 
on quadrature. But infinite series are integrals relative to a discrete measure 
supported on the positive integers! It is not unnatural, therefore, to try to 
approximate such integrals by finite sums. We do this for a special class of 
series in which the general term can be expressed as the Laplace transform 
of some function evaluated at an integer. Such series exhibit notoriously slow 
convergence. We will show that they can be transformed into an integral 
containing a positive, but nonclassical, weight function and then apply Gauss 
quadrature to obtain an effective summation procedure. 

Thus., suppose that 

<XJ 

8= Lak, ak = (£f)(k), (3.13) 
k=1 

where £f is the Laplace transform of some (known!) function /, that is, 

(3.14) 

Then by Watson's lemma (see, for example, Wong 1989, p. 20), iff is regular 
near the origin, except possibly for a branch point at t = 0, where f(t) rv t\ 
A > 0, as t ---+ 0, and if f grows at most exponentially at infinity, one has 
ak rv k->..- 1 as k---+ oo, showing that convergence of the series (3.13) is slow 
unless A is large. However, we can write 

S = I)£f)(k) = f fooo e-kt f(t) dt 
k=1 k=l 

= ~o= f e-(k-l)t. e-t f(t) dt 

= {= k=1 1 -t . e-t f(t) dt, 
lo 1 -e 

assuming the interchange of summation and integration is legitimate. This 
yields the following integral representation: 

s = r= E(t) J(t) dt 
lo t 

(3.15) 
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involving the weight function 

t 
E(t) = -t

e -1 
on [O,oo). (3.16) 

Such integrals occur frequently in solid state physics, where E is known as Ein
stein's function. (Of course, E is also the generating function of the Bernoulli 
numbers.) 

There are two approaches that suggest themselves naturally for evaluating 
the integral (3.15). One is Gaussian quadrature relative to the weight function 
E, if j(t)jt is sufficiently regular, or, if not, with respect to some modified 
weight function. The other is rational Gauss quadrature of the type discussed 
in Section 3.1, writing 

(3.17) 

letting e-tdt = d.A(t), and matching as many of the poles at ±2j.ti1f, J.L = 
1, 2, 3, ... , as possible. Both approaches call for nonclassical orthogonal poly
nomials. 

To give an example, consider the series 

kv-l 
s-"' - ~ (k +a)m' 

k=l 

0 < v < 1, m-2':1, (3.18) 

where a is a complex number with Rea > 0, Im a 2 0. Writing the general 
term of the series as 

kv-l · (k + a)-m = (.CJ)(k), 

we note that 

( cv ) 
kv-l = £ f(1- v) (k), ( 

tm-l ) 
(k + a)-m = £ (m- 1)! e-at (k), 

so that the convolution theorem for Laplace transforms (see, for example, 
Widder 1941, Theorem 12.la) 

.Cg . .Ch = .Cg * h, 

where 

(g * h)(t) =lot g(T)h(t- T) dT, 

yields 

f(t) 1 rt -a(t-r)(t )m-l -vd 
= (m- 1)!f(l- v) Jo e - 7 7 T. 
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After the change of variable T = tu, this becomes 

tm-ve-at lol 
f(t) = eatu(l - u)m-lu-v du. 

(m- 1)!r(1- v) o 

The integral on the right, up to a constant factor, can be recognized as 
Kummer's function M(a, /3, z) with parameters a= 1-z;, f3 = m+ 1-z; and 
variable z = at (see Abramowitz and Stegun, eds, 1964, Equation 13.2.1). 
Thus, 

f(t) = t 1-v9m-l(t;a,v), (3.19) 

where 
tne-at 

9n(t; a, v) = r( ) M(1-v, n+2-v, at), 
n+2-v 

n = 0, 1, 2, .... (3.20) 

It is known that Kummer's function satisfies a recurrence relation relative 
to its second parameter (Abramowitz and Stegun, eds, 1964, Equation 13.4.2), 
from which one gets for 9n( ·) = 9n( ·;a, v) the three-term recurrence relation 

1 
9n+I(t) = --

• n+1 
{ ( n + 1 - z;) t } 

t + a 9n(t)--;_; 9n-l(t) , 

ci 
9-l(t) = ( ) . r1-v 

n 2:: 0, 

(3.21) 
To compute 9m-1 in (3.19), it is enough, therefore, to compute go(t) = 
e-atM(1-v, 2- v, at)jr(2 -z;) and then to apply (3.21). On the other hand, 
90 is expressible (Abramowitz and Stegun, eds, 1964, Equation 13.6.10) in 
terms of Tricomi's form of the incomplete gamma function (Abramowitz and 
Stegun, eds, 1964, Equation 6.5.4), 

go(t; a, v) = e-atl'*(1- v, -at), (3.22) 

where 

(3.23) 

Since 90 is known to be an entire function of all its variables (see Tricomi 
1954, Chapter IV), it follows from (3.21) that each function 9n(t) is an entire 
function oft. Putting (3.19) into (3.15), we thus finally arrive at 

oo kv-1 looo L (k )m = Cvc(t) · 9m-l(t;a,v)dt, 
k=l +a o (3.24) 

Rea>O, 0<v<1, m 2:: 1, 

withE given by (3.16) and 9m-l an entire function oft. We can now proceed 
evaluating the integral on the right as discussed above, either treating cv E( t) 
as a weight function in ordinary Gaussian quadrature, or writing cv E( t) = 
(t/(1-e-t))·rve-t and using t-ve-t dt = dA.(t) in rational Gauss quadrature. 
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It is worth noting that in this way we can sum series of the more general 
form 

00 

S = L kv-lr(k), 
k=l 

where r( k) is any rational function 

p(s) 
r(s) = q(s), 

0 < lJ < 1, (3.25) 

degp < degq. (3.26) 

It suffices to decompose r into partial fractions and to apply (3.24) to each 
of them. The parameter -a in (3.24) then represents one of the zeros of q, 
and m its multiplicity. If the condition Rea > 0 is not satisfied, we can sum 
a few of the initial terms directly until the condition holds for all remaining 
terms. 

We remark that for series with alternating sign factors, that is, 

00 

S' = L(-1)k-lakl 
k=l 

ak = (£J)(k), 

analogous techniques can be applied, with the result that 

where now 

S' = fooo f(t)cp(t) dt, 

1 
cp(t) = et + 1 

is what is known in solid state physics as Fermi's function. 

Notes to Section 3 

(3.27) 

(3.28) 

(3.29) 

3.1. Convergence of the quadrature rule (3.5), when m = 2n, supp( d.\)= [-1, 1] 
and (p. E ( -1, 1) with sf.L = 1, for functions f analytic in a domain containing the 
interval (-1, 1] in its interior has been studied by Lopez and Illan (1984). Theorem 
3, in this case, is due to Van Assche and Vanherwegen (1993, Theorem 1). These 
authors also consider a quadrature rule of the type (0.1) with supp( d.\) = (-1, 1] 
whose nodes are the zeros of the rational function (1 + (nt)- 1 + I::::i cp.(1 + (p.t)- 1 

orthogonal (in the measure d.\) to 1 and to (1 + (p.t)- 1, J1 = 1, 2, ... , n- 1, where 
(J.t E ( -1, 1) are given parameters. This is no longer a 'Gaussian' formula, as would 
be the case for polynomials, but leads to polynomials orthogonal with respect to the 
measure d>./(wn-1Wn), where Wm(t) = n;=1 (1+(p.t). The use of conjugate complex 
parameters (p. in the context of rational quadrature rules is considered in Lopez and 
Illan (1987). Theorem 3 in the general form stated is from Gautschi (1993b), where 
one can also find numerical examples. The application of rational Gauss formulae to 
generalized Fermi-Dirac integrals (3.9) and Bose-Einstein integrals (3.10) is further 
discussed in Gautschi (1993c) and has proven to be very effective. 
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3.2. The use of Gaussian quadrature for the purpose of summing infinite series has 
already been proposed by Newbery (unpublished). Summation of series (3.13) and 
(3.27) involving the Laplace transform by means of Gaussian quadrature relative to 
Einstein and Fermi weight functions, respectively, was first proposed in Gautschi 
and Milovanovic (1985). The technique has since been applied to series of the type 
(3.25), and to analogous series with alternating sign factors, in Gautschi (1991a), 
and was also used in Gautschi (1991b) to sum slowly convergent power series of 
interest in plate contact problems. For the latter, an alternative complementary 
treatment has been given in Boersma and Dempsey (1992). Series of the type 
(3.18) were encountered by Davis (1993) in his study of spirals, in particular in his 
attempt to smooth certain discrete spirals ascribed by him to the 4th-century BC 
mathematician Theodorus. The treatment given here is taken from Davis (1993, 
Appendix A), where one also finds numerical examples. Alternative approaches 
using special function theory can be found in Boersma and Dempsey (1992), and 
using Euler-Maclaurin summation in Lewanowicz (1994); see also Davis (1993, pp. 
40-41). Series (3.13) and (3.27) in which the terms ak are values f(k) of certain 
analytic functions f are summed in Milovanovic (1994) by Gaussian quadrature 
involving weight functions cosh-2 (t) and sinh(t)cosh-2 (t) on IR+. Applications 
to series 'of the type (3.18), also with alternating signs, and to the Riemann Zeta 
function, are given in Milovanovic (1995). 

PART II: COMPUTATION 

4. Computation of Gauss-type quadrature rules 

In many applications, as we have seen in Part I, the need for orthogonal 
polynomials arises via Gauss-type quadrature with respect to some measure 
dA. We therefore begin by discussing the computational aspects of Gaussian 
quadrature rules. 

4.1. Gaussian rules 

We assume that dA is a positive measure whose support contains infinitely 
many points, and all moments of which exist. There then exists, for each 
integer n 2: 1, ann-point Gauss formula 

1 f(t) dA(t) = t A~ f(t~) + R~(J), 
IR v=l 

(4.1) 

The connection with orthogonal polynomials is well known ( cf Section 0.1). 
The nodes tCj are the zeros of 7rn( ·; dA), while the weights ACj -also called 
the Christoffel numbers - can be expressed in various ways in terms of the 
same orthogonal polynomials. For purposes of computation, however, it ts 
better to characterize both quantities in terms of an eigenvalue problem. 
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To describe this characterization, we recall ( cf Section 0.2) that every 
system of (monic) orthogonal polynomials 7rk( ·) = 7rk( ·; d..\) satisfies a three
term recurrence relation 

7rk+l(t) = (t- o:k)7rk(t)- /3k1rk-1(t), k = 0,1,2, ... 1 

1l"-l(t) = 0, 1ro(t) = 1, 
(4.2) 

where the coefficients o:k = o:k( d..\), !3k = f3k( d..\) are real numbers uniquely 
determined by the measure d..\, and each !3k is positive. With the recursion 
coefficients O:k, f3k we associate an infinite, symmetric, tridiagonal matrix 

0 

( 4.3) 

0 

the Jacobi matrix belonging to the measure d..\. Its n X n leading principal 
minor matrix will be denoted by 

ln = ln( d..\) = [J=( d..\)]nxn· ( 4.4) 

The Gaussian nodes and weights can then be expressed in terms of the ei
genvalues and eigenvectors of ln( d..\) according to the following theorem. 

Theorem 4 Let Xv be the eigenvalues of ln( d..\), and Uv the corresponding 
normalized eigenvectors, so that 

v = 1,2, .. . ,n. (4.5) 

Then the Gaussian nodes t<;} and weights A.<;j in ( 4.1) are given by 

A.~ = f3ou~, 1 , v = 1,2, ... , n, ( 4.6) 

where Uv,1 is the first component of Uv and f3o =fiR dA.(t). 

Thus, the Gauss formula can be generated by computing the eigenvalues 
and (first components of) eigenvectors of a symmetric tridiagonal matrix. 
This is a routine problem in numerical linear algebra and can be solved by 
powerful algorithms such as the QR algorithm with carefully selected shifts 
(see, for example, Parlett 1980, Sections 8.9-8.11). The approach via eigen
values is generally more efficient than traditional methods based on polyno
mial rootfinding. 

Note also that the positivity of the Gauss weights A.<;j is an immediate 
consequence of (4.6). 

Proof of Theorem 4. Let irk(·) =irk(·; d..\) denote the normalized orthogonal 
polynomials, so that 7rk = )(1rk, 7rk) d>.. irk. Inserting this into (0.11), dividing 
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by J(7rk+l, 7rk+l) d>.., and using (0.12), we obtain 

~k ~k-1 
~k+1(t) = (t- ak) J7Ii;B - fJk JfJk+lfJk , 

or, multiplying through by J"likB and rearranging, 

t~k(t) = ak~k(t) + JTJk~k-1(t) + J"likB~k+l(t), 
k = 0, 1, 2, ... , n- 1. 

(4.7) 

In terms of the Jacobi matrix Jn = Jn( d..\) we can write these relations in 
vector form as 

(4.8) 

where ~(t) = [~o(t), ~1 (t), ... , ~n-1 (t)f and en = [0, 0, ... , 0, if are vectors 
in IRn. Since tf is a zero of ~ n, it follows from ( 4.8) that 

v = 1, 2, ... ,n. (4.9) 

This proves the first relation in (4.6), since ~ is a nonzero vector, its first 
component being 

- a-1/2 
7ro = fJO • (4.10) 

To prove the second relation in (4.6), note from (4.9) that the normalized 
eigenvector Uv is 

Comparing the first component on the far left and right, and squaring, gives, 
by virtue of (4.10), 

1 2 
'\'n -2 (tG) = f3ouv,l' 
L.f1=1 7r /1-1 v 

v = 1,2, ... ,n. (4.11) 

Onthe other hand, letting f(t) = ~11-1(t) in (4.1), one gets, by orthogonality, 
using (4.10) again, that 

(811-1,0 = Kronecker delta), 

or, in matrix form, 

P ,G _ a1/2 
"" - fJO e1, (4.12) 

where P E IRnxn is the matrix of eigenvectors, ,\G E IRn the vector of Gauss 
weights, and e1 = [1, 0, ... , of E JRn. Since the columns of Pare orthogonal, 
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we have 
n 

PTP=D 
' dv = L ii-~-1(t~). 

J.l=1 

Now multiply (4.12) from the left by pT to obtain 

D ,c _ 4 l/2pT _ 4 1/2. 4 -1/2 _ 
/\ - ,_,0 e1 - ,_,0 ,_,0 e - e, e = [1, 1, ... , If. 

Therefore, >.0 = n-1e, that is, 

G 1 
).v = "'n -2 ( C) ' 

L..Jl=l 7r J.l-1 tv 
v=1,2, ... ,n. 

Comparing this with ( 4.11) establishes the desired result. D 

Similar techniques apply to generate Gauss-Radau and Gauss-Lobatto 
quadrature rules. This will be discussed in Sections 4.2 and 4.3. Before 
we do so, however, it is useful to pursue the connection between Gauss quad
rature formulae and linear algebra just a bit further. 

If U = [u1, u2, ... , un] is the (orthogonal) matrix of the normalized eigen
vectors of ]o.= ln( d>.), then, by (4.5) and the first relation in (4.6), 

JU = UDt, UTU =I, Dt = diag(tf, tf, ... , t~) (4.13) 

provides the spectral resolution of J. The second formula in (4.6), on the 
other hand, can be written in matrix form as 

v').T = v7JO e[U, ( 4.14) 

where el = [1, 0, ... 'o]T is the first coordinate vector. Letting Q = ur, we 
can summarize (4.13), (4.14) by 

We then have 

/710 ef J J . 

(4.15) 

Thus, the 'Gauss matrix' in the middle on the far left is connected with the 
(slightly extended) Jacobi matrix on the far right by the orthogonal similarity 
transformation (4.15). This is important for two reasons: it shows that the 
passage from the Gauss quantities (more precisely, then square roots (>.~) 112 
and n nodes tf) to the recursion coefficients (more precisely, the 2n quantities 

!31/2 !31/2 !31/2 ) . t bl . t f l' o , 1 , ... , n-1' no, a1, ... , Ctn-1 IS a sa e process In erms o 1near 
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perturbations. (Orthogonal transformations leave the Euclidean length of 
vectors unchanged.) Secondly, ( 4.15) suggests Lanczos-type algorithms for 
computing the recursion coefficients ( cf Section 6.2). 

4.2. Gauss-Radau rules 

We write the Gauss-Radau formula in the form 

1 f(t) dA(t) =A~ f(a) + t A~ f(t~) + R~(f), R~(IP'2n) =0, (4.16) 
IR v=l 

where a= inf supp( dA) is assumed to be a finite number. (Everything below 
will also be valid if a< inf supp( dA).) We recall from Section 0.1 (where n 
is to be replaced by n + 1) that the nodes t~ are the zeros of 1r n ( · ; dAa), that 
IS, 

v = 1, 2, ... , n, ( 4.17) 

where dAa(t) = (t -a) dA(t), and that, with the nodes so determined, the 
formula '(4.16) must be interpolatory, that is, have degree of exactness n. 

With irk(·) = irk(·; dA) denoting, as before, the normalized orthogonal 
polynomials, we adjoin to the n relations ( 4. 7) the additional relation 

(4.18) 

Here, f3n = f3n ( dA), f3n+ 1 = f3n+ 1 ( dA), and a~ is a parameter to be determ
ined; once a~ is known, ( 4.18) defines 1r~+1· Letting 

en+l = (0, 0, ... , 1f E lRn+I, 

we write (4.7) and (4.18) in matrix form as 

tir(t) = J~+lir(t) + ~7r~+l(t)en+l, 
where 

0 

0 

a* n 

(4.19) 

(4.20) 

We now choose a~ in such a way that 1r~+l(a) = 0. By (4.18), this requires 
that 
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or, reverting to monic polynomials and recalling that irn-1/irn = f3~121fn-d1fn, 

* _ _ f3 1f n-1 (a) 
an- a n ( ) . 1fn a 

(4.21) 

(The denominator 1fn(a) does not vanish by the assumption on a.) Therefore, 

( 4.22) 

and, by (4.19), the zeros to= a, tl,t2, ... ,tn of1f~+l are the eigenvalues of 
J~+l' with ir(a), ir(ti), ... , ir(tn) the corresponding eigenvectors. We now 
show that tv= t{;, v = 1, 2, ... , n, that is, except for a constant factor, 

( 4.23) 

By (4.18) we have indeed 

v1J;:B1r~+l(t) (t- a~)irn(t)- ffnirn-l(t) 
= (t- an)irn(t)- ffnirn-l(t) +(an- a~)irn(t) 
= v1J;:B ir n+l ( t) + (an - a~) 7r n ( t), 

where in the last step we have used ( 4. 7) for k = n. There follows, for any 

P E lP'n-1 1 

v1J;:B 11f~+l(t)p(t) d-\(t) = ~ 1 wn(t)p(t) · (t- a)d-\(t) 

= 1[~irn+l(t) +(an- a~)7rn(t)]p(t) d-\(t) = 0, 

by the orthogonality of the irk. This proves ( 4. 23). 
By reasonings virtually identical with those in the proof of Theorem 4, one 

finds that 

v = 0, 1, 2, ... , n, (4.24) 

where Uv,l is the first component of the normalized eigenvector Uv of J~+l 
corresponding to the eigenvalue t{; (where t~ =a). We thus have the following 
result. 

Theorem 5 The Gauss-Radau nodes t~ =a and tf, ... , t~ are the eigen
values of the matrix J~+l( d,\) in (4.20), where a~ is defined by (4.21). The 
Gauss-Radau weights -\{; are given by ( 4. 24), where Uv,l is the first com
ponent of the normalized eigenvector Uv of J~+l ( d-\) corresponding to the 
eigenvalue t{;. 

The same theorem also holds for Gauss-Radau formulae with the fixed 
node at the upper end of the support interval. That is, if d,\ has a support 
bounded from above, the number a, both in the formulation of Theorem 5 
and in (4.16) and (4.21), may be replaced by b :2: sup supp( d-\). 

Computing a~ by ( 4.21) may raise some concern about the possibility of a 
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large cancellation error. The example of the Jacobi measure dA. ( a.,(J) ( t) = ( 1 
t)a.(l + t)f3 dt on [ -1, 1], however, suggests that this concern is unwarranted. 
In this case, say for a = -1, one indeed finds that 

fJ 11'n-l( -1) _ _ 1 + ~ 
n 11'n(-1) - 2(1+a.2~)(1+a.+fn+l) 

which for n -+ oo tends to - ~, so that for large n at least, there is no danger 
of cancellation. It is also interesting to note that for the generalized Laguerre 
measure dA.(a.l(t) = ta.e-t dt on [0, oo), and a= 0, one has a~= n. 

4.3. Gauss-Lobatto rules 

Assuming that dA. has bounded support, we write the Gauss-Lobatto formula 
in the form 

1 j(t) dA.(t) = >..{; J(a) + ~ >..tf(tt) + A.~+lf(b) + R~(J), 
R~(JP'2n+l) = 0, 

( 4.25) 

where a ::::; inf supp( dA.) and b 2: sup supp( dA.). We recall from Section 0.1 
that the interior nodes tf are the zeros of 11'n( ·; dA.a,b), that is, 

v=1,2, ... ,n, ( 4.26) 

where dA.a,b(t) = (t-a)(b-t) dA.(t), and that with these nodes so determined, 
the formula (4.25) must be interpolatory, that is, have degree of exactness 
n + 1. We proceed similarly as in Section 4.2, but adjoin to the n relations 
( 4. 7) not one, but two additional relations: 

tirn(t) = O:nirn(t) + ffnirn-1(t) + ~1l'~+l(t), 
t1r~+l(t) = 0:~+11l'~+l(t) + ~irn(t) + v'J3n+27r~+2(t), 

(4.27) 

where o:~+l, (J~+l are parameters to be determined and O:n = o:n( dA.), f3n = 
f3n( dA.), f3n+2 = f3n+2( dA.). We now define 

o:o v7Jl 0 
v7Jl 0:1 v7J2 

O:n-1 $n 
ffn O:n ~ 

0 ~ 0:~+1 
( 4.28) 

so that, with the usual notation 

ir( t) = [iro( t ), ... , irn( t), 11'~+1 (t )f, en+2 = [0, ... ,0, If E R.n+2, 
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the relations ( 4. 7) and ( 4.27) can be written in matrix form as 

tir(t) = J~+2ir(t) + ~1f~+2(t)en+2· (4.29) 

We now choose a~+l' {3~+1 such that rr~+2 (a) = rr~+2 (b) = 0. By the second 
relation in ( 4.27) this requires 

fort= a, b, 

or, using the first relation in (4.27) to eliminate rr~+l' 

(t- a~+l)[(t OCn)irn(t)- $nirn-l(t)]- {3~+1irn(t) = 0 

The expression in brackets, however, is ~irn+l(t); thus, 

fort= a, b. 

fort= a, b. 

Converting to monic polynomials, we obtain the 2 x 2 linear system 

[ 1fn+l(a) 7rn(a) ] [ a~+l ] = [ arrn+l(a) ] 
1fn+l (b) 1f n (b) f3n+l brrn+l (b) · 

By assumption on a and b, we have sgn[rrn+l(a)rrn(b)] = ( -l)n+l and 
sgn[rrn+l(b)rrn(a)] = (-1)n, so that the determinant is nonzero and, in fact, 
has sign ( -1 )n+l. The system, therefore, has a unique solution, namely 

where 

(arrn+l(a)rrn(b)- brrn+l(b)rrn(a))/ .6.n, 
= (b- a)rrn+l(a)rrn+l(b)/ Lln, 

(4.30) 

(4.31) 

Since both .6.n and 1r n+l (a )rr n+l (b) have the sign ( -1) n+l, we see that {3~+1 > 
0, so that rr~+l and 7r~+2 in ( 4.27) are uniquely determined real polynomials, 
and J~+2 in ( 4.28) a real symmetric tridiagonal matrix. Its eigenvalues, by 
(4.29), are the zeros of rr~+2 , among them a and b. Writing 

7r~+2 (t) = (t- a)(b- t)wn(t), (4.32) 

we now show that, up to a constant factor, 

( 4.33) 

so that the eigenvalues of ]~+2 are precisely the nodes of the Gauss-Lobatto 
formula (4.25), including a and b (cf (4.26)). Using in turn the second and 
first relation of ( 4.27), we have 

~1f~+2(t) 

V {3~+1f3n+21f~+2(t) 
= (t- a~+l)rr~+l (t) -~ irn(t), 

= (t- a~+l)[(t - an)irn( t) - Airn-l(t)] - {3~+1 irn(t) 

=(t- a~+l)~irn+l(t)- {3~+1irn(t). 
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It follows that 7f~+2 is orthogonal relative to the measure d). to polynomials 
of degree < n, which by ( 4.32) implies ( 4.33). 

Since, again by (4.29), the eigenvectors of J~+2 are ir(tt), v = 0, 1, ... , n, 
n + 1, where t& =a, t~+l = b, the now familiar argument (used previously 
in Sections 4.1 and 4.2) yields the following theorem. 

Theorem 6 The Gauss-Lobatto nodes t& = a, t~+l = b and tf, ... , t~ 
are the eigenvalues of the matrix J~+2 ( d.A) in (4.28), where a~+l' (3~+l are 
defined by (4.30), (4.31). The Gauss-Lobatto weights >.tare given by 

A~ = f3ou~, 1 , v = 0, 1, 2, ... , n, n + 1, (4.34) 

where Uv,l is the first component of the normalized eigenvector Uv of J~+2 ( d.A) 

corresponding to the eigenvalue tt. 
Since, as already noted, the two terms defining t:ln in ( 4.31) are of opposite 

sign, there is no cancellation in the computation of t:ln, nor is there any in 
computing (3~+1· For a~+l this may no longer be true (indeed, a~+l = 0 for 
symmetric measures!), but here it is more the absolute error than the relative 
error that matters. 

The construction of Gauss-type quadrature formulae is just one of several 
instances illustrating the importance of the recursion coefficients ak( d.A), 
f3k( d.A) for computational purposes. It is for this reason that all our con
structive methods for orthogonal polynomials are directed toward computing 
these coefficients. 

Notes to Section 4 

4.1. The fact that Gauss quadrature nodes can be viewed as eigenvalues of a 
symmetric tridiagonal matrix - the Jacobi matrix - has long been known. The 
characterization of the Gauss weights in terms of eigenvectors seems more recent; 
it was noted in Wilf (1962, Chapter 2, Exercise 9) and previously, around 1954, by 
Goertzel (Wilf 1980), and has also been used by Gordon (1968). The importance of 
these characterizations for computational purposes has been emphasized by Golub 
and Welsch (1969), who give a detailed computational procedure based on Francis's 
QR algorithm. Alternative procedures that compute the Gauss nodes as zeros of 
orthogonal polynomials by Newton's method or other rootfinding methods not only 
require considerable care in the selection of initial approximations, but also tend to 
be slower (Gautschi 1979). Also of importance is the inverse problem (Boley and 
Golub 1987) - given the Gauss nodes and weights, find the corresponding Jacobi 
matrix - and its solution by Lanczos-type algorithms. 

4.2, 4.3. The eigenvalue techniques described for generating Gauss-Radau and 
Gauss-Lobatto quadrature rules are due to Golub (1973); our derivation slightly 
differs from the one in Golub (1973). 
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5. Moment-based methods 

The classical approach of generating orthogonal polynomials is based on the 
moments of the given measure d>.: 

f.Lk = J.Lk( d>.) = 1 tk d>.(t), k = 0, 1, 2, .... (5.1) 

The desired recursion coefficients can be expressed in terms of Hankel de
terminants in these moments, 

D~+l D~ } ak(d>.) = -- - -
Dk+l Dk 

!3k( d>.) = Dk+l~k-1 
Dk 

k = 0, 1, 2, ... ' (5.2) 

where Do = D-1 = 1, D1 = J.Lo, D0 = 0, D~ = f.Ll and Dm, D~, m 2: 
2, are determinants whose first row consists of J.Lo, f.L1, ... , f.Lm-1 and J.Lo, 
f.L1, ... , f.Lm-2, f.Lm, respectively (the others having the subscripts successively 
increased by 1). Likewise, the orthogonal polynomials themselves admit the 
determinantal representation 

J.Lo f.Ll f.Ln-1 f.Ln 

1 /-L1 /-L2 f.Ln f.Ln+l 
1rn(t; d.\) 

Dn 
(5.3) 

f.Ln-1 f.Ln /-L2n-2 /-L2n-l 
1 t tn-1 tn 

The trouble with these formulae is that the coefficients ak, f3k, and with them 
1fn, become extremely sensitive to small changes (such as rounding errors) in 
the moments as k increases. In other words, the (nonlinear) map 

JL I-> p, (5.4) 

which maps the moment vector JL = [J.Lo, f.L1, ... , f.L2n-dT to the vector p = 
[ao, ... , Ctn-1, /3o, ... , f3n-l]T of recursion coefficients becomes extremely ill 
conditioned. Therefore it is important to study the condition of such moment
related maps. 

A natural idea to overcome this difficulty is to use modified moments in
stead. That is, given a system of polynomials {Pk}, one uses 

k = 0, 1, 2, ... ) (5.5) 

in place of f.Lk· One then has a new map Kn, 

m ~--> p, (5.6) 

where m = [mo, m1, ... , m2n-1JY, which one hopes is better conditioned than 
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the old map (5.4). We discuss the conditioning of these maps in Section 
5.1. In Section 5.2 we develop an algorithm that implements the maps Kn in 
(5.4) and (5.6) when the polynomials Pk defining the modified moments (5.5) 
satisfy a three-term recurrence relation. An example will be given in Section 
5.3. 

5.1. The conditioning of moment maps 

The analysis of the map Kn in (5.4) or (5.6) is facilitated if the map is thought 
of as a composition of two maps, 

(5.7) 

where Gn: JR2n-+ JR2n maps fL (respectively m) into the Gaussian quadrature 
rule, 

Gn: fL (resp. m) 1--+ '"'(, (5.8) 

where Av = >.f, tv= tf (cf. (4.1)), and Hn: JR2n-+ JR2n maps the Gaussian 
quadrature rule into the recursion coefficients, 

'"'( I--+ p. (5.9) 

The reason for this is that the map Hn, as was seen at the end of Section 
4.1, is well conditioned, and Gn is easier to analyse. For a direct study of the 
map Kn see, however, Fischer (1996). 

Just as the sensitivity of a function f: JR.-+ JR. at a point x can be measured 
by the magnitude of the derivative f' at x, in the sense that a small change dx 
of x produces the change df(x) = f'(x) dx, we can measure the sensitivity of 
the map Gn: JR.2n-+ JR2n at a given vector fL (respectively m) by the magnitude 
of the Frechet derivative at fL (respectively m). For finite-dimensional maps, 
this derivative is nothing but the linear map defined by the Jacobian matrix. 
We thus define 

cond Gn = II aGn II, (5.10) 

where by 8Gn we denote the Jacobian matrix of the map Gn, and where for 
II · II we can take any convenient matrix norm. Note that this concept of 
condition is based on absolute errors; one could refine it to deal with relative 
errors as well, but we shall not do so here. 

5.1.1. We begin with the map Gn for ordinary moments. Since the Gauss 
formula ( 4.1) is exact for the first 2n monomials ti, j = 0, 1, ... , 2n - 1, we 
have 

j = 0,1, ... ,2n- 1, 
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which can be written as 
n 

<]) (r) = J.l, <I>j(r) = L >.,At, j = 0, 1, ... , 2n - 1. (5.11) 
v=l 

The map Gn consists in solving this (nonlinear) system for the unknown 
vector 'f, given the vector f.l· The Jacobian 8Gn, therefore, is the inverse of 
the Jacobian 8<I> of <P. This latter is readily computed to be 

1 1 0 0 
tl tn AI An 

a<I> = t2 1 t2 n 2)..1t1 2Antn =TD:>.., 

t2n-1 
1 

t2n-1 
n (2n- 1)>.1tin-2 (2n- 1)Ant;n-2 

where Tis the confluent Vandermonde matrix 

1 1 0 0 
t1 tn 1 1 

T= t2 1 t2 n 2tl 2tn (5.12) 

t2n-1 
1 

en-1 n (2n- 1)tin-2 (2n- 1)t;n-2 

and D :>.. the diagonal matrix 

D:>.. = diag(1, ... , 1, A1, ... , An)· (5.13) 

Therefore, 

(5.14) 

It is now convenient to work with the uniform vector and matrix norm 

II · ll = II · lloo· Since 2:::~=1 Av = J.lO implies Av < J.lo, and >.;;1 > J.L(/, it 
follows readily from (5.14) that 

II acn II > min(1, J.Lo 1) II r-1 II . 
Since the factor on the right involving J.lo is unimportant, we shall henceforth 
assume that J.lo = 1 (which amounts to a normalization of the measure d>.). 
To obtain a particularly simple result, we further assume that d).. is supported 
on the positive real line, 

supp( d)..) C JR.+. 

It then follows from norm estimates for the inverse confluent Vandermonde 
matrix (see Gautschi 1963) that 

II acn II > n~=1(1 + tv)2 . 

minl::;v::;n { ( 1 +tv) n~=l (tv - t/1)2} 
wlv 
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By definition (5.10) of the condition of Gn, and because the {tv} are the zeros 
of 7rn( ·) = 7rn( ·; d.\), we can write this inequality more elegantly as 

7r2 ( -1) 
cond G > n (5.15) 

n minl-:;v-:;n{(1 + tv)[7r~(tv)J2} 
Elegant as this result may be, it is also quite disconcerting, since orthogonal 

polynomials are known to grow rapidly with the degree when the argument 
is outside the support interval. In (5.15), the argument is -1, a good distance 
away from JR+, c.tnd squaring the polynomial does not help either! Since the 
denominator in (5.15) grows only moderately with n, we must conclude that 
Gn becomes rapidly ill conditioned as n increases. 

To illustrate (5.15), consider the (normalized) Chebyshev measure d.\(t) = 

~[t(1 - t)]- 112 on [0, 1], for which 1fn = T~, the 'shifted' Chebyshev poly
nomial, except for normalization. It then follows from (5.15) by elementary 
calculations that 

d G (3 + vs)n 
con n > 2 64n 

The lower. bound happens to grow at the same exponential rate as the (Turing) 
condition number of the n X n Hilbert matrix! 

5.1.2. We consider now the map Gn: m-+ /,where mE JR2n is the vector of 
modified moments (5 .. 5). We assume that the polynomials Pk defining these 
modified moments are themselves orthogonal, but relative to a measure, ds, 
over which we can exercise control, 

k = 0, 1, 2, .... (5.16) 

The hope is that by choosing ds 'close' to the target measure d.\, there is 
little chance for things to go wrong during the 'short' transition from the Pk 
to the 1fk· 

In analysing the condition of Gn, one arrives at a more satisfying result 
if, instead of the modified moments mk, one departs from the normalized 
modified moments 

- mk 
mk = 

II Pk lids 1 
k = 0, 1, 2, ... ; 

We thus consider the map 

JR2n -+ JR2n - [- - - ]T m= mo,ml,···,m2n-l . (5.18) 

The preliminary map m f--t m is a perfectly well-conditioned diagonal map, 
and therefore does not distort the condition of Gn. 

Similarly, as in (5.11), the map Gn amounts to solving the nonlinear system 

n 

F(r) = m, Fj(r) = sj1 L AvPj(tv), j = 0, 1, ... , 2n- 1, 
v=l 
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where Sj = II Pj II ds, and 

By an elementary computation, 

oF= D;1PD>.., 

where Ds = diag(so, s1, ... , S2n-d, D>.. = diag(1, ... , 1, A1, ... , An), and P E 
JR2nx 2n is a confluent Vandermonde matrix in the polynomials {pk}, that is, 

Therefore, 

j = 0, 1, ... , 2n - L 
(5.19) 

(5.20) 

In order to invert the matrix P in (5.19), we let hv, kv be the fundamental 
Hermite interpolation polynomials of degree 2n- 1 associated with the Gaus
sian abscissae t1, t2, ... , tn: 

hv(tfl) = bvfl' h~(tfl) = 0; 
kv(tfl) = 0, k~(tfl) = bvfl' 

(5.21) 

and expand them in the polynomials {Pk}, 

2n 2n 

hv(t) = L avfLPtL-1(t), kv(t) = L bvfLPtL-1(t), v = 1, 2, ... , n. 
(l=1 f1=1 

(5.22) 
Letting 

A= [av11J, 

we can write the interpolation conditions (5.21), in conjunction with (5.19), 
in the form 

AP = [I,O], BP = [0, I], 

that is, 

which shows that 

We are now ready to compute the norm of 8Gn in (5.20). This time it 
turns out to be convenient to use the Frobenius norm II · II = II · IIF· Since 

(D):1 p-1 Ds)vfl = sfl_1aVfll (D):1 p-1 Ds)v+n,(l = A~ 1 S(l-1bVfll 
v=1,2, ... ,n; fL=1,2, ... ,2n, 
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one indeed obtains 

- 2 ~~ 2 ( 2 1 2) II 8Gn II = t:l ~ s11-l av11 + A~ bv11 (5.23) 

from (5.20). On the other hand, by (5.22), 

2n 2n 1 h~(t) ds(t) = L av11av" 1 P11-l(t)pK-l(t) ds(t) = L s~_ 1 a~11 , 
lR Jl,K=l IR J1=1 

where the last equation follows from the orthogonality of the Pk· Similarly, 

Hence, recalling (5.10), equation (5.23) finally yields 

{ 
n }1~ 

cond Gn = k ~ [ h~(t) + A~ k~(t)] ds(t) (5.24) 

This result clearly identifies the factors influencing the condition of Gn. 
On the one hand, we have the polynomial of degree 4n - 2, 

(5.25) 

appearing in the integrand of (5.24), which depends only on the measure d..\. 
(through the Gaussian nodes tv= t;}). On the other hand, there is integration 
with respect to the measure ds. It is a combination of both, namely the 
magnitude of 9n on the support of ds, which determines the magnitude of 
cond Gn. 

We note from (5.21) and (5.25) that 9n( ·) = 9n( ·; dA.) is strictly positive 
on lR and satisfies 

v=1,2, ... ,n. (5.26) 

(By themselves, these conditions of course do not yet determine 9n·) Ideally, 
one would like 9n to remain :S 1 throughout the support of ds, in which case 
cond Gn would be bounded by so = (fiR ds( t)) 112 , uniformly in n. Unfortu
nately, this is only rarely the case. One example in which this property is 
likely to hold, based on computation, is dA.k(t) = [(1- k2t2 )(1- t2 )]-112 dt 
on [-1, 1], where 0 < k < 1. For k = 0, it was shown in Fischer (1996) 
that 9n :S 1 + 2j1r2 on [-1, 1]. In other cases, such as dA.a(t) = ta ln(1/t) on 
[0, 1], where a> -1, the property 9n(t) :S 1 holds over part of the interval, 
whereas in the remaining part, 9n, assumes relatively large peaks between 
consecutive nodes tv, but such that the integral in (5.24) (when ds(t) = 1) is 
still of acceptable magnitude. 
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Fig. l. The polynomial gn, n = 5, 10, 20, 40, for the Maxwell measure with c = 1 

An example of interest in quantum physics is the Maxwell velocity distri
bution 

on [O,c], 0 < c::; 00. (5.27) 

One finds by computation that 9n 'almost' satisfies 9n ::; 1 on [0, c] when cis 
only moderately large, but develops larger and larger peaks, encroaching on 
an ever increasing portion of the interval, as c increases. This is illustrated 
in Fig. 1, which depicts loggn for n = 5, 10,20,40 in the case c = 1, and in 
Fig. 2, where the analogous information is shown for c = 5. The respective 
condition numbers (when ds(t) = dt) are all less than 1 in the case c = 1, and 
range from 3.52 X 1012 to 8.57 X 1019 when c = 5. Fig. 2 is also representative 
for the case c = oo. Arguably, Legendre moments ( ds(t) = dt) are a poor 
choice in this case, but it has been observed in Gautschi ( 1996c) that even 
the best choice, ds(t) = dA.(t), gives rise to very large condition numbers if 
cis large. 

It has generally been our experience that cond Gn becomes unacceptably 
large, even for moderately large n, when the support of dA. is unbounded, as 
in the case c = oo of (5.27). 

A final example of some interest in theoretical chemistry involves a meas
ure dA. of Chebyshev type supported on two separate intervals, say [ -1, -~] 
and [~, 1], where 0 < ~ < 1. Here, all nodes tv congregate on the two support 
intervals, at most one being located on the 'hole' [-~,~] (see Szego 1975, 
Theorem 3.41.2). As a consequence, 9n is likely to remain relatively small 
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" 

Fig. 2. The polynomial 9n, n = 5, 10, 20,40, for the Maxwell measure with c = 5 

(perhaps even :::; 1) on the two support intervals, but may well become ex
tremely large on the hole. To avoid a large condition number cond Gn, it is 
then imperative not to choose a measure ds for the modified moments that is 
supported on the whole interval [ -1, 1], but one that preferably has the same 
support as d>.. 

5. 2. The modified Chebyshev algorithm 

We assumed in Section 5.1.2 that the polynomials Pk defining the modified 
moments (5.5) are themselves orthogonal. We now assume only that they 
satisfy a three-term recurrence relation 

P-l(t) = 0, Po(t) = 1, 
Pk+l(t) = (t- ak)Pk(t)- bkPk-l(t), k = 0,1,2, ... , 

(5.28) 

with known coefficients ak, bk, where the bk need not necessarily be positive. 
This, in particular, encompasses the case ak = bk = 0, leading to Pk(t) = tk, 
hence to ordinary moments (5.1). 

To formulate an algorithm that implements the map Kn : m ~------+ p, we 
introduce 'mixed moments' 

<Yk,e = l7rk(t)pe(t) d>.(t), k,£:::: -1, (5.29) 
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and immediately observe that, by orthogonality, o-k,C = 0 for k > £, and 

(5.30) 

The relation o-k+1,k-l = 0, therefore, in combination with the recurrence 
relation (0.11) for the 7rk, yields 

0 = L[(t- ak)7rk(t)- ,6k7rk-l(t)]Pk-l(t) d>..(t) = o-k,k- ,6ko-k-1,k-1, 

hence 

k = 1, 2, 3, .... (5.31) 

(Recall that ,Go = mo by convention.) Similarly, O'k+l,k = 0 gives 

o = 1 1rk(t)tpk(t) d>..(t)- O:kO'k,k- ,6ko-k-l,k· 

Using (5.28) in the form tpk(t) = Pk+l(t) + akPk(t) + bkPk-l(t), we can write 
this as 

0 = o-k,k+l + (ak- ak)o-k,k- ,6ko-k-l,k, 

which, together with (5.31) and o--1,k = 0, yields 

k = 1, 2,3, .... 
(5.32) 

With the as and ,6s expressed by (5.32) and (5.31) in terms of the o-s, it 
remains to compute O'k,C· This can be done recursively, using the recurrence 
(0.11) for the 7rk and (5.28) (with k replaced by£) for the pe: 

o-k,e = l[(t- ak_l)7rk-1(t)- ,6k-11rk-2(t)]pe(t) d>..(t) 

= L 1rk-1(t)[pe+1(t) + acpe(t) + bePe-1(t)] d>..(t) 

-ak-lo-k-1 e- ak-1o-k-2 e , fJ , 

= o-k-l,C+1- (ak-1- ae)o-k-l,C- ,6k-!O'k-2,C + beo-k-l,C-1· 

The algorithm is now complete: to compute ak, ,6k for k = 0, 1, ... , n- 1, 
one first initializes 

o--1,c=O, £=1,2, ... ,2n-2, 
o-o e =me, £ = 0, 1, ... , 2n- 1, 

, ml 
ao( d>..) = ao +- , ,Go( d>..) = mo, 

mo 

(5.33) 
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Computing stencil 

k 
(J 

k,l 

n -1 ------------------~ ~ 

~ ~ .. 
~ ~ . . . . 

~ ~ ..... . 
t 0 

0 

ooooooot 
2n- 1 

-- <J O,l = ml 

(J-l,l = 0 

Fig. 3. The modified Chebyshev algorithm, schematically 

and then continues, for k = 1, 2, ___ , n- 1, with 

CTk,.e = CTk-t,e+l- (ak-t- ae)CTk-t,e- f3k-tCTk-2,e + beCTk-t,e-t, 

C = k, k + 1, _. _, 2n- k- 1, 
o;k( d.\) = ak + CTk,k+l _ CTk-l,k 1 {Jk( d.\) = CTk,k 

CTk,k CTk-l,k-1 (Jk-t,k-t 

(5.34) 

Given the first 2n modified moments mo, m1, ... , m2n-l and the first 2n- 1 
coefficients ao, at, ... , a2n-2 and bo, bt, .. -, b2n-2, this generates the first n 
coefficients ao, at,. __ , an-t and f3o, f3t, _. _, f3n-1 via a trapezoidal array of 
auxiliary quantities CTk,e depicted schematically (for n = 5) in Fig. 3. The 
computing stencil in Fig. 3 indicates the location of the five entries in the 
array that are involved in the relation (5.34). The circled entry in the stencil 
is the one the algorithm computes in terms of the other four. The entries in 
boxes are used to compute the o;k and f3k- The complexity of the algorithm 
is clearly O(n2). 

It is interesting to observe that in the special case of a discrete measure d.\N 
and ordinary moments (that is, ak = bk = 0), algorithm (5.34) was already 
known to Chebyshev (1859). We therefore call (5.34) the modified Chebyshev 
algorithm. The modified moments required can sometimes be computed in 
closed form or by a judicious application of recurrence formulae, or else can 
be approximated by a suitable discretization, similarly as in Section 6.1 in 
another context. 

We remark that by virtue of (5.30), the algorithm (5.34) also provides the 
normalization constants CTk,k = (7rk, 1fk)d>-.-
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Table 1. Errors in the aks and f3ks 

k err ak 

2 4.2 x w- 13 

5 4.2 x w-9 

8 4.3 x w-6 

11 1.3 X 10° 

5.3. An example 

err f3k 

7.6 x w- 13 

1.2 x w- 10 

3.8 x w-6 

3.2 x w- 1 

We illustrate the advantage of modified over classical moments in the case of 
the measure 

d.Aa(t) = tcr ln(1/t) dt on [0, 1], CJ>-1. (5.35) 

We expect this advantage to be rather noticeable here, since, as was already 
observed in Section 5.1.2, the map Gn: m I-+ 1 based on (normalized) Le
gendre moments is quite well conditioned in this case, even for large n, in 
contrast to the map Gn: JL~-+ '"'(, which rapidly becomes ill conditioned as n 
increases ( cf Section 5 .1.1). 

The classical moments for d.Aa are simple enough, 

( d.A ) - 1 
J-lk a - CJ + 1 + k ' k = 0, 1, 2, ... ' (5.36) 

whereas the modified moments with respect to the Legendre polynomials on 
[0, 1] (that is, ak =~fork 2: 0 and bo = 1, bk = (4(4- k-2))- 1 fork 2: 1 in 
(5.28)) are more complicated, but still easy to compute: 

{ 

( )k-a a!2 (k-a-l)! k 
(2k)' -1 (k+a+l)! ' 0 :S CJ < ' CJ EN, 
--· mk(d.Aa) = _1_ _l_ k _l ___ l_ k a+l-r 

k!2 u+l { a+l + :Er=l ( a+l+r u+l-r)} ITr=l a+l+r ' 

otherwise. 
(5.37) 

Applying the modified Chebyshev algorithm in single precision (machine pre
cision ;::;::; 7 x w-15 ) for the case CJ = 0, using the ordinary moments (5.36) 
(that is, ak = bk = 0), one obtains the recursion coefficients ak, f3k with 
relative errors shown in Table 1. As can be seen, the accuracy deteriorates 
rapidly, there being no significance left by the time k = 11. In contrast, 
the use of modified moments (5.37) allows us to compute the first 100 (sic) 
recursion coefficients to an accuracy of at least 12 decimal digits. 

Unfortunately, such a dramatic improvement in accuracy is not always 
realizable. In particular, for measures d.A with unbounded support, even the 
modified version of Chebyshev's algorithm, as already mentioned, must be 
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expected to become quite susceptible to error growth. It all depends on the 
condition of the underlying (nonlinear) map Gn. 

Notes to Section 5 

The numerical condition of the classical moment map Gn : 11 f-+ "Y was studied in 
Gautschi (1968); the lower bound (5.15) for the condition number rephrases one of 
the basic results of Gautschi (1968). For the growth of the condition number of the 
Hilbert matrix, mentioned at the end of Section 5.1.1, see Todd (1954). Although 
the explicit expressions (5.2) for the recursion coefficients are extremely sensitive 
to rounding errors, with the use of high-precision arithmetic they can be applied to 
validate the accuracy of Gaussian quadrature formulae; see Gautschi (1983) for an 
example. 

The idea of using modified moments to generate orthogonal polynomials was 
first advanced by Sack and Donovan (1969, 1971/2), who developed an algorithm 
similar to the one in (5.34). The latter was derived by Wheeler (1974) independently 
of the work of Chebyshev (1859), where the same algorithm was obtained in the 
case of discrete measures and classical moments. Another algorithm, based on the 
Cholesk;y decomposition of a Gram matrix, is given in Gautschi (1970), but is not 
competitive with the modified Chebyshev algorithm, since it has complexity 0 ( n3 ). 

The reference Gautschi (1970), however, contains the first analysis of the condition 
of the underlying moment map, using the L 1-norm for vectors and matrices. The 
analysis given in Section 5.1.2, based on the more convenient Frobenius norm, is 
taken from Gautschi (1982a), where (in Section 3.1) one also finds the use of more 
refined condition numbers based on relative errors. The example of the Maxwell 
distribution (5.27) is taken from Gautschi (1991c); other illustrations of the basic 
formula (5.24) for the condition of the map Gn can be found in Gautschi (1984c) 
and Gautschi (1985). The properties (5.26) of the function 9n in (5.25) suggest 
the distinction between 'strong' and 'weak' Gaussian nodes, the former being more 
likely than the latter to develop severe ill conditioning. For this, and an application 
to Jacobi polynomials, see Gautschi (1986a). The example at the end of Section 
5.1.2 is taken from Wheeler (1984) and Gautschi (1984a); see also Gautschi (1985, 
Example 4.3) for further details. For the example in Section 5.3, cf Gautschi (1994, 
Example 3.2). 

6. Discretization methods 

These methods, as the name implies, involve a preliminary discretization of 
the given measure d.\, that is, one approximates d). by a discrete N-point 
Dirac measure, 

N 

d>.(t) ~ d>.N(t) := L wk8(t- tk) dt. (6.1) 
k=l 
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This is often done by a suitable quadrature formula (more on this in Section 
6.1): 

N r p(t) d>-(t) ~ L Wkp(tk) =: r p(t) d>-N(t). 
J~ k=l J~ 

(6.2) 

The desired recursion coefficients are then approximated by 

k=0,1, ... ,n-l. (6.3) 

Assuming d). is a positive measure, and Wk > 0 in (6.1), one can show that 
for any fixed k, 

as N ___., oo, (6.4) 

provided the discretization process (6.2) has the property that 

l p(t) dAN(t) ___., l p(t) d,\(t) (6.5) 

for any polynomial p. Thus, by choosing a quadrature rule in (6.2) that 
is convergent for polynomials, we can obtain the coefficients ak, f3k, 0 :::; 
k :::; n- 1, to any desired accuracy, by selecting N sufficiently large. More 
precisely, one selects a sequence N1 < N2 < N3 < · · · of integers N (for a 
specific choice, see Gautschi 1994, Equation ( 4.16)) and iterates until 

I !3k( dANi+l) - f3k( d>.NJ I 
max < E, 

O~k~n-1 f3k( d).Ni+1 ) -

where E is a preassigned error tolerance. The convergence criterion is based 
on the relative errors in the ;3-coefficients, which is possible because the f3k 
are known to be positive. The a-coefficients are expected to converge at a 
similar speed (at least in the sense of absolute errors), as their definition is 
similar to that of the f3k (cf (0.12)). 

In Section 6.1 we indicate some possible ways of discretizing the measure 
d>.. Once the discrete measure is at hand, it remains to compute its first n 

recursion coefficients, that is, the approximations on the right of (6.3). We 
will discuss two methods in Sections 6.2 and 6.3. 

6.1. Discretization of the measure 

Suppose the measure d). has the form 

d>.(t) = w(t) dt on [a, b], (6.6) 

where [a, b] is a finite or infinite interval and w an appropriate weight function. 
The first step, in general, is the decomposition of [a, b] into a finite number 
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of (possibly overlapping) subintervals, 

m 

[a, b] = U [ai, bi] (m ~ 1), (6.7) 
i=l 

and to rewrite integrals such as those on the left of (6.2) as 

1 p(t)w(t) dt = ~ 1~; p(t)wi(t) dt, (6.8) 

where Wi is an appropriate weight function on [ai, bi]. For example, the weight 
function w may be the sum w = w1 + w2 of two weight functions on [a, b] that 
we wish to treat individually. In that case, one would take [a1, b1] = [a2, b2] = 
[a, b] and associate WI with [a1, b1] and w2 with [a2, b2]. Alternatively, we may 
simply want to use a composite quadrature rule to approximate the integral, 
in which case (6. 7) is a partition of [a, b] and wi(t) = w(t) for each i. Still 
another example is a weight function w which is already supported on a union 
of disjoint intervals; in this case, ( 6. 7) would be the same union, or possibly 
a refined union where some of the subintervals are further partitioned. 

However (6.7) and (6.8) are constructed, the desired discretization (6.2) 
is now obtained by approximating each integral on the right of (6.8) by an 
appropriate quadrature rule, 

N; 

Qip = L Wr,iP(tr,i), (6.9) 
r=l 

for example a Gaussian rule for the weight function Wi· This yields 

(6.10) 

a formula of the type (6.2) with N = L~l Ni. 
There is enough flexibility in this approach - choosing the subdivision 

(6.7), the local weight functions Wi in (6.8), and the quadrature rules in (6.9) 
-to come up with an effective scheme of discretization, that is, one that not 
only converges in the sense of (6.5), but converges reasonably fast. Further 
variations, of course, are possible. In particular, it is straightforward to adapt 
the approach to deal with measures containing, in addition to an absolutely 
continuous component (6.6), a discrete point spectrum, say 

d.\(t) =w(t)dt+ L:wp5(t-Tj)dt. 
j 

One only has to add LjWjP(Tj) to (6.10). 

(6.11) 
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Example 6. 1. A good example of the kind of discretization indicated above is 
furnished by the measure 

d,\(t) =til-K0 (t) dt on [O,oo), f.-l > -1, (6.12) 

where Ko is the modified Bessel function. 
It is important, here, that one find a discretization that does justice to the 

special properties of the weight function w(t) = tll-Ko(t), in particular its 
behaviour for small and large t. For the factor Ko, this behaviour can be 
described by 

~ ( ) _ { R(t) + Io(t) ln(1/t), 0 < t::; 1, 
0 t - c 112e-tS(t), 1 ::; t < oo, (6.13) 

where R, S are well-behaved smooth functions, and Io is the 'regular' mod
ified Bessel function. All three functions can be accurately evaluated on 
their respective intervals by rational approximations (Russon and Blair 1969). 
Therefore, 

{oo p(t) d).(t) = {1 fll-[R(t)p(t)] dt + {1 til-ln(1/t)[Io(t)p(t)] dt lo lo oo lo 
+ 1 e-t[tll--112S(t)p(t)] dt. 

(6.14) 

This suggests a decomposition ( 6. 7) with m = 3, namely [0, oo) = [0, 1] U 
[0, 1]U[1, oo), weight functions w1(t) =til-, w2(t) = til-ln(l/t) and w3(t) = e-t, 
and for Qi the corresponding Gaussian quadrature rules, after the last integral 
in ( 6.14) has been rewritten as 

1oo e-t[t11--li2S(t)p(t)] dt = e-1 fooo e-t[(1 + t)ll--112s(l + t)p(1 + t)] dt. 

The first and last Gauss formulae are classical - Gauss-Jacobi and Gauss
Laguerre - and are easily generated by the method of Section 4. 1. The second 
is nonclassical, but can be generated by the same method, once the recursion 
coefficients for the respective orthogonal polynomials have been generated by 
the modified Chebyshev algorithm, as discussed in Sections 5.2 and 5.3. 

Example 6.2. We call generalized Jacobi measure a measure of the form 
m 

d).(t) = <p(t)(1- qx(l + t)f3 IT Jt- aiJri, t E (-1, 1), (6.15) 
i=2 

where <p is a smooth function, m 2: 2, -1 < a2 < · · · < am < 1, and 

/'1 = (3 > -1; /'i > -1, i =2, ... ,m; 'Ym+l = 0: > -1. (6.16) 

Here, the natural decomposition is 
m 

[-1, 1] = U[ai,bi], a1 = -1, bi = ai+1, am+l = 1, 
i=l 



ORTHOGONAL POLYNOMIALS: APPLICATIONS AND COMPUTATION 95 

and the appropriate weight function Wi on [ai, bi] is the Jacobi weight with 
parameters [i, /i+l, transformed to the interval [ai, bi]· One then obtains a 
formula similar to (6.8), except that on the right, p(t) has to be replaced by 

m+l 

p( t )'P( t) IT 
j=l,#i,#i+l 

This function is free of singularities in [ai, bi], so that its Gauss-Jacobi quad
rature with weight function Wi will converge - and reasonably fast at that, 
unless one of the aj is very close to either ai or bi (and /j not an integer). 

It may not always be possible to come up with natural discretizations as 
in these examples. In that case, one may try to apply a standard quadrature 
rule to each integral on the right of ( 6.8), paying no special attention to the 
weight function Wi and treat it as part of the integrand. Since Wi may have 
singularities at the endpoints of [ai, bi], it is imperative that an open quadrat
ure formula be used; stability considerations furthermore favour Chebyshev 
nodes, and convergence considerations an interpolatory formula. Taking the 
same number of nodes for each Qi, we are thus led to choose, on the canonical 
interval'[ -1, 1], the N F-point Fejer· rule, that is, the interpolatory quadrature 
rule 

NF 
QNF f = L w;!' j(t;.'), (6.17) 

r=l 

where t!' = cos((2r- 1)7r/2NF) are the Chebyshev points. The weights are 
expressible in trigonometric form as 

F _ _2__ ( _ LNF /2J cos(2s8!}) 
Wr- NF 1 2 L 2 ' 4s -1 s=l 

F ()F tr =COS r, (6.18) 

and are known to be all positive (Fejer 1933). Furthermore, the rule converges 
as NF -----t oo, even in the presence of singularities, provided they occur at 
the endpoints and are monotone and integrable (Gautschi 1967). The rule 
( 6.17) is now applied to each integral on the right of ( 6.8) by transforming 
the interval [-1, 1] to [ai, bi] via some monotone function </>i (a linear function 
if [ai,bi] is finite) and letting j(t) = p(t)wi(t): 

1bi p(t)wi(t) dt = j_ll p(</>i(T))wi(</>i(T))</>~(T) dT 

' NF 
~ L w;!' wi( </>i( t[) )</>~ ( t[) · p( </>i ( t[) ). 

r=l 
Thus, in effect, we take in (6.9) 

tr,i = </>i(t;!'), Wr,i = w;!' Wi(</>i(t;!'))</>~(t[), i=1,2, ... ,m. (6.19) 
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Suitable functions ¢i are ¢i(t) = (1 + t)/(1- t) if the interval [ai, bi] is half
infinite, say of the form (0, oo), and similarly for intervals [a, oo) and ( -oo, b], 
and ¢i(t) = t/ (1 - t 2) if [ai, bi] = ( -oo, oo ). 

6. 2. Orthogonal reduction method 

Assuming now that a discrete measure (6.1) has been constructed, with (pos
itive) weights Wk and abscissae tk, we denote by y0j the column vector whose 
components are ..JWk, and by Dt the diagonal matrix with the tk on the di
agonal. Since for any function p, 

N 1 p(t) dAN(t) = .(; Wkp(tk) (6.20) 

( cf (6.2)), we may interpret (6.20) as a 'Gauss formula' for the measure dAN. 
From (4.15) it then follows that there exists an orthogonal matrix Q1 E JRNxN 
such that 

[ 1 or ] [ 1 v;;;r ] ( 1 or J 
0 Q[ Vw Dt 0 Ql = 

(6.21) 

where e1 = (1, 0, ... , o]T E JRN is the first coordinate vector and J N( dAN) 
the Jacobi matrix of order N for the measure dAN ( cf ( 4.4)). It is the latter 
that we wish to obtain. 

Observe that (6.21) has the form 

QT AQ = T, (6.22) 

where all matrices are (N + 1) X (N + 1), Q is orthogonal and T symmetric 
tridiagonal with positive elements on the side diagonals. It is then well known 
(see, for instance, Parlett 1980, p. 113) that Q and T in (6.22) are uniquely 
determined by A and the first column of Q. Since the latter in (6.21) is e1, 

and the former [ )w VJf: ] , we see that knowledge of w and Dt, that 

is, of dAN, uniquely determines the desired JN( dAN) and f3o( dA.N) by the 
orthogonal similarity transformation (6.21). A method that accomplishes 
this transformation is Lanczos 's algorithm. There are various versions of this 
algorithm, a particularly elegant one consisting of a sequence of elementary 
orthogonal similarity transformations of Givens type designed to successively 
push the elements bordering the diagonal matrix Dt in (6.21) towards the 
diagonal. It is not necessary to carry the transformation to completion; it 
can be terminated once the submatrix Jn( dA.N) has been produced, which is 
all that is needed. Also, in spite of the square roots of the weights appearing 
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on the left of (6.21), it is not required in the resulting algorithm that all 
weights be of the same (positive) sign, since only their squares enter into the 

algorithm. 

6.3. The Stieltjes procedure 

This is based on the explicit formulae (see (0.12)) 

ak( d,\) = ((t1fk, 1fk) d>. , k = 0, 1, 2, ... , 
1fk,1fk)d,\ 

,Bo(d-\)=(Jro,Jro)d>., .Bk(d-\)= (1fk,1fk)d>. , 
( 1fk-t' 1fk-d d,\ 

k = 1, 2, 3, ... ' 

(6.23) 
where 1fk( ·) = 1fk( ·; d,\). One applies (6.23) for d). = d,\N in tandem with 
the basic recurrence relation (see ( 0.11)) 

1fk+t(t) = (t- ak)1fk(t)- .8k1fk-t(t), 
1f-l(t) = 0, Jro(t) = 1. 

k = 0, 1, 2, ... ' 
(6.24) 

Note that all inner products in (6.23) are finite sums when d,\ = dAN, so that 
they are easily computed once the 1fk are known. Since Jro = 1, we can thus 
compute ao, .Bo from (6.23). Having obtained ao, ,Bo, we then use (6.24) with 
k = 0 to compute 1ft for all {tt, ... , tN} to obtain the values of 1ft needed 
to reapply (6.23) with k = 1. This yields at, .Bt, which in turn can be used 
in (6.24) to obtain the values of 1r2 needed to return to (6.23) for computing 
a2, ,82. In this way, alternating between (6.23) and (6.24), we can 'bootstrap' 
ourselves up to any desired order of the recursion coefficients. The procedure 
is now commonly referred to as the Stieltjes procedure. 

Although the recurrence relation (6.24) may develop the phenomenon of 
pseudostability mentioned at the end of Section 0.2, as k approaches N, this 
normally causes no problem for the Stieltjes procedure since the maximum 
order n-1 desired for the recursion coefficients ak, ,Bk is usually much smaller 
than the integer N eventually needed for convergence in (6.4). The onset 
of pseudostability is thus avoided. On the other hand, suitable scaling of 
the weights Wk may be required to stay clear of overflow or underflow. No 
such problems occur with the Lanczos method, which, moreover, has been 
observed to be typically about twice as fast as the Stieltjes procedure. For 
these reasons, one normally prefers orthogonal reduction methods over the 
Stieltjes procedure. 

Notes to Section 6 

6.1. The idea of discretizing the measure to approximate the recursion coefficients, 
and the use of Fejer's quadrature rule (6.17) in this context, goes back to Gautschi 
(1968). The convergence property (6.4), (6.5) is proved in Gautschi (1968, Theorem 
4). The idea has been further developed along the lines of Section 6.1 in Gautschi 
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(1982a) and is implemented in the computer routine mcdis of Gautschi (1994). 
Example 6.1 is taken from Gautschi (1982a, Example 4.10) and is of interest in the 
asymptotic approximation of oscillatory integral transforms (Wong 1982). 

6.2, 6.3. A Lanczos-type algorithm of the type mentioned at the end of Section 
6.2 can be found in Gragg and Harrod (1984) and is used in the routine lancz of 
Gautschi (1994). The bootstrap procedure of Section 6.3 was briefly mentioned by 
Stieltjes (1884) and also forms the basis of the procedures in Forsythe (1957). For 
the phenomenon of pseudostability mentioned at the end of Section 6.3, see Gautschi 
(1993a) and Gautschi (1996b). 

7. Modification algorithms 

The idea of (and need for) looking at orthogonal polynomials relative to mod
ified measures goes back to Christoffel (1858), who multiplied the measure 
dA by a polynomial u(t) = rri=l (t- u.x), where all U,\ are outside the sup
port interval (the smallest interval containing supp( dA)); he represented the 
polynomial u(t)7rn(t; udA) in determinantal form as a linear combination of 
7rn(t; dA), ... , 1fn+£(t; dA). This is now known as Christoffel's theorem. More 
recently, Uvarov (1959, 1969) extended Christoffel's result to measures multi
plied by a rational function u(t)jv(t), where v(t) = rr;=l(t- vi"), expressing 
u(t)7rn(t;(ujv)dA) again in determinantal form as a linear combination of 
1fn-m(t; dA), ... , 1fn+£(t; dA) if m :S n, and of 7ro(t; dA), ... , 1fn+£(t; dA) if 
m > n. We have called this (Gautschi 1982b) the generalized Christoffel 
theorem. 

While these theorems are mathematically elegant, they do not lend them
selves easily to computational purposes. What is more useful is trying to 
compute the recursion coefficients o:k( d.\), f3k( d.\) for the modified measure 

d.\= (ujv) dA in terms of those for dA, which we assume are known. This 
need not be accomplished all at once, but can be carried out in elementary 
steps: multiply or divide by one linear complex factor t - z at a time, or 
else, if we prefer to compute in the real domain, multiply or divide by either 
a linear real factor t- x, or a quadratic real factor (t- x) 2 + y2 . Thus, 
the problem we wish to consider is the following. Given the recursion coeffi
cients o:k( dA), f3k( dA) for the measure dA, compute the recursion coefficients 

o:k( d.\), f3kd(.\) for the measures d.\= udA and d.\= dAjv, where u(t) and 
v(t) are elementary real factors of the type t- x or (t- x)2 + y2 , x E JR, 
yER 

We begin in Section 7.1 with the theory of quasi-definite measures and 
kernel polynomials, which lies at the heart of modification algorithms for 
linear and quadratic factors. The latter are discussed in Section 7.2. In 
Section 7.3 we develop algorithms for linear and quadratic divisors. The 
division algorithms, finally, are applied in Section 7.4 to construct the rational 
Gauss quadrature formulae that were discussed in Section 3.1. 
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7.1. Quasi-definite measures and kernel polynomials 

It is convenient, in this subsection, to allow d.\ to be any real or complex
valued measure on JR having finite moments of all orders, 

J-lr = J-Lr( d.\) = l tr d.\(t), r = 0, 1, 2, ... (7.1) 

The measure d.\ is called quasi-definite if all Hankel determinants Dn in the 
moments are nonzero, that is, 

[ ~~ ~~ 
Dn = det ... 

1-ln 1-ln+l 

~:-1 l i 0, 

/-l2n-1 

n = 1,2,3, .... (7.2) 

If d.\ is quasi-definite, there exists a unique system { 1fk} ~0 of (monic) ortho
gonal polynomials 7rk( ·) = 7rk( ·; d.\) relative to the measure d.\, which sat
isfy the three-term recurrence relation (0.11) with coefficients ak = ak( d.\), 
f3k = f3k( d.\) that are now complex-valued in general, but with f3k i 0. The 
measure ~.\ is called positive definite if JJR p( t) d.\( t) > 0 for every polyno
mial p(t) ¢ 0 that is nonnegative on supp( d.\). Equivalently, d.\ is positive 
definite if all moments (7.1) are real and Dn > 0 for all n 2: 1. 

For arbitrary z E C, and for ak = ak( d.\), f3k = f3k( d.\), f3o = 0, let 

ak = z + qk + ek-1 } 
f3k = ek-lqk-l 

k=0,1,2, ... ;e-1=q-1=0. 

Lemma 1 Let d.\ be quasi-definite and 7rk( ·) = 7rk( ·; d.\). 

(7.3) 

(a) If 1fn(z) i 0 for all n = 1, 2, 3, ... , then the relations (7.3) uniquely 
determine qo, eo, q1, e1, ... in this order, and 

1fk+1 (z) 
qk = - ( ) ' 1fk z 

k = 0, 1,2, ... (7.4) 

(b) If 1f£+I(z) = 0 for some e 2 0, and 1fk(z) i 0 for all k ~ e, then qk, ek are 
uniquely determined by (7.3) fork<£, while qe = 0 and ee is undefined. 

Proof. (a) The quantities qo, eo, q1, e1, ... are uniquely defined if and only 
if qk i 0 for all k 2: 0. It suffices, therefore, to prove (7.4). For k = 0, this 
follows from the first relation in (7.3) with k = 0: 

1fl ( z) 
qo = ao - z = - ( z - ao) = - -- . 

1ro(z) 

Proceeding by induction, assume (7.4) true for k- 1. Then, by (7.3), 

f3k 1fk-1(z) 
qk = ak- z- ek-I = ak- z- -- = ak- z + f3k , 

qk-1 1fk(z) 
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hence 

1 7rk+I(z) 
Qk = --(-) {(z- ak)7rk(z)- /h1fk-l(z)} =- ( ) , 

1fk z 1fk z 

where the recurrence relation (0.11) has been used in the last step. 

(b) The argument in the proof of (a) establishes (7.4) for all k ::; £, from 
which the assertion follows immediately. D 

Consider now 

d5.(t) = (t- z) d.A(t), z E C. 

If d.A is quasi-definite, and z satisfies the assumption of Lemma 1(a), then d5. 
is also quasi-definite (Chihara 1978, Chapter I, Theorem 7.1), and hence gives 
rise to a sequence of (monic) orthogonal polynomials irk(·; z) = 7rk( ·; d5.), 
k = 0, 1, 2, .... These are called the kernel polynomials. They are given 
explicitly in terms of the polynomials 7rk( ·) = 7rk( ·; d.A) by 

A 1 [ 1f n+l ( Z) ] 
7rn(t; z) = -- 1fn+l(t)- ( ) 7rn(t) , 

t- Z 1fn Z 
k = 0, 1, 2, ... ' (7.5) 

as is readily verified. 
Let &k = ak( d5.), /3k = f3k( d5.) be the recursion coefficients for the kernel 

polynomials irk(·) =irk(·; z), 

irk+l(t) = (t- &k)irk(t)- /3kirk-l(t), k = 0, 1, 2, ... ' 
ir-1(t) = 0, ir0 (t) = 1, 

(7.6) 

where the dependence on z has been suppressed. The following theorem shows 
how the coefficients &k, /3k can be generated in terms of the quantities Qk, ek 
of Lemma 1. 

Theorem 7 Let d.A be quasi-definite and z E C be such that 7rn(z; d.A) f 0 
for all n. Let Qk, ek, be the quantities uniquely determined by (7.3). Then 

~k = z + Qk + ek } 
f3k = Qkek-l 

k = 0, 1, 2, .... (7.7) 

In (7. 7), /3o receives the value zero; it could be assigned any other con

venient value such as the customary /3o = JJR d5.(t). In that case, /3o = 
JJR(t-z) d.A(t) = JJR(t-ao+ao-z) d.A(t) = ( ao-z)f3o, since t-ao = 1r1 (t; d.A) 
and JJR 7rt(t) d.A(t) = 0. 

Proof of Theorem 1. By (7.5) and (7.4) we can write 

(7.8) 
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or, solved for 7rk+l, 

k = 0, 1, 2, .... (7.9) 

The three-term recurrence relation for the {7rk}, with the coefficients ak, f3k 
written in the form (7.3), yields 

from which 

11"k+l(t) + Qk11"k(t) - () 7rk(t) + Qk-111"k-l(t) 
--'---~----'--'- - 1fk t - ek-1 , 

t-z t-z 

or, by (7.8), 

k=0,1,2, .... (7.10) 

Replacing k by k + 1 in (7.10) and applying first (7.9), and then again (7.10), 
we get 

that is, 

?rk+l(t)- ekirk(t) 
(t- z)irk(t)- Qk?rk(t)- ekirk(t) 
(t- z)irk(t)- Qk[irk(t) + ek-l*k-l(t)]- ekirk(t), 

irk+l(t) = (t- z- Qk- ek)irk(t)- qkek-l*k-l(t), 
k = 0, 1,2, .... 

The assertion (7.7) now follows by comparing (7.11) with (7.6). 0 

7. 2. Linear and quadratic factors 

(7.11) 

We assume from now on that d). is a positive measure. The support of d>.. 
may extend to infinity at one end, when dealing with linear factors, but will 
be arbitrary otherwise. 

Consider first modification by a linear factor, 

d~(t) = (t- x) d>..(t), 

where, as indicated, x is any real number outside the 'support interval' 
Isupp( d).) of d)., that is, outside the smallest interval containing the sup

port of d>... Then d5.. is positive definite if x is to the left of this interval, and 
negative definite otherwise. In either case, ?rn(x; d).) =J 0 for all n, since the 
zeros of ?rn are known to lie in the support intervaL Theorem 7, therefore, 
applies with z = x and, together with the remark immediately after The
orem 7, and (7.3), produces the following algorithm for calculating the first 
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n recursion coefficients of { 'lfk} from those of { 1rk}: 

e-1 = 0 

) k = 0, 1, ... , n- 1. 
(7.12) 

Note that we need f3n in addition to ak, f3k, k = 0, 1, ... , n- 1, to obtain the 
first n recursion coefficients lik, ~k, k = 0, 1, ... , n- 1. Numerical experience 
seems to indicate that the nonlinear recursion (7 .12) is quite stable. In cases 
where the coefficients lik tend rapidly to zero, it is true that they can be 
obtained only to full absolute accuracy, not relative accuracy. This, however, 
should not impair the accuracy in the recursive computation of Kk by (7.6). 

There is a similar, but more complicated, algorithm for modification by a 
quadratic factor, 

X E lR, y > 0, (7.13) 

which can be obtained by two successive applications of linear (complex) 
factors t- z and t- z, where z = x + iy. A particularly elegant algorithm is 
known when y = 0 in (7.13). In terms of the Jacobi matrices of d.\ and d5., 
it consists in applying one QR step with the shift x: if 

Jn+I( d.\)- Xln+l = QR, 
Q orthogonal, R upper triangular, diag R 2: 0, 

(7.14) 

then 

(7.15) 

Thus, having completed the QR step applied to the Jacobi matrix of order 
n + 1 for the measure d.\, one discards the last row and last column to obtain 
the Jacobi matrix of order n for the modified measure d5.. This algorithm, 
too, appears to be quite stable. 

7.3. Linear and quadratic divisors 

Consider first division by a linear divisor, 

d5.(t) = d.\(t) ' 
t-x 

(7.16) 

where x is assumed real, outside the support interval of d.\. Here again, there 
exists a nonlinear algorithm of the type (7.12) (indeed, a reversal thereof), 
but it is quite unstable unless x is very close to the support interval of d.\. 
Although such values of x are not without interest in applications, we shall 
not develop the algorithm here and refer instead to Gautschi (1982b). 
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For other values of x, and particularly for measures with bounded support 
( cf the remark at the end of Section 5.3), we recommend applying the modified 
Chebyshev algorithm, using the orthogonal polynomials Pk( ·) = 7rk( ·; d.A) 
as the polynomial system defining the modified moments, that is, letting 

1 d.A(t) 
mk = 7rk(t; d.A) -- , 

1R t- X 
k = 0, 1, 2, .... (7.17) 

We shall assume again that the recursion coefficients CXk = cxk( d.A), f3k = 
f3k( d.\) are known. Under mild assumptions on the measure d.A (for instance, 
if Isupp( d>.) is a finite interval), the sequence {mk} is a minimal solution of 
the basic recurrence relation 

Yk+l = (x- cxk)Yk- fJkYk-1, 
Y-1 = -1, 

k = 0, 1, 2, ... ' 
(7.18) 

where O:k = ak( d.A), f3k = f3k( d.A). Its first N + 1 members can then be 
computed by the following algorithm: select v > Nand recur backwards by 
means of 

r(v) = 0 
v • ' 

r(v) _ f3k 
k-1 - (v) ' 

Then compute 

m(v) = -1 
-1 ' 

X- CXk- rk 

m (v) - r(v) m (v) 
k - k-1 k-1' 

The algorithm converges in the sense that 

mk = lim m(v)_ 
V-HX! k 

k = v, v - 1, ... '0. (7.19) 

k = 0, 1, ... ,N. (7.20) 

(7.21) 

Thus, applying (7.19) and (7.20) for v sufficiently large, we can compute mk 

to any desired accuracy. 
A similar algorithm works for division by a quadratic divisor, say 

A d.A(t) 
d.A(t) = ( )2 2 ' t-x +y 

X E JR., y > 0, (7.22) 

if one notes that 

1 1 ( 1 1 ) 
(t-x)2+y2 = 2iy t-z - t-z Z =X+ iy, 

hence 

mk = { 7rk(t· d.A) d.A(t) = Imfk(z) 
JJR ' (t-x)2 +y2 Imz' 

(7.23) 

where 

fk(z) = r 7rk(t; d.A) d.A(t) . 
JJR t- z 

(7.24) 

This again is a minimal solution of (7.18), where x is to be replaced by z, 
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and therefore the same algorithm applies as in (7.19)-(7.20) with x replaced 
by z. 

1.4. Application to rational Gauss quadrature 

We have seen in Section 3.1 that the construction of rational Gauss-type 
quadrature rules requires the computation of (ordinary) Gaussian quadrature 
formulae relative to a measure that involves division by a polynomial. These 
can be generated by the eigenvalue techniques discussed in Section 4.1, once 
the recursion coefficients of the required orthogonal polynomials have been 
obtained. This in turn can be accomplished by methods discussed in Sections 
7.2 and 7.3. 

We will assume in the rational quadrature rule (3.5) that the divisor poly
nomial Wm is positive on the support interval of d.\. 

The problem, therefore, is to generate the first n recursion coefficients &k = 

ak( d.X), /3k = f3k( d.X), k = 0, 1, ... , n- 1, for the modified measure 

d.X(t) = d.\(t) 
Wm(t) ' 

(7.25) 

assuming the coefficients known f<?r d.\. Here, Wm is a polynomial of degree 
m, 

M 

Wm(t) = II (1 + (/Lt) 8~", 
JL=l 

M 

L sJL = m, 
JL=l 

(7.26) 

with (JL distinct real or complex numbers such that Wm is positive on the 
support interval of d.\. 

A possible solution of the problem is based on the following observation. 
Suppose dAN is a discrete N-point measure, say 

N k p(t) dAN(t) = ti WkP(Tk), (7.27) 

with coefficients Wk not necessarily all positive, and suppose further that it 
provides a quadrature formula for the measure d.X having degree of exactness 
2n- 1, that is, 

all p E lP'2n-l 1 

d.\ 
(7.28) 

Then the first n recursion coefficients for d.X are identical with those for dAN: 

ak( d.X) = ak( dAN), 

f3k( d.X) = f3k( dAN), 
k = 0, 1, ... , n- 1. (7.29) 

This follows immediately from the inner product representation (0.12) of the 
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coefficients on the left of (7.29), since all inner products are integrals (with 
respect to d..\) over polynomials of degree :S; 2n- 1 and are thus integrated 
exactly by the formula (7.28). To generate the coefficients on the right of 
(7.29), we can now apply either the Stieltjes procedure of Section 6.3 or the 
Lanczos method (of Section 6.2); for the latter, see the remark at the end of 
Section 6.2. 

It remains to show how a formula of the type (7.28) can be constructed. 
We first look at the simplest case where the polynomial Wm in (7.26) has all 
SJ-L = 1 (hence M = m) and (J-L = eJ-L are all real. Expanding its reciprocal 
into partial fractions, 

where 

.. 
we then have 

1 

Wm(t) 

Cv = Tim (C ) ' 
J-t=l <,v- eJ-L 
J-Li-V 

v= 1,2, ... ,m, 

r p(t) d..\(t) = f r p(t) Cv ~)..~~)) 
J!R v=l J!R t + 1 v 

(7.30) 

Each integral on the right now involves modification of the measure d).. by 
a linear divisor. The first n recursion coefficients of the modified measure 
can therefore be obtained by the procedure of Section 7.3 (using the modified 
Chebyshev algorithm), which then enables us to compute the respective n
point Gauss formula 

1 () CvdA(t) =~ (v) ((v)) 
p t ( jt: ) L wr p tr ' 

JR t + 1 <,v r=l 
P E lP'2n-l 1 (7.31) 

by the techniques of Section 4.1. Inserting (7.31) in (7.30) then yields 

P E lP'2n-1, 

the desired quadrature formula (7.28), with N = mn and 

T(v-l)n+r = t}v)' 
TXT (v) 
YY (v-l)n+r = Wr , 

v = 1,2, ... ,m; r = 1,2, ... ,n. (7.32) 

Analogous procedures apply to other polynomials Wm, for example to those 
for which the (J-L occur in m/2 pairs of conjugate complex numbers: (v = 
ev+ iT}v, Cv+m/2 = (v, v = 1, 2, ... , m/2, where ev E JR, 17v > 0, and m is even. 
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An elementary computation then yields the partial fraction decomposition 

m/2 
_1_ -2:: Cv +dvt 

Wm(t) - v=l (t + -db)2 + (~)2 
.;v+1Jv C+1Jv 

t E lR, (7.33) 

where 

1 ( ~v T/v 
Cv = - ~2 2 Im Pv + ~2 2 

T/v v + T/v v + Tlv 
1 

dv =- Impv 
T/v 

and 

m/2 ( · )2 _ IT ~v + lTJv 
Pv- JJ-=1 (~v- ~11)2- (TJ~- TJZ) + 2 iryv(~v- ~11)' 

wf.v 

with Pl = 1 if m = 2. One can proceed as before, except that the modification 
of the measure d.X now involves a quadratic divisor (see (7.33)) and, if dv f. 0, 
in addition a linear factor. Thus, not only the methods of Section 7.3, but 
also those of Section 7.2 come into play. 

The procedures described here, since they rely on the modified Chebyshev 
algorithm to execute the division algorithm of Section 7.3, work best if the 
support of d.X is a finite interval. For measures with unbounded support, 
methods based on discretization (see Section 6.1) will be more effective, but 
possibly also more expensive. 

Notes to Section 7 

7 .1. A good reference for the theory of quasi-definite measures and kernel poly
nomials is Chihara (1978, Chapter I). Lemma 1 and Theorem 7 are from Gautschi 
(1982b). Kernel polynomials also play an important role in numerical linear algebra 
in connection with iterative methods for solving linear algebraic systems and eigen
value problems; for these applications, see Stiefel (1958). The proof of Theorem 7 
indeed follows closely an argumentation used in Stiefel (1958), but does not require 
the assumption of a positive definite measure. 

7.2. The algorithm (7.12) for modification by a linear factor is due to Galant 
(1971); an extension to quadratic factors (7.13) is given in Gautschi (1982b). The 
procedure (7.14), (7.15) based on QR methodology is due to Kautsky and Golub 
(1983). See also Buhmann and Iserles (1992) for an alternative proof. 

7.3, 7.4. The treatment of linear and quadratic divisors follows Gautschi (1981b), 
where further details, in particular regarding the recursion algorithm (7.19), (7.20), 
can be found. For other, algebraic methods and a plausibility argument for the 
instability noted at the beginning of Section 7.3, see Galant (1992). The application 
to rational Gauss quadrature is taken from Gautschi (1993b). 
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8. Orthogonal polynomials of Sobolev type 

As already mentioned in Section 2.2, the computation of orthogonal polyno
mials in the Sobolev space Hs of (2.21), involving the inner product 

(8.1) 

is complicated by the lack of symmetry of this inner product with respect to 
multiplication by t (see (2.26)). This means that we can no longer expect 
a three-term recurrence relation to hold, or even a recurrence relation of 
constant order. On the other hand, it is certainly true, as for any sequence 
of monic polynomials whose degrees increase by 1 from one member to the 
next, that 

k 

7Tk+I(t) = t1Tk(t)- L f3j7Tk-j(t), k = 0, 1,2, ... ' (8.2) 
j=O 

for suitable. coefficients f3j. We may thus pose the problem of computing 

{!3j}os;js;k for k = 0, 1, ... , n- 1, which will allow us to generate the first 
n + 1 polynomials 1ro, 1r1, ... , 1Tn by (8.2). Moreover, the zeros of 1Tn are 
computable as eigenvalues of the n x n Hessenberg matrix 

!38 f3i f3i {3n-2 
n-2 

{3n-1 
n-1 

1 !36 /3[ {3n-2 
n-3 

{3n-1 
n-2 

Bn = 0 1 !35 {Jn-2 
n-4 

{3n-1 
n-3 (8.3) 

0 0 0 /3~-2 ;Jf-1 

0 0 0 1 /3~-1 

In Section 8.1 we briefly describe how moment information can be used 
to develop a 'modified Chebyshev algorithm' for Sobolev orthogonal polyno
mials, and in Section 8.2 show how Stieltjes's idea can be adapted for the 
same purpose. Special inner products ( 8.1) of Sobolev type sometimes lead 
to simpler recurrence relations. An instance of this is described in Section 
8.3. 

8.1. Algorithm based on moment information 

In analogy to (5.5), we define modified moments for all s + 1 measures dAa, 
but for simplicity use the same system of polynomials {Pk} for each, 

k = 0, 1, 2, ... ; (} = 0, 1, ... 's. (8.4) 
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As in Section 5.2, we assume these polynomials to satisfy a three-term recur
rence relation 

P-l(t) = 0, Po(t) = 1, 
Pk+l(t) = (t- ak)Pk(t)- bkPk-l(t), k = 0,1,2, ... , 

(8.5) 

where the coefficients ak, bk are given real numbers. The objective is, for given 
n 2": 1, to compute the coefficients {;Jj}o::;j::;k in (8.2) fork= 0, 1, ... , n- 1, 
using the recursion coefficients aj, bj, 0 ~ j ~ 2n-2 in (8.5) and the modified 

moments m}0l, 0 ~ j ~ 2n- 1, and m}al, 0 ~ j ~ 2n- 2 (if n 2: 2), 
()" = 1, 2, ... 's. 

It is possible to accomplish this task with the help of an algorithm that 
resembles the modified Chebyshev algorithm of Section 5.2. Like the latter, 
it uses 'mixed moments' O"k,£ = (1fk, 1f£)Hs' but now relative to the Sobolev 
inner product in H 8 • These, in turn, require for their computation 'mixed 
d . . t' (i,j) ( (i) (j)) 1 . '< l'' t envattve momen s f-Lk,C,a = 1fk ,Pe d>-"' o- = , ... ,s; 2,) _a, re attve o 
the individual inner products (u,v)d>-" = JJRu(t)v(t) dA.a(t), o- 2": 1. Accord
ingly, there will be a tableau containing the mixed moments ak,£, very much 
like the tableau in Fig. 3, and for each i, j and o- another auxiliary tableau 
containing the mixed derivative moments, which has a similar trapezoidal 
shape, but with height n- 2 instead of n- 1. Each quantity in these tableaux 
is computed recursively in terms of the three nearest quantities on the next 
lower level, and in terms of all quantities vertically below. The initialization 

of these tableaux calls for the modified moments (8.4), since o-o,e = m}0l and 

f-Lb0£0l = m~a), o- 2": 1, but the complete initialization of all the quantities f.-L~ij~ 
is ~'rather involved process. Once the tableau for the O"k,£ has been complet~d, 
one obtains first 

(-10 - O"Q,l + 
tJO- -- ao, 

ao,o 

and then, successively, for k = 1, 2, ... , n- 1, 

= ak,k+1 +a _ ak-1,k 
O'k,k k O'k-1,k-1' 

k-1 
= aj,k+1 +a aj,k + b aj,k-1 _ aj-1,k _ """"'Ri_1. o-e,k, 

aj,j kaj,j k CYj,j O'j-1,j-1 L....,tJ~ 
£=j ae,e 

j = k- 1, k- 2, ... ' 1( if k 2: 2), 
k-1 

= ao,k+1 +a ao,k + b ao,k-1 _ """"'(-le0"£,k 
ao o k ao o k ao o L....,tJ£ ' 

, , , £=0 ae,e 

where ak , bk are the coefficients in (8.5). 
The algorithm is considerably more complicated than the modified Cheby

shev algorithm of Section 5.2- its complexity, indeed, is O(n3 ) rather than 
O(n2 ) -but this seems to reflect an inherently higher level of difficulty. 
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8.2. Stieltjes-type algorithm 

The procedure sketched in Section 8.1 employs only rational operations on the 
data, which is one of the reasons why the resulting algorithm is so complic
ated. Allowing also algebraic operations (that is, solving algebraic equations) 
permits a simpler and more transparent (though not necessarily more effi
cient) approach. Basically, one expresses -f3j in (8.2) as the Fourier-Sobolev 
coefficients of 7rk+I - t1rk ( t), that is, 

{3~= (t7rk,7rk-j)Hs 

J II 'lrk-j 111-s ' 
j = 0, 1, ... 'k, (8.6) 

and evaluates the inner products in both numerator and denominator by nu
merical integration. If k ::; n- 1, then all inner products involve polynomials 
of degree less than 2n, and hence can be computed exactly by n-point Gaus
sian quadrature rules relative to the measures d.\a. It is in the generation 
of these Gaussian rules where algebraic processes are required. The poly- / 
nomials intervening in (8.6), and their derivatives, are computed recursively 
by (8.2) and its differentiated version, employing the coefficients f3j already 
computed. Thus, initially, (see ( 0.12)) 

(30 = ( t, 1) d.Ao = a (d.\ ) 
0 ( 1, 1) d.Ao 0 0 ' 

which allows us to obtain 1r1 by (8.2). In turn, this allows us to compute 
{f3] }o:::j::;I by (8.6), and hence, via (8.2), to obtain 1r2. Continuing in this 
manner yields the following 'bootstrapping' procedure: 

ao(8.2) (8.6){{31} (8.2) (8.6) (8.6){f3n-1} (8.2) 
PO 1---t 7r1 1---t j o::;j::;1 1---t 7r2 1---t ••• 1---t j O::;j::;n-1 1---t 'lrn· 

8.3. Special inner products 

While symmetry with respect to multiplication by t in general does not hold 
for the inner product (8.1), a more general symmetry property may hold, 
namely 

(hu,v)Hs = (u,hv)H81 (8.7) 

where his a polynomial of degree 2 1. This, however, implies, as is shown in 
Evans, Littlejohn, Marcell:in, Markett and Ronveaux (1995), that all meas
ures d.A.a, a 2 1, must be of Dirac type. On the other hand, there then exists 
a (2m+ 1)-term recurrence relation of the form 

k+m 

h(t)7rk(t; H8 ) = L Wkj'lrj(t; Hs), 
j=k-m 

(8.8) 

where m is the smallest degree among polynomials h satisfying (8. 7) and h 
in (8.8) is a polynomial of that minimum degree. 
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If, for example, 

(u, v)Hs = k u(t)v(t) d>.(t) + u(s)(c)v(s)(c), (8.9) 

where d), is a positive measure, s an integer 2: 1, and c E JR, then clearly 

h(t) = (t- c)s+l (8.10) 

satisfies (8.7) and is a polynomial of minimum degree m = s + 1 in (8.8). In 
this case, 

k=0,1, ... ,s, (8.11) 

as follows easily from (8.9). Moreover, there is an alternative expansion of 
the polynomial on the left of (8.8), namely 

k+m 

h(t)7rk(t; Hs) = L (}kj1fj(t; d>.), 
j=k-m 

(8.12) 

where h is as in (8.10) and m = s + 1. The coefficients in (8.8), as well as 
those in (8.12), can be computed with some effort, but the resulting procedure 
appears to be quite robust. 

The two expansions above, together with (8.11), suggest the following two 
methods for computing the Sobolev-type orthogonal polynomials belonging to 
the inner product (8.9). In Method I, one computes 7fk+s+l by solving (8.8) 
for 1fk+s+l, noting that Wk,k+s+ 1 = 1 (since the 1fk are monic). Thus, 

k+s 

7fk+s+l(t; Hs) = (t-C) 8 +11fk(t; Hs)- L Wkj1fj(t; Hs), k=0,1,2, ... , 
j=k-s-1 

(8.13) 
where (8.11) is used on the right, when appropriate, and where Wkj = 0 if 
j < 0. In Method II, one computes 1fk directly from (8.12), 

1 k+s+l 

1fk(t; Hs) = (t _ c)s+l. L (}kj1fj(t; d>.), 
J=k-s-1 

(8.14) 

where again (}kj = 0 if j < 0, and this time the polynomials 7rj(·; d>.) on 
the right are generated by the basic three-term recurrence relation. Method 
I, curiously enough, may develop huge errors at a certain distance from c, 
either on one, or both, sides of c. Apparently, there is consistent cancellation 
at work, but the inherent reasons for this are not known. Some caution in 
the use of Method I is therefore indicated. Method II is more reliable, except 
in the immediate neighbourhood oft= c (where it is safe to use Method I). 
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9. Software 

A software package, called ORTHPOL, has been written, that implements all 
the procedures discussed above and a few others; see Gautschi (1994). Here 
is a brief description of the principal components of the package. 

recur generates the recursion coefficients for the classical orthogonal 
polynomials (of Legendre, Chebyshev, Jacobi, Laguerre and 
Hermite) 

cheb implements the modified Chebyshev algorithm (see Section 
5.2) 

sti implements the Stieltjes procedure for discrete measures (see 
Section 6.3) 

lancz implements Lanczos's algorithm for discrete measures (see 
Section 6.2) 

mcdis implements the discretization procedure sketched in Section 
6.1 

mccheb implements a version of the modified Chebyshev algorithm 
(not described in this article) that uses approximate values 
of the modified moments obtained by a discretization process 
similar to the one used in Section 6.1 

chri implements the nonlinear modification algorithms of Section 
7, as well as modification by a QR step (see Section 7.2) 

gchri implements the modified moment pr~edure for linear and 
quadratic divisors (see Section 7.3) 

gauss generates Gauss quadrature formulae via eigenvalues and ei
genvectors of the Jacobi matrix (see Section 4.1) 

radau generates Gauss-Radau formulae (see Section 4.2) 
lob generates Gauss-Lobatto formulae (see Section 4.3) 

Numerical experience reported in this article and elsewhere is based on the 
use of one or a combination of these routines. Routines for rational Gauss 
quadrature rules and Sobolev orthogonal polynomials have also been written, 
but are not yet ready for publication. 

Notes to Section 9 

Historically, the first major effort of computing Gauss quadrature rules on elec
tronic computers was made in the mid- and late 1950s. Davis and Rabinowitz 
(1956) computed Gauss-Legendre rules with up to 48 points to an accuracy of 20-
21 decimal digits, and went up to 96-point rules in Davis and Rabinowitz (1958). 
Gauss-Laguerre rules were computed by Rabinowitz and Weiss (1959), and Gauss
Lobatto rules by Rabinowitz (1960). For a summary, as of 1981, of the major tables 
of Gaussian rules and computer programs for generating them, see Gautschi (1981a, 
Section 5.4). More recent software that includes also Gauss-Kronrod rules and other 
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quadrature methods can be found in Piessens, de Doncker-Kapenga, Uberhuber and 
Kahaner (1983); see also NAG (1991). 

The software package in Gautschi (1994) is the first that includes routines for 
generating Gauss-type formulae and orthogonal polynomials not only for classical 
but also for essentially arbitrary measures. The package is public domain, and can 
be received via e-mail by sending the following message to netlib@netlib.org: 

send 726 from toms 

Alternatively, one can access the package via a WWW browser, using the following 
URL: 

http://www.netlib.org/toms/726 

The routines recur and gauss were instrumental in computations assisting de 
Branges in his famous proof of the Bieberbach conjecture (Gautschi 1986b). 
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Notes to Section 8 

8.1. A more detailed description and derivation of the moment-based procedure for 
generating Sobolev orthogonal polynomials can be found in Gautschi and Zhang 
(1995, Section 2). Section 3 of the same reference reports on numerical experience 
with this procedure and on attempts to locate the zeros of various orthogonal poly
nomials of Sobolev type. A sensitivity analysis with respect to small perturbations 
in the moments (8.4), where s = 1, is given in Zhang (1994). 

8.2. For measures d>. 17 in (8.1) that consist of an absolutely continuous measure 
with a discrete measure superimposed on it, the Stieltjes procedure is described 
more fully, for the case s = 1, and sketched for the general case s 2: 1, in Gautschi 
and Zhang (1995, Section 4). 

8.3. Complete algorithmic details for, as well as experience with, the procedure of 
generating (by Methods I and II) the Sobolev-type orthogonal polynomials associ
ated with the special inner product (8.9) are given in Gautschi (1996a). Much of 
this work is based on algebraic groundwork laid in Marcellan and Ronveaux (1990). 




