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1. Introduct ion 

In [2] one of us published algorithms for computing suc- 
cessive derivatives of e~/x, (cos x ) / x ,  and (sin x ) / x .  I t  was 
brought to our attention [5] that  the first two of these 
algorithms are subject to substantial loss of accuracy if 
x (or Ix I in the case of the second algorithm) is large and 
n, the order of derivative, is larger than [x [ . ' I n  the fol- 
lowing we examine the reasons responsible for this dif- 
ficulty and suggest ways in which it may be overcome. 
Revised algorithms implementing the results of this article 
appear as Remark on Algorithm 282 in the Algorithms 
section of this issue (see footnote).  

Although hardly more than an isolated example, 1 the 
question discussed here well illustrates the pitfalls in- 
herent in the indiscriminate use of recurrence relations. I t  
may also serve to remind us of the computational limita- 
tions of analytic formula manipulation systems. 

Consider, for example, the derivatives 

d , ( x ) = 3 ~  ' n = 0 , 1 , 2 , . . . .  ( 1 . 1 )  

Work supported by the National  Aeronautics and Space Ad- 
ministrat ion (NASA) under Grant  N G R  15-005-039. This paper 
gives the theoretical background of Remark on Algori thm 282 
"Der iva t ives  of e~/x, cos (x ) / x ,  and sin ( x ) / x "  by the same authors, 
which appears on pages 53-54. 
* Depar tment  of Computer Sciences. 
~ College of Arts and Sciences. 

We note, however, that  the function d, in (1.1) is of some relevance 
in molecular structure calculations by vir tue of A , ( 1 , ~ ) =  
--d . ( - -a) ,  A.(--1,  a) = (--1)"d.(a), where As(a ,  c~) = f ~  e-"tt"dt 
are auxiliary "molecular  integrals"  (cf. [4, 6]). 
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Analytic differentiation yields 

ni 
d n ( X )  = ( - - 1 )  n ~  e : : e . ( - - x ) ,  

where 

( 1 . 2 )  

Z k 

e , ( z )  = ~ ~. .  (1.3) 
k ~ 0  

Formula manipulation systems most likely would deal 
with (1.1) by effectively evaluating the expression in (1.2). 
Note, however, that  for x positive and large, and n >> x, 
the dominant term in the sum for e , ( - - x )  has the order 
of magnitude e~/~/(27rx),  while the sum itself is close to 
e -x. For such values of x and n, the evaluation of (1.2) 
thus involves considerable cancellation of leading digits, 
the resulting loss of accuracy amounting to about log10 e 2~ 
= ( . 8 6 8 . . . ) x  decimal digits. 

Alternatively, one might t ry  to compute the desired 
derivatives recursively, as in [2], using 

e ~ 
d , (x )  = - n dn_l(x) + - ,  

x x 
(1.4) 

n = 1, 2, 3, . . . ,  d0 (x )  - e" 
x 

While, technically speaking, this recursion is stable, it 
will be seen that  the cancellation problem reappears with 
the same devastating force. 

2. Error Propagat ion in Linear First-order 
Difference Equat ions  

The recurrence relation (1.4) is an example of a first- 
order linear difference equation 

yn --~ anyn-1 "~ bn , n = 1, 2, 3, . . .  , an ~ O. (2.1) 

We consider solutions on the set 9~ of nonnegative integers 
n. Given a particular solution {f~} of (2.1) to be computed, 
we wish to examine the influence of a single error at 
m C ~ upon the value of fn at any other n C ~.  Since the 
solution {f~} may vary  considerably in magnitude, it is 
appropriate to consider relative errors and restrict atten- 
tion to the subset ~0 c ~ on which f ,  ~ 0. Assuming for 
simplicity tha t  f0 ~ 0, the question can easily be answered 
as follows (cf. [1]). 

Let  {]n} denote the "per turbed" solution of (2 .1)cor -  
responding to the starting value ] m =  fm (1 + e), m C ~0.  
Then for any n C ~0 we have 

L = L(1 + p" e), (2.2) 
Pm 

where 2 

fohn h, = anan-1 • • • al. (2.3) 
Pn fn  ' 

2 The factor f0 in the definition of p, is included only for the pur- 
pose of normalization, making p0 = 1. 
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A relative error e introduced at m thus induces a relative 
error (Pn/Pm)e at n. In particular, the error is magnified if 
Ion ] > Join [ and damped if Ion ] < Iota ]. The quantities 
p, will be referred to as "amplification factors." 

The behavior of the function { i P- [} clearly determines 
the error propagation pattern associated with the particular 
solution {f,} of (2.1). If there is any choice of direction 
in which the recursion (2.1) can be employed, then the 
direction in which IP-] decreases (or has a tendency to 
decrease) is generally the one to be preferred. Following 
this direction, errors introduced at each step of the recur- 
sion (due to rounding, for example) have a tendency to be 
consistently damped out. Proceeding in direction of in- 
creasing' ] pn I ~ is.tolerable only if the maximum error am- 
plification remains within acceptable limits. 

,3. Successive derivat ives o f  e~/x 

' '  From (1.2) and (2.'3) we find that  the amplification 
factors pn associated with the solution (1.1) of the difference 
equation (1.4) are given by 

1 
pn(x)  - e n ( - x ) "  (3.1) 

If x < 0, then IP-[ decreases monotonically from 1 to 
d -I~1. In this case the recursion (1.4) is properly applied 
in the forward direction for all n > 0. If  x > 0, the be- 
havior of ] p~ J is as shown in Figure 1. Disregarding rela- 
tively small values of x (for which I P~ I ren~ains within 
acceptable limits for all n >_ 0), it is seen tha t  I Pn I initially 
decreases'until it reaches a minimum value near no = [x], 
and from then on increases, reaching the limit log I = e~ 
rather abruptly. The :recursion (1.4) is now properly 
applied in the forward direction on the interval 0 < n < no, 
and in the backward direct.ion on no < n < oo, unless an 
error amplification of I P~/#~o I is tolerable, in which case 
forward recursion may be used on the whole interval 
O < n <  ~ .  ~ " 

We note that  le=(-n) l ~ e ~ / 2 ~ / ( 2 7 r n )  a.S n ~ oo, 
from which it follows that  the maximum error amplifica- 
tion is " 2~ • approximately . e / 2  ~/(2~-x), when x is large. 

The graphs i 9 Figure 1 may be interpreted as follows. 
Writing d, (x) in the form 

1 

d~(x )  = ( - -1)"  nI f0 theft x ~  A- dt (3.2) 

[by using the remainder term of the exponential series in 
(!..2)] and assuming x > 0 large, one observes that  the 
integral on the right of (3.2) initially dominates, until n 
is large enough to make the first term of comparable 
magnitude. From this point on, the first term quickly 
becomes the dominant term. As long as the integral dom- 
inates, d~ (x) varies relatively slowly with n, so that  by 
(2.3) I P~ I is approximately proportional to I h, I = n ! x -~. 
Once the first term takes over, I P~ I becomes constant, 
equal to e ~. Therefore, the ffurves in Figure 1, up to a 
scale factor, are essentially those for n I x -n, levelled off at 
the value of n for which the integral in (3.2) becomes 
negligible. 
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FIG. 1. Amplification factors I p~(x) I of (3.1), for 0 < n _< 80, 
x = 2, 5, 10, 15, 20 

I t  remains to consider the question of computing an 
appropriate starting value in cases where backward re- 
currence is called for. From the remarks just made, it is 
clear that  dn (x) can be approximated by 

n! 
qn(x)  = ( - 1 )  n -  (3.3) 

xn-bl 

to any degree of accuracy, if n is taken sufficiently large. 
To analyze this more carefully, observe tha t  the integral 
in (3.2) is bounded by e~/ (n  + 1), and tha t  n! > ( n / e )  n 
for every integer n > 1. Therefore, 

x~+l i tne ~t dt < - -  e x < e ~, 

f romwhichi t  follows that  I (d,~ -- qn)/q,~ I <-- ~ (0 < ~ < 1), 
and consequently J (d~ -- q~)/dn I -~ ~ / (1  -- ~), as soon 
as n is large enough to satisfy 

~--~-~/ < 3. (3.4)  

In particular, qn approximates d~ to s significant dig!ts if 
(3.4) holds with ~ = ½ 10 -8. Taking logarithms, th)s con- 
dition amounts to . . . .  

n- t -  llnn+____l ~ x + s l n l 0 - b  l n 2 ,  
ex ex ex 

which in turn is equivalent to 

t ( X  - t - s i n  10 ~ ' I n  2~ (3.5) . - t - l  > e x  n \ ] ex  

where t (y) denotes the inverse function of y = t In t. 
(Low-accuracy approximations to t ( y )  are obtained in 
another context in [3, p. 51].) Thus, if n o is the smallest 
integer n satisfying (3.5), then q~ (x) in (3.3) may be used 
to approximate d~ (x) (to s significant digits) for n > n °, 
while backward recursion in (1.4) may be used to obtain 
do(x) forn0 _< n < n o . 
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FIO. 2. Amplification factors I p~(x) I of (4.3), for 0 < n < 55, 
x = 2, 5, 10, 15, 20 

4. Successive Derivatives of (cos x)/x and (sin x)/x 

The derivatives 

cn( z )  = ~ - -  (4.1) 

satisfy the difference equation 

c~(x )  n 1 
= - -  - c~_l (x)  4- - Re(i~e~),  

x x (4.2) 

n = 1,2 ,3 ,  . . . ,  

and the associated amplification factors p~ are now 

COS X 
p~(x)  = Re [e~e~(--ix)] " (4.3) 

Clearly, p. ( -  x) = p~ (x). The behavior of I P- I is shown 
in Figure 2. The graphs are basically the same as those in 
Figure 1, except that  they are leveled off at an earlier 
stage (due to the limiting value now being p~ = cos x) 
and are not nearly as smooth. 

The recurrence (4.2) is again properly applied in the 

Lowe~cont'd from page 6 

is in preparation, and more research is required in tha t  
area. An important  topic for future investigation is a com- 
parison of performance improvement and cost of segmenta- 
tion for Boolean and probabilistic methods. Such an in- 
vestigation could well include empirical testing. 
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forward direction for 0 < n < no (no = [I x 1]), and should 
be used in this backward direction for no < n < ~ ,  unless,  (- 
the maximum error amplification I1 /p ,o  I (now approxi- 
mately half as large as in the case of d~ (x)) is within 
tolerable limits. Due to the fluctuations in ]p~ I, occasiopgl 
losses of significant digits must be expected, even if tli/e , 
recursion is used in the proper.direction. Loss of significance ,, 
is apt to occur for those values of n for 'which ]cn(x)] : "  

i s  exceptionally small. 
The identity .: , 

f c,~(x) - (--1)~n! t ~ [i'+le~t] x~+--~---i-- A- Re dt (4.4) 

permits us to interpret the graphs of Figure 2 in a similar 
manner as we did previously for the graphs of Figure 1. 
I t  also follows from (4.4) that  qn(x )  in (3.3) can be used 
to approximate c~ (x) to s significant digits for all n satisfy- 
ing 

n + i  > e l x l t (  s l n l O +  l n 2 )  
- -  e l x l  • 

Replacing " R e "  by " I r a "  in (4.2) an d (4.3), and "cos x" 
by "sin x" in (4.3), one obtains the difference equation 
and associated amplification factors for the derivatives 
s~ (x )  = (d~/dx  ~) (sin x / x ) .  The graphs of t P~ I in this 
case resemble those of Figure 2, except that  no leveling-off 
occurs, since I m [ e ~ e ~ ( - - i x ) ]  ~ 0 as n ~ ~ .  
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