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Abstract We present a technique to automatically characterize the geometry
of important anatomical structures in diffusion weighted MRI (DWI) data. Our
approach is based on the interpretation of diffusion data as a superimposition of
multiple line fields that each form a continuum of space filling curves. Using a
dense tractography computation, our method quantifies the spatial variations of
the geometry of these curves and use the resulting measure to characterize salient
structures as edges. Anatomically, these structures have a boundary-like nature
and yield a clear picture of major fiber bundles. In particular, the application of
our algorithm to high angular resolution imaging (HARDI) data yields a precise
geometric description of subtle anatomical configurations associated with the local
presence of multiple fiber orientations. We evaluate our technique and study its
robustness to noise in the context of a phantom dataset and present results obtained
with two diffusion weighted brain images.

1 Introduction

Diffusion weighted imaging (DWI) is a medical imaging technique that measures
the anisotropic Brownian motion of water molecules in fibrous tissues and enables
their in-vivo investigation. The modeling of the measured multidirectional diffusion
information through a second-order tensor, known as diffusion tensor MRI (or DTI),
is an important tool for the analysis of the brain’s white matter structure [2, 3, 22]
and the heart’s myocardium [18, 19, 36, 41]. Yet, the gaussian diffusion model used
in DTI is unable to adequately model complex diffusion patterns that are common
in the white matter such as crossing, fanning, or bent fibers. In such cases, an
alternative imaging modality known as high angular resolution diffusion imaging
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(HARDI) proves superior. In HARDI, the measured information is amenable to an
orientation distribution function (ODF) that may be described by a higher-order
tensor [16, 20, 33] or a band-limited expansion of spherical harmonics [14, 37, 38],
which allows one to identify several co-existing significant diffusion directions
within a voxel.

Irrespective of the considered diffusion model, the interpretation of the resulting
images requires the challenging analysis of a high-dimensional data space. The two
main approaches used to facilitate this task are tractography and scalar measures. In
tractography one integrates along the dominant diffusion direction(s) to approximate
fiber tracts and derive a white matter connectivity map. Both fiber tracts geometry
and corresponding connectivity map, in turn, can be used to identify major fiber
bundles, which has various clinical applications [39]. The second approach exploits
scalar measures derived from the diffusion data, such as fractional anisotropy (FA),
or Generalized FA (GFA), for segmentation and analysis [24, 25, 34].

In recent years significant advances in the structural analysis of diffusion tensor
fields have been achieved through the extraction of so-called ridge and valley
(jointly, crease) manifolds from tensor invariants [23, 25]. While crease manifolds
have proven successful at characterizing major white matter structures in DTI, no
similar investigation was carried out in the context of HARDI problems. Following
a different approach, methods considering the end positions of fiber traces in a dense
tractogram have been shown to characterize interesting anatomical structures in DTI
datasets of the brain’s white matter and the heart’s myocardium [15, 17].

The approach presented in this paper builds upon a new model of the boundaries
of anatomical structures in diffusion weighted MRI as edges of a continuous
mapping between spatial locations and the geometric signature of the fiber traces
that run through them. By adapting to this geometry-valued setting edge detection
techniques devised for scalar images, our method is able to properly characterize
subtle anatomical structures in both DTI and HARDI.

Our work advances the state of the art in three significant ways. First, our edge
strength measurement is fundamentally nonlocal while prior methods that consider
scalar invariants [23, 25] focus on local properties. Second, in contrast to methods
that focus on the end points of fiber traces [15, 17], we do not rely on any particular
model of curve separation to measure fiber distances and derive a spatial gradient.
Third, unlike fiber clustering methods [5, 6, 32], we are not interested in forming
bundles from a discrete set of fibers though we are able to explicitly characterize the
geometric structures that form the boundaries of fiber bundles.

The main contributions of this paper are

• A novel model that defines structure boundaries as edges of a fiber-valued
mapping;

• A tractography-based edge detection method that extracts structures from diffu-
sion weighted MRI;

• A simple conceptual framework applicable both to DTI and HARDI data, that
performs well in regions with challenging fiber structures.
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The rest of this paper is organized as follows. Section 2 summarizes related
work. The details of our edge detection method are provided in Sect. 3 while Sect. 4
presents a number of visualization approaches derived from the measured edge
strength to improve the understanding of the anatomical structure information from
the DWI signals; Sect. 5 documents the results of our edge detection method on
several DWI datasets; and Sect. 6 presents our conclusions and discusses future
work.

2 Related Work

We briefly review in the following relevant prior work in DTI and HARDI
visualization and analysis.

2.1 Tractography in DTI and HARDI

Tractography is a technique that estimates the trajectories of neural tracts from
diffusion weighted MRI data. It provides an effective way to model and analyze
the fiber tracts in the white matter, and has further been used to study the structure
and connectivity of the human brain [21, 26]. Both in the visualization and medical
imaging communities, many methods have been proposed based on the streamline
algorithm to perform the tractography in DTI. Assuming the major eigenvector
is parallel to the local fiber orientation in each voxel, it is possible to integrate a
pathway using numerical integration methods include Euler’s method or Runge-
Kutta method [4, 8, 31]. Later, several methods using the local diffusion tensor
to deflect the incoming direction instead of the major eigenvector are introduced
to solve the problem when tracking trough regions of planar anisotropy [27, 47].
Also, streamtubes and streamsurfaces were used to visualize diffusion weighted
MRI data [48]. Moreover a MLS-based regularization technique was used to allow
tracking to cross noisy regions and gaps [51].

Tracking fibers in higher order tensor (HOT) was first proposed Hlawitschka and
Scheuermann as HOT-lines [16]. Schultz and Seidel [33] and Jiao et al. [20] later
improved these kind of techniques by introducing tensor decomposition methods to
find the local orientations in each step during the integration.

2.2 Diffusion Weighted MRI Analysis

In the medical imaging community, a number of clustering methods which group
fiber tracts into anatomical meaningful bundles were used to analyze and investigate
information from diffusion weighted MRI. O’Donnell et al. [32] presented a fiber
grouping approach that delineates fiber tracts that can be further analyzed for
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clinical research purposes. Brun et al. [6] proposed a fiber clustering method to
create a weighted undirected graph by comparing fiber tracts pairwise, and perform
segmentation in high dimensional space. Also, the same author used laplacian
eigenmaps to create a mapping fromDTI fiber tracts to a low dimensional Euclidean
space, thereby enabling a color coding of fiber tracts that enhances the perception of
fiber bundles and connectivity in the human brain [5]. Liang et al. [28] introduced a
technique to group fiber tracts into bundles using Nonegative Matrix Factorization
(NMF) of the frequency-tract matrix. Mai et al. [30] proposed a method to segment
fiber tracts based on a shape similarity measure. To that end they introduced a new
technique called Warped Longest Common Subsequence (WLCS), which was used
to speed up the segmentation process. Instead of explicitly delineating anatomical
structures such as boundaries between fiber bundles, all these fiber clustering
methods are interested in organizing a discrete set of fibers into bundles.

In the scientific visualization community, researchers have applied ridge and
edge detection methods which were originally developed by computer vision
community to the analysis of diffusionweightedMRI data. Kindlmann et al. [23, 25]
applied crease surfaces of FA to characterize important anatomical structures in
the brain. Extension of this work to ridge lines of FA as models of core lines
in fiber bundles was discussed in Tricoche et al. [40]. By defining gradients of
shape invariants and rotation tangents [24], Schultz and Seidel successfully extended
image processing techniques such as edge detection to diffusion tensor images [34].
However, all these methods focus on local properties and are not able to reveal
structures in sub-voxel level.

Also Schultz et al. considered tensor topology [10, 49] in the context of DTI [35]
but found the results to lack a clear interpretation. Instead they proposed an
alternative topological definition for DTI [35].

In a recent study, a generalized framework for creating super-resolution track-
weighed imaging (TWI) was introduced [7]. The intensity of an individual pixel on
the resulting image could be determined by a specific property, such as the fractional
anisotropy (FA), of the tensorlines which traverse this pixel or the spatial coordinates
of those tensorlines.

Most germane to the ideas developed in this paper are recent works applying to
tensor field and DTI visualization a technique previously used in flow visualization.
Specifically, Hlawitschka et al. [17] and Hlawatsch et al. [15] proposed to use
the rate of separation of neighboring fiber tracts as a measure of coherence in
DTI volumes. The resulting scalar quantity was able to show certain anatomical
structures in human brain and in dog heart.

3 Method

We aim to extract the boundaries of individual fiber bundles as edges of a fiber trace-
valued image that we derive from the DWI dataset via dense tractography. First, we
wish to motivate some of the choices made in the design of our method by briefly
discussing edge detection.
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3.1 Edges as Ridges

Edges are fundamental image descriptors in image processing and computer vision
and many different techniques have been devised for their extraction [29]. A
commonly used approach in that context characterizes edges in a 2-step process: it
first computes at each pixel an edge strength measure fromwhich the edge geometry
can then be obtained as curves (or surfaces in 3D) along which that edge strength is
locally largest.

While edge strength can be measured in scalar images in a variety of ways, we
only consider here the simplest possible definition, namely gradient magnitude.
Leaving aside for the time being the question of how to robustly compute this
gradient, we can see that identifying edges in fiber-valued images necessitates
a metric to measure distances, that is dissimilarities between neighboring fibers,
which in turn requires the choice of a fiber encoding that lends itself to meaningful
distance measures. Once a suitable edge strength has been computed across the
dataset, the geometry of the edges can be extracted as ridges of the corresponding
field [11].

3.2 Fiber-Valued Image Computation

To create a fiber-valued volume, we first compute a dense, full brain tractogram.
The 2nd-order Runge-Kutta method [4] is used to integrate tangent curves along the
major eigenvector of the diffusion tensor in DTI datasets. To increase the robustness
of our integration, a moving least-squares regularization procedure first proposed
by Zhukov and Barr [51, 53] is applied to the tensor field along the integration
path. This procedure has the double benefit of increasing the robustness of the
integration to the noise inherently present in the data and also to partially mitigate
the limitations of the tensor model in regions exhibiting fiber crossing. Indeed,
similar to the tensorline method [47], the MLS regularization effectively uses the
shape of the previously computed filtered tensor value along the curve to constrain
the range of directions that the next integration step may take.

Once the integration has been performed, each voxel is assigned an array of
3D positions that describe the geometry of the computed fiber. For the need of
subsequent processing, however, a different fiber encoding is needed.

3.3 Feature Encoding

With about a hundred vertices per fiber trace on average, the information associated
with each voxel is expressed in a fairly high-dimensional data space. In that
space, the straightforward Eulerean metric is both costly to compute and ineffective
as dissimilarity measure. Furthermore, the numerical criteria used to control the
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progression of the integration (e.g., a lower bound on fractional anisotropy as stop
criterion), produce fibers with a varying number of vertices.

To avoid these issues, we map the raw geometric information produced by the
fiber tracking step to a low-dimensional representation comprised of the first and
second moments of each fiber description [6]. The corresponding set of coefficients
f is given in Eq. (1).

f D .mx;my;mz; hxx; hxy; hxz; hyy; hyz; hzz/
|; (1)

where m D .mx;my;mz/
| is the mean vector of the vertices in 3D space, and

the terms h�;� are the independent coefficients of the (symmetric) square root of
their covariance matrix H. As a result, each fiber trace is represented by only 9
coefficients that are invariant under flipped fiber orientation. In all datasets we have
tested in Sect. 5, this simplification is good enough to capture the geometry of fiber
traces. For applications which the first and the second order moment is not enough
to distinguish the geometric difference between neighboring fiber traces, any higher
order moment could be employed to provide more dimensions in the feature space.

3.4 Edge Strength in Vector-Valued Images

The previous steps of the algorithm yield a volume dataset that associates each data
point with a 9D feature vector. To detect edges in this vector-valued image, we need
to evaluate its gradient. Our solution consists in computing a linear least squares
fit over the 26 neighbors of each voxel. Let fp denote the feature vector associated
with the voxel at position p, the desired linear fit at p is the solution of the following
expression:

Ap D min
8A2�9�3

X

q2N1.p/

jjA .q � p/ � �
fq � fp

� jj2: (2)

Here N1 designates the 1-neighborhood of p, which is comprised of its 26 direct
neighbors.

While the corresponding solution Ap could be used directly as approximation of
the gradient rfp, we adopt in this work a more robust approach. Following prior
work on tensor-based feature detection in color images [45], we frame our gradient
estimation problem as the construction of a structure tensor on a multichannel
volume with 9 parameters. Here, our structure tensor G is given by

G D

0

BBB@

f|x fx f|x fy f|x fz

f|y fx f|y fy f|y fz

f|z fx f|z fy f|z fz

1

CCCA ; (3)
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where the partial derivatives fx, fy, and fz at p are obtained directly from Ap as its
1st, 2nd, and 3rd columns. The bar N: indicates the convolution with a Gaussian filter
for increased robustness.

Finally, the edge strength s can be measured by a scalar invariant of the structure
tensor. Specifically, in our approach, we measure the edge strength as the major
eigenvalue of the structure tensor.

s D �max .G/ (4)

3.5 Extension to HARDI

The DT-MRI model has been shown to fail in regions containing multiple distinct
orientations [1, 12, 42]. The HARDI model presented by Tuch et al. [43, 44] extends
the single-tensor model to multi-tensor models or ODFs which can capture multiple
independent fiber orientations in each voxel, thereby allowing one to track fibers
across regions of complex crossing white-matter structures.

In this work, we define the nth higher order tensor which represents the estimated
fiber-ODF from DWI signals as follows.

D D
RX

rD1

v1
r ˝ v2

r ˝ � � � ˝ vnr ; (5)

where v are vectors and R D rank.D/. Further, following prior work we assume that
the tensors are supersymmetric, i.e., v1

r D v2
r D � � � D vnr . Unlike the DTI case, the

rank of the estimated higher order tensor is unknown. Assuming we are interested
in a low-rank approximation of the original higher order tensor, for a given rank
k < R, D can be decomposed into k rank-1 tensors.

D �
kX

rD1

wr
�
v1
r ˝ v2

r ˝ � � � ˝ vnr
�

; (6)

where kvrk D 1, and vr represent the possible fiber orientations at the location
whereD is estimated. The number k is determined through a simple heuristic method
described in [33].

Here we extend our edge detection approach discussed in the DTI Sect. 3.4
to HARDI model and improve the edge detection results by accounting for the
presence of multiple orientations in voxels.

For tractography we follow the deterministic higher-order tensor tracking algo-
rithm presented by Hlawitschka and Scheuermann [16] and Schultz and Seidel [33].
More specifically, at each step of the fiber integration, the rank � k decomposition
approach is employed to extract the possible fiber orientations from the higher-order
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Fig. 1 Case in which neighbor voxels have different number of fibers

tensor. Then an evaluation scheme is applied to find the best orientation, defined as
the one forming the smallest angle with the last integration step.

Similar to fiber tracking in DT-MRI, we perform a MLS-based regularization
to filter the higher order tensor at each integration step, namely we compute the
weighted average of the higher order tensor value within the filter kernel which in
this case is defined by the local diffusion ODF.

Unlike DTI, the result of our fiber tracking method on HARDI, for a particular
voxel p, could contain M fibers F0

p , F
1
p , . . . , F

M�1
p corresponding to distinct local

orientations o0
p, o

1
p, . . . , o

M�1
p . Figure 1 illustrates the case in which a different

number of fibers is found in voxel pi;j and its neighborhood in 2D.
Since multiple local line fields may coexist, we measure the overall edge strength

at a particular voxel p as the sum of individual edge strengths corresponding to fibers
Fm
p and their respective local orientation omp . For each possible local orientation o

m
pi;j

at voxel pi;j we first construct a local linear fit of feature vectors associated with
matching fiber orientations in its neighborhood. Practically, in each surrounding
voxel, the fiber with closest orientation to opi;j is included in the least squares fit.

As illustrated in Fig. 1, fiber F0
pi�1;j

, F0
piC1;j

, F1
pi;j�1

, and F0
pi;jC1

are selected by

fiber F0
pi;j while fiber F1

pi�1;j
, F0

piC1;j
, F0

pi;j�1
, and F1

pi;jC1
are selected by fiber F1

pi;j .

Note that fiber F0
pi�1;j

is selected by both F0
pi;j and F1

pi;j , but fiber F
2
pi;jC1

is never
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selected. Applying the above procedure, different fiber functions fmp are estimated
from different local fields of space filling curves, then the general derivatives are
computed as the mean of derivatives obtained from each fmp . As in the DTI case, the
structure tensor is employed for a robust estimate of the general derivatives.

G D
M�1X

mD0

0

BBB@

fmx
| fmx fmx

| fmy fmx
| fmz

fmy
| fmx fmy

| fmy fmy
| fmz

fmz
| fmx fmz

| fmy fmz
| fmz

1

CCCA (7)

Similar to edge detection in DT-MRI, the edge strength is measured by the major
eigenvalue of the structure tensor G in Eq. (4).

4 Visualization

The per voxel edge strength measured by our approach yields a scalar field by
applying the measurement to the entire domain of a dataset. Classical scalar field
visualization methods, such as isosurfaces and volume rendering are applicable
on the edge strength field. However the visualization technique introduced by
Hlawitschka et al. [17] which augments the edge strength by overlaying an
anisotropy-scaled RGB color map provides the information to identify typical
anatomical structures in DWI datasets, the high density of edges detected by our
approach could potentially cause visual clutter, especially in the brain dataset.
Therefore, in this paper, we split the result visualization into two steps:

1. Characterization of edges’ geometry by performing ridge extraction on a user
defined sweeping plane or region of interest. The extracted ridge lines/ridge
surfaces can further be filtered by the edge strength and ridge strength.

2. Visualizing the ridge lines/ridge surfaces by superimposing an anisotropy-scaled
RGB color map which shows the local orientation and fractional anisotropy (FA)
to provide the context information of the sweeping plane or the region of interest.

Furthermore, we propose to enhance the visualization result by rendering fiber
trajectories with ridge lines/ridge surfaces characterized from our edge strength
result (cf. Fig. 8). Hence, the ridge lines/ridge surfaces emphasize the boundary
of different anatomical structures while fiber trajectories convey the shape and
connectivity of neural tracts.
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5 Results and Discussions

Both synthetic and real data were considered to test the presented edge detection
approach. First, we focused on a publicly available phantom data to validate our
method against a known ground truth and investigate its robustness to various noise
levels (Sect. 5.1). Then we studied two human brain datasets (Sects. 5.2 and 5.3).

5.1 Phantom Data

We tested our approach on the phantom data used in the HARDI reconstruction
challenge 2013 [9]. The dataset with a b � value of 1200 s/mm2 and 32 directions
was used to test our method on DTI, and the dataset with a b� value of 3000 s/mm2

and 64 directions was studied to test our method on HARDI. For both DTI and
HARDI, two different signal-to-noise-ratio (SNR), 10 and 30, were tested to validate
our approach against noise. The original spatial resolution of the phantom is 50 �
50 � 50 with isotropic voxel size as 1.0mm and we measured the edge strength on a
discrete domain with spatial resolution 400 � 400 � 400 in both studies on DTI and
HARDI.

Figure 2 shows the edge strength computed from our method both on DTI and
HARDI as well as the ground truth. In single orientation regions, both DTI and
HARDI can reconstruct the correct orientation, and our approach can successfully
detect edges in those regions. In regions which contain crossing fiber tracts from
different fiber bundles, DTI leads to incorrect fiber traces. In contrast, the tensor

Fig. 2 A comparison of the ground truth and the results obtained by applying our edge detection
approach on the phantom dataset with different SNRs. Both red and blue cycles highlight the
regions where different fiber bundles intersect with each other. It is clear that the edge detection
results using DTI fail in those regions. On the other hand, the edge detection results using HARDI
delineate meaningful boundaries of fiber bundles similar to the ground truth
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decomposition method used in HARDI properly reconstructs the multi-orientation
in those regions. Our results in crossing fiber regions shown in Fig. 2 confirm that
the DTI results are not close to the ground truth while the HARDI results are
comparable to it.

A comparison of our method to the end-position tractography method [15] on
DTI is proposed in Fig. 3. Although both methods were implemented with the
MLS-based fiber tracking technique [52], the inconsistency of local orientations
introduced by DTI model in crossing regions causes incorrect end positions of
individual fiber traces. Therefore, using these end positions results a discontinuous

Fig. 3 A detailed comparison of the end-position method and the presented method on phantom
dataset. First row visualizes the side-by-side comparison of the edge strength computed from these
two methods. Second row shows the ridge surfaces characterized from the edge strength fields.
Differences between these two methods are highlighted by red arrows
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edge strength measurement in FSR. On the other hand, the fiber function estimated
by entire fiber traces generates a smooth and consistent result in our approach. The
first column shows the edge strength measured by end-position method and our
approach on one slice of the YZ plane in the phantom dataset. In single orientation
regions, the edge strength measured by our approach is smoother and less influenced
by the inconsistency of local orientations caused by noise than the end-position
method. The second column shows the characterized ridge surfaces using the same
ridge extraction method [13] on edge strength measurement fields generated by
end-position method and our approach. Comparing these two ridge surfaces, a
significant number of disconnected components and cracks exist in the result of
the end-position method.

Finally, the renderings in Fig. 4 show the extracted ridge surfaces from the edge
strength on HARDI with SNR = 30 and the boundaries from the ground truth.
A unique color was assigned to each fiber bundle, therefore, the correspondence
between the characterized ridge surfaces from our edge strength measurement and
the actual boundaries of different fiber bundles is clearly shown in these renderings.

5.2 IIT2 Human Brain DTI Template

The first in vivo human brain used to test our approach is the public IIT2 human
brain DTI template [50]. The original spatial resolution is 181 � 217 � 181 with
isotropic voxel size as 1mm and the edge strength was measured on a discrete
domain with spatial resolution 724 � 868 � 724 which is 4 times larger in each
dimension. The relevant fiber tracking parameters are: step-size = 0.1mm and
maximum fiber length = 30.0mm. The stopping criteria in fiber tracking are set
as the maximum angle between steps = 45ı and the FA value threshold for white
matter = 0:15.

Ridge surfaces rendered as Fig. 5a and b are extracted from the edge strength
measured by our edge detection approach in the brainstem (the posterior part of
the brain). Complex fiber traces with distinct directions pass through this region.
Similar to (f) which is taken from Fig. 5 in Kindlmann et al. [25], boundaries of
different fiber traces including the middle cerebellar peduncle (mcp), corticospinal
tract(cst), transverse pontine fibers (tpf),medial lemniscus (ml), superior cerebellar
peduncle (scp), and inferior cerebellar peduncle (icp) are identified and visualized
with the difference that our results exhibit more comprehensive and clear bound-
aries. In addition, two images (d) and (e) visualize the characterized ridge lines
corresponding to the cutting plane i and ii in (c).

The yellow cycle in Fig. 6a indicates another interesting region where the white
matter lateral to the posterior horn of the lateral ventricle consists of three layers
of tracts: the most lateral layer is the superior longitudinal fasciulus (slf) with a
superior-inferior orientation; the most medial layer is the callosal projection to the
temporal lobe (tapetum); and the posterior region of the corona radiata (pcr) can be
found between themwith an anterior-posterior orientation [46]. Boundaries between
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Fig. 4 Ridge surfaces characterized from the edge strength measured on HARDI with SNR=30.
(a) and (c) boundaries of different fiber bundles from the ground truth. (b) and (d) extracted ridge
surfaces by our approach

these three layers are successfully detected by our approach as shown in Fig. 6b.
Figure 6c shows the ridge surfaces extracted from our edge strength measurement.
A visualization which overlays the anisotropy-based RGB color map with ridge
surfaces is shown in Fig. 6d. This result confirms that the detected edges do represent
the actual boundaries between different white matter layers.

Figure 7a highlightes 9 anatomical structures on a anisotropy-based RGB color
map of a coronal plane. Figure 7b and c visualize edge strength measured with
2 times and 4 times as large as the original spatial resolution in each dimension
respectively. It takes about 5 s to measure the edge strength of Fig. 7b and 13 s of
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Fig. 5 Edge detection result in the brainstem by our approach. mcp: middle cerebellar peduncle;
cst: corticospinal tract; tpf: transverse pontine fibers; ml: medial lemniscus; scp: superior cerebellar
peduncle; icp: inferior cerebellar peduncle.

Fig. 7c on a machine with an Intel i7 quad-core CPU and a Nvidia QuadroM3000M
graphics card. In general, the edge strength measured with a higher resolution
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Fig. 6 Edge detection results in an interesting region where the white matter lateral to the posterior
horn of the lateral ventricle consists of three layers of tracts. cc: corpus callosum; cg: cingulum; pcr:
posterior region of corona radiata; slf: superior longitudinal fasciculus. (a) Fractional anisotropy
(FA) of the brain white matter visualized on a transverse section. The circle indicates the considered
anatomical region. (b) Edge strength measured by our method on the same section. (c) Ridge
surfaces of the edge strength characterize the complex geometry of crossing fibers in the area of
interest. (d) Same as (c) with FA overlaid and color-coded by the orientation of the main diffusion
direction
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Fig. 7 (a) Coronal anisotropy-based RGB color map; (b) edge strength measured with 2 times as
large as the original spatial resolution in each dimension; (c) edge strength measured with 4 times
as large as the original spatial resolution in each dimension. cc: corpus callosum; cg: cingulum;
st: corticospinal tract; mcp: middle cerebellar peduncle; fx: fornix; ifo: inferior fronto-occipital
fasciculus; plic: posterior limb of internal capsule; scr: superior region of internal capsule; slf:
superior longitudinal fasciculus

exhibits sharper edges and contains less discontinuity than the one measured with
a lower resolution. However, both results are able to capture the boundaries of
anatomical structures highlighted in Fig. 7a.

5.3 Human Brain with DTI and HARDI

The second in vivo human brain dataset used to test our approach consists of 270
diffusion weighted images with three different b�values, 1000 s/mm2, 2000 s/mm2,
and 3000 s/mm2, as well as 18 baseline scans with b�value D 0. Multiple b�value
allows us to test our method on DTI and HARDI separately and compare the results.
We use the diffusion weighted images with b � value D 1000 s/mm2 to estimate a
DTI dataset, and use the ones with b � value D 3000 s/mm2 to estimate a HARDI
dataset.

In this experiment, a small region of interest was selected where the lateral
transcallosal fibers (tf) runs through the corpus callosum (cc) and intersects with
the internal capsule (ic). The DTI model yields invalid orientation information in
the fiber crossing region while HARDI successfully reconstructs the transcallosal
fibers. Our edge detection approach on HARDI could extract edges that correctly
represent the anatomical structures in this region. A side-by-side comparison of
our edge detection results on DTI and HARDI is shown in Fig. 8. Figure 8 also
highlights the anatomical structures that could be found by our approach both
on DTI and HARDI with corresponding fiber traces. As can be seen, both DTI
and HARDI allowed our method capture boundaries of corpus callosum (red) and
cingulum (green), while it was only in the HARDI case that our method succeeded in
reconstructing the boundaries of transcallosal fibers (purple). Similarly, the crossing
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Fig. 8 A comparison of the ridge surfaces extracted from the edge detection results by our
approach on DTI and HARDI

of internal capsule and superior longitudinal fasciculus (blue) was not properly
characterized in DTI data, which led to the partial extraction of the boundaries of the
internal capsule (blue) in this case. In contrast, edge extraction in the HARDI case
produces correct boundaries between internal capsule and superior longitudinal
fasciculus.

6 Conclusion and Future Work

In many applications of diffusion weighted imaging (DWI) analysis, extracting the
boundaries of anatomical structures from the scanned DWI signals is a crucial step.
In this paper, we have presented an tractography-based edge detection technique
for DWI that takes the entire geometry of fiber traces into consideration to identify
the contour of distinct fiber populations. An evaluation against ground truth in a
phantom dataset has proved that the edges characterized by our method coincide
with the boundaries of individual fiber bundles and thereby reveal major anatomical
structures. In addition, experiments performed on real data have shown that subtle
anatomical structures, in particular those associated with fiber crossings, can be
identified by our method in noisy datasets.

Limitations of our approach and open questions remain as avenues for future
work. First, the super-sampling of the original dataset combined with an on-the-
fly regularization procedure at each step of fiber integration make our technique
computationally expensive. Although a GPU implementation was used to accelerate
the necessary computations, a strategy consisting in reusing fiber traces among
neighboring voxels could dramatically reduce the computational time by exploiting
redundancy. Second, standard tensor invariant information like fractional anisotropy
(FA) aggregated along individual fiber traces could also be used to measure edge
strength in the context of Diffusion Tensor Imaging. Finally, the basic approach
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presented in this paper is not limited to the visualization of DWI data, and we would
like to apply it to tensor field visualization problems in other application domains.
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