
Online Submission ID: 0

Extraction and Visualization of Poincaré Map
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Fig. 1. Fixed points in the Earth-Moon system at C = 2.96. This is the collective result for the trials in Table 2.

Abstract—Astrodynamics, the application of celestial mechanics to predict motion of space vehicles, incorporates many dynamical
models where analysis and design is assisted with Poincaré maps. Planning a low-cost spacecraft trajectory that satisfies mission
constraints often involves selecting a suitable path through the interconnected web of Poincar map structures such as fixed points
(or periodic orbits) and invariant manifolds present in multi-body gravitational systems. Unfortunately, existing methods fail to extract
this topological skeleton due to violated setup assumptions and strong numerical sensitivities. This paper presents several important
algorithmic contributions that address the limitations of existing techniques and enables, for the first time, autonomous and tractable
Poincaré map topology extraction in astrodynamics problems. A practical application of the topological skeleton for spacecraft trajec-
tory planning in the circular restricted three-body problem (CRTBP) is then presented, in which the visualization of invariant manifolds
is shown to enable to selection of nearly no-cost transitions between periodic orbits, thereby opening new design options during path
planning.

Index Terms—Astrodynamics, trajectory planning and design, Poincaré map, dynamical systems, topology extraction, invariant man-
ifolds, chaos.

1 INTRODUCTION

Space missions collect scientific data about celestial bodies and astro-
nomical phenomena, yielding new knowledge and insight about the
origins of the universe. The design of a spacecraft trajectory is the key
to success of any mission. The spacecraft path must deliver the scien-
tific objectives under the constraints imposed by the laws of physics
and a targeted mission price. Although many factors influence the
mission cost, the price is strongly driven by the spacecraft mass [20],
which is represented by three fundamental components – payload, sup-
port structure, and propellant. The payload is the collection of science
instruments required to deliver the mission data whereas the support
structure consists of the spacecraft operational equipment (e.g., bus,
antenna, engines, propellant tanks, solar arrays, etc). Course correc-
tions or maneuvers are accomplished by performing a change in space-
craft velocity (or ∆V ) while expelling propellant. Although propellant
is necessary to perform maneuvers, less propellant mass is typically

preferred in favor of more payload mass. Such a trade-off produces
more scientific return for the mission while potentially reducing the
overall monetary cost. In this context, the role of a spacecraft tra-
jectory designer is to devise a pathway that minimizes the amount of
propellant required to transport the vehicle to mission objectives.

Leveraging chaotic dynamics available in multi-body gravitational
models permits small maneuvers to impart large alterations in down-
stream spacecraft destinations. Thus, spacecraft trajectory designers
often resort to naturally existing dynamics in such nonlinear multi-
body models as ideal transfer options to minimize propellant usage.
Unfortunately, pinpointing favorable maneuver locations in position-
space visualizations is quite difficult since orbital structures repeatedly
overlap and information about velocity magnitudes is limited due to
the high-dimensional nature of the problem. As an alternative, perti-
nent dynamical flow is observed from a global perspective via a sur-
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face of section utilizing the Poincaré map (or first-return mapping).
The resulting Poincaré section preserves a phase-space snapshot of
all behavior that crosses a given hyperplane defining the surface of
section. The problem dimensionality is then reduced into a tractable
arena (2D or 3D) while also highlighting velocity differentials. Exist-
ing Poincaré map topology extraction methods [17, 13] exploit local
linear models to extract topological structures embedded in nonlinear
dynamics. Knowing the topological skeleton that reflects how orbital
structures connect freely or with small ∆V s supplies spacecraft path-
planning with a plethora of novel options and pathways that save on
propellant usage (typically at the expense of extended flight time).

Yet, the automatic extraction of Poincaré map topology within
multi-body gravitational models remains challenging due to numeri-
cal sensitivities during path simulation and violated assumptions in the
Poincaré map. This paper presents important contributions to Poincaré
map topology extraction that address the specific numerical and struc-
tural challenges raised by multi-body gravitational systems. Adaptive
computation techniques are applied for enhanced characterization of
behavior and the detection of periodic orbits. A similar adaptive strat-
egy is employed for the development of invariant manifolds, resulting
in a tree-like data structure that simplifies invariant manifold interac-
tion during a design process.

Precise knowledge of the Poincare map topology provides a de-
tailed structure for planning spacecraft trajectories. Natural trans-
fers between periodic orbits residing within chaotic flow spaces ex-
ist and are often exploited for transfer designs with minimal maneu-
ver costs [12, 10, 18, 7]. Most of the structure available from pre-
vious work, however, relies heavily on the known periodic orbits of
multi-body dynamics. The fixed point extraction solution described
in this paper uncovers a wealth of previously unknown periodic orbits
that open transfer design possibilities. In addition, our invariant mani-
fold generation technique allows us to interactively identify robust and
accurate navigation pathways across chaotic regions, which in turn,
enables the rapid definition of free-flowing connections between any
two arbitrary unstable orbits. Over all, the proposed visual computing
framework greatly expands the design space for mission development
and can lead to design previously unknown to astrodynamics.

2 CIRCULAR RESTRICTED THREE-BODY PROBLEM

The gravitational model considered in this paper pertains to the motion
of a spacecraft (or other exceptionally small body) under the influence
of two celestial bodies that form an orbital system (e.g., Earth and
Moon, Sun and Earth, or Saturn and Titan). The motion of a spacecraft
under the influence of the combined gravitational field is then sim-
plified to the area-preserving circular restricted three-body problem
(CR3BP) model. Assume a pair of gravitating bodies (P1 and P2 with
corresponding masses m1 > m2) move about the common barycenter
in circular orbits; spacecraft flight is then simulated with the CR3BP
equations of motion such that the path evolves only in 2D. Let the grav-
ity parameter, µ , represent a ratio of masses or µ = m2/(m1 +m2).
The state vector xxx = [x,y, ẋ, ẏ]T (with ȧ denoting the time derivative
da
dt ) relates the position and velocity of a small body (m << m1,m2)
with respect to the barycenter. Coordinates are expressed in a rotat-
ing reference frame with the origin at the barycenter where the axes x̂xx
aligns with the

−−→
P1P2 line and ŷyy points concurrent to the velocity vector

of P2 with respect to P1. Define the distances from the spacecraft to P1
and P2 as

r1 = ((x+µ)2 + y2)
1
2 and r2 = ((x−1+µ)2 + y2)

1
2 , (1)

respectively. Note that position (x,y) and velocity (ẋ, ẏ) coordinates
are expressed in nondimensional units such that the quantities pos-
sess similar magnitudes [2]. For reference, a nondimensional position
unit in the Earth-Moon (EM) system is equivalent to 384388.174 km
whereas a nondimensional velocity unit is 1.02456261 km/s. Then, a
pseudo-potential value (ϒ) is realized as a function of only position
such that

ϒ(x,y) =
1−µ

r1
+

µ

r2
+

1
2
(x2 + y2), (2)

for planar motion. The CR3BP model is then evaluated as the second-
order system described by

ẍ−2ẏ =
∂ϒ

∂x
, (3)

ÿ+2ẋ =
∂ϒ

∂y
, (4)

which defines an ODE on the state vector xxx. Note, a third out-of-
plane (or z) component of flow also exists but is decoupled from planar
motion [15, 2]. The Hamiltonian in the CR3BP model is the Jacobi
constant C:

C = 2ϒ(x,y)− (ẋ2 + ẏ2), (5)

in the planar sense with the total planar velocity V =(ẋ2+ ẏ2)
1
2 [15, 2].

The constancy of C implies that the system is time-invariant and area-
preserving [9].

3 TOPOLOGICAL STRUCTURE IN POINCARÉ MAPS

We summarize in the following the basic results from dynamical sys-
tems theory that are relevant to our work. Note that we restrict our con-
siderations to Hamiltonian systems with two degrees of freedom since
this category encompasses the planar CR3BP . We refer the reader to
classical references on the subject for further detail [6, 9].

A dynamical system associated with a vector field vvv defines a flow
map xxx f with ẋxx f = vvv(xxx f ) such that xxx f (t, t0,xxx000) describes the transport
from an initial state xxx0 at t0 to its later state at time t.

Let Σ represent a hyperplane that is transverse to the flow and let
xxx0 be an initial state on Σ . The Poincaré map, or the first-return map,
is defined as the mapping

P(xxx0) := xxx0 7−→ PΣ(xxx0), (6)

where PΣ(xxx0) represents the first crossing of Σ by the trajectory start-
ing at xxx0. Multiple iterates of the Poincaré map are then computed by
compounding the first return map, e.g., Pp(xxx0) = PΣ(PΣ(. . .PΣ(xxx0)))
for p iterates. Both the initial state and first return to Σ are shown on
the green hyperplane in Figure 2(a).

Three dynamic behaviors co-exist on a Poincaré map for a so-called
near-integrable system (e.g., the planar CR3BP ): periodicity, quasi-
periodicity, and chaos. Visible in Figure 2(a), a periodic state, xxx∗,
returns to the same state through the Poincaré map, i.e.,

Pp(xxx∗) = xxx∗, (7)

where p represents the number of returns required for a p-periodic tra-
jectory to complete an orbit. These p distinct returns are called fixed
points of the Poincaré map, whereby fixed points with nearby rota-
tional behavior are called centers and those with hyperbolic attrac-
tion and repulsion are saddles. A representative schematic topological
skeleton of a Poincaré map with saddle-type and center-type behav-
iors is displayed in Figure 2(b). Quasi-periodic structures are charac-
terized as closed curves on the Poincaré section that encircle the cen-
ters. Bounding trajectories, known as KAM curve, mark the transition
from quasi-periodic behavior to chaotic behavior. Stable and unstable
manifolds emerge from the saddle points indicating dynamical flow
into and out of the periodic orbits, respectively. A pivotal element
of map topology, especially for low maneuver-cost trajectory design
problems, is the connection between saddle points via the unstable-
to-stable manifold transition. In fact, stable and unstable manifolds
generally intersect an infinite number of times, creating the chaotic
tangles as seen in Figure 2(b).

For integrable and near-integrable Hamiltonian systems with two-
degrees of freedom, considering the flow along a standard torus pro-
vides an abstract interpretation of the dynamical behavior. The motion
along the torus is then characterized by the so-called winding number
w = ω1

ω2
, where ω1 and ω2 are the poloidal and toroidal rotation fre-

quencies, respectively. The winding number permits to classify trajec-
tories: numbers with exact integer ratios w = q

p , p,q ∈ N∗ correspond
to periodic orbits. In this case q corresponds to the number of poloidal
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(a) A Poincaré map (b) Poincaré map topology

Fig. 2. Available topological structure associated with a Poincaré map
in a near-integrable dynamical system [17, 6, 9].

rotations performed during p toroidal rotations and if p and q are mu-
tually prime, p is the period associated with the fixed point. In contrast,
quasi-periodic trajectories possess irrational winding number: a quasi-
periodic orbit will never trace exactly the same path along the torus but
will visit a dense portion of the torus as the trajectory evolves. Finally,
in the case of chaotic trajectories, the winding number is undefined.

Since analytical equations of motion exist for the CR3BP (Equa-
tions 3), the state transition matrix (STM) evaluated from an initial
time t0 to a later time t is defined as

Φ(t, t0) =
∂xxx f

∂xxx0
. (8)

Practically the first-order approximation of the STM is propagated si-
multaneously with the planar CR3BP model (Equations 3 and 4) via
the matrix expression

∂Φ(t, t0)
∂ t

= Φ̇(t, t0) = A(t)Φ(t, t0), (9)

where A(t) is the spatial gradient of vvv. In the vicinity of periodic orbits,
the full-period STM matrix M = Φ(T,0), called the monodromy ma-
trix, offers a linearized description of the local dynamics and provides
the information needed to determine the invariant subspaces associ-
ated with stable and unstable manifolds. The equation relating a linear
variation from a fixed point through a full period, T , is described by

∂xxx f = M ∂xxx0 = Φ(T,0)∂xxx0, (10)

The stability characteristics of a fixed point are determined by the
eigenvalues of the matrix M . The local eigenspaces of the fixed point
(E i with i = S,C,U for stable, center, and unstable, respectively) cre-
ate the linear approximation of the global manifolds W i at the fixed
point location. Because the determinant of the monodromy matrix in
an area preserving map is one, its eigenvalues must exist as reciprocal
pairs. The eigenvalues determine the eigenspace type via

ES ∈ ‖λi‖< 1,EC ∈ ‖λi‖= 1,EU ∈ ‖λi‖> 1. (11)

An alternative stability classification is possible through a stability
index, νSI , defined as

νSI =
1
2 (λ +λ

−1), (12)

where λ is an eigenvalue of M . Orbits are unstable when |νSI |> 1.0
and stable otherwise. In practice, the planar stability index is pre-
ferrably computed with

νSI =
1
2 (tr(M )−2), (13)

which is both simpler and more numerically reliable than eigenanaly-
sis.

4 PRIOR WORK ON POINCARÉ MAP TOPOLOGY

Our proposed solution for the visual analysis of the CR3BP topology
leverages prior work on Poincaré map topology visualization [17] and
its recent extension to multi-body gravitational environments [13]. We
summarize here the main steps of their method.

Poincaré map sampling. The first step consists in a regular sam-
pling of the Poincaré map. The corresponding numerical integration is
carried out for a fairly large number of toroidal revolutions and all the
intermediate returns to the Poincaré section are recorded for the next
phase.

Trajectory classification. The next step calculates the winding
number associated with each computed trajectory. Here, the large
number of iterations of the Poincaré map performed previously allows
for the winding number approximation, which is updated after each
step of the integration, to converge. A best rational approximation of
this number w= q

p is then determined such that the denominator p∈N
does not exceed a user-defined maximum period pmax for the analysis.

In the specific context of the CR3BP , Schlei et al. [13] proposed to
jointly consider three distinct winding numbers computed directly in
the standard rotating coordinates of the problem. Indeed they showed
that the combination of these three numbers offers a refined assess-
ment of the dynamics. Specifically, a triplet W =

(
wxẋ,wxẏ,wẋẏ

)
is

computed for each trajectory where the individual ratios are

wxẋ =
2πn
θxẋ

, wxẏ =
2πn
θxẏ

, wẋẏ =
2πn
θẋẏ

(14)

and the angles θ·· measure the accumulated poloidal rotation around
the system’s barycenter in the corresponding dimensions during n
toroidal rotations.

Cellwise index computation. The primary purpose of the wind-
ing number computation in the previous step is to narrow down the
range of periods that need to be considered in the analysis of the in-
dividual sampling cells. Specifically, in each cell the Poincaré index
corresponding to the vector-valued (displacement) mapping

∆∆∆ = P p(xxx)− xxx. (15)

is computed via adaptive sampling of the Poincaré map along the
edges of the cell for each of the periods associated with the four ver-
tices in the previous step. If the sampling resolution was chosen fine
enough in the first step, the resulting index values are expected to be
either −1, 0, or +1, whereby −1 indicates the presence of a saddle-
type fixed point, +1 indicates a center-type fixed point, and 0 suggests
that no fixed point is present in the cell.

Fixed point extraction. If a non-zero index has been computed,
a fixed point search is performed in the cell at the corresponding pe-
riod. A fixed point corresponds to a zero value of the displacement
map ∆∆∆ and a Newton iterative method is used to determine the corre-
sponding location. A key requirement to achieve convergence of the
Newton search is the identification of a good first guess. While the
initial method [17] used a simple subsampling of the cell to select a
good candidate, a multiple shooting method was added to this solution
to further reinforce the numerical convergence in the face of sensitive
dynamics in the CR3BP [13].

Manifold extraction. Once the location of a fixed point of P p

has been resolved with sufficient accuracy (as determined by an upper
bound on ||∆∆∆||), the linear type of the fixed point (center or saddle)
is determined through Eigenanalysis of the monodromy matrix (i.e.,
the spatial derivative ∇xP

p). If the Eigenvalues correspond to a sad-
dle type (see Equation 11), the corresponding invariant manifolds are
then constructed through a succession of shooting problems [4] and
their progression stops when they approach another saddle-type fixed
point.

5 ROBUST AND EFFICIENT TOPOLOGY EXTRACTION IN
CR3BP

While prior work [13] offers a general framework for Poincaré map
topology extraction, it suffers from a number of significant limitations
that make it unsuitable for the visual analysis of the CR3BP that we
present in Section 6. We describe in the following a number of al-
gorithmic and numerical solutions that we devised to address these
shortcomings.
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5.1 Adaptive Poincaré map sampling
To permit a reliable detection of potential fixed points, the Poincaré
index of the displacement map ∆∆∆ (Equation 15) must be evaluated
around areas of the map that are small enough to contain at most a
single fixed point for the considered period [14]. Hence, a very high
resolution sampling yielding tiny cells is typically desirable. How-
ever, this approach is computationally prohibitive and a more subtle
data-driven sampling is needed.

We first observe that the winding number is a locally smoothly
varying characteristic parameter, within regions of regular dynamics.
Therefore, the variance in the winding number set WWW (Equation 14)
can be utilized to determine when to subdivide a cell. Ideally, a cell
that isolates fixed points should not exhibit significant variations in
its associated WWW values. Practically we adopt an adaptive refinement
strategy for the Poincaré map sampling that uses two quality measures
to enforce this property.

First, we impose an upper bound on the range of winding values
present in a cell, i.e.,

∆WWW c =WWW max∀v−WWW min∀v ≤ ψψψw, (16)

where v ∈ [1,4] designates the cell vertices, and ψψψw is a user-defined
parameter. The values of ψψψw bound the dynamic range within a cell,
so smaller values yield smaller analysis cells during the subdivision
process. Our second control measure aims to ascertain the local quasi-
linearity of the winding numbers variations. If WWW i represents a wind-
ing number set for a Poincaré section point (with index i) inside a
particular analysis cell, then all n internal points to a cell should sat-
isfy

WWW min∀c− εεεw�ψψψw ≤WWW i ≤WWW max∀c + εεεw�ψψψw. (17)

εεεw is another set of user-specified parameters, and the � symbol
represents element-by-element multiplication of vectors (aaa � bbb =
(a1b1,a2b2,a3b3)). Any cell that fails the criteria in either Equa-
tion 16 or Equation 17 encompasses too much dynamical behavior
or surrounds a spatially diverse dynamical region, and is marked for
subdivision.

Practically, we use a multiresolution mesh data structure that allows
us to record winding numbers both at the sampling vertices and inside
the cells. Since all Poincaré section crossings of a given trajectory
share the same winding numbers WWW set as the initial vertex, each one
of the p−1 returns, or Pq(xxx), q ∈ [1, p−1], is assigned the same WWW
values. These values are added to the cell containing the return and are
then tested as part of the subdivision criteria in Equation (17). When
required, cells are regularly subdivided with internal data assigned to
the corresponding quadrant within the original cell. A user-specified
maximum depth level parameter, dmax, is employed to represent the
total number of subdivision layers allowed. For example, a dmax = 3
specifies that an initial analysis cell at d = 0 can produce up to 64
subcells. Cells are also subdivided if any corners reside within invalid
dynamical regions.

To illustrate the benefits of this technique, we show in Figure 3 the
adaptive resolution mesh produced in the domain DEM for a maxi-
mum refinement depth d = 3. The initial grid is shown in thick gray
lines. The highest resolution is achieved in chaotic regions where the
dynamics is most complex. This result is in fact excellent from an as-
trodynamics perspective since the saddles embedded in chaos offer the
most versatile transfer opportunities. Regions of regular dynamics, in
contrast, are coarsely resolved, as expected.

5.2 Poincaré section transversality
An issue that frequently prevents the computation of the Poincaré in-
dex in existing techniques is the presence of discontinuity of the ∆∆∆

mapping along cell edges. Two properties of the CR3BP can explain
this behavior: highly sensitive dynamics and transversality violation
of the flow map for the chosen section Σ .

Transversality violations are typically the result of one of two spe-
cific trajectory events. First, trajectories that are tangent to the section
along their path generate discontinuities in ∆∆∆, see Figure 5.2. A second

Fig. 3. Adaptive cell subdivision based on the winding number set WWW
applied to the domain DEM with parameters C = 2.96 and dmax = 3.

event is an exact intersection by the trajectory of a singularity in the
model such as the primaries in CR3BP (exemplified in Figure 5.2).

Fig. 4. Transversality violation types in the CR3BP. Left: section tan-
gency, Right: singularity intersection.

5.3 Resolving the Poincaré Index
We perform the evaluation of the Poincaré index in non-transverse
cells by considering the behavior of ∆∆∆ in the limit approaching a
transversality violation. A discontinuity of ∆∆∆ at some location ggg on the
closed curve Γ for period p creates a discontinuity in the Poincaré in-
dex at ggg. However, since the limits of the angular coordinate α(∆∆∆(ggg))
exist in various directions approaching ggg, the Poincaré index can be
expressed as the summation of improper integrals

κ =
1

2π

∮
Γ

dα(∆∆∆) =
1

2π

(∫ ggg

γγγ0

dα(∆∆∆)+
∫

γγγ0

ggg
dα(∆∆∆)

)
, (18)

where γγγ0 is a starting point along Γ (γγγ0 6= ggg).
The adaptive edge sampling approach already used in prior

work [13] is augmented with additional heuristics to detect transver-
sality violations. Subsequent map states along cell edges are tested for
transversality violations via a set of heuristic trials that search for fun-
damental differences in map information. The adaptive subdivision of
an edge localizes the locations of ggg and generates sufficient approxi-
mations of the limiting values of α(∆∆∆(ggg)). Luckily, all information re-
quired for heuristic detection is available during numerical simulation
or easily retrieved from the output. It should be noted that transver-
sality violations tend to form coherent contours on the section domain
that represent fundamental transitions between trajectory types. This
allows us to heuristically detect the two types of transversality viola-
tions and resolve the Poincaré index using a piecewise integral.

5.4 Fixed Point Refinement
The computation process to extract fixed points as described by Tric-
oche et al. [17] was reinforced with shooting schemes [13] to accom-
modate the sensitive dynamics associated with corrections procedures
in multi-body problems.
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Yet, the single shooting and multiple shooting solutions used in
prior work are only moderately successful at finding fixed points be-
cause each differential corrections technique possesses varying con-
vergence properties and will often fail to find a fixed point. To remedy
this situation, we apply differential corrections procedures in a pre-
defined sequence chosen to maximize the convergence basin of the
fixed point. Practically, we start with single shooting refinement, and
switch to the variable-time multiple shooting method if this first at-
tempt fails. If both solutions fail, we apply a quasi-Newton single
shooting method, which is significantly more expensive than the pre-
vious two but possesses stronger convergence properties.

5.5 Determining the Initial Guess for Fixed Points
Irrespective of the chosen refinement procedure, the refinement result
is still heavily contingent on the quality of the initial guess. Our so-
lution starts by sampling ∆∆∆ at a set of regularly distributed positions
within the cell. Instead of working directly with ∆∆∆, however, we con-
sider the map tangent ηηη(xxx) instead, defined as

ηηη(xxx) = P p(xxx)−P−p(xxx), (19)

which can be seen as a low-pass filtering that cancels out the dom-
inance of the unstable mode in the vicinity of a saddle-type1 fixed
point [14, 9]. Practically, if the considered variable is ζζζ = xxx− sss with
sss representing the saddle-type fixed point location, then a quadratic
model of the sampled dynamic is formed as

ζ̇ζζ = Asζζζ + 1
2 ζζζ

T Qζζζ . (20)

Note, As is a 2×2 matrix, and Q is a 2×2×2 tensor where Q= 0 in the
linear model. A Levenberg-Marquardt optimization process is applied
to fit the model to the sampled data [11] and infer the approximate
location of the fixed point.

Unfortunately, the model-fitting strategy outlined above cannot be
applied in cells containing transversality violations. In such cases we
apply a different approach, namely we identify the position along each
edge of the cell where the norm |∆∆∆| is minimal and then sample this
same quantity along the 6 possible lines that connect these 4 minima,
seeking the minimal norm inside the cell. The motivation for this ap-
proach stems from the fact that one these lines should closely match
the stable manifold of a saddle-type fixed point.

5.6 Invariant Manifold Extraction
Eigenanalysis of the full-period STM (or monodromy matrix M in
Equation (10)) allows us to determine the stability type (saddle or cen-
ter) of each discovered fixed point (Equation 11). If a saddle type is
identified, the construction of the invariant (stable and unstable) mani-
folds constitutes the last step of the topology extraction and we derive
eigenvectors and stability index (Equation 13) from M .

Prior work [17, 13] directly applied to the construction of invariant
manifolds a method proposed by England et al. [4], which proceeds
through a series of two-point boundary problems that aim to ensure
smoothness and fine sampling of the manifold. Unfortunately, this so-
lution does not handle the issue raised by transversality violations in
the CR3BP , nor does it provide any guidance to accommodate the nu-
merical challenges associated with this particular system. We describe
in the following our improvements of this method.

Manifold Extraction with Curve-Refinement. Consider two adja-
cent positions φφφ i and φφφ i+1 that form a segment w = φφφ iφφφ i+1 on the
manifold. We further assume that both positions are close enough such
that linear interpolation between these two positions yields positions
that are themselves on the manifold. Applying the Poincaré map P p

to any such intermediate position will result in a new position further
downstream on the manifold. Refer to Fig. 5 (top). The basic idea
of the algorithm by England et al. [4] is that adaptive sampling of the
segment w by the Poincaré map, controlled by curve quality checks,

1Saddles are far more challenging to extract than centers and much more
likely to explain situations of failed convergence

Fig. 5. Top: Schematic of a 1D invariant manifold curve on the Poincaré
section. Bottom: Generating new downstream manifold points and seg-
ments through a transversality violation.

allows one to construct the next segment = φφφ i+1φφφ i+2 on the manifold
and ultimately extract the entire manifold by repeating this operation,
see Fig. 5. Our solution follows the same approach while simultane-
ously checks for Poincaré map discontinuities along the way, thereby
explicitly handling transversality violations.

The heuristics for detecting transversality violations during
Poincaré index evaluation are reapplied alongside the curve-
refinement criteria. If a downstream transversality violation is detected
between consecutive segment samples, the segment is bisected on that
interval. Subdivision continues until the distance between consecu-
tive points reaches a user-prescribed minimal distance (umin, which
corresponds to a relative distance ∆τmin). An example is depicted in
Figure 5 (bottom) where downstream mappings are color-coded by
their initial position on the active segment: a downstream transversal-
ity violation exists between φφφ i and the midpoint xxxmw, and subdivision
localizes the separation condition when the parameter differential is
below ∆τmin.

Seeding an Invariant Manifold on the Poincaré Section. A small
step away from a fixed point along an appropriate eigenvector direc-
tion approximates an initial state on the invariant manifold; yet, the
step along the eigenvector creates a perturbation in all 4 dimensions
of the CR3BP. Unfortunately, direct projection of the eigenvector onto
the hyperplane Σ yields a vector that inadequately characterizes the
on-section manifold curve. Consider the example of the 4D step from
a fixed point (xxx∗ defined on the hyperplane Σ ) onto the eigenvector
νννS+. The on-section normalized representation of the same invari-
ant manifold space, defined as uuuU/S, is then created by propagating
xxx∗ ± εNνννU/S to the nearest crossing of Σ . uuuU/S represents the cor-
rect eigenvector projection onto section coordinates and our algorithm
begins by taking a small step onto this projection.

Stopping Criteria. While the initial manifold construction method [4]
used a simple limit on the total arc length to stop the progression of
the algorithm, more recent work has shown that manifolds encounter
other saddle points in the same island chain, a case that is prevalent
in the CR3BP. Practically, we found two criteria primarily effective in
controlling the length of a manifold.

The first stopping criteria tracks a practical measure for spacecraft
trajectory planning. We saw previously that the manifold construc-
tion algorithm essentially maps upstream segments to downstream
segments, thereby creating a parent-child relationship between them
(see also discussion in Sect. 6.3). Our algorithm caps the manifold
progression by stopping when the depth of this relationship reaches a
maximum depth dw,max = 5.
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The second stopping condition observes simultaneous advection of
manifolds from the same periodic orbit for the detection of saddle-
loops. Newly-generated downstream segments from both the stable
and unstable manifolds of the same periodic orbit are compared to
detect if a segment crossing occurred.

Screening Computations Given the high computational cost of man-
ifold construction, and in the interest of efficiency, we perform several
tests beforehand to prevent unnecessary computations.

An effective way to accelerate the extraction of manifolds is to pre-
screen for potentially impractical structures for spaceflight, i.e., peri-
odic orbits with exceptionally high instabilities. A threshold cutoff is
established on stability index magnitude at |νSI |> 106 (refer to Equa-
tion 12) for manifold extraction. In addition, more screening (or a
lower |νSI | cutoff) reduces the overall workload required by PMATE
and is often implemented in practice. Suggested thresholds are listed
in Table 1.

A second important observation is that a lower bound is necessary
for umin (which regulates upstream manifold segment subdivisions) as
a transfer stipulation for realistic spaceflight. Error in real-world de-
vices such as sensors and engines translate into limitations on state
acquisition and deliverable maneuvers; if a particular transfer requires
that the position and velocity match a desired state to 10−6 m and 10−6

m/s, for example, that trajectory may not be flight worthy as many in-
struments cannot deliver that level of accuracy [19, 5]. Spacecraft state
determination outside of low Earth orbits is limited to an accuracy of 3
km for position and 0.1 mm/s for velocity based on measurement error
of standard capabilities [21]. Practically, we require umin values above
2×10−5 (nondimensional map displacement) for the Earth-Moon sys-
tem, which is equivalent to 2.05 cm/s for velocity and 7.69 km for po-
sition. Note that the value of umin is different across CR3BP systems.
Refer to Table 1 for suggested values.

System umin ∆min ∆max αmax (∆α)max |νSI |max

EM 2×10−5 1×10−5 0.1 0.3 (17.2◦) 0.001 2.5×103

ST 4×10−6 1×10−6 0.05 0.1 (5.7◦) 0.001 2.5×103

SEnc 1×10−6 1×10−6 0.05 0.1 (5.7◦) 0.001 5.0×103

Table 1. Heuristic parameters employed for invariant manifold advection
in the indicated CR3BP systems. Phase space displacement values are
listed in nondimensional units.

6 APPLICATIONS TO ASTRODYNAMICS

Periodic orbits and associated invariant manifolds supply a rich dy-
namical knowledge that is essential for a versatile spaceflight design
platform. As shown in the following, interactive selection of arcs and
design node links broadens the design possibilities with new options
and the ability to quickly examine trade-space decisions.

6.1 Analysis of Novel Periodic Orbits
Our fixed point extraction easily locates periodic orbits that are found
through conventional analysis (e.g., members of the Lyapunov and res-
onant orbit families). In addition, our method reveals many periodic
orbits that are either challenging to discover with traditional analysis
in general, or previously unknown.

Earth-Moon System. At a Jacobi constant level of C = 3.2, the closed
L1 and L2 gateways prohibit flow between the primaries, yet chaos is
still present. Our results, displayed in Figure 6, reveal saddles and cen-
ters grouped in island chains and saddle-type fixed points within the
limited chaotic regions. The periodic orbits in Figure 6 are displayed
in the xy plane (x-axis in red, y-axis in green). In Figure 6 and sub-
sequent images, fixed points belonging to the same periodic orbit are
marked with the same color. At C = 3.2, transversality violations are
rare within the analysis domain since the chaos is bounded, and the
fixed point extraction is relatively straightforward with little use for
cell subdivision.

A more complex yet practically relevant case resides at an energy
level where chaos exists throughout the planar flow space. The Earth-
Moon system with C = 2.96 permits trajectories everywhere in the xy

Fig. 6. Fixed points and selected periodic orbits found in the Earth-Moon
system at C = 3.2.

plane. Broader sampling parameters are applied over a larger analysis
domain (see Trial 1 in Table 2). We obtain a set of fixed points through-
out DEM with sparse behavior capture near lunar vicinity. Therefore,
a more refined extraction is performed near the Moon. Refer to Trials
2, 3, and 4 in Table 2. As shown in Figure 1, the fixed points extracted
for C = 2.96 in the EM system are numerous, reaching a total of 1450
distinct periodic orbits.

Trial C Domain (x, ẋ) (nondim) Resolution lmin pmax

0 3.2 [0.4,1.1]× [−2.5,2.5] 24×16 8×10−5 12
1 2.96 [0.4,1.1]× [−2.5,2.5] 24×16 8×10−5 12
2 2.96 [0.9,1.0]× [−1.5,1.5] 8×8 2×10−5 12
3 2.96 [0.78,0.92]× [−0.4,0.4] 8×8 2×10−5 6
4 2.96 [0.9925,1.08]× [−0.2,0.2]} 6×6 2×10−5 4

Table 2. Parameters used in the Earth-Moon system.

The identified periodic orbits are then inserted in a large data base,
along with their integral period, stability type, |νSI |, spatial coordi-
nates as well as overall time period. The corresponding Orbit IDs are
listed on the sample orbits shown in Figure 1 for easy reference during
sample design scenarios.

Among the fixed points found at C = 2.96, many novel saddle-type
periodic orbits were identified. As shown in Figure 1, several periodic
orbits are commonly known such as Orbit 4 (the L1 Lyapunov), Orbit
23 (1:2 resonant orbit), Orbit 49 (stable 3:2 resonant orbit), Orbit 51
(unstable 3:2 resonant orbit), and Orbit 50 (the p = 3 unstable DRO -
quasi-periodic island near the Moon) [16, 3, 1]. Several orbits, though,
transit between the interior and exterior regions (such as Orbit 1433)
and DRO vicinity to exterior or interior (Orbits 229, 826, and 1357).
Yet others like Orbit 1439 visit all the aforementioned regions, per-
haps making such orbits potentially useful for transfer design. And
though the analysis is only performed within the primary analysis do-
main DEM on the Σ : y = 0 Poincaré section (as per Table 2) an abun-
dant number of unstable periodic orbits that cross this section travel to
L3, L4, and L5 vicinities. Clearly, our results offer a vivid dynamical
understanding of this particular system.

6.1.1 Saturn-Titan System
Employing a primary analysis domain similar to DEM with support-
ing refined domains (see Table 3), our method discovers 845 distinct
periodic orbits ranging up to period p = 12 at C = 3.00 in the Saturn-
Titan system. These periodic orbits, shown in Figure 7, encompass the
more traditional orbits and several periodic paths that transition be-
tween various regions. Orbits in the vicinity of the DRO (Figure 7(b))
may hover around Titan, transit to the interior or exterior, or visit mul-
tiple areas of phase space up to a limit in the interior. The crossing
locations of the inner-moon orbits are also indicated in Figure 7(a). At
this particular energy level, saddle-type periodic orbits reside in fairly
close proximity to the listed interior Saturnian moons, but manifold
extraction is necessary to determine if any low-cost transfers from ei-
ther the Saturn-Titan exterior or Titan vicinity to such orbits exist.
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Trial C Domain (x, ẋ) (nondim) Resolution lmin pmax

0 3.00 [−0.4,1.1]× [−2.5,2.5] 24×16 8×10−5 12
1 3.00 [0.932,0.986]× [−0.136,0.136] 8×8 2×10−5 6
2 3.00 [0.98,1.05]× [−0.225,0.225] 10×10 2×10−5 6

Table 3. Parameters used in the Saturn-Titan system.

(a) Primary analysis domain

(b) Area near DRO

Fig. 7. Fixed points available at C = 3.00 in the Saturn-Titan system.
This is the collective result for the trials in Table 3.

6.2 Poincaré Map Topology Structure

With fixed points extracted, the complete Poincaré map topology
structure is characterized by means of our invariant manifold extrac-
tion algorithm, which is first demonstrated in the Earth-Moon system
at C = 3.2. The large-scale topology extraction result appears in Fig-
ure 8 with unstable manifolds (WU ) and stable manifolds (W S) colored
in red and blue, respectively. At C = 3.2, invariant manifolds are ex-
tracted throughout the chaotic areas, thoroughly filling in the phase
space areas between quasi-periodic islands. Our algorithm captures
saddle-center island chains except on some islands near the Moon.
Difficulties near the Moon can be explained by numerical sensitivity
and numerical error build-up during integration as trajectories pass ex-
ceptionally close to the singularity multiple times before completing
the p-th iterate. As with fixed point extraction, advecting invariant
manifolds for the Earth-Moon system at C = 3.2 is not as challenging
as at other Jacobi constant values since fewer hyperplane transversal-
ity violations are encountered. In fact, this manifold set is processed
without stability index pre-screening and still completes the advection
procedure faster than systems with open gateways. Yet, some chal-
lenges in describing the Poincaré map topology skeleton are visible
in a close-up representation (Figure 8(b)). Artifact segments shortcut
some tight bends in both manifold types, but these are merely caused
by loose curve-refinement parameters. Chaotic tangles, on the other
hand, strongly influence the generation of invariant manifolds, espe-
cially as a manifold is advected towards the origin fixed point of the
opposing stability type. As evidenced by the tri-lobe structure in Fig-
ure 8(b), it is unclear if the computed structure is a pure saddle-loop (a
completely connected tri-petal flower) or if the chaotic tangle oscilla-

tions in the manifold are the true projection of the invariant manifold
streamsurface. Nevertheless, the computed topology skeleton is still
an applicable representation of manifold behavior for design practices.

(a) Primary analysis domain DEM

(b) Zoom-in on indicated domain

Fig. 8. The Poincaré map topology skeleton (WU in red and W S in blue)
computed with the manifold extraction algorithm in the Earth-Moon sys-
tem within the domain DEM at C = 3.2.

The Poincaré map topology is next extracted on a section with open
gateways. At C = 2.96 in the Earth-Moon system, advection produces
a depiction of both stable (blue) and unstable (red) manifolds for the
periodic orbits shown in Figure 9. Individual stable and unstable man-
ifold skeletons appear in Figures 10(a) and 10(b), respectively. Limits
on base orbit stability index (|νSI | ≤ 2500) screen considered fixed
points to reduce overall computation during the advection procedure,
cutting in half the number of saddle-type orbits included. Even with a
selective range on νSI , the advected set of manifolds populate almost
the entire chaotic region. As shown by the W S portrait in Figure 10(a),
the only areas within the chaotic sea without stable manifolds are as-
sociated with trajectories that escape the entire Earth-Moon system.
Knowing this highly detailed stable manifold structure, a spacecraft
in almost any location within the applicable chaotic sea can reach a
stable manifold of some fixed point with a small ∆V . This rich un-
derstanding of the available flow is extremely beneficial to spaceflight
applications as nearby paths to almost any Poincaré section state are
revealed.

In the Saturn-Titan system, the manifold advection algorithm pro-
duces results similar to the Earth-Moon system at C = 2.96 with open
gateways. Invariant manifolds are displayed in the Saturn-Titan sys-
tem at C = 3.00 below in Figure 11. Again, limits on considered pe-
riodic orbits via stability index prevent tedious advection. A depic-
tion of stable manifolds and fixed points in Titan-vicinity appears in
Figure 6.2. Once more, the invariant manifolds create a comprehen-
sive skeleton in the chaotic zones. The dense structures near Titan
offer many options for heteroclinic transition between periodic orbits.
The inner moons Mimas, Enceladus, Tethys, Rhea, and Dione are also
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Fig. 9. The Poincaré map topology skeleton (WU in red and W S in blue)
computed in the Earth-Moon system at C = 2.96.

added to Figure 11 as white dots. Clearly, Rhea and Dione are accessi-
ble at this energy level with a multitude of invariant manifold structure
of the Saturn-Titan system intersecting the indicated positions. Yet,
the other interior moons are only accessible with a saddle in bounded
chaos, meaning a substantial maneuver (∆V > 500 m/s) is necessary
for a spacecraft to cross over the multiple layers of bounded dynam-
ics. Saddle-center island chains outline the dynamical boundaries of
the problem towards the inner moons like Tethys and Enceladus and
could be useful for design practices. The natural dynamics pathway
to the inner moons, however, should employ the gravity fields of other
moons like Rhea and Dione to assist a spacecraft over the regions of
bounded dynamics in the Saturn-Titan system. Here, the Poincaré map
topology skeleton in the CR3BP provides alternative pathways to ini-
tialize or finalize a moon-tour trajectory.

6.3 Extracting Discrete Arcs on Invariant Manifolds
Exploiting Poincaré map topology for design purposes requires the
ability to access any arbitrarily selected state on an invariant mani-
folds. The goal is either to reconstruct the upstream pathway to a cur-
rent selection point or the downstream pathway beyond the selection
state. Constructing the downstream destination of a selection point is
simply a downstream integration of the dynamics from the selected
point. Upstream propagation, on the other hand, defines how the tra-
jectory progresses from the base periodic orbit downstream to arrive
at the selected manifold state. In either case, a discrete arc at a user-
selected invariant manifold state is extracted by first isolating which
manifold and segment correlates with a user selected location from
the visualization. Recall that our algorithm constructs invariant man-
ifolds on a Poincaré section as a series of linear segments connecting
adjacent map states (φφφ i). Given the highly sensitive nature of the state
selection process, the low-precision selection in image coordinates is
mapped to a double precision selection via a hash table. Converting
the line segment selection within the visualization to a manifold seg-
ment then yields the source manifold and the originating periodic orbit
for additional arc-extraction procedures.

Even with the user-selected invariant manifold state, additional ad-
justments are necessary to reproduce the upstream pathway of the se-
lected state. Indeed, propagation of the extracted state xxxc(u) upstream
is bound to fail due to the repelling action of the manifold on the neigh-
boring flow [8].

Upstream manifold arc reconstruction circumvents the aforemen-
tioned challenges thanks to a data structure constructed by our mani-
fold advection procedure. The algorithm advects states sampled from
an upstream manifold segment to create a group of new downstream
segments thereby linking upstream segments as the parents of spawned
downstream segments (or child segments). This parent-child relation-
ship among segments allows for the organization of segment data into
a manifold segment tree. To illustrate, sample manifold segments
near the start of the advection procedure are arranged as a staircase
schematic indicating depth levels (dw) in Figure 12; each step down

(a) Stable manifolds

(b) Unstable manifolds

Fig. 10. Stable and unstable manifolds on the Earth-Moon system do-
main DEM at C = 2.96.

symbolizes the downstream progression to the next group of segments
at after p map iterates.

The manifold segment tree links an arbitrarily selected manifold
state (xxxc(u)) on a known manifold segment back to the initial man-
ifold segment to trace out the upstream arc. Let us consider a user-
selected child segment (c) and the corresponding parent segment w.
The parameter τ identifies a position on the parent segment, and the
values τ0 and τ1 locate the segment w states xxxw(τ0) and xxxw(τ1), respec-
tively. The mappings of xxxw(τ0) and xxxw(τ1) are previously employed
by manifold advection procedures to produce the endpoints of Seg-
ment c. Since the user-selected point xxxc(u) resides between φφφ k and
φφφ k+1, a corresponding initial state exists on the parent segment be-
tween xxxw(τ0) and xxxw(τ1) that maps downstream to xxxc(u). Let xxxw(τu)
represent the upstream mapping of xxxc(u) such that the linear parameter
τu locates xxxw(τu) on Segment w (τ0 ≤ τu ≤ τ1). If the parent τ value,
or source value, is stored with every manifold point, then the upstream
mapping of the user-selected state xxxc(u) can be extracted for a single
tree-depth level (−p iterates) by linear interpolation between xxxw(τ0)
and xxxw(τ1). Reconstructing the full set of upstream nodes to Segment
0 is achieved by repeating this procedure. Thus, the upstream pathway
is formed without numerical integration, which is extremely powerful
for interactive analysis. A similar procedure can also be implemented
to reconstruct iterates downstream of a selection if downstream nodes
exist in the manifold segment tree.

Tracking Relevant Quantities. The manifold tree used to organize
the manifold information is also applied to store different quantities
along the invariant manifold. Quantities that are relevant to a design of
interest, including closest approach to a singularity and time of flight
are already considered during the advection algorithm to heuristically
test for transversality violations; storing this design data within the
manifold segment tree permits the quick retrieval of transfer informa-
tion without actually evaluating the entire manifold trajectory through
propagation. Tracked information greatly assists the interactive de-
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Fig. 11. The Poincaré map topology skeleton (WU in red and W S in blue)
in the Saturn-Titan system at C = 3.00.

Fig. 12. As the invariant manifolds are progressed via curve-refinement,
the spawning of new manifold segments generates a tree structure that
can be employed for accessing data.

sign process as designers examine the trade space of available arcs for
a minimal transfer flight time or for invalid transfers that get too close
to a celestial body.

Interactive Definition of Heteroclinic and Homoclinic Connec-
tions. With the capability to reconstruct an upstream arc from an
arbitrary manifold state, the extraction of heteroclinic (Hc) and ho-
moclinic (Ho) connections is now a trivial matter. If the point selec-
tion coincide with both a stable and an unstable invariant manifold,
the point represents a discrete trajectory connection between the two
manifold types as well as a natural pathway between the two base pe-
riodic orbits. Time of flight for the whole connection is collected as
the summed contribution of the two arcs back upstream to Segment 0
without propagation. The approximated time of flight for a selected
transfer can be easily shown as text next to the green connection point.
Numerous free-connection possibilities exist between saddle-type or-
bits, but the ability to examine data allows a designer to quickly search
for a superior option.

6.3.1 Defining Practical Arrival (or Departure) Points

A practical entrance point (or departure point) is established for man-
ifold arcs and connections. With upstream arc reconstruction, trac-
ing a user-selected manifold arc closer to the root segment generates
a geometry that appears like many revolutions of the periodic orbit.
Upstream arcs near the highest segments in the manifold segment
tree are not revolutions of the periodic orbit by definition; however,

the upstream portions do closely resemble the periodic orbit. Even
though the spacecraft is still on the invariant manifold in transit, the
asymptotic approach path closely mimics the intended periodic orbit
such that operations and scientific measurements may start long before
reaching the manifold termination segment (Segment 0 upstream).

Thus, the orbit arrival (or departure) point for an invariant manifold
arc is achieved when the downstream manifold position surpasses a
given distance δW away from the closest position on the corresponding
periodic orbit. Geometric similarity considers the entire numerically
simulated pathway, so this practical orbit arrival (or departure) process
should only be applied after a design is crafted. In the Earth-Moon sys-
tem, the value of δW is selected as 8000 km for weak-strength man-
ifolds and 1000 km otherwise. Different CR3BP systems require ad-
justments to δW to accommodate the modified dynamics.

6.4 Design Elements of Poincaré Map Topology in the
Earth-Moon System

Manifold arc selection offers a key tool for design construction with
Poincaré map topology. Consider the smaller topology skeleton sub-
set that includes just the invariant manifolds of the L1 Lyapunov and
the p = 3 unstable DRO, see Figure 13. The subsample of manifolds
appears on the Poincaré section with the W S and WU pair colored with
black and crimson for the L1 Lyapunov and with blue and red for the
p = 3 DRO, respectively. A L1 Lyapunov stable manifold arc (black)
and a p = 3 DRO stable manifold arc (blue) are selected at the indi-
cated locations on the Poincaré section (Figure 13(a)) that originate in
the interior region. Both resulting arcs (shown in the rotating frame
in Figure 13(b) and in the inertial frame in Figure 13(c)) demonstrate
an elliptical orbit around the Earth before a second passage where the
CR3BP dynamics shift the trajectories towards asymptotic approach
of the respective orbits. The time of flight of the transfer trajectory
considers the propagation time from the initial selection point until the
geometric similarity condition between the manifold and desired or-
bit (see Section 6.3.1). The black arc enters the L1 Lyapunov orbit at
the practical arrival condition after 38.10 days whereas the blue arc
practically arrives in the p = 3 DRO after 88.14 days. Clearly, the
arc selection capability enhances quick design construction by readily
incorporating many ballistic capture trajectories.

6.5 Sample Connections Between Saddle-type Orbits
Heteroclinic and homoclinic connections between the L1 Lyapunov or-
bit and the p = 3 DRO are quite simple to extract from Poincaré map
topology with manifold selection capabilities. Any intersection of sta-
ble and unstable manifolds offers a pathway between their respective
fixed point, so a multitude of options exist to exploit natural dynam-
ics to transfer between the two orbits. Also apparent in Figure 13(a)
are green points that signify selected heteroclinic connections between
the p = 3 DRO and L1 Lyapunov orbit in the interior region (Hc,i1 and
Hc,i1) and the exterior region (Hc,i1 and Hc,i1). A homoclinic con-
nection for the L1 Lyapunov orbit also appears in Figure 13(a) as the
point Ho at the intersection of a crimson WU and a black W S. The
chosen interior connection arcs are displayed in Figure 14 while the
exterior connections appear in Figure 15. The simplicity of formulat-
ing free-flowing connections between unstable periodic orbits assists
designers in evaluating different trade studies to align timing possibil-
ities.

Additional connections are also easy to formulate between a wide
variety of periodic orbits. An interesting transfer is demonstrated start-
ing at the p = 3 DRO and departing to the rather exotic orbit that visits
L3 and L4 vicinities while also closely approaching the Moon sev-
eral times. We refer to this orbit as Orbit O∗ in the following. The
invariant manifold curves of that orbit (displayed in Figure 16 with
indigo and tan colors) indicate that a lot of Poincaré section locations
naturally flow into this orbit with the large dispersion of stable man-
ifolds. A transfer from the p = 3 DRO to this orbit is represented
by any red-indigo intersection, and a selected option demonstrates a
transfer possibility as shown in Figure 16(b). The richness of PMATE
manifold information combined with the the ability to construct het-
eroclinic connections with ease highlights essential orbits for use as
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(a) Manifolds of the L1 Lyapunov and p = 3 DRO periodic orbits

(b) Selected arcs (rotating frame) (c) Selected arcs (inertial frame)

Fig. 13. Invariant manifolds for the L1 Lyapunov and p = 3 DRO saddle-
type orbits extracted with PMATE in the Earth-Moon system (C = 2.96).
Selected stable manifold arcs are displayed in the rotating (b) and iner-
tial (c) frames.

intermediate transfer candidates with a high degree of transfer central-
ity as indicated through manifold dispersion.

7 CONCLUSION

We have presented an algorithmic solution that enables the automatic
extraction of the topology in the circular restricted three body prob-
lem, specifically periodic orbits and associated invariant manifolds. In
particular, we have discussed the challenges that are specific to this
type of system and proposed a range of improvements over existing
methods to address them.

As we have shown, our method exposes the connectivity of orbital
structures, which offers spacecraft trajectory designer a broad range of
options without external computation. Our experimentation with this
approach suggests that a designer could employ automated topologi-
cal skeletons as an input catalog to select pathways that navigate the
available dynamical flow. By selecting stable and unstable manifolds
of various fixed points that are available on a Poincaré map, low-cost
transfers are simply traced through the stable-unstable manifold net-
work since all of the relevant orbital data is automatically generated
as part of the process. With our proposed manifold construction, lin-
ear intersections tests for the numerous segments of the manifolds can
autonomously deliver the ∆V -free connections between periodic orbits
for additional design options during path planning. In the future, a log-
ical step towards limiting computation exists, namely finding periodic
orbits that are central to the problem, driving the underlying topology.
Restricting the visual analysis to just those central orbits could greatly
reduce the computational effort, but a function to determine orbit cen-
trality is still an open problem.
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folds. Celestial Mechanics and Dynamical Astronomy, 116(3):299–323,
July 2013.

[8] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross. Heteroclinic Con-
nections between Periodic Orbits and Resonance Transitions in Celestial
Mechanics. Chaos, 10(2):427–469, 2000.

[9] A. J. Lichtenberg and M. A. Lieberman. Regular and Chaotic Dynamics.
Springer-Verlag, New York, New York, 2nd edition, 1992.

[10] M. W. Lo, R. L. Anderson, G. Whiffen, and L. Romans. The Role of In-
variant Manifolds in Low Thrust Trajectory Design (Part I). In AAS/AIAA
Spaceflight Dynamics Conference, Maui, Hawaii, February 2004. Paper
AAS 04-288.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes: The Art of Scientific Computing. Cambridge University
Press, New York, 3rd edition, 2007.

[12] S. D. Ross, W. S. Koon, M. W. Lo, and J. E. Marsden. Design of a multi-

10



Online Submission ID: 0

(a) Hc,e1 (∆t = 219.38 days) (b) Hc,e2 (∆t = 128.83 days)

Fig. 15. Maneuver-free connections between the L1 Lyapunov orbit and
the p = 3 DRO constructed through interactive selection of manifold in-
tersection states.

moon orbiter. In AAS/AIAA Space Flight Mechanics Meeting, Ponce,
Puerto Rico, February 2003. Paper AAS03-143.

[13] W. Schlei, K. C. Howell, X. Tricoche, and C. Garth. Enhanced visualiza-
tion and autonomous extraction of poincaré map topology. The Journal
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