
Journal of Computational Physics 513 (2024) 113168

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Out-of-distributional risk bounds for neural operators with 

applications to the Helmholtz equation

Jose Antonio Lara Benitez a,∗, Takashi Furuya b,∗, Florian Faucher c, 
Anastasis Kratsios d, Xavier Tricoche e, Maarten V. de Hoop a

a Rice University, United States of America
b Shimane University, Japan
c Team Makutu, Inria Bordeaux, University of Pau and Pays de l’Adour, TotalEnergies, France
d McMaster University and the Vector Institute, Canada
e Purdue University, United States of America

A R T I C L E I N F O A B S T R A C T

Keywords:

Neural operator

Transformer-inspired

Forward operator

Generalization error bounds

Out-of-distributional risk bounds

Despite their remarkable success in approximating a wide range of operators defined by PDEs, 
existing neural operators (NOs) do not necessarily perform well for all physics problems. We focus 
here on high-frequency waves to highlight possible shortcomings. To resolve these, we propose 
a subfamily of NOs enabling an enhanced empirical approximation of the nonlinear operator 
mapping wave speed to solution, or boundary values for the Helmholtz equation on a bounded 
domain. The latter operator is commonly referred to as the “forward” operator in the study of 
inverse problems, and we propose a hypernetwork version of the subfamily of NOs as a surrogate 
model. Our methodology draws inspiration from transformers and techniques such as stochastic 
depth. Experiments reveal certain surprises in the generalization and the relevance of introducing 
stochastic depth. Our NOs show superior performance as compared with standard NOs, not only 
for testing within the training distribution but also for out-of-distribution scenarios. To delve into 
this observation, we obtain a novel out-of-distribution risk bound tailored to Gaussian measures 
on Banach spaces, relating stochastic depth with the bound. We conclude by offering an in-depth 
analysis of the Rademacher complexity associated with our modified models and prove an upper 
bound tied to their stochastic depth that existing NOs do not satisfy.

1. Introduction

Data-driven approximation of operators is gaining momentum due to its potential to approximate operators over expensive 
numerical solvers at a fraction of the computational cost, particularly in the context of parametric partial differential equations 
(PDEs). This approach proves particularly advantageous in scenarios where constitutive laws are approximated, or only data are 
available. Once the model is fully-trained, the solution is, up to an approximation error, obtained by evaluating the neural network 
with restrictions on the input, i.e., the test data are drawn from the same or a sufficiently similar distribution as the training 
data. Numerous architectures have been proposed in recent years, such as DeepONets [89,90], PCA-Net [11,51], PINNs [99,61], 
and neural operators (NOs) [83,66,82]. Among them, Fourier neural operators (FNOs) have gained widespread popularity. Indeed, 
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they can efficiently compute the costly integral operator, they enjoy “discretization invariance”,1 and are universal approximators, 
under the assumption of regularity and separability of spaces. FNOs or iterations thereof, [17,112,107,18], have rapidly become the 
network of choice, finding applications in various domains [98,46,116,113,78,45,70].

FNOs have shown promising results in certain 2D PDE problems, e.g., incompressible Navier-Stokes equation, [65, Section 3.2], 
and even some non-linear inverse problems, [115,95]. However, application to realistically complex large-scale problems remains 
an issue, despite some recent progress [45]. NOs are the natural generalization of multilayer perceptron (MLPs) to functional spaces, 
and they share their limitations. For example, You et al. [118] have shown that deep FNOs perform poorly on some nonlinear 
operators for PDEs, despite being theoretically universal [65]. These findings underscore the need for architectures that possess more 
desirable properties in implementation. Moreover, the increasing interest in enhancing or replacing traditional numerical methods 
has prompted a focus on understanding the generalization capabilities and training dynamics rather than solely relying on the 
approximation power of networks, e.g. [91,72,71,73,28].

In this paper we focus on the out-of-sample, or generalization, performance of neural operators trained from finitely many noisy 
inputs. We consider neural operators of the form

𝑣𝓁+1 = 𝜎◦(𝑊𝓁 +𝓁 + 𝑏𝓁)◦𝑣𝓁 , (1)

or our proposed network

𝑣𝓁+1 =
(
𝐈𝐝 +𝐗𝓁 𝑓𝓁◦N

)
◦
(
𝐈𝐝 +𝐗𝓁 𝜎◦(𝓁 + 𝑏𝓁)◦N

)
◦𝑣𝓁 . (2)

Here, 𝑣(𝑥) = ∫ 𝑘(𝑥, 𝑦)𝑣(𝑦)𝑑𝑦 represents integral operators, where the kernel function 𝑘𝑖,𝑗 is uniformly bounded for each point 𝑥
and 𝑦. This boundedness property allows us to establish theorems that hold regardless of the choice of basis expansions for . 𝐗𝓁
are Bernoulli random variables, 𝐗𝓁 ∼ Ber(p𝓁), acting as “switches”, controlling the propagation of information within the network, 
and adding extra randomness in the training. The process of adding 𝐗𝓁 ∼ Ber(p𝓁), such that p𝓁 decreases with depth is known 
as stochastic depth [55]. Finally, 𝑓𝓁 is a simple multilayer perceptron (MLP), 𝜎 the activation, N a normalizer, and 𝐈𝐝 the identity 
operator, which we introduce formally in Section 2.

The theory of generalization for neural operators is still in its early stages, with ongoing advancements in the field, as Kim and 
Kang [62], controlling the estimation error using uniform laws of large numbers. However, such methods have primarily focused 
on finite-dimensional parameters, as they rely on established theorems within the statistical learning community. Nevertheless, the 
underlying theory can be extended to encompass a broader range of kernel functions, beyond those approximated by Fourier basis. 
In our work, we have extended the theory to a wider class of kernel functions and have avoided relying on the constraints of finite 
dimensionality. This allows for the consideration of alternative bases for expressing the integral operator, such as wavelet basis, 
spherical harmonics, and others.

Additionally, the theory of generalization in neural networks encompasses their ability to handle perturbations in the underly-

ing distribution, including out-of-distribution scenarios. While empirical and theoretical results for operator learning are relatively 
scarce and challenging to obtain, there are notable exceptions, such as the work by de Hoop et al. [26, Sec 4.1.2] that focuses on 
learning linear operators from data. In our work, we make a further contribution to this area by investigating the robustness of the 
proposed network (2), to changes in the input distribution. Empirically, we observe that the network exhibits robustness to such 
changes. Theoretically, we leverage properties from the theory of general Gaussian measures on Banach spaces and the duality of 
the Wasserstein 1 distance to establish an upper bound on the network’s robustness to a change of measure. It is important to note 
that the random variables in (2) play a significant role in controlling the bound, particularly as the depth of the networks increases. 
These findings shed light on the generalization capabilities of the networks and provide insights into their behavior beyond the 
training distribution. However, it is worth mentioning that our bounds rely on estimates of the Lipschitz constant, and those are not 
tight. Strictly speaking, further analysis is needed to fully understand the growth and provide a complete explanation of the observed 
out-of-distribution behavior.

Our proposed architecture modifications in (2) borrow ideas from transformers, in particular to the encoder part, whose layers 
can be described as

𝑣𝓁+1 =
(
𝐈𝐝 +𝐗𝓁 𝑓𝓁◦N

)
◦
(
𝐈𝐝 +𝐗𝓁 ◦Attn

)
◦𝑣𝓁 , Attn(𝑣𝓁) = sof tmax

(
Const.𝑄(𝑣𝓁)𝐾(𝑣𝓁)⊤

)
𝑉 (𝑣𝓁), (3)

for 𝑣𝓁 ∈ℝ𝑛×𝑑 , and 𝑄(𝑣𝓁) = 𝑣𝓁𝑊𝑄, 𝐾(𝑣𝓁) = 𝑣𝓁𝑊 𝐾 , 𝑉 (𝑣𝓁) = 𝑣𝓁𝑊 𝑉 for 𝑊 𝑄, 𝑊 𝐾, 𝑊 𝑉 ∈ℝ𝑑×𝑑 . As we delve into the subject, we will 
discover how this approach grants us significant control over the complexity class within the family, while effectively bounding the 
out-of-distribution risk through stochastic depth for Gaussian measures. Additionally, it empowers us to leverage a proven network 
layout, which has consistently demonstrated promising empirical results across various domains. In recent years, there has been a 
shift towards the adoption of transformer-based architectures [109,29,31,85,2] throughout machine learning. These architectures, 
which include widely publicized models such as BERT and ChatGPT [29,84], have shown remarkable success in various tasks, 
outperforming previous state-of-the-art models. Kovachki et al. [66, Section 3.3] has identified a connection between transformers 
and neural operators, where self-attention can be viewed as a Monte Carlo approximation of a nonlinear integral operator, showing 
that the underlying principles of these seemingly different architectures are linked. Cao [19], Kissas et al. [63], Li et al. [81]

explored transformers for parametric PDEs. Despite the promising results for small-scale problems, using transformers to approximate 
2

1 In the sense of zero-shot super-resolution, that is, training in a coarse grid and testing in a finer grid.
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operators is hindered by the inherent scalability issue of self-attention.2 Attention operations have a cost of (𝑛2), making them 
prohibitively expensive for realistic 3D inputs. Incorporating workarounds like shifted windows in visual transformers, as seen in 
[85], can be beneficial for certain applications. However, the absence of a solid theoretical foundation in these approaches makes it 
challenging to analyze the convergence of the architecture, particularly in scientific computing scenarios. In contrast, the convolutional 
integral operator in FNOs can be efficiently estimated by the Fast Fourier Transform (FFT) with a computational cost of (𝑛 log𝑛). 
Furthermore, the adaptive Fourier neural operator (AFNO) [47] presents a promising approach to address the scalability limitations 
of transformers. Nonetheless, current applications have been primarily limited to vision, and further research is needed to explore 
these architectures in scientific computing.

Extensive empirical evidence has shown that design choices in transformers can yield significant improvements in the capacity of 
network families, training stability, generalization performance to in-distribution-data, and sometimes out-of-distribution, [50]. This 
has resulted in a growing trend in various fields of machine learning to adopt “transformized” architectures [105,77,119,93,100,86]. 
The work of Yu et al. [119], abstracts the self-attention of the transformer leading to a so-called metaformer architecture. Here, we 
take advantage of the abstracted layout of this approach to overcome limitations associated with traditional self-attention in terms 
of input’s dimension. Furthermore, this opens up possibilities for designing transformer-based models that can effectively tackle 
problems arising in scientific computing on an ad-hoc basis.

Our contributions

(a) We introduce modifications to neural operators to adopt a transformer-like architecture, drawing inspiration from works such as 
[86,77,119]. The resulting network (Section 2) is referred to as sFNO+𝜀I and sNO+𝜀I, respectively, for experiments and theory, 
where the 𝜀 indicates that “minor” changes are incorporated, and the 𝑠 stands for sequential, as we preserve the arrangement: 
non-local (integral operator layer as “token mixer”), and local (MLP layer as “feature mixing”) in transformers (contrasting with 
traditional NOs).

(b) We construct a benchmark for the time-harmonic wave equation according to [37]. We observe that modifying FNOs towards 
sFNO+ 𝜀I leads to a smaller test loss in the parametric form of the Helmholtz equation 𝑐↦ p (Section 4.4) for data in-distribution.

(c) We provide an exhaustive empirical study of the robustness of the trained networks for perturbation in the data distribution. 
We show that the proposed architecture is able to generalize to out-of distribution input, while earlier networks are unable to. 
Remarkably, the proposed network is able to obtain reasonable wave propagation from an anisotropic covariance operator, change 
in the input’s range and roughness coefficient, despite being only trained on smooth Gaussian random fields with Whittle–Matérn 
isotropic covariance, and fixed wave speed range (Section 5).

(d) We propose a hypernetwork version of the architecture, as a surrogate model to effectively approximate the forward operator of 
the Helmholtz equation (Section 6). That is, (𝑓, 𝑐) → p𝑓 |Σ, where p𝑓 |Σ is the restriction of the wavefield at receivers location 
for a given source, 𝑓 .

(e) We give theoretical guarantees supporting the out-of-distribution performance of the sNO+ 𝜀I and sNO+ 𝜀Iv2 (2) models in the 
case where the inputs are sampled from a centered Gaussian measure 𝜇𝑋 on various Banach spaces (Section 7). We find that the 
out-of-sample generalization of both neural operator models is described by the metric entropy of the unit Cameron-Martin space 
associated with 𝜇𝑋 . The analysis extends the transport-theoretic tools for deriving risk-bounds introduced in [53] and merges it 
with small-ball estimates for Gaussian processes on Banach spaces, e.g. [80].

(f) We offer a novel analysis of the Rademacher complexity of NOs and our proposed architecture (2) (Section 8). For NO, our analysis 
is general in the sense that it applies independently of the discretization and of the choice of basis in the integral operator,3

contrasting with [62]. In addition, our work not only extends the previous results to functional space but also provides a better 

bound on the Rademacher complexity with order  
(
1∕𝑛

1
𝑑+1

)
(𝑛 is the cardinality of the training dataset, and 𝑑 is the doubling 

dimension of 𝐷×𝐷, where 𝐷 is the spatial domain), whilst (1) in [62]. For the Rademacher complexity of (2) our analysis is tied 
to stochastic depth. We show that stochastic depth controls the expected Rademacher complexity, irrespective of the number of 
layers. For instance, if 𝐗𝓁 ∼ Ber(𝑝𝓁), and 𝑝𝓁 =(𝓁−(1+𝜀)), where 𝓁 denotes the layer’s number, and 𝜀 > 0, the bound is uniform 
regardless of 𝓁 →∞.4 As a consequence, we show that the upper bound of the sNO + 𝜀I can always be controlled with depth, 
while the upper bound of the other neural operators diverges.

Notation We denote 𝑑 ∈ ℕ as the number of components of the domain 𝐷 ⊂ ℝ𝑑 used throughout the paper, by 𝑑𝑎 the dimension 
of the image of the function 𝑎, 𝑎(𝑥) ∈ ℝ𝑑𝑎 or 𝑎(𝑥) ∈ ℂ𝑑𝑎 , the meaning is clear from the context. We usually denote 𝑎 ∈ L2(𝐷; ℝ𝑑𝑎 )
and 𝑢 ∈ L2(𝐷; ℝ𝑑𝑢 ) as the input and output functions related by an operator (e.g., if  is an operator between these two spaces, 
(𝑎)(𝑥) = 𝑢(𝑥)). We denote the weight matrix at layer 𝓁 as 𝑊𝓁 ∈ℝ𝑑𝓁×𝑑𝓁−1 , and by 𝑏𝓁 ∈ℝ𝑑𝓁 the bias. For the main network (7) and 
the intermediate architectures Equations (5) to (6), we incorporate a multilayer-perceptron at the block-layer 𝓁, and we denote the 
corresponding weight matrix at the 𝑚-th layer in the MLP as 𝑊𝓁,𝑚 ∈ℝ𝑑

𝑤
𝓁,𝑚+1×𝑑

𝑤
𝓁,𝑚 , in where 𝓁 refers to the block-layer 𝓁. We use 𝑓𝓁 as 

2 In transformer applications, datasets are massive, but individual data samples are relatively small compared to those in PDE-related problems, particularly in 3D 
cases. In areas like vision, attention is typically applied to image patches instead of at a pixel-wise level to reduce computational cost, e.g. [31]

3 In particular, Fourier basis corresponding to FNOs.
3

4 Similar conclusion is obtained in theoretical analysis of OOD.
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Table 1

Notations.

Notation Description Reference

𝑑 number of components of spatial domain 𝐷 ⊂ℝ𝑑

𝜎 activation function

𝓁 integral operator with kernel 𝑘𝓁
𝑘𝓁 𝑑𝓁+1 × 𝑑𝓁 -kernel matrix for 𝓁

𝑹, 𝑸 lifting and projection operator Fig. A.17

𝐗𝓁 Bernoulli random variables at layer 𝓁 Equation (7)

Spaces, metrics and norms

L2 space of square-integrable functions

𝐻𝑠 =𝑊 𝑠,2 Sobolev space of smoothness 𝑠, with norm ‖ ⋅ ‖𝐻𝑠 Section 3.4

𝜇𝑋
Cameron-Martin space of a Gaussian measure 𝜇𝑥 Assumption 7.2‖ ⋅ ‖Lip Lipschitz norm of the Sobolev space 𝑊 1,∞ Equation (21)

1 Wasserstein-1 distance Equation (20)

Experiments

 operator 𝑐↦ 𝑝 Section 3.2

 𝑓
𝜔

forward operator (𝑐, 𝑓 ,𝜔)↦ {p(𝒙𝑗 ,𝜔, 𝑓 )} Section 3.3

 restriction operator (p) = p|Σ Section 3.3

𝝀 correlation range of the Whittle–Matérn field Equation (15)

𝜈 smoothness of the Whittle–Matérn field Equation (14)

Learning theory

S = {𝑎𝑛, 𝑢𝑛}𝑁𝑛=1 training dataset drawn from the probability measure 𝜇 Section 8.1

ℜ𝑛
S(F) Rademacher complexity of the class F given the dataset 𝑆 Equation (34)

𝜇𝑁 empirical measure 𝜇𝑁
𝑋
=𝑁−1∑

𝑛≤𝑁 𝛿𝑎𝑛 Equation (25)

𝑑 doubling dimension of 𝐷 ×𝐷 Definition A.16

N hypothesis class of neural operators Equation (26)

Ñ hypothesis class of sequential neural operators (Equations (5) to (7)) Equation (27)

the MLP at layer 𝓁 in (2) and all the intermediate architectures. For an integral operator with kernel function 𝑘𝓁 at layer 𝓁, we write 
it as 𝓁 . By ‖⋅‖op we denote the operator norm induced by the euclidean norm and by ‖⋅‖F the Frobenius norm of given matrices. 
By ‖⋅‖2 we denote the 𝓁2-norm and by ‖⋅‖L2(𝐷;ℝℎ) the corresponding L2-norm. For 𝑠 ∈ [0, ∞), we denote 𝐻𝑠(𝐷) the Sobolev space, 
which for 𝑠 = 0, 𝐻0(𝐷) = L2(𝐷). For the generalization error bound statements we denote the cardinality of the training dataset as 𝑛. 
The hypothesis class of neural operators, precisely defined in (26), as N and the sequential neural operator class (27) as Ñ (all the 
architectures defined in Equations (5) to (7)). For probabilistic statements, we will assume a suitable underlying probability space 
with probability measure 𝜇. We denote the probability measure in L2(𝐷; ℝ𝑑𝑎 ) ×L2(𝐷; ℝ𝑑𝑢 ) as 𝜇 (or sometimes 𝐏, it is clear from the 
context), with marginals 𝜇𝑎 (i.e., the marginal of 𝜇 on L2(𝐷; ℝ𝑑𝑎 )) and 𝜇𝑢 the marginal in L2(𝐷; ℝ𝑑𝑢 ). By 𝑑 we denote the doubling 
dimension of 𝐷 ×𝐷. By ‖ ⋅ ‖Lip we denote the Lipschitz norm, see (21), and by sampling norm, ‖𝓁‖S ∶= (𝑛−1∑𝑛𝑖=1 𝓁(𝑎𝑖, 𝑢𝑖)2)1∕2. For 
the out-of-distribution statements, we denote the Cameron-Martin space of a Gaussian measure 𝜇𝑥 as 𝜇𝑋

and by 𝜇𝑁 the empirical 
measure 𝜇𝑁

𝑋
=𝑁−1∑

𝑛≤𝑁 𝛿𝑎𝑛 .
A summary of the notation used is presented in Table 1.

2. Proposed networks: “metaforming the neural operator”

In this section, we introduce the architecture known as sNO + 𝜀I with stochastic depth. This architecture is designed to enhance 
the generalization performance and capabilities of neural operators. Here, we provide a comprehensive description of the layers that 
constitute sNO+ 𝜀I, which are briefly outlined in Equation (2). However, to understand the impact of different architectural changes, 
we gradually modify the NOs until obtaining the sNO + 𝜀I with stochastic depth. Throughout the next sections, we provide both 
numerical evidence and theoretical reasoning to support our choices.

Neural operator: standard structure We briefly review NOs [66,65]. Let 𝓁 be a linear integral operator (non-local), see Defini-

tion A.3, and 𝑊𝓁 be the weight matrix (local). The standard layer structure is

𝑣𝓁+1 = 𝜎◦(𝑊𝓁 +𝓁 + 𝑏𝓁)◦𝑣𝓁 (4)

(𝓁 = 1, … , 𝐿), where 𝜎 is an element-wise nonlinear activation function, and 𝑏𝓁 is a bias. For 𝓁 = 1, we have 𝑣1 = 𝑹(𝑎), i.e., the 
parameter 𝑎 is lifted by the map 𝑹, and finally, the output is projected back to the corresponding space by 𝑸, forming the solution 
field, 𝑢 =𝑸(𝑣𝐿+1). We refer to Appendix A.3 for additional explanations.

Sequential neural operators (sNO) Transformers [119,109] adopt a compositional structure, wherein non-local and local layers are 
4

arranged sequentially instead of combining the operations within a single layer. The so-called token mixer (e.g. attention) precedes a 
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𝑹
𝑸

𝜎
◦ ( 

1
+
𝑏 1
)

𝜎
◦ ( 

𝐿
+
𝑏 𝐿
)

𝑓
1

𝑓
𝐿𝑎 𝑢

𝑣1 𝑤2 𝑣2 𝑤𝐿+1 𝑣𝐿+1

Fig. 1. sNO is called sequential, as the integral operator is followed by a MLP in a sequential manner. For comparison with the NO, see Fig. A.17.

𝑹
𝑸

𝜎
◦ (  1

+
𝑏 1
) ◦N

𝜎
◦ ( 

𝐿
+
𝑏 𝐿
) ◦N

𝐈 𝐝 𝐈 𝐝 𝐈 𝐝 𝐈 𝐝

𝑓
1

𝑓
𝐿𝑎 𝑢

Fig. 2. sNO + 𝜀I without stochastic depth. It is a modification based on the sequential structure in where we incorporate layer normalization and skip connection as 
in transformers. For comparison with the NO, see Fig. A.17.

MLP acting on feature space; see Fig. 1. This structure bears resemblance to the one described by Kovachki et al. [65, Section 2.5.1]

for 1-layer NN, and FNOs (the authors of [65] observed that universality is preserved, so it can be expanded to MLP architecture 
with 𝑀 -layers, see Appendix A.3.2).

We introduce the sequential neural operator (sNO). Let 𝑓𝓁 be a MLP with 𝑀 -layers (local), [42, Ch. 6]. Then,{
𝑤′

𝓁 = 𝜎◦(𝓁 + 𝑏𝓁)◦𝑣𝓁 , (a)

𝑣𝓁+1 = 𝑓𝓁◦𝑤
′
𝓁 (b)

(5)

(𝓁 = 1, … , 𝐿). See, Fig. 1. If  is convolutional, we find a significant improvement over the relative L2-norm compared to traditional 
FNOs for similar parameter count, see Section 2 and Fig. 7.

sNO+ 𝜀I: sNO with the identity map–skip connection We now incorporate the addition of the identity map on the sNO (in the field of 
machine learning, this is referred to as a skip connection). The use of the symbol 𝜀 in the name is merely to signify that minor changes 
have been made to the sNO architecture.

Two variants can be considered: one without, and one with stochastic depth [55], allowing us to access deep versions of sNO+ 𝜀I. 
For the sake of brevity, sometimes we may refer to sNO + 𝜀I without stochastic depth as version 1, and sNO + 𝜀I with stochastic depth as 
version 2, in figures, or tables.

sNO + 𝜀I without stochastic depth Incorporating skip connections, that is sNO + 𝐈𝐝, lead us to Equation (6). The architecture can 
be seen as an instance of the metaformer [119]; whence, the token mixer is replaced by an integral operator, and the network is 
extended to functional space.5 Using a similar notation, we have{

𝑤′
𝓁 =
(
𝐈𝐝 + 𝜎◦(𝓁 + 𝑏𝓁)◦N

)
◦𝑣𝓁 , (a)

𝑣𝓁+1 =
(
𝐈𝐝 + 𝑓𝓁◦N

)
◦𝑤′

𝓁 (b) (6)

(𝓁 = 1, … , 𝐿), where 𝐈𝐝 is the identity operator, and N is the layer normalization (or any other normalization). (See Fig. 2.)

If  is a convolutional-type kernel, the architecture has similarities with the FNet introduced in Lee-Thorp et al. [77] though these 
connections have not been explored in the context of parametric PDEs. The addition of a skip connection in the FNOs architecture 
has been previously investigated in the work of You et al. [118]. However, the specific sequential structure used in here is not 
presented in the previous work. To provide a comprehensive analysis, we include the ResNet version of FNO in the ablation test 
(see Section 4.6) to evaluate its performance alongside the other described architectures. It is worth noting that similarities of the 
5

5 This has not been done in the previously mentioned paper.
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skip connection in the work of You et al. [118] can also be drawn with sFNO + 𝜀I. For example, the skip connection can also be 
interpreted as unrolling Newton’s method, see [60,96,7].

In comparing sFNO + 𝜀I with NOs and sNOs, we observe improvements in terms of loss and wavefield prediction across various 
settings (see Tables 6 to 11).

sNO + 𝜀I with stochastic depth Despite the fact that a neural architecture is theoretically universal, in practice, the parameters are 
updated using gradient-based methods that cannot exhaustively search the parameter space. It is, therefore, necessary to consider 
the limitations of the optimization algorithm and the training data, both of which may render the model non-universal in practice.

One possible approach to address this challenge is to enable the exploration of the optimization algorithm. Huang et al. [55]

introduced the concept of stochastic depth, which involves randomly dropping entire layers of the network using Bernoulli RVs.6

Practitioners have used this approach to facilitate the efficient training of large models. We conjecture that it also enables further 
exploration, which intuitively allows the algorithm to find better local minima (this procedure is in the spirit of an adaptive rejection 
sampling). We adopt this technique in the final network design:{

𝑤′
𝓁 =
(
𝐈𝐝 +𝐗𝓁 𝜎◦(𝓁 + 𝑏𝓁)◦N

)
◦𝑣𝓁 , (a)

𝑣𝓁+1 =
(
𝐈𝐝 +𝐗𝓁 𝑓𝓁◦N

)
◦𝑤′

𝓁 (b)
(7)

(𝓁 = 1, … , 𝐿), 𝐗𝓁 is a Bernoulli RV, such that 𝐏{𝐗𝓁 = 1} = 𝑝𝓁 , and 𝐏{𝐗𝓁 = 0} = 1 − 𝑝𝓁 for 𝑝𝓁 ∈ [0, 1], and 𝑝1 = 1, 𝑝𝓁+1 ≤ 𝑝𝓁 . N is 
the layer normalization (or any other normalization). In Theorem 7.6 and Corollary 8.7, we shall show the relation of RVs in the 
generalization error bound (in-distribution and out-of-distribution).

Remark 2.1. As described in [55], at inference time we use the mean of the RVs.

3. Parametric time-harmonic wave equations, forward operator and data generation

Here we present a comprehensive overview of the coefficient to solution map associated with the Helmholtz equation, as well as 
the corresponding forward operator. Additionally, we outline the step-by-step procedure for generating the dataset and the guarantees 
in place to ensure: (a) independent realizations of the wave speed, and (b) sufficient regularity7 in accordance with the theory of 
neural operators.

3.1. Time-harmonic wave equations

We consider the propagation of time-harmonic acoustic waves for two dimensional domain 𝐷 ⊂ℝ2. The waves are given by the 
(scalar) pressure field p and (vector) particle velocity 𝒗 solutions to [36,92]{ −i𝜔𝜌(𝒙)𝐯(𝒙,𝜔) − ∇p(𝒙,𝜔) = 0 in 𝐷 (a) ,

− i𝜔
𝜅(𝒙)

p(𝑥,𝜔) + ∇ ⋅ 𝐯(𝒙,𝜔) = 𝑓 (𝒙,𝜔) in 𝐷 (b) ,
(8)

where 𝑓 is the time-harmonic source of angular frequency 𝜔, 𝜌 is the density and 𝜅 the bulk modulus. The boundary of the domain 
𝜕𝐷 = Γ1 ∪ Γ2 is separated into two, following a geophysical configuration: a free-surface condition is imposed at the surface Γ1
(that is the interface between the medium and the air), while absorbing boundary conditions [32] are imposed elsewhere (that is, to 
truncate the numerical domain), see Fig. 3. These conditions correspond to

p(𝒙,𝜔) = 0 on Γ1 (Dirichlet boundary condition), (9a)(
𝜕𝜈 −

𝑖𝜔

𝑐(𝒙)

)
p(𝒙,𝜔) = 0 on Γ2 (absorbing boundary conditions). (9b)

Upon assuming constant density 𝜌, Problem (8) can be rewritten as the Helmholtz equation (see Faucher et al. [37, Remark 1]),

−
(
Δ + 𝜔2

𝑐(𝒙)2

)
p(𝒙,𝜔) = −i𝜔𝜌𝑓 (𝒙,𝜔) , (10)

where 𝑐 is the wave speed,√
𝜅(𝒙)
6

𝑐(𝒙) =
𝜌(𝒙)

. (11)
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Fig. 3. Illustration of domain 𝐷: Dirichlet boundary condition is imposed on the top (red line, Γ1), while absorbing boundary conditions are imposed elsewhere (blue 
line, Γ2). The source (⋆) is typically positioned near surface. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Illustration of the full-wave dataset for experiment that considers a computational domain of size 1.27 × 1.27 km2 with a source near surface. The wave speed 
and pressure field are represented on a Cartesian grid of size 64 ×64 with a grid step of 20 m. The complete dataset corresponds to 50 000 couples made up of a wave 
speed model and associated acoustic wave.

3.2. Wave speed to solution map,  ∶ 𝑐↦ p

In the first experiment, the source 𝑓 is fixed, as well as the frequency 𝜔. The operator,  is defined as a mapping from the wave 
speed model 𝑐 to the associated wavefield p, Fig. 4. That is, it gives the solution to the wave equation (10) with boundary conditions 
Equation (9) for a given physical model 𝑐 in the entire domain 𝐷. 𝑐↦ (𝑐) = p. See Fig. 4 for an illustration of the operator when 𝑐
is a realization of a Gaussian random field.

The dataset corresponds to 𝑁 couples of wave speed and pressure field, denoted as, (𝑐𝑘, p𝑘)𝑘=1,…,𝑁 . The pressure field, p𝑘 is 
obtained by solving (10) with the corresponding wave speed 𝑐𝑘. We use the hybridizable discontinuous Galerkin method (HDG, [36]) 
and the (open-source) software hawen [35], to obtain p𝑘. The source 𝑓 in (10) is a fixed point-source, and the frequency is set to 15
Hz. We have the following configuration:

Experiment with 

⎧⎪⎨⎪⎩
2D domain of size 1.27 × 1.27 km2

50000 GRF wave speeds generated, imposing 1.5 km s−1 ≤ 𝑐(𝑥) ≤ 5 km s−1

The data are p that solve Equation (8) at frequency 𝜔∕(2𝜋) = 15 Hz.

(12)

To ensure a statistical learning framework, we generate independent identically distributed realizations of a Gaussian random 
field (GRF) as our wave speed. The process is described in Section 3.4.

3.3. Forward operator  𝑓
𝜔 ∶ (𝑐, 𝑓, 𝜔) ↦ {p(𝒙𝑗 , 𝜔, 𝑓 )}𝑗=1,…,𝑛rcv

In the following, the term forward operator refers to the forward operator in the context of the study of the inverse problem 
for the Helmholtz equation [10] (which maps parameter and source to the data)  𝑓

𝜔 at frequency 𝜔 for a source 𝑓 such that, 
 𝑓
𝜔(𝑐) = p𝑓𝜔 |Σ. The model parameter is the wave speed 𝑐 from (10), and Σ corresponds to a discrete set of receiver locations. That is, 

p𝑓𝜔|Σ =
{
p𝑓𝜔(𝑥1), … p𝑓𝜔(𝑥𝑛rcv )

}
, where 𝑥𝑖 is the position of the 𝑖th receiver for a total of 𝑛rcv. For notation, we introduce the restriction 

operator , which reduces the fields to the set of receivers positions, Σ, such that (p) = p|Σ.

The dataset is composed of 𝑁src sources, denoted as 𝑓𝓁 and consists of 𝑁 pairs of wave speed and restricted pressure field, that 
is 
(
𝑐𝑘,
(
p𝑓𝓁
𝑘

))
𝑘=1,…,𝑁 ; 𝑙=1,…,𝑁src

. The restricted pressure field,  
(
p𝑓𝓁
𝑘

)
, is obtained by solving (10) with the corresponding wave 

6 RVs refers to Random Variables.
7

7 Nonnegative Sobolev spaces.
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Fig. 5. Illustration of forward operator experiment that considers a computational domain of size 1.27 × 1.27 km2 with 64 source near surface, and 128 receivers 
located slightly beneath the sources’ location. The illustration of the wave field represent the “matrix” response, each row corresponds to a source, and each column 
to the pressure field registered by the receivers’ line.

speed 𝑐𝑘 and source 𝑓𝓁 , then restricted at the set Σ. Similar to the experiment with the full modeling operator, the wave speeds are 
independent identically distributed realizations of a GRF (see Section 3.4). The data set is illustrated in Fig. 5.

Experiment with 

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2D domain of size 1.27 × 1.27 km2

50000 GRF wave speeds generated, imposing 1.5 km s−1 ≤ 𝑐(𝑥) ≤ 5 km s−1

64 point-sources, located at a fixed depth of 10 m, and 20 m apart along the width

The data are (p𝑓𝓁
𝑘

)
that solve Equation (8) at frequency 𝜔∕(2𝜋) = 15 Hz.

The line of receivers Σ is located at a fixed depth 10 m, and 10 m apart along the width

(13)

3.4. Wave speeds as Gaussian random fields (GRF) and Whittle–Matérn fields

The wave speed is obtained as the composition of linear transformation and an independent realizations of GRF with the 
Whittle–Matérn covariance kernel C𝜈 [40,13,87]. The linear transformation T, is a linked function to ensure that the wave speed 
is nonnegative, T◦𝑍 ≥ 0 and 𝑍 ∼ GRF. A most sophisticated version of this idea is presented in Abraham and Nickl [1] for the 
conductivity in the Calderón problem, the conductivity is also restricted to be nonnegative.

An introduction of Gaussian random fields is presented in Appendix A.5. We briefly discuss the Whittle–Matérn kernel, ([15]

and [21, Sec. 2.2.3]). A real-valued Gaussian random field 𝑍 defined on a spatial domain 𝐷 ⊂ ℝ𝑑 is a Whittle–Matérn field if its 
covariance function 𝐶 ∶𝐷 ×𝐷→ℝ is given by

C𝜈(𝒙,𝒙′) = 𝑠2
21−𝜈
Γ(𝜈)

(√
2𝜈 𝑟𝝀(𝒙,𝒙′)

)𝜈
K𝜈
(√

2𝜈 𝑟𝝀(𝒙,𝒙′)
)

(14)

here, 𝑠 is the variance of the process, Γ is the gamma function [6], K𝜈 is the modified Bessel function of the second kind [16,5], 
and 𝜈 is a positive parameter. Furthermore, 𝜈 is known as the smoothness of the random field, and 𝑟𝝀 is the distance, that is, given 
𝒙 = (𝑥1, … , 𝑥𝑑 ) ∈ℝ𝑑 , and 𝒙′ = (𝑥′1, … , 𝑥′

𝑑
) ∈ℝ𝑑 , is defined as

𝑟𝝀(𝒙,𝒙′) ∶=

√√√√√ 𝑑∑
𝑖=1

(
𝑥𝑖 − 𝑥′𝑖
𝜆𝑖

)2

, (15)

where the vector coefficient 𝝀 = (𝜆1, … 𝜆𝑑 ) defines the correlation length along two points in ℝ𝑑 .

The regularity of the Whittle-Matérn field and its generalizations can be readily obtained by viewing the field as a stochastic 
partial differential equation (SPDE for short). That is, a GRF 𝑍 with covariance function of Whittle-Matérn solves the fractional 
SPDE,

𝑳𝛽𝑍 = 𝒅𝐖 in 𝐷, 𝑍 = 0 on 𝜕𝐷 , (16)

for 4𝛽 = 𝑑 + 2𝜈 and 𝑑 ∈ {1, 2, 3} the spatial dimension, 𝒅𝐖 is Gaussian white noise, and 𝑳𝛽 is a second-order elliptic differential 
operator.

In the case of 𝑳 = −Δ + 𝜅2,8 each realization of Whittle–Matérn field, defined in (14) (𝜆𝑖 = 1), coincides with the solution of 
(16), and belongs to the Sobolev space 𝐻2𝛽−𝑑∕2−𝜀(𝐷) (𝐏-a.s.9) [15, Remark 2.4]. In the more general case, when 𝑳= −∇ ⋅ (𝜎∇) +𝜅2, 
which is referred to as the generalized Whittle-Matérn field, the regularity of its solution can be established under mild assumptions 
on 𝜎, 𝜅, and the boundary 𝜕𝐷, see [22, Lemma 4.2].

8 Where Δ denotes the Laplacian.
8

9 Almost surely with respect to the probability measure 𝐏.
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From (16) and the associated SPDE, we know that the Whittle–Matérn field lies in a “nicer” space than Gaussian white noise. The 
use of GRF is motivated by the following. (a) In our construction the wave speed is generated as 𝑐 = T◦𝑍𝛽 , in where T is an affine 
transformation and 𝑍𝛽 lies in 𝐻2𝛽−𝑑∕2−𝜀(𝐷) a.s., specifically 𝑑 = 2, 𝛽 = 1 so 𝑍𝛽 ∈𝐻1−𝜀(𝐷) a.s., and for all 𝜀 ∈ [0, 1], the wave speed 
lies on non-negative Sobolev spaces. The field satisfies the conditions in [65, Theorem 2.5]. If we would have 𝑐 ∈ L∞(𝐷), the operator 
 would not be covered by the universality in [65].10 (b) GRF samples are easily generated, and for the case of Whittle–Matérn field, 
the variance, smoothness, and correlation length are easy to control; this observation plays a crucial role in Section 5 to test the 
out-of-distribution behavior. (c) This distribution is independent of the grid resolution. (d) GRF are often used in Bayesian statistics as 
prior probability measures with covariance kernels related to the Laplace operator ([97, Section 2.1], [24] and [21]).

Remark 3.1. The parameters in the experiments are the following: 𝑑 = 2, 𝑠 = 1, 𝜆1 = 𝜆2 = 0.1, and smoothness coefficient 𝜈 = 1. 
For the implementation of Gaussian fields, see [30,87,69], and particularly [15].

4. Training and testing in-distribution for 

In this section, our focus lies on training the architectures to accurately predict the coefficient to solution map  for the Helmholtz 
equation at a frequency of 15 Hz, (10). For the sake of completeness, more experiments with different frequencies and domain’s 
configuration are presented in Appendix E.4. Throughout this section and Appendix E.4, all the models are tested with in-distribution 
data. However, we significantly increase the test set compared to traditional applications of deep learning.11 We choose a test set 
of the same size than our training. This choice enables us to obtain more reliable estimates of the neural operators’ generalization 
capabilities specifically for in-distribution data. A detailed analysis of the generalization to in-distribution data is presented in 
Section 8.

Remark 4.1. The code is publicly available at [75], and the dataset is located at [74].

Remark 4.2. In our experiments, we adhere to specific constraints. When adjusting the parameters of the networks, the increase 
in the parameter count is typically negligible, adding around 100 additional parameters to maintain comparability with the base 
neural operator. If we increase the number of layers, it is based on mathematical considerations, particularly when incorporating 
stochastic depth. We consciously refrain from increasing the training epochs or the size of the training dataset. Our emphasis is on making 
fundamental changes to the network architecture rather than compensating for these alterations by merely expanding the model’s 
capacity, dataset size, or training time.

4.1. Neural operator “prediction” of the wavefield

Upon the previous constraints, we conducted training on the wave dataset as described in the previous section for all the neural 
networks outlined in Section 2. The results shown in Fig. 6 clearly demonstrate that each architecture leads to a superior reconstruc-

tion of the wave field. The figure displays only the real part of the wave field. For the approximation of both the real and imaginary 
parts of the pressure field, we refer to Appendix E.6.

4.2. Hyperparameters of the neural networks

The summary of parameters used in the training is presented in Table 2.

The Fourier modes represent the truncated Fourier modes in the approximation of the integral kernel per layer 𝓁 as described 
in [82]. The number of layers represents the compositions of equations of the form Equations (4) to (7), The positional encoder 
means that the wave speed, 𝑐, is input in the neural operators as a couple {

(
𝑐(𝑥𝑖, 𝑦𝑘),T(𝑥𝑖),T(𝑦𝑘)

)
}𝑛
𝑖,𝑘=1. Here, T denotes an affine 

transformation applied to each grid realization to move the grid to the interval [0, 1] × [0, 1] usually for training stability.

The feature space refers to the range of the lifting operator (as explained after Equation (4)), denoted as 𝑹.12 It maps ℝ3 to ℝ36, 
with 
(
𝑐(𝑥𝑖, 𝑦𝑘),T(𝑥𝑖),T(𝑦𝑘)

)
being transformed to 𝑣1(𝑧1, … , 𝑧36) =𝑹

(
𝑐(𝑥𝑖, 𝑦𝑘),T(𝑥𝑖),T(𝑦𝑘)

)
∈ℝ36. It is implemented using a 2-layers 

MLP with weight matrices, 𝑊 𝑹
1 ∈ℝ18×3 and 𝑊 𝑹

2 ∈ℝ36×18, and bias 𝑏𝑹1 ∈ℝ18, 𝑏𝑹2 ∈ℝ18.

The projection, 𝑸,13 maps 𝑣𝐿(𝑧1, … , 𝑧36) ∈ℝ36 to 𝑐(𝑥𝑖, 𝑦𝑘) ∈ℝ2, with a linear affine transformation such that 𝑊 𝑸 ∈ℝ2×36 and 
𝑏𝑸 ∈ℝ2. We associate ℝ2 with ℂ to recover the imaginary and real part of the solution.14

In our experiments, we do not implement dropout. For stochastic depth (also known as drop path), the random variables have a 
linear decay. The probability is set as follows in the experiments, 𝐏{𝐗1 = 1} = 1 for the first layer, and 𝐏{𝐗𝐿 = 1} = 0.7 = 1 − 0.3 for 
the last layer, [114]. For the layers in between, a survival probability is assigned using linear interpolation.

10 L∞ is not a separable Banach space.
11 We deliberately avoid using the traditional 80:20 split of training and test data.
12 Lifting map, following notation in [65].
13 Projection map, following notation in [65].
9

14 Pressure field.
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Fig. 6. Comparison of the reconstructed wavefields obtained with the different architectures (middle row) and relative error with the reference solution (bottom row). 
The circles and rectangles serve as a visual aid to highlight the distinction in the propagation of waves. The dataset corresponds to wave propagation from Gaussian 
Random Field realizations of wave speed in a domain of size 1.27 × 1.27 km2 , with reference wavefield obtained by solving the wave PDEs with software hawen [35]

(top row).

The architectures used in our study have similar parameter counts, except for sFNO + 𝜀I with stochastic depth (v2). This ar-

chitecture consists of four stages, each containing a different number of blocks. Specifically, the number of blocks in each stage is 
𝑘 ∈ [3, 3, 9, 3], and the blocks follow Equation (7). This results in a total of 21 layers, with each layer truncated to 12 principal modes 
in the Fourier expansion of 𝓁 , and the feature spaces of dimension 36.15 The parameter for the other networks, namely FNO, sFNO, 
and sFNO+ 𝜀I without stochastic depth (v1), are essentially the same.

Number of parameters of the neural operators As mentioned earlier, both sFNO and sFNO + 𝜀I have a similar “size” to FNO when 
stochastic depth is not considered. However, the significant difference arises when stochastic depth is incorporated, resulting in a 
much deeper neural network. In all the networks, the lifting and projection components have parameter counts of 756 and 685, 
respectively.

The main part of the networks, which encompasses the “operator” layers described in Equations (4) to (7), are divided into two 
categories: layers without stochastic depth, and layers with stochastic depth. In the former type (Equations (4) to (6)), the parameters 
are fixed at 1.5 million for all the layers, while in the case of sFNO+𝜀Iv2 (Equation (7)), the parameter count increases to 8.1 million.
10

15 That is for each (𝑥𝑖, 𝑦𝑘) we have 𝑹 (𝑐(𝑥𝑖, 𝑦𝑘),T(𝑥𝑖),T(𝑦𝑘)) ∈ℝ36 .
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Table 2

Architectures’ parameters. The networks recovered the real, and imaginary part of the pressure field, 
i.e., the output is a vector field in ℝ2 which can be associated with ℂ, and the projection operator is 
simplified by a linear layer instead of a MLP to speed up the training process. The only architecture 
that differs is (sFNO + 𝜀I) version 2 (with stochastic depth).

Model FNO sFNO (sFNO + 𝜀I)v1 (sFNO+ 𝜀I)v2

Fourier modes: 12

Layers: 4 [3, 3, 9, 3]

Features: 36 [36, 36, 36, 36]

GeLU

Positional Encoder [0,1]2
Lifting 3↦ 18↦ 36 3↦ 18↦ 36 3↦ 18↦ 36 3↦ 18↦ 36
Proj. 36↦ 2 36↦ 2 36↦ 2 36↦ 2
Dropout

DropPath 0.3

Table 3

Magnitude of the relative L2-norm. Multiple realizations of the 
trained networks with different seeds. Each row represents a 
different realization, and the values correspond to the test loss 
after training. The visualization of the table is presented in 
Fig. 7.

FNO sFNO (sFNO + 𝜀I)v1 (sFNO+ 𝜀I)v2

0.174050 0.119564 0.097434 0.046988
0.180532 0.115850 0.089249 0.042121
0.145947 0.110553 0.096739 0.041300
0.153028 0.102238 0.097211 0.045696
0.144907 0.102998 0.102930 0.049157
0.172738 0.103829 0.092119 0.037969

4.3. Training of the experiment

For all the architectures we employ the AdamW optimizer [88] with an initial learning rate of 10−3. We utilize a linear step 
scheduler with parameters: step size = 40, and a multiplicative factor of learning rate decay of 𝛾 = 0.5.

The number of epochs is set to 100 (300 epochs yielded the best results for sFNO + 𝜀I with stochastic depth, but this is not 
documented here as we try to keep the same parameters across networks). In all architectures, we apply a small L2 weight regularizer 
with a parameter of 10−5. The training process is conducted using 25, 000 out of 50, 000 generated samples Equation (12), while 5, 000
samples are used for validation, and 20, 000 for testing. Our testing dataset is substantially larger than what is typically encountered in 
the machine learning literature. This choice reflects our objective of showcasing the networks’ generalization capabilities.

4.4. Multiple random initializations

To ensure the consistency of our results, we train each network using six different random initializations of the parameters and 
in consequence, different trajectories of the optimization algorithm. The trend is consistently observed across all initializations, as 
depicted in Fig. 7. The values of the relative L2-loss among multiple training paths can be found in Table 3.

4.5. Visualization of the loss landscape

The observed differences in the performance of the four considered architectures prompted us to study their respective learning 
landscapes in search of structural characteristics that could explain the results. To that end, we sampled the training loss in a 
two-dimensional domain spanned by the first two principal components of the learning trajectory [79]. By construction, this planar 
domain best captures the portion of the landscape visited during the training of each model and, therefore, may offer valuable insight 
into the training convergence.

Corresponding results are shown in Fig. 8.

As can be seen, the landscapes fall into three major categories. The FNO landscape is characterized by the presence of a shallow 
and irregular crease-like structure that runs across the domain. The sFNO and sFNO + 𝜀I landscapes share remarkable similarities, 
which is consistent with the similar loss values shown in Table 3. Both possess a well-delineated and deeper convergence basin. 
Finally, the sFNO + 𝜀I v2 landscape exhibits a crease-like structure similar to the one seen in the FNO landscape, but its topology 
is much simpler, and the central anisotropic basin is the deepest of all considered models. We refer the reader to Appendix E.1 for 
more visualization.

The level sets are plotted with a spectral (rainbow) color map that contrasts with the underlying landscape color scale (shown). 
11

The associated values are visible. The individual points along the trajectory in each landscape show every 10th training epoch, and 
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Fig. 7. Violin plot [52] of the test-loss in Experiment 15 Hz of (10). Each architecture is trained 6 times, the rel. L2-loss, |ref − 
approx|L2 ∕|ref |L2 , on the test set.

Fig. 8. Learning landscapes of the four considered models. The loss is visualized in logarithmic scale. Level sets reveal significant differences in topologies.

the orange color saturation encodes the epoch. The increased geometric complexity along the diagonal crease present in the FNO 
and sFNO + 𝜀I v2 landscapes was handled with a refined sampling of the training loss in the corresponding area. The principal 
components that span the two-dimensional sampling domain were computed by splitting real and imaginary parts of the layers’ 
complex weights to form the large column vector representations of each model in the covariance matrix.

4.6. Ablation study

We have already conducted a study of ablation to some extent by the design of the networks. For example, when the skip 
connection is removed, sFNO+ 𝜀I without stochastic depth (V1) reduces to sFNO. Similarly, when we set 𝐏{𝐗𝓁 = 1} = 1 for all layers 
12

𝓁, then (sFNO+ 𝜀I)v2 reduces to (sFNO+ 𝜀I)v1.
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Fig. 9. Test-loss with no activation 15 Hz of (10). Each architecture is trained 6 times, the rel. L2-loss on the test set.

Table 4

Test-loss with no activation 15 Hz of (10). Each architecture is trained 6 times, 
the rel. L2-loss on the test set.

FNO FNO residual sFNO (sFNO + 𝜀I)v1 (sFNO + 𝜀I)v2

0.873029 0.219886 0.107912 0.096015 0.130741
0.880681 0.250052 0.110204 0.096212 0.115885
0.885039 0.212233 0.119039 0.099064 0.105632
0.896779 0.245763 0.118050 0.105330 0.086690
0.878160 0.233708 0.112514 0.111709 0.108062
0.886912 0.250634 0.115919 0.104147 0.090379

In the following, we explore the changes in activation functions, with a particular focus on the identity activation, 𝜎(𝑥) = 𝑥 for 
the Fourier layers. Additionally, we investigate the behavior of the residual version of FNO as described in You et al. [118]. The 
parameters are prescribed in Table 2.

We adopt a strategy similar to Section 4.4, training each network multiple times with different random seeds to ensure the 
consistency of our empirical findings.

In the case where no activation is used in the Fourier layers, we observe that sNO achieves a lower relative L2 loss compared to 
FNO supported by results in Fig. 9 and Table 4. Notably, even when FNO is trained with a non-linear activation function (as proposed 
in Li et al. [82]), sNO consistently exhibits a significantly smaller test loss. This distinction can be observed by comparing the first 
violin plot in Fig. 7 (detailed values are presented in Table 3), Fig. 10, and Fig. 11 representing FNO with GeLU, leaky-ReLU, and 
ReLU, activation functions respectively, with the third violin plot in Fig. 9 (see values in Table 4). Additionally, the second violin 
plot in Fig. 9 also presents the residual implementation of FNO. There is a significant improvement observed over FNO.

The results obtained from Figs. 7 to 11 demonstrate that the residual architecture aligns with the findings of You et al. [118]. In 
every case, we observe a noticeable improvement in the relative L2-loss.

Among the different architectures, sNO achieves the most significant improvement compared to the previous architecture. Within 
the activation functions, Leaky-ReLU and ReLU exhibit the most significant change when transitioning from the architecture FNO 
to sNO. In contrast, when the identity activation is used in the Fourier layers, sFNO + 𝜀I with stochastic depth does not show a 
noticeable improvement compared to its counterpart (sFNO+ 𝜀I)v1. However, in all cases where a nonlinear activation is employed, 
(sFNO + 𝜀I)v2 consistently outperforms other architectures without any sign of overfitting. Notably, for ReLU and Leaky-ReLU 
activations, the potential benefits of the skip connection are difficult to observe, when compared to sNO.

5. Testing out-of-distribution analysis (OOD) for 

In this section, we study the out-of-distribution (OOD for short) behavior for all the architectures. Specifically, we investigate 
how the models perform when faced with perturbations in the covariance operators of the Gaussian fields used for training. Our 
findings demonstrate that the sNO + 𝜀I architecture with stochastic depth shows resilience to these perturbations. However, despite 
these encouraging results, the theoretical understanding of the impact of Bernoulli’s random variable on the generalization ability of 
the neural operators in the context of OOD is still in its early stages. To provide further insights, we present a theoretical analysis in 
13

Section 7 for Gaussian measures.
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Fig. 10. Test-loss with Leaky-ReLU 15 Hz of (10). Each architecture is trained 6 times, the rel. L2-loss on the test set.

Fig. 11. Test-loss with ReLU 15 Hz of (10). Each architecture is trained 6 times, the rel. L2-loss on the test set.

We recall from Section 3.4, and particularly (14) that the Whittle-Matérn fields have three essential parameters: variance 𝑠, 
smoothness 𝜈, and correlation range 𝝀. As mentioned in Section 4, the neural operators were trained using Gaussian random fields 
(GRF) with an isotropic Whittle-Matérn covariance operator such that the wave speed 𝑐 varied between 1500 and 5000, 𝝀 = (1, 1), 
and the smoothness coefficient is 𝜈 = 1. Throughout this section the models obtained in Section 4 are not retrained. We refer to the settings 
in (12), and Remark 3.1 for details.

5.1. OOD experiments with different correlation and affine transformation

We investigate the effect of changing the correlation parameter 𝝀 and the range on which the wave speeds vary. Adjusting 𝝀
modifies the correlation range of the field. The scenario where 𝜆1 ≠ 𝜆2 in equation (14) is particularly interesting as it introduces 
non-euclidean distances and leads to the generation of anisotropic fields. The range of the wave speeds are adjusted using a different 
affine transformation denoted as T, as explained in Section 3.4. Here, we keep the smoothness coefficient fixed, ensuring that the 
wave speeds remain within the same Sobolev space as the training data. Then, the new realizations of the wave speeds are given by 
𝑐′ = T′◦𝑍(𝜆1 ,𝜆2), in which T′ changes the wave speed interval, and (𝜆1, 𝜆2) the correlation of points in the domain.

To generate new samples of the wave speed 𝑐, we sample GRF following the parameters described in Table 5. For each family, 
we generate 100 samples and we obtain the corresponding solution of Helmholtz using the software hawen. The smoothness of 𝑐, 
14

domain’s configuration 𝐷, source position, and frequency 𝜔 are fixed following (12).
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Table 5

Parameters for the experiments out-of-distribution. 𝝀 = (𝜆1, 𝜆2) is 
defined in Equation (15). The parameter 𝜈 is fixed to 1.

GRF model 𝜆1 𝜆2 wave speed interval

Training (baseline) 0.10 0.10 [1500,5000]
OOD family 1 0.20 0.20 [1500,5000]
OOD family 2 0.10 0.20 [1500,5000]
OOD family 3 0.20 0.20 [2000,3500]
OOD family 4 0.10 0.20 [2000,3500]
OOD family 5 0.10 0.30 [2000,6000]
OOD family 6 0.25 0.75 [2000,6000]

Table 6

Relative test loss of three networks tested with the probability defined 
by family 1.

OOD 1 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.6689 0.6025 0.5341 0.2502

model 2 0.6842 0.5437 0.5451 0.2347

model 3 0.6817 0.5837 0.5404 0.2428

Table 7

Relative test loss of three networks tested with the probability defined 
by family 2.

OOD 2 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.6602 0.6106 0.5438 0.2340

model 2 0.6715 0.5644 0.5561 0.2239

model 3 0.6726 0.5959 0.5509 0.2407

Table 8

Relative test loss of three networks tested with the probability defined 
by family 3.

OOD 3 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.5116 0.4368 0.3645 0.1324

model 2 0.4757 0.3490 0.3678 0.1220

model 3 0.5001 0.4061 0.3490 0.1368

Table 9

Relative test loss of three networks tested with the probability defined 
by family 4.

OOD 4 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.5249 0.4685 0.3845 0.1335

model 2 0.4992 0.3798 0.3869 0.1249

model 3 0.5146 0.4264 0.3713 0.1376

Empirical analysis of OOD for each family For the experiment, we selected three out of the six previously trained models (specifically, 
the first three models in Fig. 7) that utilized the GeLU activation function, see Section 4.4. We recall that we have obtained an 
estimation of the expected error within the distribution by evaluating the empirical loss in a test data set of the same size as the 
training data set,16 for more details we refer to the training baseline in Table 3, and Section 4.3.

By sampling multiple realizations of new random fields according to the families outlined in Table 5 we are able to estimate 
the expected error of the trained network with respect to these new probability distributions, and in consequence the robustness 
of the networks towards these changes. This enables us to assess the models’ performance on the new samples and evaluate its 
generalization capabilities beyond the in-distribution data.

The empirical results for all architectures are presented in Tables 6 to 11.

The families presented in Tables 9 to 11 exhibit anisotropy due to the difference in the values of 𝜆1 and 𝜆2. When considering the 
relative L2 loss as a reference, it is evident that the trained FNOs perform significantly worse compared to other neural operators. 
This indicates that FNOs may struggle with generalizing to new distributions. However, we observe that the sNO + 𝜀I architecture 
15

16 We trained the models using a dataset of 25, 000 samples and evaluated their performance on a separate test dataset also consisting of 25, 000 samples.
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Table 10

Relative test loss of three networks tested with the probability defined 
by family 5.

OOD 5 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.9248 0.8698 0.8827 0.3899

model 2 0.9471 0.8379 0.8209 0.3910

model 3 1.0488 0.9269 0.8130 0.4188

Table 11

Relative test loss of three networks tested with the probability defined 
by family 6.

OOD 6 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.9707 0.8903 0.9606 0.4426

model 2 1.0087 0.8851 0.8576 0.4585

model 3 1.1578 0.9831 0.8712 0.4864

Table 12

Parameters for the experiments out-of-distribution. 𝝀 = (𝜆1 , 𝜆2) is 
defined in Equation (15). The parameter 𝜈 is changing.

GRF model 𝜆𝑥 𝜆𝑦 wavespeed interval 𝜈

OOD family 7 0.10 0.10 [1500,5000] 0.5

OOD family 8 0.10 0.10 [1500,5000] 3.5

OOD family 9 0.25 0.75 [2000,6000] 0.5

OOD family 10 0.25 0.75 [2000,6000] 3.5

coupled with stochastic depth demonstrates notable robustness when faced with changes in distribution across all the families. In 
particular, we notice for the experiments in Table 11 where both T′ and 𝝀 are changed, the sFNO+𝜀Iv2 exhibits superior adaptability 
compared to other architectures, resulting in test losses that are half the values of any other neural operator.

OOD wave field “prediction” by the neural networks In Fig. 12, we present the wave field predictions of the trained networks from 
family 6. The figure showcases two samples from family 6, illustrating the shortcomings of the FNO in accurately reproducing 
the desired behavior. In particular, we emphasize the discrepancy within the green rectangle, which indicates a notable deviation 
between the predicted wave field and the ground truth. This discrepancy further highlights the limitations of the FNO in capturing 
the complex dynamics of the wave propagation from different distributions. Among the models considered, it is observed that only 
the sFNO+ 𝜀Iv2 model is capable of accurately predicting admissible wave propagation in the family 6.

5.2. OOD experiments changing the smoothness of the field

Here, we change the smoothness of the wave speed by modifying the parameter 𝜈. We recall from (16) that the regularity of the 
field, 𝛽 is directly connected with the dimension 𝑑 of the domain (in our case 𝑑 = 2), and the coefficient 𝜈 (in our training 𝜈 = 1). 
Thus, by changing 𝜈, we generate Gaussian random fields of different Sobolev regularity, than those using in the training dataset. 
Our experiments are divided into two categories. (a) We first keep all but 𝜈 parameters fixed, as described in Remark 3.1, that is, 
we only change the Sobolev class of the wave speed without altering any other factor (e.g. if the field is isotropic or anistropic). (b) 
Finally, we move the rest of the parameters, by following the description of the family 6 in the Table 5, the “hardest” family in terms 
of solution field prediction and test loss, see Table 11.

Empirical analysis of OOD for each family We follow a similar procedure as in the previous subsection. We select three out of the 
six trained models shown in Fig. 7) and evaluate their performance against 100 realizations of the wave speed for each of the new 
families described in Table 12. We notice that the first two families preserves the rest of the parameters as in our training baseline, 
while in the last two all the parameters are changed.

In the selection of 𝜈 = 0.5 and 𝜈 = 3, the random fields in families 7 and 9 have Sobolev regularity 𝐻1∕2−𝜀(𝐷), while the random 
fields 𝑍 in families 8 and 10 have Sobolev regularity 𝐻3+1∕2−𝜀(𝐷), almost surely. This is in contrast to the training data set, which 
lies almost surely in 𝐻1−𝜀(𝐷) for any 𝜀 > 0. For families 9 and 10, the wave speeds 𝑐′ = T′◦𝑍(𝜆1 ,𝜆2) are different on each aspect than 
the training set. The affine maps T′ are different from those used in the training. The correlation range 𝝀 = (0.25, 0.75) differs from 
the training correlation range, introducing anisotropy into the fields. Furthermore, the regularity of each realization in these families 
also varies from the baseline.

The empirical results for all architectures are presented in Tables 13 to 16.

OOD wave field “prediction” by the neural networks (different smoothness) We showcase the performance of the trained networks by 
16

presenting wave field predictions for family 9 and 10, which correspond to rough and smooth anisotropic fields, respectively. These 
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Fig. 12. OOD (family 6). Real part of the wave field of OOD family 6. Anisotropic case, see Table 5 and Appendix E.25. The green square positioned on the image 
serves as a visual aid to help identify and compare the differences in the reconstructed fields.

Table 13

Relative test loss of three networks tested with the probability defined 
by family 7.

OOD 7 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.3257 0.3037 0.2889 0.1814

model 2 0.3244 0.3207 0.2905 0.1748

model 3 0.3261 0.3024 0.2921 0.1845

Table 14

Relative test loss of three networks tested with the probability defined 
by family 8.

OOD 8 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.5508 0.4836 0.4621 0.2547

model 2 0.5527 0.5001 0.4706 0.2137

model 3 0.5547 0.4771 0.4604 0.2235

Table 15

Relative test loss of three networks tested with the probability defined 
by family 9.

OOD 9 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 0.9328 0.7053 0.6249 0.4419

model 2 0.9209 0.8811 0.7141 0.3303

model 3 0.8794 0.7270 0.6231 0.3167
17
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Table 16

Relative test loss of three networks tested with the probability defined 
by family 10.

OOD 10 FNO sNO (sFNO+ 𝜀I)v1 (sFNO + 𝜀I) v2

model 1 1.1806 0.8269 0.8217 0.5586

model 2 1.1391 0.9973 0.8727 0.4133

model 3 1.1049 0.8957 0.7825 0.4096

Fig. 13. OOD (family 9). Real part of the wave field of OOD family 9. Anisotropic case, with 𝜈 = 0.5 see Table 12. The green square positioned on the image serves as 
a visual aid to help identify and compare the differences in the reconstructed fields.

Fig. 14. OOD (family 10). Real part of the wave field of OOD family 10. Anisotropic case, with 𝜈 = 3.5 see Table 12. The green square positioned on the image serves 
as a visual aid to help identify and compare the differences in the reconstructed fields.

families pose a greater challenge for the neural operators, as evidenced by the test loss values shown in Tables 15 to 16. In the figures, 
we highlight in green some of the main discrepancies between the predicted wave fields of the architectures, and the reconstruction 
by numerical methods. These discrepancies serve to illustrate the limitations and areas where the models may fall short in accurately 
reproducing the desired behavior. (See Figs. 13 and 14.)

Remark 5.1. We finally notice that the sFNO + 𝜀I network has promising results with respect to the BP 2004 [12] model. See 
Appendix E.3. It is worth noting that these findings go beyond the scope of the current theoretical framework described in Section 7.

6. Hyperneural operator as a surrogate model of the forward operator:  𝒇 ∶ (𝒄, 𝒇 ) ↦ {𝐩(𝒙𝒋, 𝒇 )}𝒋=𝟏,…,𝒏𝐫𝐜𝐯

We propose a hyperneural operator as a surrogate model for the forward operator associated with the inverse boundary value 
problem for the Helmholtz equation, as discussed in Section 3.3. Our experiments are based on two key assumptions that persist 
throughout this work: (1) the sources are point sources, and (2) the output is a fixed-size vector, representing measurements of p at 
the receiver locations. These assumptions align with the typical practical considerations of seismic wave propagation in an acoustic 
18

medium. However, in Equation (19), we provide a potential relaxation of the first assumption to accommodate more general sources.
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Fig. 15. Hypernetwork surrogate of the forward operator used in the experiments. We call the network inside the dashed rectangle a metanetwork, and the bottom 
network a hyperneural operator.

Notice that the direct application of a neural operator or any other derived architecture is difficult for the following reasons.

(a) The representation of the forward operator using neural networks faces challenges due to the distinct computational properties 
of point sources and wave speed. Wave speed can be discretized as a matrix (𝒙, 𝑐(𝒙)), while point sources are defined by their 
spatial position 𝛿𝒙 ↔ 𝒙. To approximate the forward operator, a neural network must handle inputs of different natures (a point 
and a matrix) and generate an output with fixed discretization, based on the receiver positions.

In our experiments, the wave speed is discretized with a spacing of approximately 20 meters. However, point sources may 
not align precisely with the grid points of the wave speed field 𝑐. For example, the support of 𝛿𝒙, where 𝒙 = (𝑥1, 𝑥2), may not 
necessarily be a multiple of 20. These discrepancies require careful consideration in designing the neural network architecture. 
The networks need to exhibit discretization invariance for both the wave speed parameter and the position of sources while 
ensuring that the output is discretized based on the receiver locations.

(b) From a theoretical perspective, the forward operator is as a map from a function space to a linear bounded operator (the data 
operator). By construction, neural operators only deal with maps from functions to functions, not from functions to operators 
(some interesting alternatives are proposed in [95] and [25]). See Beretta et al. [10, Sec 2.1] for the description of the forward 
operator in the time-harmonic case.

Given the previous difficulties, we proposed a hypernetwork solution, partially inspired by the empirical work of [120] and the 
theoretical results on hypernetworks of [2], subsequently improved in [38]. See Fig. 15.

Remark 6.1. Although our primary focus has been on the experimental implementation of the forward problem, we will consider 
the inverse problem in the future. Bayesian statistical approaches of the inverse problems such as Markov chain Monte Carlo [103]

and ensemble Kalman filter [56,57] are commonly employed in inversion. However, these methods rely solely on the forward 
operators, but the computational challenge arises from multiple forward models. Our approach provides a surrogate forward 
operator, that, once trained, enables straightforward and efficient computation of multiple forward models. Therefore, we anticipate 
that by combining Bayesian statistical approaches with our method, we will be able to solve Bayesian statistical inverse problems.

Architecture The layers 𝑘 for 𝑘 = 1, 2 in the Fig. 15 are simple layers of Euclidean neural networks, that is 𝑘(𝒙) = 𝜎◦ (𝑊 𝑐
𝑘
+ 𝑏𝑐

𝑘

)
◦𝒙. 

So that, [𝑊 𝑐
𝑘
, 𝑏𝑐
𝑘
] = E𝑘◦(𝑐), where E𝑘 is an encoder sending the values of (𝑐) to a fixed parameter size, determining the capacity 

of the metanetwork (dashed rectangle from Fig. 15). A more general setting can be considered from the layers , depending on the 
nature of the sources (point-sources type or more general sources). However, given the simplicity of the Source-to-Receiver map, and 
the imposed discretization in the output, we can associate the point-source with its support 𝒙= (𝑥1, 𝑥2) and the output is discretized 
by the number of receivers, corresponding to the columns of the of response matrix in Fig. 5. The main difficulty of the approximation 
is coming from the nonlinear dependency of the Helmholtz equation with respect to the wave speed.

We have the following association, if we call the metanetwork  and the hyperneural operator , then for a point-source 𝛿𝜔
𝒙

we have

 (𝛿𝜔
𝒙
,Θ(𝑐)) = (𝛿𝜔

𝒙
,E hyper◦(𝑐)) ≈(p𝛿𝒙 ,𝜔), (17)

where  is a restriction operator which reduces the fields to the set of receivers positions Section 3.3, and Θ(𝑐) = E hyper◦(𝑐) ∈ℂ𝑚. In 
experiments, we see that a layer-wise form as Fig. 15 is more stable in the presence of the optimization algorithm. Similar conclusions 
19

were drawn in [120].
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From Equation (17), it is evident that the point source is independent of the discretization used for 𝑐, and multiple sources can 
be implemented efficiently, by increasing the vector inputs, indicating the source’s position. This means that the support of the 
point source can be finer than the discretization of 𝑐. On the other hand, the encoder, E hyper , is used in a similar manner as in 
DeepOnet described in Lanthaler et al. [71]. Its purpose is to map the range of  (the functional space) to a finite-dimensional space 
ℂ𝑚, which contains the parameters of the neural network  . Namely, E ◦ ∶𝐻 → ℂ𝑚, where 𝐻 represents the functional space 
where each realization of 𝑐 lies. In our case, 𝐻 can be identified with 𝐻2𝛽−𝑑∕2−𝜀(𝐷), as the wave speed are realizations of the 
Whittle–Matérn field (see Section 3.4). Finally, the dimension 𝑚 in ℂ𝑚 depends on the capacity chosen for the metanet family,  . 
In our experiments, we restrict it to a small two-layers network.

If 𝑓 are not point-sources,  can be expressed firstly by one global operator layer, followed by a second encoder E meta as the 
output is always discrete given the position of the receivers. That is,

 (𝑓,Θ(𝑐)) = E meta◦MLP𝜃2◦ 𝐈𝐃𝐅𝐓
(
𝐺
𝜃1
𝑘,𝓁(𝜉)𝐃𝐅𝐓(𝑓 )

)
≈(p𝑓,𝜔) , (18)

and Θ(𝑐) = [𝜃1, 𝜃2] = E hyper◦(𝑐). Rather than (18), more general operator layers, neural operators, or DeepOnet networks can be 
used as a metanetwork. However, Equation (10) is linear with respect to 𝑓 for a fixed 𝑐 and 𝜔.

The most general form of the  is

 (𝑓,Θ(𝑐)) = E meta◦meta(𝑓,E hyper◦(𝑐)) ≈(p𝑓,𝜔) (19)

for Θ(𝑐) = E hyper◦(𝑐), and  = E meta◦meta, composition of an encoder sending the values to the position of the re-

ceiver, and an operator network meta. Notice that E meta is playing a similar role to the restriction operator . Moreover, 
𝑐↦ E meta◦meta(⋅, E hyper◦(𝑐)) can be realized as an observational operator.

“Prediction” of the “matrix” response for the forward operator The wave field reconstruction at the receiver position, by probing 
multiple point sources is presented in Fig. 16. The rows correspond to the multiple point sources, and the columns to the pressure 
field detected at multiple positions of the domain. In the top left side, we appreciate the wave speed, and bottom left side, the error 
of the approximation. The dataset of the experiment is described in Section 3.3, and the network is a special case of (19), exactly 
described in Fig. 15.

Details of the experiment We employ the AdamW optimizer [88] with an initial learning rate of 10−3. We utilize a linear step 
scheduler with parameters: step size = 40, and a multiplicative factor of learning rate decay of 𝛾 = 0.5. The number of epochs is 
set to 100. In all architectures, we apply a small 𝓁2 weight regularizer with a parameter of 10−5. Given that we already restricted 
the training to the empirical analysis of the architectures, the training process is conducted using 40, 000 out of 50, 000 generated 
samples, while 5, 000 samples are used for validation and 5, 000 for testing.

The relative L2-error is 3 ×10−2. In the implementation, E ◦(𝑐) ∈ℝ2𝑚 and the complex-valued product is defined independently. 
Also, we did not split the learning rate from the metanetwork and hypernetwork, nor did we incorporate a more robust feature-

extractor, as [120]. Provided that the sources are point sources, the complexity of the task is encoded in the high capacity of the 
neural operator defining the metanetwork. The latter is a residual network with 2 layers, and leaky ReLU activation.

7. Out-of-distribution under Gaussian sampling

While Section 5 presents the empirical out-of-distribution performance of our network design, specifically in the context of 
time-harmonic waves, we consider here an analysis of the out-of-distribution phenomenon under centered Gaussian measures for 
Banach spaces. We recall from Section 3.4 that the Whittle–Matérn field belongs to the spaces 𝐻2𝛽−𝑑∕2−𝜀(𝐷) a.s. for all 𝜀 > 0. The 
Whittle–Matérn field generates a centered Gaussian measure on the Hilbert spaces to which it belongs, see e.g. [23, Proposition 
2.18]. This property holds under mild assumptions of the negative fractional power 𝐿−2𝛽 , as described in [22]. Here, 𝐿 represents 
the second-order elliptic operator presented in Equation (16).

We introduce the general framework for analyzing the out-of-distribution risk. (a) We defined the centered Gaussian measures 
on Banach spaces, (b) the Cameron-Martin spaces, and (c) the Wasserstein distance. Building upon these concepts and the powerful 
tools provided by Gaussian measures, we establish upper-bounds for the out-of-distribution risks associated with each of the archi-

tectures discussed in this paper. These bounds are expressed in terms of the Lipschitz norms of the neural operators. This theoretical 
foundation allows us to gain insights into the behavior of the neural operator family when confronted with data distributions that 
differ from the training distribution, as demonstrated in the experimental results in Section 5.

Remark 7.1. The main distinctions between the measures presented in this chapter and the ones discussed in Section 5 can be 
summarized as follows: (a) in Section 5, we apply an affine transformation T to the Whittle–Matérn field, T◦𝑍 , in order to ensure 
non-negativity, which corresponds to a non-negative of the wave speed. (b) The measures introduced in this chapter exhibit a higher 
20

level of generality.
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Fig. 16. Forward operator. Approximation of the forward operator by hyperneural operators.

7.1. Preliminaries

Our main theoretical results supporting the out-of-distribution performance of our neural operators require some background 
notions from optimal transport and the theory of Gaussian measures on Banach spaces, which we now review.

The order one Wasserstein distance In what follows, we make use of the Wasserstein distance of the order one between any two 
probability measures 𝜇 and 𝜈, denoted by 1(𝜇, 𝜈). By the Kantorovich–Rubinstein duality, see [110, Theorem 5.10], 1(𝜇, 𝜈) has the 
form

1(𝜇, 𝜈) = sup
𝑓∈F‖𝑓‖Lip≤1

𝔼(𝑎,𝑢)∼𝜇 [𝑓 (𝑎, 𝑢)] −𝔼(𝑎,𝑢)∼𝜈 [𝑓 (𝑎, 𝑢)] , (20)

where F is a class of the Lipschitz continuous operators mapping from  × to ℝ, and ‖⋅‖Lip is the Lipschitz norm17 defined by

‖𝑓‖Lip ∶= sup
(𝑎,𝑢)
|𝑓 (𝑎, 𝑢)|+ sup

(𝑎,𝑢)≠(𝑏,𝑣)
|𝑓 (𝑎, 𝑢) − 𝑓 (𝑏, 𝑣)|‖(𝑎, 𝑢) − (𝑏, 𝑣)‖×

≥ Lip(𝑓 ), (21)

where Lip(𝑓 ) ∶= sup(𝑎,𝑢)≠(𝑏,𝑣) |𝑓 (𝑎,𝑢)−𝑓 (𝑏,𝑣)|‖(𝑎,𝑢)−(𝑏,𝑣)‖× .

Centered Gaussian measures on Banach spaces Let  be a separable Banach space of functions from 𝐷 to ℝ𝑑𝑎 and  be a separable 
Banach space of functions from 𝐷 to ℝ𝑑𝑢 . Recall that  × is also a separable Banach space, when normed by

‖(𝑥, 𝑦)‖× ∶= (‖𝑥‖2 + ‖𝑦‖2 )1∕2.
Let us briefly recall the definition of a Gaussian measure on a Banach space.
21

17 ‖ ⋅ ‖Lip is simply the 𝑊 1,∞ norm. See Appendix A.1 and the reference therein.
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Definition 7.1 (Gaussian measure). A measure 𝜇𝑋 ∈ 1() is said to be centered and Gaussian if, for every continuous linear func-

tional 𝐸 ∈ ⋆ the measure 𝐸#𝜇𝑋 is a zero-mean Gaussian on ℝ. The weak variance Σ of 𝜇𝑋 is defined to be

Σ = sup
𝐸∈⋆,‖𝐸‖≤1 𝔼𝑎∼𝜇𝑋 [𝐸2(𝑎)]1∕2.

Associated to every centered Gaussian measure, we may define a small ball function 𝜓 ∶ (0, ∞) →ℝ as

𝜓(𝜂) ∶= − log
(
𝜇𝑋 (𝐵(0, 𝜂))

)
,

for every 𝜂 > 0. There is a reproducing kernel Hilbert space 𝜇 naturally associated to 𝜇𝑋 which is the completion of the range of 
the map 𝑆 ∶ ⋆ →  sending any 𝐸 ∈ ⋆ to the Bochner integral18 𝑆(𝐸) ∶= ∫

𝑎∈ 𝐸(𝑎) ⋅ 𝑎 𝜇𝑋 (𝑑𝑎) with respect to the inner product ⟨⋅, ⋅⟩𝜇𝑋 , defined for any 𝐸, 𝐹 ∈ ⋆ by ⟨𝑆(𝐸), 𝑆(𝐹 )⟩𝜇 ∶= ∫
𝑎∈ 𝐸(𝑎)𝐹 (𝑎) 𝜇𝑋 (𝑑𝑎). We denote the induced norm on 𝜇𝑋

by ‖ ⋅ ‖𝜇𝑋 ; 
which is induced by an inner product, see [67]. In fact, 𝜇𝑋

is a reproducing kernel Hilbert space with a relatively compact unit 
ball, called the Cameron-Martin space associated with the centered Gaussian measure 𝜇𝑋 . In fact, the Cameron-Martin space 𝜇𝑋
characterizes 𝜇𝑋 , see [76, Chapter 8] for details (we will briefly review the Cameron-Martin space in Section A.6).

Since the closed unit ball 𝐵𝜇𝑋 (0,1) of 𝜇𝑋
is compact (see19 [76, Lemma 8.4]), then its metric entropy 𝐻𝜇𝑋

(𝜀) ∶= log(𝑁𝜇𝑋
(𝜀))

are finite; where 𝑁𝜇𝑋
(𝜀) ∶= min{𝑛 ∈ ℕ+ ∶ ∃𝑥1, … , 𝑥𝑛 ∈ 𝐵𝜇𝑋 (0,1) s.t. ∀𝑥 ∈ 𝐵𝜇𝑋 (0,1)∃𝑖 ∈ [𝑛] s.t. ‖𝑥 − 𝑥𝑖‖𝜇𝑋 < 𝜀} is the covering 

number20 of 𝐵𝜇𝑋 (0,1). The key connection between the small ball function 𝜓 , a probabilistic notion, and entropy numbers, a 
constructive approximation theoretic tool, is that estimates on the growth of one imply estimates on the growth of the other.

7.2. Out-of-distributional generalization

Consider an “unknown” 𝐿⋆-Lipschitz (non-linear forward) operator ⋆ ∶  →  , a sampling distribution 𝜇𝑋 ∈ 1(), that is 
𝔼𝑋∼𝜇𝑋 [‖𝑋‖ ] <∞, and a sequence of i.i.d. samples (𝑎𝑛)∞𝑛=1 defined on a common measurable space (Ω, ), where 𝑎1 has law 
𝜇𝑋 and where 𝐿⋆ ≥ 0. We also consider an out-of-distributional sampling measure 𝜇̃𝑋 in 1(). We consider a common irreducible 
measurement noises 𝜖 taking values in  , and quantifying hardware and sampling limitations, defined on (Ω, ) and independent 
from {𝑎𝑛}∞𝑛=1 with law 𝜇𝜖 ∈ 1().

The data-generating and out-of-distribution, laws defined 𝜇𝑂𝑂𝐷∶𝑋 and 𝜇 are respectively defined by

𝜇 ∶= (𝐈𝐝 × 
⋆)#𝜇𝑋 ⋆ 𝜇𝜖 and 𝜇𝑂𝑂𝐷 ∶= (𝐈𝐝 × 

⋆)#𝜇𝑂𝑂𝐷∶𝑋 ⋆ 𝜇𝜖, (22)

where ⋆ is the convolution operation and 𝐈𝐝 is the identity map on  . The out-of-distributional measure 𝜇𝑂𝑂𝐷 and data-generating 
measures 𝜇 are coupled via the following condition: there is a 𝜀 ≥ 0 such that

1(𝜇𝑂𝑂𝐷,𝜇) ≤ 𝜀. (Coupling)

Remark 7.2. Intuitively, (22) states that one considers out-of-distributional shifts which arise as perturbations to the sampling 
mechanism (distribution) 𝜇𝑋 on  . The coupling condition (Coupling) then quantifies the 𝜀-magnitude of these perturbations; note 
that, in principle, 𝜀 > 0 can be large or small.

Example 7.1 (Interpretation of Coupling Condition). Let 𝑋 and 𝑁 be a random variables on  with laws 𝜇𝑋 and 𝜈 with finite means 
𝔼𝜇𝑋 [‖𝑋‖ ], 𝔼𝜈 [‖𝑁‖ ] < ∞, and denote 𝜀𝑠 ∶= 𝔼𝑁∼𝜈[‖𝑁‖ ]. The random variable 𝑋 + 𝑁 represents a sample 𝑋 corrupted by 
“sampling noise” 𝑁 . The law of 𝑋 +𝑁 is 𝜇𝑂𝑂𝐷∶𝑋 ∶= 𝜇𝑋 ⋆ 𝜈. Furthermore, one has

1(𝜇𝑋,𝜇𝑂𝑂𝐷∶𝑋 ) ≤ 𝔼
[‖𝑋 − (𝑋 +𝑁)‖ ] = 𝜀𝑠. (23)

The Kantorovich-Rubinstein duality implies that the push-forward map (𝐈𝐝 × 
⋆)# ∶ 1() → 1( × ) is at-most 2 max{1, 𝐿}-

Lipschitz; whence, (23) implies that

1
(
(𝐈𝐝 × 

⋆)#𝜇𝑋, (𝐈𝐝 × 
⋆)#𝜇𝑂𝑂𝐷∶𝑋

) ≤ 2max{1,𝐿}𝜀𝑠. (24)

Let 𝐸 be a random variable on  satisfying 𝜀𝑚 ∶= 𝔼𝐸∼𝜇𝜀 [‖𝐸‖𝑌 ] <∞, quantifying “measurement noise”. Let 𝜇𝜀 be the law of the 
random variable (0, 𝐸) where 0 is the zero-vector on  . Then (𝑋 +𝑁, ⋆(𝑋 +𝑁) +𝐸) quantifies a noisy training pair with sampling 
and measurement noise, whose law is 𝜇, (𝑋, ⋆(𝑋) +𝐸) quantifies a training sample only corrupted by measurement noise, whose 
law is 𝜇𝑂𝑂𝐷 , and both laws are related by

1(𝜇,𝜇𝑂𝑂𝐷) ≤ 𝜀𝑚 +1
(
(𝐈𝐝 × 

⋆)#𝜇𝑋, (𝐈𝐝 × 
⋆)#𝜇𝑂𝑂𝐷∶𝑋

) ≤ 2𝜀𝑚 + 2max{1,𝐿}𝜀𝑠 =∶ 𝜀,

18 Cf. Appendix A.4.
19 And the remark following its proof at the bottom of page 209.
22

20 See [102, Chapter 27] for details in the context of learning theory or [20] in the context of approximation theory.
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where the right-hand side was obtain by (24) together with a similar computation to (23).

A key advantage of coupling 𝜇 and 𝜇𝑂𝑂𝐷 using the 1 distance, over other notions, esp. 𝑓 -divergences, is that the data-

generating and out-of-distribution laws can be mutually singular21 but still remain comparable; this is, of course, not possible with 
classical divergences.

When training input-output pairs are generated by sampling 𝜇, by which we mean that we have access to the following (random) 
empirical measure

𝜇𝑁 ∶= (𝐈𝐝 × 
⋆)#𝜇𝑁𝑋 ⋆ 𝜇𝜖, (25)

where the empirical (random) probability measure 𝜇𝑁
𝑋

is defined by 𝜇𝑁
𝑋

= 1
𝑁

∑𝑁
𝑛=1 𝛿𝑎𝑛 .

We now state our main out-of-distribution bound, which operates under the following conditions.

Assumption 7.2 (Regularity of the Cameron-Martin space). Suppose further that 𝜇𝑋 is a center Gaussian measure on  with weak 
variance Σ and that the small ball function 𝜓 satisfies:

(i) There exists a constant 𝑐 > 0 such that 𝜓(𝜂) ≤ 𝑐 𝜓(2𝜂) for every 𝜂 small enough,22

(ii) For every 𝛼 > 0 and each positive integer 𝑁 , 𝑁−𝛼 = 𝑜
(
𝜓−1 (log(𝑁))

)
.

Remark 7.3. Assumption 7.2 requires that Gaussian “sampling” measure 𝜇𝑋 defined on the input space  does not place mass 
too far away from the origin; i.e. that it is sufficiently well concentrated, and the function 𝜓 quantifies how well this measure is 
concentrated.

Neural operator class Let us define the family of standard Neural Operator as follows:

N =
{
𝜃 ∶ L2(𝐷;ℝ𝑑𝑎 )→ L2(𝐷;ℝ𝑑𝑢 ) ∶ 𝜃 = (𝑊𝐿 +𝐿)◦𝜎(𝑊𝐿−1 +𝐿−1)◦⋯◦𝜎(𝑊0 +0)

𝜃 = (𝑊𝓁 ,𝓁)𝓁=0,...,𝐿, 𝑊𝓁 ∈ℝ𝑑𝓁+1×𝑑𝓁 ,𝓁 ∶ L2(𝐷;ℝ𝑑𝓁 )→ L2(𝐷;ℝ𝑑𝓁+1 ), and 𝑑0 = 𝑑𝑎, 𝑑𝐿+1 = 𝑑𝑢
}
.

(26)

𝜎 ∶ ℝ → ℝ is an element-wise nonlinear map, and 𝓁 are linear integral operators with kernel function, 𝑘𝓁 ∶ 𝐷 ×𝐷→ ℝ𝑑𝓁+1×𝑑𝓁 , 
i.e., 𝑥 ↦

(
𝓁 𝑢
)
(𝑥) ∶= ∫

𝐷 𝑘𝓁(𝑥, 𝑦)𝑢(𝑦) 𝑑𝑦 and 𝑢 ∈ L2(𝐷; ℝ𝑑𝓁 ). We shall write, 𝑤𝓁,𝑖𝑗 = (𝑊𝓁)𝑖,𝑗 ∈ ℝ and 𝑘𝓁,𝑖𝑗 = (𝑘𝓁)𝑖,𝑗 ∶𝐷 ×𝐷→ ℝ as 
(𝑖, 𝑗)-element of 𝑊𝓁 and 𝑘𝓁 , respectively.

Assumption 7.3. There exist positive constants 𝐶𝑤, 𝐶𝑘, 𝐶𝑑 , 𝐶𝑎, 𝐶𝜎 , and 𝐶𝛽 such that

(i). ‖‖𝑊𝓁
‖‖op ≤ 𝐶𝑤, and 𝑑𝓁 ≤ 𝐶𝑑 for all 𝓁 = 0, ..., 𝐿, where ‖⋅‖op is the operator norm.

(ii). ‖‖𝓁
‖‖L2 ,F ∶=

(∑
𝑖,𝑗
‖‖‖𝑘𝓁,𝑖𝑗‖‖‖2L2(𝐷×𝐷)

)1∕2
≤ 𝐶𝑘 for all 𝓁 = 0, ..., 𝐿, where |𝐷| = ∫ 𝟏𝐷 𝑑𝜆,23 and 𝑘𝓁 ∶ 𝐷 × 𝐷 → ℝ𝑑𝓁+1×𝑑𝓁 is the 

kernel function.

(iii). ‖𝑎‖L2(𝐷;ℝ𝑑𝑎 ) ≤ 𝐶𝑎 for all 𝑎 ∈ supp(𝜇𝑎).
(iv). 𝜎 is 𝐶𝜎 -Lipschitz, i.e., |𝜎(𝑠) − 𝜎(𝑡)| ≤ 𝐶𝜎 |𝑠 − 𝑡| for 𝑠, 𝑡 ∈ℝ.

(v). sup𝑥,𝑦∈𝐷 |𝑘𝓁,𝑖𝑗 (𝑥, 𝑦)| ≤ 𝐶𝛼 for 𝓁 = 0, ..., 𝐿, 𝑖 = 1, .., 𝑑𝓁 , and 𝑗 = 1, ..., 𝑑𝓁+1.

(vi). 𝑘𝓁,𝑖𝑗 ∶𝐷 ×𝐷→ℝ is 𝐶𝛽 -Lipschitz, see Definition A.4, for 𝓁 = 0, ..., 𝐿, 𝑖 = 1, .., 𝑑𝓁 , and 𝑗 = 1, ..., 𝑑𝓁+1.

Sequential neural operator class We define the family, see Section 2, as

Ñ =
{
𝜃 ∶ L2(𝐷;ℝ𝑑𝑎 )→ L2(𝐷;ℝ𝑑𝑢 )∶

𝜃 = (𝐙𝐿𝐈𝐝 +𝐗𝐿𝑓𝐿)◦(𝐙𝐿𝐈𝐝 +𝐗𝐿𝜎◦𝐿)◦⋯◦(𝐙0𝐈𝐝 +𝐗0𝑓0)◦(𝐙0𝐈𝐝 +𝐗0𝜎◦0)

𝐙𝓁 ,𝐗𝓁 ∈ {0,1}, 𝑓𝓁 =𝑊𝓁,𝑀◦𝜎(𝑊𝓁,𝑀−1)◦⋯◦𝜎(𝑊𝓁,0) is an Mth layer MLP

𝜃 = (𝑊𝓁,𝑚,𝓁) 𝓁=0,…,𝐿
𝑚=0,…,𝑀

, 𝑊𝓁,𝑚 ∈ℝ𝑑
𝑤
𝓁,𝑚+1×𝑑

𝑤
𝓁,𝑚 and 𝓁 ∶ L2(𝐷;ℝ𝑑

𝑘
𝓁 )→ L2(𝐷;ℝ𝑑

𝑘
𝓁+1 )

𝑑𝑤𝓁,0 = 𝑑
𝑘
𝓁+1, 𝑑

𝑤
𝓁,𝑀 = 𝑑𝑘𝓁+1, 𝑑

𝑘
0 = 𝑑𝑎, 𝑑𝑘𝐿+1 = 𝑑𝑢

}
.

(27)

21 For example, if 𝜈 is the standard Gaussian measure on ℝ then any finitely supported measure ∑𝑁
𝑛=1 𝑤𝑛𝛿𝑥𝑛 is singular with respect to 𝜈 and vice versa.

22 I.e.: There exists some 𝜂0 > 0 such that (i) holds whenever 0 < 𝜂 ≤ 𝜂0 .
23

23 𝜆 is the Lebesgue measure.
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Assumption 7.4. There exist positive constants 𝐶𝑤, 𝐶𝑘, 𝐶𝑑 , 𝐶𝑎, 𝐶𝜎 , and 𝐶𝛽 such that

(i). ‖‖𝑊𝓁,𝑚
‖‖op ≤ 𝐶𝑤, and 𝑑𝑘𝓁 , 𝑑

𝑤
𝓁,𝑚 ≤ 𝐶𝑑 , for 𝓁 = 0, ..., 𝐿, 𝑚 = 0, ..., 𝑀 .

(ii). ‖‖𝓁
‖‖L2 ,F ≤ 𝐶𝑘, for 𝓁 = 0, ..., 𝐿.

(iii). ‖𝑎‖L2(𝐷;ℝ𝑑𝑎 ) ≤ 𝐶𝑎, for 𝑎 ∈ supp(𝜇𝑎).
(iv). 𝜎 is 𝐶𝜎 -Lipschitz, i.e., |𝜎(𝑠) − 𝜎(𝑡)| ≤ 𝐶𝜎 |𝑠 − 𝑡| for 𝑠, 𝑡 ∈ℝ.

(v). sup𝑥,𝑦∈𝐷 |𝑘𝓁,𝑖𝑗 (𝑥, 𝑦)| ≤ 𝐶𝛼 for 𝓁 = 0, ..., 𝐿, 𝑖 = 1, .., 𝑑𝓁 , and 𝑗 = 1, ..., 𝑑𝑘𝓁+1.

(vi). 𝑘𝓁,𝑖𝑗 ∶𝐷 ×𝐷→ℝ is 𝐶𝛽 -Lipschitz, for 𝓁 = 0, ..., 𝐿, 𝑖 = 1, .., 𝑑𝑘𝓁 , and 𝑗 = 1, ..., 𝑑𝑘𝓁+1.

Remark 7.4. Assumptions, 7.3-7.4, restrict the capacity of our class of neural operators. Without such a capacity restriction, which 
the user can freely adjust, the corresponding class would exhibit unbounded Rademacher complexity, as described in Section 8 and 
thus, generalization is not guaranteed.

Lipschitz bounds We have to estimate the Lipschitz norms for N and Ñ , corresponding to standard NO and sNO+ 𝜀I, respectively.

Lemma 7.5 (Lipschitz stability of the hypothesis classes (N and Ñ )). (i) Let Assumption 7.3 hold. Then, we have that

‖‖Lip ≤ (𝐶𝑤 +𝐶𝑘)𝐿+1𝐶𝐿𝜎 ,  ∈ N .

(ii) Let Assumption 7.4 hold. Then, we have that

‖‖Lip ≤ [ 𝐿∏
𝓁=0

(𝐙𝓁 +𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

]
,  ∈ Ñ .

The proof is given by the same argument in the proofs of Corollaries 8.6 and 8.7.

Theorem 7.6 (Out-of-distributional generalization bounds for the NO and sNO + 𝜀Iv2 hypothesis classes). Suppose that either of Assump-

tion 7.3 or Assumption 7.4, that the small ball function 𝜓 satisfies Assumption 7.2, and that there is an 𝜀 ≥ 0 such that the coupling 
condition (Coupling) holds. Then there exists a constant 𝐶𝜇 , depending only on 𝜇𝑋 , such that: for every 0 < 𝛿 ≤ 1

sup
∈G

𝔼(𝑎,𝑢)∼𝜇𝑂𝑂𝐷
[
𝓁((𝑎), 𝑢)

]
− 𝐿̄𝔼(𝑎,𝑢)∼𝜇𝑁

[
𝓁((𝑎), 𝑢)

] ≤ 𝐿̄ (𝜀+𝐶𝜇𝜓−1( log(𝑁)
)
+

Σ
√
−2 log(𝛿)√
𝑁

)
, (28)

holds with probability at-least 1 − 𝛿; where 𝐿̄ ∶= 𝐿𝓁 max{1, 𝐿⋆} max{1, 𝐿G }; where 𝐿G ≥ 0 depends on which if Assumption 7.3 or 
Assumption 7.4 hold, and is respectively given by:

(i) If Assumption 7.3 holds and G = N (defined in (26)), Lemma 7.5 implies:

𝐿N ≤ (𝐶𝑤 +𝐶𝑘)𝐿+1𝐶𝐿𝜎 , (29)

(ii) If Assumption 7.4 holds and G = Ñ (defined in (27)), Lemma 7.5 implies:

𝐿
Ñ

≤
[

𝐿∏
𝓁=0

(𝐙𝐿 +𝐗𝐿𝐶𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝐿 +𝐗𝐿𝐶𝑘𝐶𝜎)

]
, (30)

Furthermore, if the metric entropy 𝐻𝜇 of the unit ball in the Cameron-Martin space associated with the sampling measure 𝜇𝑋 satisfies 

𝐻𝜇(𝑟) ∈Θ
( log(1∕𝑟)2𝛽∕(2+𝛼)

𝑟2𝛼∕(2+𝛼)

)
then the right-hand side of (28)

sup
∈G

𝔼(𝑎,𝑢)∼𝜇𝑂𝑂𝐷
[
𝓁((𝑎), 𝑢)

]
− 𝐿̄𝔼(𝑎,𝑢)∼𝜇𝑁

[
𝓁((𝑎), 𝑢)

] ≤ 𝐿̄ (𝜀+𝐶𝜇𝐶Ψ
(
log(𝑁)

)
+

Σ
√
−2 log(𝛿)√
𝑁

)
, (31)

where Ψ is the inverse24of the map 𝜂↦ log(1∕𝜂)𝛽
𝜂𝛼

and 𝐶 > 0 is an absolute constant.

The case of G = N corresponds to the family of standard Neural Operators, while the case of G = Ñ corresponds to the family 
of proposed Neural Operator sNO + 𝜀I. 𝐿G represents the upper bound of Lipschitz norms for hypothesis classes G , and 𝐿N and 
𝐿

Ñ
are estimated by Lemma 7.5. Analogous observations can be made as in Remark 8.2 regarding the upper bound of Lipschitz 

norms. Specifically, if (𝐶𝑤 + 𝐶𝑘)𝐶𝜎 > 1, then the upper bound in (29) diverges with depth 𝐿. On the other hands, if 𝐙𝓁 = 1 and 
24

24 For example, if 𝛽 = 𝛼 = 1 then Ψ(𝜂) =𝑊 (𝜂)∕𝜂, where 𝑊 is the Lambert W function.
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Table 17

Rates for Different Sampling Measures and Banach Spaces.

Space Covariance function Entropy estimate Small ball asymptotics (𝜓(𝜂))

𝐿2([0,1]2) min{𝑠1 , 𝑡1}min{𝑠2 , 𝑡2} - Θ
( log(1∕𝜂2)2

𝜂2

)
𝐶([0,1]𝑑 ) 𝛼

2𝑑
∏𝑑

𝑖=1 𝑠
ℎ𝑖
𝑖 + 𝑡ℎ𝑖𝑖 − |𝑠𝑖 − 𝑡𝑖|ℎ𝑖 - Θ

( 1
𝜂2∕ℎ

)
General General Θ

( log(1∕𝑟)2𝛽∕(2+𝛼)
𝑟2𝛼∕(2+𝛼)

)
Θ
( log(1∕𝜂)𝛽

𝜂𝛼

)
The “entropy estimates” the required condition on the metric entropy of the unit ball in the Cameron-

Martin space associated to the centered Gaussian “sampling” measure 𝜇𝑋 . Here ℎ ∶= min𝑖=1,…,𝑑 ℎ𝑖 is 
the minimal “regularity” of the Brownian sheet of 𝐶([0, 1]𝑑 ) in all directions.

𝐗𝓁 follows a Bernoulli distribution (which corresponds to (sNO + 𝜀Iv2) with an appropriate choice of 𝑝𝓁 , then upper bound in (30)

remain bounded as 𝐿 →∞.

We now show that the conditions of Theorem 7.6, namely the regularity of the Cameron-Martin space associated with the data-

generating measure 𝜇 are easily satisfied. We consider two examples, one of a Brownian sheet and a fractional Brownian sheet on 
different hypercubes with respect to different norms on their associated function spaces.

Table 17 reports the rates implied by Theorem 7.6 in the case of a Brownian sheet on [0, 1]2 and [0, 1]𝑑 with respect to the 𝐿2

and uniform norms. More generally, we report the rates implied by the result for centered Gaussian measures 𝜇 a general Banach 
space, when we have access to tight asymptotics on the covering number of the unit ball in the Cameron-Martin25 RHKS associated 
to 𝜇.

Lemma 7.7 (Estimates on small ball functions for Gaussian sheets in uniform topology [94, Theorem 2.1]). Let 𝐷 = [0, 1]𝑑 for a positive 
integer 𝑑, fix “Hurst parameters” 0 < ℎ1, … , ℎ𝑑 < 2, a parameter 0 < 𝛼 < 2, and let 𝜇 be the continuous centered Gaussian measure on the 
Banach space 𝐶0([0, 1]𝑑 , ℝ) equipped with the supremum norm and with covariance function

𝔼
[
𝑋𝑠1 ,…,𝑠𝑑

𝑋𝑡1 ,…,𝑡𝑑

]
= 𝛼

2𝑑

𝑑∏
𝑖=1

𝑠
ℎ𝑖
𝑖
+ 𝑡ℎ𝑖

𝑖
− |𝑠𝑖 − 𝑡𝑖|ℎ𝑖 .

Then, Assumptions (i)-(ii) on the small ball function 𝜓 , in Lemma 7.10, hold and there exists a constant 0 < 𝐶1 ≤ 𝐶2, depending only on 𝑑, 
𝑎, and on 𝛼, such that

𝐶1
1
𝜂2∕ℎ

≤ 𝜓(𝜂) ≤ 𝐶2
1
𝜂2∕ℎ

for 𝜂 small enough,26 where ℎ ∶=min𝑖=1,…,𝑑 ℎ𝑖.

Example 7.2 (Estimate on the standard Brownian sheet on [0, 1]2 [68, Equation (5.37)]). Let 1 ≤ 𝑝 ≤ 2. Let 𝐷 = [0, 1]2 and consider the 
centered continuous Gaussian process 𝑋 ∶= (𝑋𝑠,𝑡)0≤𝑠,𝑡≤1 in 𝐿2(𝐷) with covariance function

𝔼[𝑋𝑠1 ,𝑡1𝑋𝑠2 ,𝑡2 ] = min{𝑠1, 𝑡1}min{𝑠2, 𝑡2}.

Then, Assumptions (i)-(ii) on the small ball function 𝜓 , in Lemma 7.10, hold and there exists a constant 0 < 𝐶1 ≤ 𝐶2 such that

𝐶1
log(1∕𝜂)2

𝜂2
≤ 𝜓(𝜂) ≤ 𝐶2

log(1∕𝜂2)2

𝜂2
.

We now derive Theorem 7.6 via a sequence of lemmata.

7.3. Proof of Theorem 7.6

The proof of Theorem 7.6 extends the transport-theoretic approach to deriving generalization bounds of [53], to the infinite-

dimensional setting, by incorporating elements of the geometry of Cameron-Martin spaces. We begin, with the following “change-of-

measure lemma” which bounds the gap between the risks from data samples from any two distinct, arbitrary, probability measures 
𝜇 and 𝜈 in 1( ×).

Lemma 7.8 (Change of distribution). Consider an in-distribution measure 𝜇 and out-of-distribution probability measure ℚ, where 𝜇, ℚ, 𝜈 ∈
1
( ×). Let G be a family of 𝐿-Lipschitz functions from  to  , and suppose that

1(ℚ, 𝜇) ≤ 𝜀,

25 See [76, Chapter 8] for details.
25

26 That is, there is some 𝜂0 > 0 such that the condition holds for every 0 < 𝜂 ≤ 𝜂0 .
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for some 𝜀 > 0. For any 𝐿𝓁 -Lipschitz loss function 𝓁 ∶ × → [0, ∞) we have

𝔼(𝑎,𝑢)∼ℚ
[
𝓁((𝑎), 𝑢)

] ≤ L𝓁 max{1,𝐿}
(
𝜀+1(𝜈,𝜇) + 𝔼(𝑎,𝑢)∼𝜈

[
𝓁((𝑎), 𝑢)

] )
,

for each  ∈ G .

Proof. See Appendix B.1. □

Next, we incorporate the structure of 𝜇 and 𝜇𝑁 into Lemma 7.8, in place of the arbitrary measures 𝜇 and 𝜈, respectively.

Lemma 7.9 (Structured change-of-measure). Assume that 𝜇 and 𝜇𝑁 are respectively given by (22) and (25). Then, we have that

1

(
𝜇,𝜇𝑁
) ≤max{1,𝐿⋆}1(𝜇𝑋,𝜇𝑁𝑋 ).

Proof. See Appendix B.2. □

We will assume that our samples of ⋆, distributed according to 𝜇𝑋 , are drafted from a Gaussian measure on  .

Lemma 7.10 (General concentration inequality for Lipschitz hypotheses). Assume the setting of Lemma 7.9 and fix a positive integer 𝑁 . 
Suppose further that 𝜇𝑋 is a center Gaussian measure on  with weak variance Σ and that the small ball function 𝜓 satisfies:

(i) There exists a constant 𝑐 > 0 such that 𝜓(𝜂) ≤ 𝑐 𝜓(2𝜂) for every 𝜂 small enough,27

(ii) For every 𝛼 > 0 and each positive integer 𝑁 , 𝑁−𝛼 = 𝑜
(
𝜓−1 (log(𝑁))

)
.

There exists a constant 𝐶𝜇 , depending only on 𝜇𝑋 , such that: for every 0 < 𝛿 ≤ 1

sup
∈G

𝔼(𝑎,𝑢)∼ℚ
[
𝓁((𝑎), 𝑢)

]
− 𝐿̄𝔼(𝑎,𝑢)∼𝜇𝑁

[
𝓁((𝑎), 𝑢)

] ≤ 𝐿̄ (𝜀+𝐶𝜇𝜓−1( log(𝑁)
)
+

Σ
√
−2 log(𝛿)√
𝑁

)
, (32)

holds with probability at-least 1 − 𝛿; where 𝐿̄ ∶=𝐿𝓁 max{1, 𝐿} max{1, 𝐿⋆}.

Furthermore, suppose that 𝐻𝜇(𝑟) ∈Θ
( log(1∕𝑟)2𝛽∕(2+𝛼)

𝑟2𝛼∕(2+𝛼)

)
then the right-hand side of (28)

sup
∈G

𝔼(𝑎,𝑢)∼ℚ
[
𝓁((𝑎), 𝑢)

]
− 𝐿̄𝔼(𝑎,𝑢)∼𝜇𝑁

[
𝓁((𝑎), 𝑢)

] ≤ 𝐿̄ (𝜀+𝐶𝜇𝜓̃−1( log(𝑁)
)
+

Σ
√
−2 log(𝛿)√
𝑁

)
, (33)

where 𝜓̃(𝜂) = 𝐶 log(1∕𝜂)𝛽
𝜂𝛼

and 𝐶 > 0 is an absolute constant.

Remark 7.5. As remarked on [14, page 542], condition (ii) in Lemma 7.10 implies that the centered Gaussian measure 𝜇 is not 
supported on a finite-dimensional Banach subspace of  × .

Proof of Lemma 7.10. See Appendix B.3. □

Applying Lemma 7.10 to the hypothesis classes N and Ñ , defined in (26) and (27), respectively, yields our main generalization 
bound for out-of-sample distribution learning; i.e., Theorem 7.6.

Proof of Theorem 7.6. Set ℚ ∶= 𝜇𝑂𝑂𝐷 . Lemma 7.5 implies that under the respective assumptions: Assumption 7.3 and 7.4, the 
hypothesis classes N and Ñ are Lipschitz and it provides explicit estimates on the Lipschitz constants 𝐿 of these neural operators. 
The result then follows from Lemma 7.10. □

Discussion Theorem 7.6 supports our experimental evidence that the risk-bounds for the (𝑠𝑁𝑂 + 𝜀𝐼)𝑣2 are much tighter than those 
for the 𝑠𝑁𝑂+ 𝜀𝐼 model, precisely since the constant of the former is much tighter than that of the latter. We expect that comparable 
lower-bounds could be derived. However, since lower-bounds with tight constants can take years to perfect, as seen by the time gap 
between [104] and [64], then we will in future research.
26

27 I.e.: There exists some 𝜂0 > 0 such that (i) holds whenever 0 < 𝜂 ≤ 𝜂0 .
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8. Generalization error bounds of the neural operators

Through experimental observation, we have found that our proposed network exhibits superior performance compared to stan-

dard networks, specifically in terms of lower test errors. The test error is synonymous with generalization error in the field of 
statistical learning theory. This section provides the theoretical analysis of generalization error for both standard networks and our 
proposed networks.

It is important to mention that Kovachki et al. [66] established the standard universal approximation theorem that shows that 
any continuous operator can be approximated in compact sets by standard neural operators. As our network is an extension of the 
standard network, universality also holds for our proposed networks. Consequently, in the context of universality, we are unable to 
distinguish differences. Therefore, our primary focus on this section will be on the complexity of networks and their corresponding 
generalization error bounds.

8.1. Preliminaries

Let 𝐷 ⊂ℝ𝑑 be a bounded domain, and L2(𝐷; ℝℎ) be the L2 space of ℝℎ-value function on 𝐷. Let 𝑆 = {(𝑎𝑖, 𝑢𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛} be the 
sequence of independent samples of 𝜇, i.e. (𝑎𝑖, 𝑢𝑖) 

i.i.d∼ 𝜇,28 with marginals 𝜇𝑎 in L2(𝐷; ℝ𝑑𝑎 ) and 𝜇𝑢 in L2(𝐷; ℝ𝑑𝑢 ). Let G be the class 
of operators mapping from L2(𝐷; ℝ𝑑𝑎 ) to L2(𝐷; ℝ𝑑𝑢 ), and 𝓁 ∶ L2(𝐷; ℝ𝑑𝑢 ) × L2(𝐷; ℝ𝑑𝑢 ) →ℝ≥0 be the loss function. We denote by the 
expected risk  and empirical risk ̂S, defined rigorously in Appendix A.8.

We review the Rademacher complexity, which measures the richness of a class of real-valued functions.

Definition 8.1. (Rademacher complexity) Let F be the set of real-valued measurable functions on a measurable space (𝑆, ). Let 
{𝝐𝑖}𝑛𝑖=1 is a sequence of i.i.d. RV’s with Rademacher distribution; i.e., 𝐏{𝝐𝑖 = 1} = 1∕2 = 𝐏{𝝐𝑖 = −1}. The Rademacher complexity of 
the class F is defined as

ℜ𝑛
S(F ) ∶= 𝔼𝝐∼Rad

[
sup
𝑓∈F

1
𝑛

|||||
𝑛∑
𝑖=1

𝝐𝑖𝑓 (𝑎𝑖, 𝑢𝑖)
|||||
]
, (34)

(Cf. Giné and Nickl [41, Definition 3.1.19]).

Assumption 8.2. There exist positive constants 𝜌 > 0, 𝑅𝑢 > 0 such that

(i). 𝓁 is 𝜌-Lipschitz continuous, i.e., |𝓁(𝑢1, 𝑣) − 𝓁(𝑢2, 𝑣)| ≤ 𝜌 ‖‖𝑢1 − 𝑢2‖‖L2(𝐷;ℝ𝑑𝑢 ) for 𝑢1, 𝑢2, 𝑣 ∈ L2(𝐷; ℝ𝑑𝑢 ).
(ii). 𝓁(𝟎, ⋅) is bounded above by 𝑅𝑢, i.e., |𝓁(𝟎, 𝑢)| ≤𝑅𝑢 for 𝑢 ∈ supp(𝜇𝑢).29

First, we estimate the generalization error bound for the general setting.

Lemma 8.3 (Generalization error bound). Let Assumption 8.2 hold and suppose there exists 𝑅 > 0 such that ‖(𝑎)‖L2(𝐷;ℝ𝑑𝑢 ) ≤ 𝑅, for all 
 ∈ G , and 𝑎 ∈ supp(𝜇𝑎) for the hypothesis class, G . Hence, for any 𝛿 > log2, the following inequality holds with probability greater than 
1 − 2 exp(−𝛿),

() ≤ ̂S() + 2ℜ𝑛
S(FG ) + (𝜌𝑅+𝑅𝑢)

√
2𝛿
𝑛
, ∀ ∈ G , (35)

where ℜ𝑛
S(FG ) is the Rademacher complexity of the class FG , and the class FG is defined as

FG ∶= {(𝑎, 𝑢)↦ 𝓁((𝑎), 𝑢) ∶ (𝑎, 𝑢) ∈ supp(𝜇),  ∈ G } .

See Appendix C.1 for the proof. The idea is to break down the generalization error () into two components: the approximation 
error ̂S() and the complexity error () − ̂S(). The upper bound of the complexity error () − ̂S() can be established using 
the Rademacher complexity, ℜ𝑛

S(FG ), by the Uniform laws of large numbers (Lemma A.12).

If the class G is a universal approximator, the approximation error ̂S() can be made “small enough” through training. In fact, 
if G is chosen to be the classes of neural operators [66] and DeepONets [71], both of which are universal approximators. In the 
following, we focus on the analysis of the Rademacher complexity for both standard neural operators (NO𝑠) and proposed neural 
operators (sNO).

28 Independent identically distributed samples drawn from, 𝜇, on L2(𝐷; ℝ𝑑𝑎 ) × L2(𝐷; ℝ𝑑𝑢 ).
27

29 Support of a measure 𝜇 is defined supp(𝜇) ∶= {𝑥 ∈𝑋 ∶ 𝜇( ) > 0 for all open neighborhood  of 𝑥} (Cf. Ambrosio et al. [4, Ch. 5]).
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8.2. Related work of generalization error bound (GEB)

References such as Bartlett et al. [9], Jakubovitz et al. [58] have extensively investigated generalization error bounds (GEB) for 
networks that map between finite-dimensional spaces. However, to the best of our knowledge, there has been limited exploration 
of GEB for operators on infinite dimensional spaces. De Ryck and Mishra [27] provided the GEB for (general) operator architec-

tures using Hoeffding’s inequality, without involving the analysis of the Rademacher complexity. Gopalani et al. [43] and Kim and 
Kang [62] have provided GEB for DeepOnet and FNOs, respectively, by the Rademacher complexity. However, in these works, the 
authors assumed that the trainable parameters are finite-dimensional (such as matrices), while our work does not need this assumption. 
Our study distinguishes itself from Kim and Kang [62] in several key aspects. Firstly, we directly analyze the integral operator under 
the assumption of Lipschitz continuity of the kernel, whereas Kim and Kang [62] assumes a truncated expansion for FNOs and eval-

uates the Rademacher complexity based on the number of truncations. Secondly, our work not only generalizes the findings of Kim 

and Kang [62] but also provides sharper bounds on the Rademacher complexity with the order (1∕𝑛 1
𝑑+1 ), compared to (1) in Kim 

and Kang [62].

8.3. Rademacher complexity of neural operators

We analyze the Rademacher Complexity of Neural Operators, [66]. Under Assumption 7.3, we obtain the following upper bound 
for Rademacher Complexity for NO𝑠.

Theorem 8.4 (Rademacher Complexity for NOs). Let suppose Assumptions 8.2 and 7.3 hold. Then,

ℜ𝑛
S(FN ) ≤ 𝛾 𝐿 𝑑+2

𝑑+1 {(𝐶𝑤 +𝐶𝑘)𝐶𝜎}𝐿
(1
𝑛

) 1
𝑑+1

, (36)

where 𝑑 ∶= ddim(𝐷 ×𝐷) is the doubling dimension of 𝐷 ×𝐷 (see Definition A.16), and 𝛾 is the positive constant independent of 𝐿 and 𝑛, 
defined in (C.16).

See Appendix C.2 for the proof. The idea behind the proof is as follows, the Rademacher Complexity, ℜ𝑛
S(FN ), is evaluated by 

using Dudley’s Theorem (Lemma A.15, and Kakade and Tewari [59], Bartlett et al. [8]). The upper bound is then determined by the 
covering number (as defined in Definition A.14). Since NOs are parameterized by their weight matrices and (kernel) Lipschitz contin-

uous functions, the evaluation of the covering number ultimately involves analyzing these components, by using Wainwright [111]

and Gottlieb et al. [44], respectively.

See Remark D.1 for finite basis expansion (applicable integral kernel).

8.4. Rademacher of sNO and intermediate architectures

In this section, we analyze the Rademacher Complexity of the proposed networks. With Assumption 7.4, we obtain the following 
upper bound for the Rademacher Complexity of Ñ .

Theorem 8.5 (Rademacher Complexity of proposed network(s)). Let Assumptions 8.2 and 7.4 hold. Then,

ℜ𝑛
S(FÑ

) ≤ 𝛾̃𝐿 1
𝑑+1

(
𝐿∑

𝓁=0

𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

𝐙𝓁 +𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

+
𝐗𝓁

𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎

)[
𝐿∏

𝓁=0
(𝐙𝓁 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

](1
𝑛

) 1
𝑑+1

, (37)

where ̃𝛾 is the positive constant independent of 𝐿 and 𝑛, defined in (C.27).

Theorem 8.5 can be proved by similar arguments in Theorem 8.4. See Appendix C.3 for the proof.

8.5. GEB and comparison among architectures

By Lemma 8.3, and Theorems 8.4 and 8.5, we get

Corollary 8.6. Let Assumptions 8.2 and 7.3 hold. Then, for any 𝛿 > log2 and  ∈ N , the following inequality holds, with probability 
greater than 1 − 2 exp(−𝛿):

() ≤ ̂S() + 2𝛾𝐿
𝑑+2
𝑑+1 {(𝐶𝑤 +𝐶𝑘)𝐶𝜎}𝐿

(1
𝑛

) 1
𝑑+1 +
(
𝜌{(𝐶𝑤 +𝐶𝑘)𝐶𝜎}𝐿(𝐶𝑤 +𝐶𝑘)𝐶𝑎 +𝑅𝑢

)√2𝛿
𝑛
. (38)
28

See Appendix C.4 for the proof.
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Corollary 8.7. Let Assumptions 8.2 and 7.4 hold. Then, for any 𝛿 > log2 and  ∈ Ñ , the following inequality with probability greater than 
1 − 2 exp(−𝛿):

() ≤ ̂S()

+ 2𝛾̃𝐿
1
𝑑+1

(
𝐿∑

𝓁=0

𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

𝐙𝓁 +𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

+
𝐗𝓁

𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎

)[
𝐿∏

𝓁=0
(𝐙𝓁 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

](1
𝑛

) 1
𝑑+1

+

(
𝜌

[
𝐿∏

𝓁=0
(𝐙𝓁 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

]
𝐶𝑎 +𝑅𝑢

)√
2𝛿
𝑛
.

(39)

See Appendix C.4 for the proof.

Remark 8.1. When 𝐙𝓁 = 0 and 𝐗𝓁 = 1 corresponds to sNO, if 𝐙𝓁 = 1 and 𝐗𝓁 = 1 to (sNO + 𝜀I)v1. Finally, if 𝐙𝓁 = 1 and 𝐗𝓁 is a 
Bernoulli RV with 𝐏{𝐗𝓁 = 1} = 𝑝𝓁 , and 𝐏{𝐗𝓁 = 0} = 1 − 𝑝𝓁 for 𝑝𝓁 ∈ [0, 1] corresponds to (sNO + 𝜀I)v2.

Remark 8.2. The 2nd, and 3rd terms decay as the samples increases, 𝑛 →∞, with orders  
(
1∕𝑛

1
𝑑+1

)
and (1∕𝑛 1

2 ), respectively. 

We finally observe the coefficients depending on the number of layers, 𝐿 (see also Remark C.2–submitted version of the paper– and 
D.2 in the revised version of the paper–.

1. If (𝐶𝑤 + 𝐶𝑘)𝐶𝜎 < 1 (or 𝐶𝑀+1
𝑤 𝐶𝑀+1

𝜎 𝐶𝑘 < 1), the upper bounds of standard NO (or sNO) remain bounded as 𝐿 tends to infinity. 
On the other hand, if (𝐶𝑤 + 𝐶𝑘)𝐶𝜎 > 1 (or 𝐶𝑀+1

𝑤 𝐶𝑀+1
𝜎 𝐶𝑘 > 1), then, the upper-bounds diverges with depth, similarly than 

finite-dimensional networks Truong [108].

2. If the condition 𝐶𝑤 < 1 and 𝐶𝜎 ≤ 1 holds true, then 𝐶𝑀+1
𝑤 𝐶𝑀+1

𝜎 𝐶𝑘 ≤ (𝐶𝑤 + 𝐶𝑘)𝐶𝜎 , which implies that the upper bound of sNO

are smaller than standard NOs. See Remark D.2.

3. Since 𝐶𝑀+1
𝑤 𝐶𝑀𝜎 𝐶𝑘 ≤ (1 + 𝐶𝑀+1

𝑤 𝐶𝑀𝜎 )(1 + 𝐶𝜎𝐶𝑘), the upper bound of standard NOs are smaller than (sNO + 𝜀I)v1, despite the 
outcomes of our experiments, see Fig. 7.

4. Finally the RVs can control the GEB. If 𝐏{𝑿𝓁 = 1} = 𝑝𝓁 = 𝑥𝓁∕𝐿
1
𝑑+1 , where 𝑥𝓁 ∈ [0, 1] satisfies 

∑∞
𝓁=0 𝑥𝓁 <∞, the upper bound for 

(sNO + 𝜀I)v2 does not blow up as 𝐿 increases, regardless of 𝐶𝑤, 𝐶𝑘, and 𝐶𝜎 . The expectation with respect to  = (𝐗0, ..., 𝐗𝐿) is 
bounded above by the expression (see Lemma D.1 in Appendix D)

𝔼 [RHS of (39)] ≲ ̂S() +

(
𝐿∑

𝓁=1
𝑥𝓁

)
𝐿∏

𝓁=0

[
1 + (𝐶𝑀+1

𝑤 𝐶𝑀𝜎 +𝐶𝑘𝐶𝜎 +𝐶𝑀+1
𝑤 𝐶𝑘𝐶

𝑀+1
𝜎 )𝑥𝓁

](1
𝑛

) 1
𝑑+1

+

(
𝜌

𝐿∏
𝓁=0

[
1 + (𝐶𝑀+1

𝑤 𝐶𝑀𝜎 +𝐶𝑘𝐶𝜎 +𝐶𝑀+1
𝑤 𝐶𝑘𝐶

𝑀+1
𝜎 )𝑥𝓁

]
𝐶𝑎 +𝑅𝑢

)√
2𝛿
𝑛
,

whose coefficients do not blow up as 𝐿 →∞ (the infinite products converge because 
∑∞

𝓁=0 𝑥𝓁 <∞, see, Trench [106]). Here, ≲
implies that the left-hand side is bounded above by the right-hand side times a constant independent of 𝑛 and 𝐿. For example, 
if 𝑥𝓁 decay with order (𝓁−(1+𝜀)) for some 𝜀 > 0, then it holds that 

∑∞
𝓁=0 𝑥𝓁 <∞.30 [55] proposed linear decay, which does not 

satisfy 
∑∞

𝓁=0 𝑥𝓁 <∞. However, it is assumed that the number of layers 𝐿 is finite (typically around 100), our analysis on the other 
hand showed that the upper bound is valid regardless of the number of layers if the Bernoulli RVs satisfied the above-mentioned 
condition. A less restrictive decay on the RVs can be chosen.

Therefore, our proposed architecture, especially (sNO+ 𝜀I)v2, would have a smaller generalization error than the standard architec-

ture under assumptions of the RVs.

Remark 8.3. Any looseness in the existing bounds results from the techniques employed in our proofs, which hopefully can be 
tightened in future works. These are the best available generalization bounds for both models and both are compared on fair footing 
as they are derived by the same argument. Nevertheless, the bounds are not intrinsic in the sense that there is no lower bound for 
the classical NO model.

9. Summary and discussion

We perform a detailed empirical and theoretical analysis of the generalization capabilities of neural operators and sNO + 𝜀I for 
approximating the parametric form of the Helmholtz equation, as well as a surrogate model for the forward operator associated with 

30 Notice that, the assumption of ∑∞
𝓁=0 𝑝𝓁 <∞ by the Borel–Cantelli lemma, implies that the probability that infinitely many of 𝑋𝓁 = 1 (layers that are active) occur 
29

is zero.



Journal of Computational Physics 513 (2024) 113168J.A. Lara Benitez, T. Furuya, F. Faucher et al.

the study of the inverse boundary value problem for the Helmholtz equation. We work with high-frequency given the documented 
difficulties of numerical methods, [34,33,39], and the amount of previous work associated with other PDEs, which traditional neural 
operators already approximate remarkably well.31

The sNO + 𝜀I family demonstrated improved performance without increasing the number of parameters (in the case without 
stochastic depth) or compromising the approximation capabilities of traditional neural operators for high-frequency Helmholtz prob-

lems. We maintained strict constraints throughout our analysis, including not increasing the size of the training dataset, and testing 
on datasets of comparable size as those used in the training.

We conduct a thorough empirical analysis of the stability of the trained networks to different realizations of the wave speed, 
and (sFNO + 𝜀I)v2 demonstrated resilience to these changes. In light of these results, we derive upper bounds for out-of-distribution 
generalization for Gaussian measures in abstract Banach spaces, and we link the experimental behavior to the presence of the random 
variables presented in stochastic depth. For the results in-distribution, we also provide an upper bound of the generalization error by 
estimating the Rademacher complexity of each of the networks. Similarly, showing that the random variables in stochastic depth are 
effectively controlling the complexity of the hypothesis class for the (sNO + 𝜀I)v2 family.

We have made progress in understanding the theoretical guarantees of neural operators and similar architectures, going beyond 
their approximation property. However, it is worth noting that one of the limitations of our work is that the bounds we derived 
are not tight. Although deriving lower bounds presents a challenge, we remain optimistic about the possibility of making further 
advancements in this area.

On the experimental side, our results suggest that it is possible to capture the forward operator effectively (mapping functions 
to operators), and we expect to apply this surrogate model to solve inverse problems, particularly for Bayesian inversion and for 
using algorithms that only require multiple evaluations of the costly forward operator, such as the derivative-free ensemble Kalman 
method [56].
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Appendix A. Preliminaries

A.1. Vector-valued L2 spaces and Sobolev spaces

L2(𝐷; ℝ𝑑𝑎 ) is the L2 space of ℝ𝑑𝑎 -value functions on 𝐷 ⊂ℝ𝑑 . It is defined as the space of functions such that,

‖𝑎‖2
L2(𝐷;ℝ𝑑𝑎 )

∶= ∫
𝐷

‖𝑎(𝑥)‖22 𝑑𝑥 <∞,

where 𝐷 ∋ 𝑥 ↦ ‖𝑎(𝑥)‖22 =∑𝑗 𝑎2𝑗 (𝑥); notices that, ‖⋅‖22 is the usual 𝓁2-norm in ℝ𝑑𝑎 .
For natural number 𝑘 ∈ℕ0, we define Sobolev space 𝐻𝑘(𝐷; ℝ𝑑𝑎 ) by

𝐻𝑘(𝐷;ℝ𝑑𝑎 ) ∶=
{
𝑢 ∈ L2(𝐷;ℝ𝑑𝑎 ) ∶ 𝜕𝛼𝑥𝑢 ∈ L2(𝐷;ℝ𝑑𝑎 ) ∀|𝛼| ≤ 𝑘} .

For positive non-integer 𝑠 > 0, we define Sobolev space 𝐻𝑠(𝐷; ℝ𝑑𝑎 ) by

𝐻𝑠(𝐷;ℝ𝑑𝑎 ) ∶=

{
𝑢 ∈𝐻⌊𝑠⌋(𝐷;ℝ𝑑𝑎 ) ∶ sup|𝛼|=⌊𝑠⌋[𝜕𝛼𝑥𝑢]𝜃𝑠,𝐷 <∞

}
, (A.1)

where 𝜃𝑠 ∶= 𝑠 − ⌊𝑠⌋ ∈ (0, 1). Here, [𝑓 ]𝜃,𝐷 is defined by

[𝑓 ]𝜃,𝐷 ∶=
⎛⎜⎜⎝∫𝐷 ∫

𝐷

‖𝑓 (𝑥) − 𝑓 (𝑦)‖22‖𝑥− 𝑦‖2𝜃+𝑑2

𝑑𝑥𝑑𝑦

⎞⎟⎟⎠
1∕2

.

For further details, we refer to, e.g., Adams and Fournier [3].

A.2. Bounded linear operator

Definition A.1 (Bounded linear operator). We say that 𝑨 ∶𝑋→ 𝑌 is a bounded linear operator mapping from a Banach space 𝑋 to a 
Banach space 𝑌 , if it is linear and if there exists a positive constant 𝐶 > 0 such that,

‖𝑨𝑥‖𝑌 ≤ 𝐶‖𝑥‖𝑋, 𝑥 ∈𝑋.
Definition A.2 (Operator norm). The operator norm ‖𝐴‖op for a bounded linear operator 𝐴 is

‖𝑨‖op ∶= inf
{
𝐶 ∈ℝ≥0 ∶ ‖𝑨𝑥‖𝑌 ≤ 𝐶‖𝑥‖𝑋} .

Neural Operators [82] are typically built from bounded linear integral operators

Definition A.3 (Bounded linear integral operator). It is an Linear Bounded Operator  ∶ L2(𝐷; ℝ𝑛) → L2(𝐷; ℝ𝑚) defined by

𝑥↦ (𝑔) (𝑥) ∶= ∫
𝐷

𝑘(𝑥, 𝑦)𝑔(𝑦)𝑑𝑦, 𝑥 ∈𝐷, 𝑔 ∈ L2(𝐷;ℝ𝑛),

where 𝑘 ∶𝐷 ×𝐷 ⊂ℝ𝑑×𝑑 →ℝ𝑚×𝑛 is the Integral Kernel.

Definition A.4 (Lipschitz kernel). We say a vector-valued Integral Kernel is Lipschitz continuous if there exists 𝐶 > 0 such that

|𝑘𝑖,𝑗 (𝑥, 𝑦) − 𝑘𝑖,𝑗 (𝑥′, 𝑦′)| ≤ 𝐶 ‖‖(𝑥, 𝑦) − (𝑥′, 𝑦′)‖‖2 , (𝑥, 𝑦), (𝑥′, 𝑦′) ∈𝐷 ×𝐷,

for 𝑖, 𝑗 ∈ {1, … , 𝑑}.

A.3. Neural operator

Let 𝐷 a bounded domain and let (𝐷; ℝ𝑑𝑎 ),  (𝐷; ℝ𝑑𝑣𝑖 ), and  (𝐷; ℝ𝑑𝑢 ) be abstract (separable) Banach spaces.

Definition A.5 (Neural Operator). Let define 𝜃 ∶(𝐷; ℝ𝑑𝑎 ) → (𝐷; ℝ𝑑𝑢 ) such that

𝑢 = 𝜃(𝑎) =𝑸◦𝑘◦…◦1◦𝑹(𝑎), (A.2)
31

in where 𝑸 ∶(𝐷; ℝ𝑑𝑎 ) → (𝐷; ℝ𝑑𝑣1 ) (Lifting map), and 𝑹 ∶ (𝐷; ℝ𝑑𝑣𝑘+1 ) → (𝐷; ℝ𝑑𝑢 ) (Projection map), such that
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Fig. A.17. NO. Neural Operator architecture.

𝑹(𝑎)(𝑥) ∶= (𝑅𝑎(𝑥) ) , 𝑅 ∈ℝ𝑑𝑣1×𝑑𝑎 . (A.3a)

𝑸(𝑣)(𝑥) ∶= (𝑄𝑣(𝑥) ) , 𝑄 ∈ℝ𝑑𝑢×𝑑𝑣𝑘+1 , (A.3b)

and 𝑖, (𝑖 = 1, … , 𝑘) is defined as

𝐷 ∋ 𝑥↦
(𝑖𝑣) (𝑥) ∶= 𝜎 (𝑊𝑖𝑣(𝑥) + (𝑖𝑣)(𝑥)

)
, 𝑊𝑖 ∈ℝ𝑣𝑖+1×𝑣𝑖 . (Layers)

𝑖 = 1, … , 𝑘, and 𝑖 is an integral operator mapping from  (𝐷; ℝ𝑑𝑣𝑖 ) to  (𝐷; ℝ𝑑𝑣𝑖+1 ), see Definition A.3. In the definition of 
Kovachki et al. [66, Section 9.1], Neural Operators parameterize the integral kernel as neural networks, which satisfies the Lipschitz 
continuity used in the Assumption 7.4.

A.3.1. Fourier neural operators (FNOs)

A natural ansatz in the integral operator is assuming to be convolutional, so that,

(𝑘 ⋆ 𝑣) = −1 ( (𝑘) ⋅ (𝑣)) . (A.4)

34 if the kernel function and 𝑣 lies on the adequate space, say L2. When Equation (A.4) is estimated by the FFT algorithm, the Neural 
Operator is efficiently implemented, leading to the network presented in Li et al. [82].

A.3.2. Remark: universality of sNO

Kovachki et al. [66, Theorem 11] have shown that the compositional operator (𝜎◦𝐿)◦ ⋯ ◦(𝜎◦1) of the linear integral oper-

ator 𝓁 and the element-wise nonlinear activation function 𝜎, can approximate any nonlinear continuous operator. Therefore, the 
addition of any local operation in Neural Operators does not affect the universality property, i.e., standard, and sequential NOs have 
the same universality property.

A.4. Bochner integral

In the study of generalization error bounds, the Expected error, see Appendix A.8, is defined through the Bochner Integral. We 
briefly introduce it, informally, as the natural generalization of the Lebesgue integral on (separable) Banach spaces.

For our purpose, it suffices to define the integral (informally) on L2(𝐷; ℝ𝑑𝑎 ) ×L2(𝐷; ℝ𝑑𝑢 ). Assume that a function (𝑎, 𝑢) ↦ 𝑓 (𝑎, 𝑢) ∈
ℝ is Bochner integrable with respect to the measure 𝜇 on L2(𝐷; ℝ𝑑𝑎 ) × L2(𝐷; ℝ𝑑𝑢 ), i.e., there exists a sequence of integrable simple 
functions 𝑠𝑛 (the finite linear combination of indicator functions of measurable sets) such that

lim
𝑛→∞∫ ||𝑓 (𝑎, 𝑢) − 𝑠𝑛(𝑎, 𝑢)||𝑑𝜇(𝑎, 𝑢) = 0.

Thus, the Bochner Integral is defined by

∫ 𝓁((𝑎), 𝑢)𝑑𝜇(𝑎, 𝑢) = lim
𝑛→∞∫ 𝑠𝑛(𝑎, 𝑢)𝑑𝜇(𝑎, 𝑢).

For a detailed (formal) definition of the Bochner integral, as well as its properties, see Yoshida [117].

A.5. Gaussian measure

The typical choice of the measure 𝜇 in the context of PDEs is the Gaussian Measure, which will be reviewed as follows (refer to, 
e.g., Stuart [103, Section 6]): First, a function 𝑚 ∈𝑋 is called the mean of 𝜇 if for all 𝓁 ∈𝑋∗, where 𝑋∗ denote the dual space of 
linear functionals on 𝑋,
32

34  , and −1 represents the Fourier and Inverse Fourier transform respectively.
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𝓁(𝑚) = ∫
𝑋

𝓁(𝑥)𝜇(𝑑𝑥).

A linear operator  ∶𝑋∗ →𝑋 is called the Covariance Operator if for all 𝑘, 𝓁 ∈𝑋∗,

𝑘(𝓁) = ∫
𝑋

𝑘(𝑥−𝑚)𝓁(𝑥−𝑚)𝜇(𝑑𝑥).

We say that 𝑢 draws from Gaussian Measure  (𝑚, ) (write 𝑢 ∼ (𝑚, )) if for all 𝓁 ∈ 𝑋∗, 𝓁(𝑢) draws from the one-dimensional 
Gaussian distribution  (𝓁(𝑚), 𝓁(𝓁)).

If 𝑋 is a Hilbert space, then we can characterize random draws from a Gaussian Measure by using the Karhunen-Loéve expansion

as follows (see, e.g., Stuart [103, Theorem 6.19]):

Theorem A.6. Let 𝑋 be a Hilbert space, and let  ∶𝑋 →𝑋 be a self-adjoint, positive semi-definite, compact operator, and let 𝑚 ∈𝑋. Let 
{𝜙𝑘, 𝛾𝑘}∞𝑘=1 be an orthonormal set of eigenvectors and eigenvalues for  ordered so that

𝛾1 ≥ 𝛾2 ≥⋯ .

Take {𝜉𝑘}∞𝑘=1 to be an i.i.d. sequence with 𝜉1 ∼ (0, 1). Then, the random variable 𝑢 ∈𝑋 given by the Karhunen-Loéve expansion

𝑢 =𝑚+
∞∑
𝑘=1

√
𝛾𝑘𝜉𝑘𝜙𝑘 (A.5)

draws from  (𝑚, ).

A.6. Cameron-Martin space

We briefly review the definition of the Cameron-Martin space (refer to, e.g., Hairer [49, Section 3.2.]).

Definition A.7. Let 𝜇 be a Gaussian Measure on a separable Banach space 𝑋. The Cameron-Martin space 𝜇 of 𝜇 is the completion 
of the linear subspace

{ℎ ∈𝑋 ∶ ∃ℎ∗ ∈𝑋∗ with 𝐶𝜇(ℎ∗,𝓁) = 𝓁(ℎ) ∀𝓁 ∈𝑋∗},

under the norm

‖ℎ‖2𝜇 = ⟨ℎ,ℎ⟩𝜇 = 𝐶𝜇(ℎ∗, ℎ∗),
where 𝐶𝜇 ∶𝑋∗ ×𝑋∗ →ℝ is defined by

𝐶𝜇(𝑘,𝓁) ∶= ∫
𝑋

𝑘(𝑥)𝓁(𝑥)𝜇(𝑑𝑥), 𝑘,𝓁 ∈𝑋∗.

In can be shown that 𝜇 is a reproducing kernel Hilbert space with the inner product ⟨ℎ, 𝑘⟩𝜇 = 𝐶𝜇(ℎ∗, 𝑘∗).
When 𝑋 is a finite-dimensional space, the Cameron-Martin space is given by the range of the covariance matrix [49, Exercise 

3.28].

We now review properties of the Cameron-Martin space (see Hairer [49, Theorem 3.41 and Proposition 3.4.2]).

Theorem A.8. For ℎ ∈𝑋, we define the map 𝑇ℎ ∶𝑋→𝑋 by 𝑇ℎ(𝑥) = 𝑥 +ℎ. Then, the push-forward measure 𝑇ℎ♯𝜇 of 𝜇 by 𝑇ℎ is absolutely 
continuous with respect to 𝜇 if and only if ℎ ∈𝜇 .

Proposition A.9. The space 𝜇 ⊂ 𝐵 is the intersection of all (measurable) linear subspaces of full measure. However, if 𝜇 is infinite-

dimensional, then one has 𝜇(𝜇) = 0.

That is, the Cameron-Martin space 𝜇 of 𝜇 represents the directions in 𝑋 where translation is invariant, meaning that the 
translated measure has the same null sets as the original measure. Furthermore, when dim(𝜇) =∞, 𝜇 is “smaller” than 𝑋 in the 
sense that 𝜇(𝜇) = 0. In contrast, the finite-dimensional Lebesgue measure is invariant under translations in any direction. This is an 
illustration of the tendency for measures in infinite-dimensional spaces to be mutually singular.

A.7. Gaussian random field

Let (Ω, F , ℙ) be a probability space. We say that a function 𝑢 ∶𝐷 × Ω →ℝ is a Gaussian Random Field (GRF) if 𝑢(𝑥, ⋅) ∈ 𝐿2(Ω), 
33

and for any 𝑥1, ..., 𝑥𝑀 ∈𝐷 and any 𝑀 ∈ ℕ,
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Fig. A.18. Illustration of the covering number on F .

𝒖𝑀 ∶= (𝑢(𝑥1, ⋅), ..., 𝑢(𝑥𝑀 , ⋅))T

draws from the multivariate Gaussian distribution  (𝒎𝑀, 𝑀 ). Here, 𝑚(𝑥) ∶= 𝔼𝜔[𝑢(𝑥, 𝜔)] is the mean function, and 𝑐(𝑥, 𝑦) =
𝔼𝜔[(𝑢(𝑥, 𝜔) −𝑚(𝑥))(𝑢(𝑦, 𝜔) −𝑚(𝑦))∗] is the covariance function. We have denoted by 𝒎𝑀 ∶= (𝑚1, ..., 𝑚𝑀 )T and 𝑀 = (𝑐𝑖𝑗 )𝑀𝑖,𝑗=1, where 
𝑚𝑖 ∶=𝑚(𝑥𝑖), and 𝑐𝑖𝑗 ∶= 𝑐(𝑥𝑖, 𝑥𝑗 ). The GRF also has the Karhunen-Loéve expansion with (A.5) as 𝑋 =𝐿2(𝐷), 𝑚 is the mean function, 
and  is the integral operator with the kernel given by the covariance function (see Lord et al. [87, Theorem 7.52]).

We can construct the GRF drawing from a certain Gaussian Measure. We simply consider the Gaussian Measure  (0, (−Δ)−𝛼)
where Δ is the Laplacian with domain 𝐻1

0 (𝐷) ∩𝐻2(𝐷) where 𝐷 = [0, 1]2 and 𝛼 > 1. Then, the draw 𝑢 from  (0, (−Δ)−𝛼) are almost 
surely in 𝐶(𝐷) (see Stuart [103, Example 6.28]), which means that the function 𝑢 can be point-wisely defined, and then, for any 
𝑥1, ..., 𝑥𝑀 ∈𝐷 and any 𝑀 ∈ ℕ, (𝑢(𝑥1, ⋅), ..., 𝑢(𝑥𝑀, ⋅))T draws from the multivariate Gaussian distribution, that is, 𝑢 is the GRF.

A.8. Statistical learning

Definition A.10 (Expected Risk/Loss). The Expected risk is defined by

() ∶= 𝔼(𝑎,𝑢)∼𝜇
[
𝓁((𝑎), 𝑢)

]
= ∫
supp(𝜇)

𝓁((𝑎), 𝑢)𝜇(𝑑(𝑎, 𝑢)),

with respect to  ∈ G , where the set G is the hypothesis class. For the purpose of this paper, the class corresponds to Neural Operators 
or sequential Neural Operators, and 𝓁 ∶ L2(𝐷; ℝ𝑑𝑢 ) × L2(𝐷; ℝ𝑑𝑎 ) → [0, ∞) is the loss function.

Definition A.11 (Empirical Risk/Loss). It is defined as the unbiased estimator of the Expected risk, that is

̂𝑆 () ∶= 1
𝑛

𝑛∑
𝑖=1

𝓁((𝑎𝑖), 𝑢𝑖),

where (𝑎𝑖, 𝑢𝑖) 
i.i.d∼ 𝜇.

The generalization error () is decomposed into ̂𝑆 () and () − ̂𝑆 (). The difference, () − ̂𝑆 () between the general-

ization and empirical errors is evaluated using the Uniform Laws of Large Numbers (see, e.g., [111, Theorem 4.10] or [41, Theorem 
3.4.5]).

Lemma A.12 (Uniform Laws of Large Numbers). Let F be the set of real-valued measurable functions on a measurable space (𝑆, ) with 
absolute values bounded by 𝑅, let 𝑋𝑖 (𝑖 ∈ ℕ) be i.i.d., 𝑆-valued random variables with common probability law 𝐏, and let 𝝐𝑖 (𝑖 ∈ ℕ) be a 
sequence of i.i.d. Rademacher RVs, i.e., 𝝐𝑖 are independent, and 𝐏{𝝐𝑖 = 1} = 1∕2 = 𝐏{𝝐𝑖 = −1}. Then, for all 𝑛 ∈ℕ and 𝛿 > 0, the following 
inequality holds with probability greater than 1 − 2 exp(−𝛿),

sup
𝑓∈F

|||||1𝑛
𝑛∑
𝑖=1
𝑓 (𝑋𝑖) − 𝔼[𝑓 (𝑋)]

||||| ≤ 2ℜ𝑛
S(F ) +𝑅

√
2𝛿
𝑛
,

where ℜ𝑛
S(F ) is the Rademacher complexity of the class F defined above.

The Rademacher complexity ℜ𝑛
S(F ) of the class F is defined as follows.

Definition A.13. (Rademacher complexity) Let F be the set of real-valued measurable functions on a measurable space (𝑆, ). Let 
{𝝐𝑖}𝑛𝑖=1 is a sequence of i.i.d. RV’s with Rademacher distribution; i.e., 𝐏{𝝐𝑖 = 1} = 1∕2 = 𝐏{𝝐𝑖 = −1}. The Rademacher Complexity of 
34

the class F is defined as
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Fig. A.19. Illustration of the doubling number.

ℜ𝑛
S(F ) ∶= 𝔼𝝐∼Rad

[
sup
𝑓∈F

1
𝑛

|||||
𝑛∑
𝑖=1

𝝐𝑖𝑓 (𝑎𝑖, 𝑢𝑖)
|||||
]
,

(Cf. Giné and Nickl [41, Definition 3.1.19]).

Intuitively, Rademacher complexity ℜ𝑛
S(F ) measures richness of a class F of real-valued functions.

Definition A.14 (Covering number). Let (F , ‖⋅‖) be a normed vector space. We define, 𝑁(𝜀, F , ‖ ⋅ ‖), the covering number of F
(sometimes known as entropy number) which means the minimal cardinality of a subset  ⊂F that covers F at scale 𝜀 with respect 
to the norm ‖ ⋅ ‖. (See Fig. A.18.)

Roughly speaking, the covering number 𝑁(𝜀, F , ‖ ⋅ ‖) is the necessary number of 𝜀-balls with respect to norm ‖ ⋅ ‖ to completely 
cover a space F (see e.g., Wainwright [111, Definition 5.1]). Furthermore, it is possible to estimate Rademacher Complexity ℜ𝑛

S(F )
by using the covering number. The following lemma is known as Dudley’s Theorem (see, e.g., Bartlett et al. [8, Lemma A.5]).

Lemma A.15 (Dudley’s Theorem). Let F be the set of real-valued functions. Then,

ℜ𝑛
S(F ) ≤ inf

𝛼≥0

⎧⎪⎨⎪⎩4𝛼 +
12√
𝑛

∞

∫
𝛼

√
log𝑁(𝜀,F ,‖⋅‖S) 𝑑𝜀⎫⎪⎬⎪⎭

where ‖𝑓‖S ∶= ( 1𝑛 ∑𝑛𝑖=1 𝑓 (𝑋𝑖)2)1∕2.

One of the main result in this paper is to apply these lemmas as F is the set of loss function 𝓁((⋅), ⋅) where  is the class of 
Neural Operators or sequential Neural Operators. Neural Operators  are parameterized by weight matrices and Lipschitz continuous 
functions, and finally we will arrive at evaluating their covering number, which are referred to [111].

When we analyze the covering number of Lipschitz continuous functions, the doubling dimension of 𝐷 ×𝐷 appears. We will now 
review the definition of the doubling dimension of a metric space (see, e.g., [48]).

Definition A.16 (Doubling dimension). A metric space (𝐗, 𝐝) with metric 𝐝 is called doubling, if there exists a constant 𝑀 > 0 such 
that for any 𝑥 ∈𝐗 and 𝑟 > 0, it is possible to cover the ball 𝐵𝑟(𝑥) ∶= {𝑦 ∈𝑋 | 𝐝(𝑥, 𝑦) < 𝑟} with the union of at most 𝑀 balls of radius 
𝑟

2 . The doubling dimension of 𝐗 is defined by ddim(𝐗) = log2(𝑀). (See Fig. A.19.)

Appendix B. Proofs for Section 7

B.1. Proof of Lemma 7.8

Proof. Let 1 denote the identity map on  . Fix  ∈ G and consider the map

𝑓 ∶= 𝓁◦( × 1 ).
If  is constant, we are done. Therefore, assume that  is non-constant; whence, Lip() > 0. Therefore, the map 𝑓 ∶  × → [0, ∞)
given by

𝑓 ∶= 1
Lip(𝑓 )

𝑓,

is 1-Lipschitz. The Kantorovich-Rubinstein duality [110, Theorem 5.10] implies that

𝔼(𝑎,𝑢)∼ℚ
[
𝑓 (𝑎, 𝑢)
]
−𝔼(𝑎,𝑢)∼𝜈

[
𝑓 (𝑎, 𝑢)
] ≤1(ℚ, 𝜈). (B.1)
35

The triangle inequality and the assumption that 1(ℚ, 𝜇) ≤ 𝜀 imply that the right-hand side of (B.2) may be further bounded by
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𝔼(𝑎,𝑢)∼ℚ
[
𝑓 (𝑎, 𝑢)
]
−𝔼(𝑎,𝑢)∼𝜈

[
𝑓 (𝑎, 𝑢)
] ≤1(ℚ, 𝜇) +1(𝜈,𝜇) ≤ 𝜀+1(𝜈,𝜇), (B.2)

Multiplying across (B.2) by Lip(𝑓 ), using the linearity of integration, and re-arranging yields

𝔼(𝑎,𝑢)∼ℚ [𝑓 (𝑎, 𝑢)] ≤ Lip(𝑓 )
(
𝜀+ 𝔼(𝑎,𝑢)∼𝜈 [𝑓 (𝑎, 𝑢)]

)
. (B.3)

It remains to compute the Lipschitz constant of 𝑓 . Let (𝑎1, 𝑢1), (𝑎2, 𝑢2) ∈  × and note that|||𝑓(𝑎1, 𝑢1)− 𝑓(𝑎2, 𝑢2)||| ≤𝐿𝓁
(‖(𝑎1) − (𝑎2)‖2 + ‖𝑢1 − 𝑢2‖2)1∕2 (B.4)

≤𝐿𝓁
(
Lip()2‖𝑎1 − 𝑎2‖2 + 1‖𝑢1 − 𝑢2‖2)1∕2

≤𝐿𝓁
(
max{Lip()2,1}‖𝑎1 − 𝑎2‖2 +max{Lip()2,1}‖𝑢1 − 𝑢2‖2)1∕2

=𝐿𝓁 max{Lip(),1}
(‖𝑎1 − 𝑎2‖2 + ‖𝑢1 − 𝑢2‖2)1∕2

∶=𝐿𝓁 max{Lip(),1}‖(𝑎1, 𝑢1) − (𝑎2, 𝑢2)‖2× , (B.5)

where the right-hand side of (B.4) follows from definition of the 2-product metric on  ×  . Incorporating the estimate of Lip(𝑓 )
computed in (B.4)-(B.5) into (B.3) completes the proof. □

B.2. Proof of Lemma 7.9

Proof. Arguing as in [101, Lemma 5.2], we see that

1

(
𝜇,𝜇𝑁
) ≤1

(
(𝐈𝐝 × 

⋆)#𝜇𝑋, (𝐈𝐝 × 
⋆)#𝜇𝑁𝑋

)
. (B.6)

Arguing analogously to (B.4)- (B.5) we find that 𝐈𝐝×
⋆ is max{1, 𝐿⋆}-Lipschitz. Therefore, the Kantorovich-Rubinstein duality [110, 

Theorem 5.10] and the estimate (B.6) imply that

1

(
𝜇,𝜇𝑁
) ≤1

(
(𝐈𝐝 × 

⋆)#𝜇𝑋, (𝐈𝐝 × 
⋆)#𝜇𝑁𝑋

)
≤Lip(𝐼×⋆ )1(𝜇𝑋,𝜇𝑁𝑋 )

≤max{1,𝐿⋆}1(𝜇𝑋,𝜇𝑁𝑋 ).

This completes the proof. □

B.3. Proof of Lemma 7.10

Proof. Reduction to estimating the concentration of the empirical Sampling measure 𝜇𝑁
𝑋

to 𝜇𝑋 : By Lemma 7.9, we have

1(𝜈,𝜇) ∶=1(𝜇𝑁,𝜇) ≤max{1,𝐿⋆}1(𝜇𝑋,𝜇𝑁𝑋 ). (B.7)

Set 𝜈 ∶= 𝜇𝑁 , in the notation of (25). Applying Lemma 7.8 yields

𝔼(𝑎,𝑢)∼ℚ [𝓁(𝑓 (𝑎), 𝑢)] ≤L𝓁 max{1,𝐿}
(
𝜀+1(𝜈,𝜇) +𝔼(𝑎,𝑢)∼𝜇𝑁 [𝓁(𝑓 (𝑎), 𝑢)]

)
≤L𝓁 max{1,𝐿}

(
𝜀+max{1,𝐿⋆}1(𝜇𝑋,𝜇𝑁𝑋 ) +𝔼(𝑎,𝑢)∼𝜇𝑁 [𝓁(𝑓 (𝑎), 𝑢)]

)
,

(B.8)

for each 𝑓 ∈  (for each 𝜔 ∈Ω).

Applying the sampling estimates for 𝜇𝑋 : Under our assumptions on the small ball function 𝜓 , [14, Theorem 1.4] implies that 
there exists a constant 𝐶𝜇 > 0, depending only on 𝜇𝑋 , such that for every 𝜂 > 0

2
(
𝜇𝑁
𝑋
,𝜇𝑋
) ≤ (𝐶𝜇 + 𝜂)𝜓−1(log(𝑁)), (B.9)

holds with probability at-least 1 − exp(−𝑁 (𝜓−1(log(𝑁)))2 𝜆2

2Σ2 ). Here, we have denoted by 2(𝜇𝑁𝑋 , 𝜇𝑋 ) the Wasserstein distance of 
the order two that measures the distance between two distributions 𝜇𝑁

𝑋
and 𝜇𝑋 .

Set, 𝜂 ∶= − log(𝛿)1∕2 21∕2Σ∕(𝑁1∕2𝜓−1(log(𝑁))), then (B.9) implies that

1
(
𝜇𝑁
𝑋
,𝜇𝑋
) ≤2

(
𝜇𝑁
𝑋
,𝜇𝑋
) ≤ 𝐶𝜇𝜓−1( log(𝑁)

)
+Σ
√
−2 log(𝛿)√

𝑁
, (B.10)

holds with probability at-least 1 − 𝛿; where we used the fact that 1 ≤2 (see e.g. [110, Remark 6.6]) to deduce the left-hand side 
of (B.9). Combining (28) with (B.10) implies that: for every 0 < 𝛿 ≤ 1 and each  ∈ G we have

[ ]
̄

[ ]
̄

(
−1( ) Σ

√
−2 log(𝛿)

)

36

𝔼(𝑎,𝑢)∼ℚ 𝓁((𝑎), 𝑢) −𝐿𝔼(𝑎,𝑢)∼𝜇𝑁 𝓁((𝑎), 𝑢) ≤𝐿 𝜀+𝐶𝜇𝜓 log(𝑁) + √
𝑁

, (B.11)
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holds with probability at-least 1 − 𝛿; where 𝐿̄ ∶=𝐿𝓁 max{1, 𝐿} max{1, 𝐿⋆}. Since the right-hand side of (B.11) was in-dependant of 
, then taking the supremum over the class G on both sides of (B.11) yields the conclusion.

Finally, if 𝐻𝜇(𝑟) ∈Θ
( log(1∕𝑟)2𝛽∕(2+𝛼)

𝑟2𝛼∕(2+𝛼)

)
then [80, Theorem 1.2] implies that 𝜓(𝜂) ∈Θ 

(
log(1∕𝜂)𝛽

𝜂𝛼

)
. □

Appendix C. Proofs for Section 8

C.1. Proof of Lemma 8.3

Proof. By using (35), we have for 𝑓 = 𝓁((⋅), ⋅) ∈ FG and  ∈ G ,

|𝑓 (𝑎, 𝑢)| ≤ |𝓁((𝑎), 𝑢) − 𝓁(0, 𝑢)|+ |𝓁(0, 𝑢)|
≤ 𝜌‖(𝑎)‖L2(𝐷;ℝ𝑑𝑢 ) +𝑅𝑢 ≤ 𝜌𝑅+𝑅𝑢, (C.1)

for (𝑎, 𝑢) ∈ L2(𝐷; ℝ𝑑𝑎 ) × L2(𝐷; ℝ𝑑𝑢 ), where (C.1) followed from Assumption 8.2 (i) and (ii). This implies that by employing Wain-

wright [111, Theorem 4.10] or Giné and Nickl [41, Theorem 3.4.5], we have the following inequality with probability greater than 
1 − 2𝑒−𝛿 ,

|() − ̂S()| ≤ sup
𝑓∈FG

|||||1𝑛
𝑛∑
𝑖=1
𝑓 (𝑎𝑖, 𝑢𝑖) − 𝔼(𝑎,𝑢)∼𝜇[𝑓 (𝑎, 𝑢)]

|||||
≤ 2𝔼𝝐

[
sup

𝑓∈FG

1
𝑛

|||||
𝑛∑
𝑖=1

𝝐𝑖𝑓 (𝑎𝑖, 𝑢𝑖)
|||||
]
+ (𝜌𝑅+𝑅𝑢)

√
2𝛿
𝑛
,  ∈ G ,

where {𝝐𝑖}𝑛𝑖=1 is a sequence of i.i.d. RV’s with Rademacher distribution; i.e., 𝐏{𝝐𝑖 = 1} = 1∕2 = 𝐏{𝝐𝑖 = −1}. □

C.2. Proof of Theorem 8.4

Proof. By employing Bartlett et al. [8, Lemma A.5] or Kakade and Tewari [59, Theorem 1.1], we have

ℜ𝑛
S(FN ) ≤ inf

𝛼≥0

⎧⎪⎨⎪⎩4𝛼 +
12√
𝑛

∞

∫
𝛼

(
log𝑁(𝜀,FN ,‖⋅‖S)) 12 𝑑𝜀⎫⎪⎬⎪⎭ , (C.2)

where ‖𝑓‖S ∶= ( 1𝑛 ∑𝑛𝑖=1 𝑓 (𝑎𝑖, 𝑢𝑖)2) 1
2
. Here, we denote by 𝑁(𝜀, F , ‖ ⋅ ‖) the covering number of the function space F which means 

the minimal cardinality of a subset 𝐶 ⊂F that covers F at scale 𝜀 with respect to the norm ‖ ⋅ ‖. In the following, we will estimate 
the covering number 𝑁(𝜀, FN , ‖⋅‖S).

Let 𝑓 = 𝓁((⋅), ⋅) and 𝑓 ′ = 𝓁(′(⋅), ⋅) where , ′ ∈ N . By (i) of Assumption 8.2, we calculate

||𝑓 (𝑎, 𝑢) − 𝑓 ′(𝑎, 𝑢)|| = ||𝓁((𝑎), 𝑢) − 𝓁(′(𝑎), 𝑢)|| ≤ 𝜌‖‖(𝑎) − 
′(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 ) . (C.3)

Denoting by

𝓁 ∶= (𝑊𝓁 +𝓁)◦𝜎(𝑊𝓁−1 +𝓁−1)◦⋯◦𝜎(𝑊0 +0),


′
𝓁 ∶= (𝑊 ′

𝓁 +
′
𝓁)◦𝜎(𝑊

′
𝓁−1 +

′
𝓁−1)◦⋯◦𝜎(𝑊 ′

0 +
′
0),

the quantity ‖‖(𝑎) − 
′(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 ) is evaluated by‖‖(𝑎) − 

′(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 ) = ‖‖𝐿(𝑎) − 
′
𝐿(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿+1 )

= ‖‖‖(𝑊𝐿 +𝐿)◦𝜎(𝐿−1(𝑎)) − (𝑊𝐿 +𝐿)◦𝜎(
′
𝐿−1(𝑎))

+ (𝑊𝐿 +𝐿)◦𝜎(
′
𝐿−1(𝑎)) − (𝑊 ′

𝐿
+

′
𝐿)◦𝜎(

′
𝐿−1(𝑎))

‖‖‖L2(𝐷;ℝ𝑑𝐿+1 )

𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 7.3(𝑣𝑖)

≤
(‖‖𝑊𝐿

‖‖op
⎵⏞⏞⏞⏞⏞⏞⎵≤

(C.5)
𝐶𝑤

+‖‖𝐿
‖‖op

⎵⏞⏞⏞⏞⏞⎵≤
(C.6)

𝐶𝑘

)
𝐶𝜎
‖‖𝐿−1(𝑎) − 

′
𝐿−1(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿 )

+
(‖‖‖𝑊𝐿 −𝑊 ′

𝐿
‖‖‖op + ‖‖𝐿 −

′
𝐿
‖‖op)𝐶𝜎 ‖‖′

𝐿−1(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿 ) ,

(C.4)
37

where ‖⋅‖op is the Operator norm. Here, we have employed the following estimations:
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‖‖𝑊𝐿𝑔
‖‖2L2(𝐷;ℝ𝑑𝐿+1 ) ≤ ∫

𝐷

‖‖𝑊𝐿𝑔(𝑥)‖‖22
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
≤‖‖𝑊𝐿

‖‖2F‖𝑔(𝑥)‖22
𝑑𝑥 ≤

Assumption 7.3(𝑖)
𝐶2
𝑤 ‖𝑔‖2L2(𝐷;ℝ𝑑𝐿 )

, (C.5)

‖‖𝐿𝑔
‖‖2L2(𝐷;ℝ𝑑𝐿+1 ) ≤ ∫

𝐷

‖‖‖‖‖‖‖∫𝐷 𝐿(𝑥, 𝑦)𝑔(𝑦)𝑑𝑦
‖‖‖‖‖‖‖
2

2
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

≤
(∑

𝑖,𝑗
‖‖‖𝑘𝐿,𝑖𝑗 (𝑥,⋅)‖‖‖2L2(𝐷)

)‖𝑔‖2
L2(𝐷;ℝ𝑑𝐿 )

𝑑𝑥 ≤ ‖‖𝐿
‖‖2L2 ,F ‖𝑔‖2L2(𝐷;ℝ𝑑𝐿 )

≤
Assumption 7.3(𝑖𝑖)

𝐶2
𝑘
‖𝑔‖2

L2(𝐷;ℝ𝑑𝐿 )
,

(C.6)

for 𝑔 ∈ L2(𝐷; ℝ𝑑𝐿 ), where ‖⋅‖2 is the 𝓁2-norm. By the same argument in (C.4)–(C.6), we evaluate‖‖𝐿−1(𝑎) − 
′
𝐿−1(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿 )

≤ (𝐶𝑤 +𝐶𝑘)𝐶𝜎 ‖‖𝐿−2(𝑎) − 
′
𝐿−2(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿−1 )

+
(‖‖‖𝑊𝐿−1 −𝑊 ′

𝐿−1
‖‖‖op + ‖‖𝐿−1 −

′
𝐿−1
‖‖op)𝐶𝜎 ‖‖′

𝐿−2(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿−1 ) .

(C.7)

By repeatedly evaluating ‖‖‖𝓁(𝑎) − 
′
𝓁(𝑎)
‖‖‖L2(𝐷;ℝ𝑑𝓁+1 )

(𝓁 =𝐿, 𝐿 − 1, ..., 0), we obtain

‖‖(𝑎) − 
′(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 )

≤ {(𝐶𝑤 +𝐶𝑘)𝐶𝜎
}𝐿 ‖‖‖(𝑊0 +0)(𝑎) − (𝑊 ′

0 +
′
0)(𝑎)
‖‖‖L2(𝐷;ℝ𝑑1 )

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

Assumption 7.3(𝑖𝑖𝑖)
≤𝐶𝑎(‖‖‖𝑊0−𝑊 ′

0
‖‖‖op+‖‖‖0−′

0
‖‖‖op)

+
𝐿−1∑
𝓁=0

(‖‖‖𝑊𝓁+1 −𝑊 ′
𝓁+1
‖‖‖op + ‖‖‖𝓁+1 −

′
𝓁+1
‖‖‖op)

× (𝐶𝑤 +𝐶𝑘)𝐿−1−𝓁𝐶𝐿−𝓁𝜎
‖‖‖′

𝓁(𝑎)
‖‖‖L2(𝐷;ℝ𝑑𝓁+1 )

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

(C.9)
≤{(𝐶𝑤+𝐶𝑘)𝐶𝜎}𝐿𝐶𝑎

≤ {(𝐶𝑤 +𝐶𝑘)𝐶𝜎
}𝐿
𝐶𝑎

𝐿∑
𝓁=0

(‖‖‖𝑊𝓁 −𝑊 ′
𝓁
‖‖‖op + ‖‖‖𝓁 −

′
𝓁
‖‖‖op) .

(C.8)

Here, we have employed the following estimation:‖‖‖′
𝓁
‖‖‖2L2(𝐷;ℝ𝑑𝓁+1 )

≤ (𝐶𝑤 +𝐶𝑘)𝓁+1𝐶𝓁
𝜎 𝐶𝑎. (C.9)

Furthermore, by using ideas of (C.5) and (C.6), we estimate‖‖‖𝑊𝓁 −𝑊 ′
𝓁
‖‖‖op ≤ ‖‖‖𝑊𝓁 −𝑊 ′

𝓁
‖‖‖F

≤
𝑑𝓁+1∑
𝑗=1

𝑑𝓁∑
𝑖=1
|𝑤𝓁,𝑖𝑗 −𝑤′

𝓁,𝑖𝑗 | ≤ 𝑑𝓁+1∑
𝑗=1

𝑑𝓁∑
𝑖=1
𝐶𝑤

||||||
𝑤𝓁,𝑖𝑗

𝐶𝑤
−
𝑤′

𝓁,𝑖𝑗

𝐶𝑤

|||||| ,
(C.10)

‖‖‖𝓁 −
′
𝓁
‖‖‖op ≤ 𝑑𝓁+1∑

𝑗=1

𝑑𝓁∑
𝑖=1
|𝐷| ‖‖‖𝑘𝓁,𝑖𝑗 − 𝑘′𝓁,𝑖𝑗‖‖‖𝐋∞(𝐷×𝐷;ℝ)

≤
𝑑𝓁+1∑
𝑗=1

𝑑𝓁∑
𝑖=1
|𝐷|𝐶𝛼 ‖‖‖‖‖‖

𝑘𝓁,𝑖𝑗

𝐶𝛼
−
𝑘′𝓁,𝑖𝑗

𝐶𝛼

‖‖‖‖‖‖𝐋∞(𝐷×𝐷;ℝ)

. (C.11)

Combining (C.3), (C.8), (C.10), and (C.11), the norm ‖‖𝑓 − 𝑓 ′‖‖S is estimated by

‖‖𝑓 − 𝑓 ′‖‖S =
(
1
𝑛

𝑛∑
𝑖=1
|𝑓 (𝑎𝑖, 𝑢𝑖) − 𝑓 ′(𝑎𝑖, 𝑢𝑖)|2)

1
2

≤
𝐿∑

𝓁=0

𝑑𝓁+1∑
𝑗=1

𝑑𝓁∑
𝑖=1

[
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎𝐶𝑤

||||||
𝑤𝓁,𝑖𝑗

𝐶𝑤
−
𝑤′

𝓁,𝑖𝑗

𝐶𝑤

||||||
+ 𝜌
{
(𝐶 +𝐶 )𝐶

}𝐿
𝐶 |𝐷|𝐶 ‖‖‖𝑘𝓁,𝑖𝑗 − 𝑘′𝓁,𝑖𝑗

‖‖‖ ]
,

38

𝑤 𝑘 𝜎 𝑎 𝛼 ‖‖‖ 𝐶𝛼 𝐶𝛼
‖‖‖𝐋∞(𝐷×𝐷;ℝ)
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which implies that we have

𝑁(𝜀,FN ,‖⋅‖S)
≤

𝐿∏
𝓁=0

𝑑𝓁+1∏
𝑗=1

𝑑𝓁∏
𝑖=1

𝑁

⎛⎜⎜⎜⎝
𝜀

2
(∑𝐿

𝓁=0 𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎𝐶𝑤

, [−1,1], | ⋅ |⎞⎟⎟⎟⎠
×𝑁
⎛⎜⎜⎜⎝

𝜀

2
(∑𝐿

𝓁=0 𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎|𝐷|𝐶𝛼 ,𝐶𝛽 ,‖⋅‖𝐋∞(𝐷×𝐷;ℝ)

⎞⎟⎟⎟⎠ ,
(C.12)

where 𝐶𝛽 ∶= {𝑘 ∶𝐷 ×𝐷→ [−1, 1] | 𝑘 is 𝐶𝛽 −𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧} (see (vi) in Assumption 7.3).

By taking logarithmic functions in (C.12), we have

log𝑁(𝜀,FN ,‖⋅‖S)
≤
(

𝐿∑
𝓁=0

𝑑𝓁𝑑𝓁+1

){
log𝑁
⎛⎜⎜⎜⎝

𝜀

2
(∑𝐿

𝓁=0 𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎𝐶𝑤

, [−1,1], | ⋅ |⎞⎟⎟⎟⎠
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

=∶𝐻𝑤(𝜀)

+ log𝑁
⎛⎜⎜⎜⎝

𝜀

2
(∑𝐿

𝓁=0 𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎|𝐷|𝐶𝛼 ,𝐶𝛽 ,‖⋅‖𝐋∞(𝐷×𝐷;ℝ)

⎞⎟⎟⎟⎠
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

=∶𝐻𝑘(𝜀)

}
.

(C.13)

By using Wainwright [111, Example 5.3] and Gottlieb et al. [44, Lemmas 2.1 and 4.2], we estimate 𝐻𝑤 and 𝐻𝑘, respectively as 
follows:

𝐻𝑤(𝜀) ≤ log
⎛⎜⎜⎜⎝1 +

2
(∑𝐿

𝓁=0 𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎𝐶𝑤

𝜀

⎞⎟⎟⎟⎠
≤
(
𝐼𝑤
𝜀

)
≤
(
𝐼𝑤
𝜀

)𝑑+1
, for 0 < 𝜀 < 2

(
𝐿∑

𝓁=0
𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎𝐶𝑤,

(C.14)

𝐻𝑘(𝜀) ≤
⎛⎜⎜⎜⎝
8𝐶𝛽diag(𝐷 ×𝐷)

(∑𝐿
𝓁=0 𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎|𝐷|𝐶𝛼

𝜀

⎞⎟⎟⎟⎠
𝑑

× log
⎛⎜⎜⎜⎝
16
(∑𝐿

𝓁=0 𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎|𝐷|𝐶𝛼

𝜀

⎞⎟⎟⎟⎠
≤
(
𝐼𝑘
𝜀

)𝑑+1
, for 0 < 𝜀 < 2

(
𝐿∑

𝓁=0
𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎|𝐷|𝐶𝛼,

(C.15)

where we denoted by

𝐼𝑤 ∶= 2

(
𝐿∑

𝓁=0
𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎𝐶𝑤,

𝐼𝑘 ∶= 8max
{
𝐶𝛽diag(𝐷 ×𝐷),2

}( 𝐿∑
𝓁=0

𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎|𝐷|𝐶𝛼.

By employing (C.13), (C.14), and (C.15), we calculate

∞

∫
𝛼

(
log𝑁(𝜀,FN ,‖⋅‖S)) 12 𝑑𝜀 ≤( 𝐿∑

𝓁=0
𝑑𝓁𝑑𝓁+1

) 1
2

∞

∫
𝛼

(𝐻𝑤(𝜀) +𝐻𝑘(𝜀))
1
2 𝑑𝜀
39

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
=∶(∗)
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(∗) ≤
∞

∫
𝛼

𝐻𝑤(𝜀)
1
2 𝑑𝜀+

∞

∫
𝛼

𝐻𝑤(𝜀)
1
2 𝑑𝜀

≤
2
(∑𝐿

𝓁=0 𝑑𝓁𝑑𝓁+1
)
𝜌
{
(𝐶𝑤+𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎𝐶𝑤

∫
𝛼

(
𝐼𝑤
𝜀

) 𝑑+1
2
𝑑𝜀

+

2
(∑𝐿

𝓁=0 𝑑𝓁𝑑𝓁+1
)
𝜌
{
(𝐶𝑤+𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎|𝐷|𝐶𝛼

∫
𝛼

(
𝐼𝑘
𝜀

) 𝑑+1
2
𝑑𝜀

≤
(
𝐼
𝑑+1
2

𝑤 + 𝐼
𝑑+1
2

𝑘

)
2

𝑑 − 1
𝛼−

𝑑−1
2

≤ 4
𝑑 − 1

(
max
[
2𝐶𝑤,8|𝐷|𝐶𝛼max

{
𝐶𝛽diag(𝐷 ×𝐷),2

}]( 𝐿∑
𝓁=0

𝑑𝓁𝑑𝓁+1

)
𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎

) 𝑑+1
2

𝛼−
𝑑−1
2 ,

that is, we have by (i) of Assumption 7.3.

∞

∫
𝛼

(
log𝑁(𝜀,FN ,‖⋅‖S)) 12 𝑑𝜀

≤ 4
𝑑 − 1

(
max
[
2𝐶𝑤,8|𝐷|𝐶𝛼max

{
𝐶𝛽diag(𝐷 ×𝐷),2

}]
(𝐿𝐶2

𝑑
)
𝑑+2
𝑑+1 𝜌
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿
𝐶𝑎

) 𝑑+1
2

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
=∶𝐾

𝛼−
𝑑−1
2

which implies that we conclude that with (C.2)

ℜ𝑛
S(FN ) ≤ 4 inf

𝛼≥0

⎧⎪⎪⎨⎪⎪⎩
𝛼 + 3𝐾√

𝑛
⎵⎵
=∶𝐾′

𝛼−
𝑑−1
2

⎫⎪⎪⎬⎪⎪⎭
= 4
⎛⎜⎜⎝
(
(𝑑 − 1)𝐾 ′

2

) 2
𝑑+1

+𝐾 ′
(
(𝑑 − 1)𝐾 ′

2

) 2
𝑑+1

(
− 𝑑−1

2

)⎞⎟⎟⎠ = 𝛾𝐿
𝑑+2
𝑑+1
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿 (1
𝑛

) 1
𝑑+1

where 𝛾 is the positive constant defined by

𝛾 ∶= 4
⎧⎪⎨⎪⎩
(
𝑑 − 1
2

) 2
𝑑+1

+
(
𝑑 − 1
2

)− 𝑑−1
𝑑+1
⎫⎪⎬⎪⎭
(

12
𝑑 − 1

) 2
𝑑+1

× max
[
2𝐶𝑤,8|𝐷|𝐶𝛼max

{
𝐶𝛽diag(𝐷 ×𝐷),2

}]
𝐶

2(𝑑+2)
𝑑+1

𝑑
𝜌𝐶𝑎. □

(C.16)

C.3. Proof of Theorem 8.5

Proof. The following argument is almost same with the proof of Theorem 8.4.

By employing Bartlett et al. [8, Lemma A.5] or Kakade and Tewari [59, Theorem 1.1], we have

ℜ𝑛
S(FÑ

) ≤ inf
𝛼≥0

⎧⎪⎨⎪⎩4𝛼 +
12√
𝑛

∞

∫
𝛼

(
log𝑁(𝜀,F

Ñ
,‖⋅‖S)) 12 𝑑𝜀⎫⎪⎬⎪⎭ (C.17)

In the following, we will estimate the covering number 𝑁(𝜀, F
Ñ
, ‖⋅‖S).

Let 𝑓 = 𝓁((⋅), ⋅) and 𝑓 ′ = 𝓁(′(⋅), ⋅) where , ′ ∈ Ñ . By (i) of Assumption 8.2, we calculate

||𝑓 (𝑎, 𝑢) − 𝑓 ′(𝑎, 𝑢)|| = ||𝓁((𝑎), 𝑢) − 𝓁(′(𝑎), 𝑢)|| ≤ 𝜌‖‖(𝑎) − 
′(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 ) . (C.18)
40

Denoting by
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𝓁 ∶= (𝐙𝓁𝐈𝐝 +𝐗𝓁𝑓𝓁)◦(𝐙𝓁𝐈𝐝 +𝐗𝓁𝜎◦𝓁)◦⋯◦(𝐙0𝐈𝐝 +𝐗0𝑓0)◦(𝐙0𝐈𝐝 +𝐗0𝜎◦0),


′
𝓁 ∶= (𝐙𝓁𝐈𝐝 +𝐗𝓁𝑓

′
𝓁)◦(𝑍𝓁𝐈𝐝 +𝐗𝓁𝜎◦

′
𝓁)◦⋯◦(𝐙0𝐈𝐝 +𝐗0𝑓

′
0)◦(𝑍0𝐈𝐝 +𝐗0𝜎◦

′
0),

the quantity ‖‖(𝑎) − 
′(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 ) is evaluated by

‖‖(𝑎) − 
′(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 ) = ‖‖𝐿(𝑎) − 

′
𝐿(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿+1 )

= ‖‖‖(𝐙𝐿𝐈𝐝 +𝐗𝐿𝑓𝐿)◦(𝐙𝐿𝐈𝐝 +𝐗𝐿𝜎◦𝐿)(𝐿−1(𝑎)) − (𝐙𝐿𝐈𝐝 +𝐗𝐿𝑓𝐿)◦(𝐙𝐿𝐈𝐝 +𝐗𝐿𝜎◦𝐿)(
′
𝐿−1(𝑎))

+ (𝐙𝐿𝐈𝐝 +𝐗𝐿𝑓𝐿)◦(𝐙𝐿𝐈𝐝 +𝐗𝐿𝜎◦𝐿)(
′
𝐿−1(𝑎)) − (𝐙𝐿𝐈𝐝 +𝐗𝐿𝑓 ′

𝐿
)◦(𝐙𝐿𝐈𝐝 +𝐗𝐿𝜎◦′

𝐿)(
′
𝐿−1(𝑎))

‖‖‖
𝐴𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 7.4(𝑖)(𝑖𝑖)(𝑖𝑣)

≤ (𝐙𝐿 +𝐗𝐿𝐶𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝐿 +𝐗𝐿𝐶𝑘𝐶𝜎)‖‖𝐿−1(𝑎) − 

′
𝐿−1(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿 )

+
(
(𝐙𝐿 +𝐗𝐿𝐶𝜎𝐶𝑘)𝐗𝐿

‖‖‖𝑓𝐿 − 𝑓 ′
𝐿
‖‖‖op + (𝐙𝐿 +𝐗𝐿𝐶𝑀+1

𝑤 𝐶𝑀𝜎 )𝐗𝐿 ‖‖𝐿 −
′
𝐿
‖‖op)‖‖′

𝐿−1(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿 ) .

(C.19)

Here, we have employed the following estimation:

‖‖𝑓𝐿‖‖op = ‖‖𝑊𝐿,𝑀◦𝜎(𝑊𝐿,𝑀−1)◦⋯◦𝜎(𝑊𝐿,1)◦𝜎(𝑊𝐿,0)‖‖op ≤ 𝐶𝑀+1
𝑤 𝐶𝑀𝜎 . (C.20)

By the same argument in (C.19)–(C.20), we evaluate‖‖𝐿−1(𝑎) − 
′
𝐿−1(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿 )

≤ (𝐙𝐿−1 +𝐗𝐿−1𝐶𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝐿−1 +𝐗𝐿−1𝐶𝑘𝐶𝜎)‖‖𝐿−2(𝑎) − 

′
𝐿−2(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿−1 )

+

(
(𝐙𝐿−1 +𝐗𝐿−1𝐶𝜎𝐶𝑘)𝐗𝐿−1

‖‖‖𝑓𝐿−1 − 𝑓 ′
𝐿−1
‖‖‖op

+ (𝐙𝐿−1 +𝐗𝐿−1𝐶𝑀+1
𝑤 𝐶𝑀𝜎 )𝐗𝐿−1 ‖‖𝐿−1 −

′
𝐿−1
‖‖op
)‖‖′

𝐿−2(𝑎)‖‖L2(𝐷;ℝ𝑑𝐿−1 ) .

(C.21)

By repeatedly evaluating ‖‖‖𝓁(𝑎) − 
′
𝓁(𝑎)
‖‖‖L2(𝐷;ℝ𝑑𝓁+1 )

(𝓁 =𝐿, 𝐿 − 1, ..., 0), we obtain

‖‖(𝑎) − 
′(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 )

≤ 𝐶𝑎
𝐿∏

𝓁=0
(𝐙𝓁 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

×
𝐿∑

𝓁=0

(
𝐗𝓁

𝐙𝓁 +𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

‖‖‖𝑓𝐿−1 − 𝑓 ′
𝐿−1
‖‖‖op + 𝐗𝓁

𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎

‖‖‖𝓁 −
′
𝓁
‖‖‖op
)
.

≤ 𝐶𝑎
𝐿∏

𝓁=0
(𝐙𝓁 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
=∶𝑇𝐿

×
𝐿∑

𝓁=0

⎛⎜⎜⎜⎜⎜⎝
𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎

𝐙𝓁 +𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
=∶𝐶𝑤,𝓁

𝑀∑
𝑚=0

‖‖‖𝑊𝓁,𝑚 −𝑊 ′
𝓁,𝑚
‖‖‖op + 𝐗𝓁

𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

=∶𝐶𝑘,𝓁

‖‖‖𝓁 −
′
𝓁
‖‖‖op
⎞⎟⎟⎟⎟⎟⎠
.

(C.22)

Combining (C.18), (C.22), (C.10), and (C.11), the norm ‖‖𝑓 − 𝑓 ′‖‖S is estimated by

‖‖𝑓 − 𝑓 ′‖‖S =
(
1
𝑛

𝑛∑
𝑖=1
|𝑓 (𝑎𝑖, 𝑢𝑖) − 𝑓 ′(𝑎𝑖, 𝑢𝑖)|2)

1
2

≤
𝐿∑

𝓁=0

[
𝑀∑
𝑚=0

𝑑𝑤
𝓁,𝑚+1∑
𝑗=1

𝑑𝑤
𝓁,𝑚∑
𝑖=1

𝜌𝐶𝑎𝑇𝐿𝐶𝑤,𝓁𝐶𝑤

||||||
𝑤𝓁,𝑚,𝑖𝑗

𝐶𝑤
−
𝑤′

𝓁,𝑚,𝑖𝑗

𝐶𝑤

||||||
+

𝑑𝑘
𝓁∑ 𝑑𝑘

𝓁∑
𝜌𝐶 𝑇 𝐶 |𝐷|𝐶 ‖‖‖𝑘𝓁,𝑖𝑗 − 𝑘′𝓁,𝑖𝑗

‖‖‖ ]
,

41

𝑗=1 𝑖=1
𝑎 𝐿 𝑘,𝓁 𝛼 ‖‖‖ 𝐶𝛼 𝐶𝛼

‖‖‖𝐋∞(𝐷×𝐷;ℝ)



Journal of Computational Physics 513 (2024) 113168J.A. Lara Benitez, T. Furuya, F. Faucher et al.

which implies that we have

𝑁(𝜀,F
Ñ
,‖⋅‖S)

≤
𝐿∏

𝓁=0

𝑑𝓁+1∏
𝑗=1

𝑀∏
𝑚=0

𝑑𝑤
𝓁,𝑚+1∏
𝑗=1

𝑑𝑤
𝓁,𝑚∏
𝑖=1

𝑑𝑘
𝓁+1∏
𝑗′=1

𝑑𝑘
𝓁∏

𝑖′=1

×𝑁
⎛⎜⎜⎜⎝

𝜀

2
(∑𝐿

𝓁=0
∑𝑀
𝑚=0 𝑑

𝑤
𝓁,𝑚+1𝑑

𝑤
𝓁,𝑚𝐶𝑤,𝓁

)
𝜌𝐶𝑎𝑇𝐿𝐶𝑤

, [−1,1], | ⋅ |⎞⎟⎟⎟⎠
×𝑁
⎛⎜⎜⎜⎝

𝜀

2
(∑𝐿

𝓁=0 𝑑
𝑘
𝓁+1𝑑

𝑘
𝓁𝐶𝑘,𝓁

)
𝜌𝐶𝑎𝑇𝐿|𝐷|𝐶𝛼 ,‖⋅‖𝐋∞(𝐷×𝐷;ℝ)

⎞⎟⎟⎟⎠ .

(C.23)

By taking logarithmic functions in (C.23), we have

log𝑁(𝜀,F
Ñ
,‖⋅‖S)

≤
(

𝐿∑
𝓁=0

𝑀∑
𝑚=0

𝑑𝑤𝓁,𝑚+1𝑑
𝑤
𝓁,𝑚𝑑

𝑘
𝓁+1𝑑

𝑘
𝓁

)

×

{
log𝑁
⎛⎜⎜⎜⎝

𝜀

2
(∑𝐿

𝓁=0
∑𝑀
𝑚=0 𝑑

𝑤
𝓁,𝑚+1𝑑

𝑤
𝓁,𝑚𝐶𝑤,𝓁

)
𝜌𝐶𝑎𝑇𝐿𝐶𝑤

, [−1,1], | ⋅ |⎞⎟⎟⎟⎠
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

=∶𝐻̃𝑤(𝜀)

+ log𝑁
⎛⎜⎜⎜⎝

𝜀

2
(∑𝐿

𝓁=0 𝑑
𝑘
𝓁+1𝑑

𝑘
𝓁𝐶𝑘,𝓁

)
𝜌𝐶𝑎𝑇𝐿|𝐷|𝐶𝛼 ,‖⋅‖𝐋∞(𝐷×𝐷;ℝ)

⎞⎟⎟⎟⎠
⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵

=∶𝐻̃𝑘(𝜀)

}
.

(C.24)

By same arguments in (C.14) and (C.15) (using Wainwright [111, Example 5.3] and Gottlieb et al. [44, Lemma 4.2]), we can estimate 
𝐻̃𝑤 and 𝐻̃𝑘, respectively as follows:

𝐻̃𝑤(𝜀) ≤
(
𝐼𝑤
𝜀

)𝑑+1
,

for 0 < 𝜀 < 2

(
𝐿∑

𝓁=0

𝑀∑
𝑚=0

𝑑𝑤𝓁,𝑚+1𝑑
𝑤
𝓁,𝑚𝐶𝑤,𝓁

)
𝜌𝐶𝑎𝑇𝐿𝐶𝑤,

(C.25)

𝐻̃𝑘(𝜀) ≤
(
𝐼𝑘
𝜀

)𝑑+1
,

for 0 < 𝜀 < 2

(
𝐿∑

𝓁=0
𝑑𝑘𝓁+1𝑑

𝑘
𝓁𝐶𝑘,𝓁

)
𝜌𝐶𝑎𝑇𝐿|𝐷|𝐶𝛼,

(C.26)

where we denoted by

𝐼𝑤 ∶= 2

(
𝐿∑

𝓁=0

𝑀∑
𝑚=0

𝑑𝑤𝓁,𝑚+1𝑑
𝑤
𝓁,𝑚𝐶𝑤,𝓁

)
𝜌𝐶𝑎𝑇𝐿𝐶𝑤,

𝐼𝑘 ∶= 8max
{
𝐶𝛽diag(𝐷 ×𝐷),2

}( 𝐿∑
𝓁=0

𝑑𝑘𝓁+1𝑑
𝑘
𝓁𝐶𝑘,𝓁

)
𝜌𝐶𝑎𝑇𝐿|𝐷|𝐶𝛼.

By employing (C.24), (C.25), and (C.26), we calculate

∞

∫
𝛼

(
log𝑁(𝜀,F

Ñ
,‖⋅‖S)) 12 𝑑𝜀 ≤( 𝐿∑

𝓁=0

𝑀∑
𝑚=0

𝑑𝑤𝓁,𝑚+1𝑑
𝑤
𝓁,𝑚𝑑

𝑘
𝓁+1𝑑

𝑘
𝓁

) 1
2

∞

∫
𝛼

(𝐻̃𝑤(𝜀) + 𝐻̃𝑘(𝜀))
1
2 𝑑𝜀
42

⎵⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⎵
=∶(∗)
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(∗) ≤
∞

∫
𝛼

𝐻̃𝑤(𝜀)
1
2 𝑑𝜀+

∞

∫
𝛼

𝐻̃𝑤(𝜀)
1
2 𝑑𝜀

≤
(
𝐼
𝑑+1
2

𝑤 + 𝐼
𝑑+1
2

𝑘

)
2

𝑑 − 1
𝛼−

𝑑−1
2

≤ 4
𝑑 − 1

(
max
[
2𝐶𝑤,8|𝐷|𝐶𝛼max

{
𝐶𝛽diag(𝐷 ×𝐷),2

}]
𝜌𝑀𝐶2

𝑑
𝐶𝑎𝑇𝐿

) 𝑑+1
2

×
⎡⎢⎢⎢⎣
(

𝐿∑
𝓁=0

𝐶𝑤,𝓁

) 𝑑+1
2

+

(
𝐿∑

𝓁=0
𝐶𝑘,𝓁

) 𝑑+1
2
⎤⎥⎥⎥⎦𝛼

− 𝑑−1
2 ,

that is, we have

∞

∫
𝛼

(
log𝑁(𝜀,F

Ñ
,‖⋅‖S)) 12 𝑑𝜀 ≤𝐾𝛼− 𝑑−1

2

where

𝐾 ∶=
4𝐶2

𝑑
𝑀1∕2𝐿1∕2

𝑑 − 1

(
max
[
2𝐶𝑤,8|𝐷|𝐶𝛼max

{
𝐶𝛽diag(𝐷 ×𝐷),2

}]
𝜌𝑀𝐶2

𝑑
𝐶𝑎𝑇𝐿

(
𝐿∑

𝓁=0
𝐶𝑤,𝓁 +𝐶𝑘,𝓁

)) 𝑑+1
2

𝛼−
𝑑−1
2

which implies that we conclude that with (C.17)

ℜ𝑛
S(FÑ

) ≤ 4 inf
𝛼≥0

⎧⎪⎪⎨⎪⎪⎩
𝛼 + 3𝐾√

𝑛
⎵⎵
=∶𝐾′

𝛼−
𝑑−1
2

⎫⎪⎪⎬⎪⎪⎭
= 4
⎛⎜⎜⎜⎝
(
(𝑑 − 1)𝐾 ′

2

) 2
𝑑+1

+𝐾 ′

(
(𝑑 − 1)𝐾 ′

2

) 2
𝑑+1

(
− 𝑑−1

2

)⎞⎟⎟⎟⎠
= 𝛾̃𝐿

1
𝑑+1

(
𝐿∑

𝓁=0

𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

𝐙𝓁 +𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

+
𝐗𝓁

𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎

)[
𝐿∏

𝓁=0
(𝐙𝓁 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

](1
𝑛

) 1
𝑑+1

where ̃𝛾 is the positive constant defined by

𝛾̃ ∶= 4
⎧⎪⎨⎪⎩
(
𝑑 − 1
2

) 2
𝑑+1

+
(
𝑑 − 1
2

)− 𝑑−1
𝑑+1
⎫⎪⎬⎪⎭
(

12
𝑑 − 1

) 2
𝑑+1

× max
[
2𝐶𝑤,16|𝐷|𝐶𝛼max

{
𝐶𝛽diag(𝐷 ×𝐷),2

}]
(𝐶4
𝑑
𝑀)

𝑑+2
𝑑+1 𝜌𝐶𝑎 □

(C.27)

C.4. Proof of Corollary 8.6

Proof. By using Assumption 7.3, we estimate for  ∈ N and 𝑎 ∈ supp(𝜇𝑎),

‖(𝑎)‖L2(𝐷;ℝ𝑑𝑢 ) = ‖‖(𝑊𝐿 +𝐿)◦𝜎(𝑊𝐿−1 +𝐿−1)◦⋯◦𝜎(𝑊0 +0)(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 )

≤ (𝐶𝑤 +𝐶𝑘)𝐿+1𝐶𝐿𝜎 𝐶𝑎.
43

Then, by applying Lemma 8.3 as 𝑅 = (𝐶𝑤+𝐶𝑘)𝐿+1𝐶𝐿𝜎 𝐶𝑎, and combining with Theorem 8.4, we conclude that the inequality (38). □
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C.5. Proof of Corollary 8.7

Proof. By using Assumption 7.4, we estimate for  ∈ Ñ and 𝑎 ∈ supp(𝜇𝑎),

‖(𝑎)‖L2(𝐷;ℝ𝑑𝑢 )

= ‖‖(𝐙𝓁𝐈𝐝 +𝐗𝓁𝑓𝓁)◦(𝐙𝓁𝐈𝐝 +𝐗𝓁𝜎◦𝓁)◦⋯◦(𝐙0𝐈𝐝 +𝐗0𝑓0)◦(𝐙0𝐈𝐝 +𝐗0𝜎◦0)(𝑎)‖‖L2(𝐷;ℝ𝑑𝑢 )

≤
[

𝐿∏
𝓁=0

(𝐙𝐿 +𝐗𝐿𝐶𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝐿 +𝐗𝐿𝐶𝑘𝐶𝜎)

]
𝐶𝑎.

Then, by applying Lemma 8.3 as 𝑅 =
[∏𝐿

𝓁=0(𝐙𝓁 +𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

]
𝐶𝑎 and combining with Theorem 8.5, we conclude 

that the inequality (39). □

Appendix D. Remark for Sections 8.3, 8.4, 8.5

Remark D.1. In the implementation of NO, 𝓁 is projected into a finite-rank operator by the chosen basis. For clarity’s sake, let 
assume 𝓁 ∶ L2(𝐷) → L2(𝐷), i.e., domain and range are the same space, and L2(𝐷) = L2(𝐷; ℝ). Let 𝑘𝓁 ∈ L2(𝐷 ×𝐷) be the kernel 
of 𝓁 , and let {𝜙𝑗}𝑗∈ℕ be an orthonormal basis in L2(𝐷),35 so {𝜙𝑖 ⊗ 𝜙𝑗}𝑖,𝑗∈ℕ is an orthonormal basis of L2(𝐷 × 𝐷), and thus 
𝑘𝓁(𝑥, 𝑦) =

∑
𝑗,𝑘≥1 𝑘𝓁,𝑗𝑘 𝜙𝑗 (𝑥) ⊗𝜙𝑘(𝑦), where 𝑘𝓁,𝑗𝑘 ∈ℝ, 𝑘𝓁,𝑗𝑘 = ⟨𝑘𝓁 , 𝜙𝑗 (𝑥) ⊗𝜙𝑘⟩L2(𝐷×𝐷) = ⟨𝜙𝑗, 𝜙𝑘⟩L2(𝐷). By choosing 𝑁 -modes (first 

𝑁 basis), the kernel 𝑘𝓁 is approximated as 𝑘(𝑁)
𝓁 (𝑥, 𝑦) =

∑
𝑗,𝑘≤𝑁 𝑘𝓁,𝑗𝑘 𝜙𝑗 (𝑥) ⊗𝜙𝑘(𝑦), and so

‖𝑘(𝑁)
𝓁 ‖2L2(𝐷×𝐷)

=
𝑁∑

𝑗,𝑘=1
|𝑘𝓁,𝑗𝑘|2 ≤ ∞∑

𝑗,𝑘=1
|𝑘𝓁,𝑗𝑘|2 = ‖𝑘‖2L2(𝐷×𝐷)

.

Hence, the implementable36 kernel 𝑘(𝑁)
𝓁 satisfies (ii) Assumption 7.3, and the Rademacher Complexity for (36) is also an upper-

bound.

Remark D.2 (Summary of generalization error bounds).

(Bound for NO)

≲ 𝐿
𝑑+2
𝑑+1 {(𝐶𝑤 +𝐶𝑘)𝐶𝜎}𝐿

(1
𝑛

) 1
𝑑+1 +
{
(𝐶𝑤 +𝐶𝑘)𝐶𝜎

}𝐿√2𝛿
𝑛
.

(Bound for sNO)

≲ 𝐿
𝑑+2
𝑑+1 (𝐶𝑀+1

𝑤 𝐶𝑀+1
𝜎 𝐶𝑘)𝐿

(1
𝑛

) 1
𝑑+1 + (𝐶𝑀+1

𝑤 𝐶𝑀+1
𝜎 𝐶𝑘)𝐿

√
2𝛿
𝑛
.

(Bound for (sNO+ 𝜀I)𝑣1)

≲ 𝐿
𝑑+2
𝑑+1
{
(1 +𝐶𝑀+1

𝑤 𝐶𝑀𝜎 )(1 +𝐶𝜎𝐶𝑘)
}𝐿 (1

𝑛

) 1
𝑑+1 +
{
(1 +𝐶𝑀+1

𝑤 𝐶𝑀𝜎 )(1 +𝐶𝜎𝐶𝑘)
}𝐿√2𝛿

𝑛
.

(Bound for (sNO+ 𝜀I)𝑣2)

≲ 𝐿
1
𝑑+1

(
𝐿∑

𝓁=0

𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

1 +𝐗𝓁𝐶
𝑀+1
𝑤 𝐶𝑀𝜎

+
𝐗𝓁

1 +𝐗𝓁𝐶𝑘𝐶𝜎

)[
𝐿∏

𝓁=0
(1 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(1 +𝐗𝓁𝐶𝑘𝐶𝜎)

](1
𝑛

) 1
𝑑+1

+

[
𝐿∏

𝓁=0
(𝐙𝓁 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

]√
2𝛿
𝑛
.

Here, ≲ implies that the left-hand side is bounded above by the right-hand side times a constant independent of 𝑛 and 𝐿. Hence, 
Remark 8.2 can be observed.

35 For FNO, the basis are the Fourier basis.
44

36 In a computer.
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Lemma D.1. Let 𝐙𝓁 = 1 and 𝐗𝓁 be a Bernoulli RV with 𝐏{𝐗𝓁 = 1} = 𝑝𝓁 , and 𝐏{𝐗𝓁 = 0} = 1 − 𝑝𝓁 for 𝑝𝓁 ∈ [0, 1] in inequality (39). We 

assume that 𝑝𝓁 = 𝑥𝓁∕𝐿
1
𝑑+1 where 𝑥𝓁 ∈ [0, 1] satisfies 

∑∞
𝓁=0 𝑥𝓁 <∞. Then,

𝔼 [RHS of (39)] ≲ ̂S() +

(
𝐿∑

𝓁=1
𝑥𝓁

)
𝐿∏

𝓁=0

[
1 + (𝐶𝑀+1

𝑤 𝐶𝑀𝜎 +𝐶𝑘𝐶𝜎 +𝐶𝑀+1
𝑤 𝐶𝑘𝐶

𝑀+1
𝜎 )𝑥𝓁

](1
𝑛

) 1
𝑑+1

+

(
𝜌

𝐿∏
𝓁=0

[
1 + (𝐶𝑀+1

𝑤 𝐶𝑀𝜎 +𝐶𝑘𝐶𝜎 +𝐶𝑀+1
𝑤 𝐶𝑘𝐶

𝑀+1
𝜎 )𝑥𝓁

]
𝐶𝑎 +𝑅𝑢

)√
2𝛿
𝑛
.

Here, ≲ implies that the left-hand side is bounded above by the right-hand side times a constant independent of 𝑛 and 𝐿.

We remark that the upper bound remain bounded as 𝐿 tends to infinity because 
∑∞

𝓁=1 𝑥𝓁 <∞ and

∞∑
𝓁=1

(
1 + (𝐶𝑀+1

𝑤 𝐶𝑀𝜎 +𝐶𝑘𝐶𝜎 +𝐶𝑀+1
𝑤 𝐶𝑘𝐶

𝑀+1
𝜎 )𝑥𝓁

)
<∞.

As result, infinite products also remain bounded.

Proof. First, we evaluate that

[RHS of (39)] ≤ ̂S() + 4𝛾̃(𝐶𝑀+1
𝑤 𝐶𝑀𝜎 + 1)𝐿

1
𝑑+1

(
𝐿∑

𝓁=1
𝐗𝓁

)[
𝐿∏

𝓁=0
(1 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(1 +𝐗𝓁𝐶𝑘𝐶𝜎)

](1
𝑛

) 1
𝑑+1

+

(
𝜌

[
𝐿∏

𝓁=0
(1 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(1 +𝐗𝓁𝐶𝑘𝐶𝜎)

]
𝐶𝑎 +𝑅𝑢

)√
2𝛿
𝑛
,

which implies that

𝔼 [RHS of (39)] ≲ ̂S() +𝐿
1
𝑑+1

𝐿∑
𝓁=1

𝔼𝐗𝓁

[
𝐗𝓁(1 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(1 +𝐗𝓁𝐶𝑘𝐶𝜎)

]
× 𝔼⧵𝐗𝓁

[
𝐿∏

𝓁′=0
(1 +𝐗𝓁′𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(1 +𝐗𝓁′𝐶𝑘𝐶𝜎)

](1
𝑛

) 1
𝑑+1

+

(
𝜌𝔼

[
𝐿∏

𝓁=0
(𝐙𝓁 +𝐗𝓁𝐶

𝑀+1
𝑤 𝐶𝑀𝜎 )(𝐙𝓁 +𝐗𝓁𝐶𝑘𝐶𝜎)

]
𝐶𝑎 +𝑅𝑢

)√
2𝛿
𝑛
.

Since we have

𝔼𝐗𝓁

[
𝐗𝓁(1 +𝐗𝓁𝐶

𝑀+1
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we conclude that by using 𝑝𝓁 = 𝑥𝓁∕𝐿
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Fig. E.20. Visualization of the training landscapes associated with FNO, sFNO, sFNO+ 𝜀I v1 and sFNO+ 𝜀I v2.

Appendix E. Experiments

E.1. Loss landscape visualization

We include here additional views of the training loss landscape of the considered architectures that were created using the method 
discussed in Section 4.5. In particular, the images below offer a closer view of the landscape in the immediate vicinity of the found 
minimizer, to allow for a better comparison. In addition, a color-based planar view of the landscapes is provided for a better view of 
their respective topological features. (See Fig. E.20.)

E.2. Out-of-distribution

In this section, we present the wavefield reconstruction of the other families described in Section 5. The values of the parameters 
are established in Table 5, and the relative test loss error is presented in Tables 6 to 11. In our analysis, we selected three realizations 
from the previously trained neural networks. These networks were trained using a dataset at a frequency of 15 Hz and with the 
parameters of the random field generating the wave speed set as 𝝀 = (1, 1) and a wave speed range of [1500, 5000]. Specifically, we 
chose the first three networks documented in Fig. 7.

To test the performance of these networks on a different random field, we kept the smoothness coefficient constant and varied 
the correlation range of the Whittle-Matérn field. The reconstructed wave fields are presented in Figs. E.21 to E.26. Please note that 
the imaginary part of the wave field is also recovered, but it is not shown in the figures.

OOD 1 In this set family, we keep the isotropic behavior of the original data, however we move the value to 𝝀OOD1 = (0.20, 0.20). 
The range is kept in [1500, 5000]. We see that this scenario is the easier for the networks. However, FNO still struggles to capture the 
correct wave propagation.

OOD 2 In this set family, we generate an anisotropic random field, different to the original trained data 𝝀OOD2 = (0.10, 0.20), 
however the range was kept similar than the original set.

OOD 3 In this set family, we generate an isotropic random field, different to the original trained data 𝝀OOD3 = (0.20, 0.20), however 
the range was moved to [2000, 3500].

OOD 4 In this set family, we generate an anisotropic random field, different to the original trained data 𝝀OOD4 = (0.10, 0.20), 
however the range was kept to [2000, 3500] the same as the original set.

OOD 5 In this set family, we generate an isotropic random field, different to the original trained data 𝝀OOD5 = (0.10, 0.30), however 
46

the range was also moved to [2000, 6000] different than the original set.
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Fig. E.21. Pressure field reconstructed at 15 Hz trained with isotropic Whittle–Matérn covariance 𝝀 = (1, 1), and wavespeed range of (1500, 5000) Equation (15)

and tested with Table 6 𝝀OOD1 = (0.20, 0.20), and wavespeed range of (1500, 5000) with the different architectures for multiple realizations of the new GRF out-of 
distribution, realizations of the wave speed. Left column shows independent GRF realization of the wave speed (see Equation (10)). Second column shows the real part 
of the pressure field solution to the wave PDE at frequency 15 Hz, obtained with software hawen [35], which we consider as the reference solution, Other columns

show the approximated reconstructions using the different architectures. In each case, we show the real parts of the pressure fields, and the relative error with the 
reference solution on a logarithmic scale.

OOD 6 In this set family, we generate an anisotropic random field, significantly different to the original trained data 𝝀OOD6 =
(0.25, 0.75), however the range was moved to [2000, 6000] different than the original set.

E.3. OOD of the velocity BP 2004

To assess the network’s ability to handle wave speed that are significantly different from the input distribution (particularly 
those that deviate from Gaussian measures), we conducted additional tests using the trained networks on a scale version of the 
47

velocity model known as the “2004-BP velocity benchmark” [12]. The source was positioned similarly to the previous experiments, 
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Fig. E.22. Pressure field reconstructed at 15 Hz trained with isotropic Whittle–Matérn covariance 𝝀 = (1, 1), and wavespeed range of (1500, 5000) Equation (15)

and tested with Table 7 𝝀OOD2 = (0.10, 0.20), and wavespeed range of (1500, 5000) with the different architectures for multiple realizations of the new GRF out-of 
distribution, realizations of the wave speed. Left column shows independent GRF realization of the wave speed (see Equation (10)). Second column shows the real part 
of the pressure field solution to the wave PDE at frequency 15 Hz, obtained with software hawen [35], which we consider as the reference solution, Other columns

show the approximated reconstructions using the different architectures. In each case, we show the real parts of the pressure fields, and the relative error with the 
reference solution on a logarithmic scale.

maintaining a frequency of 15 Hz, while adjusting the wavespeed’s size to accommodate the capabilities of the GPU device. The 
generated approximations by each network are visualized in Fig. E.27.

E.4. Experiments at 7, 12 and 15 Hz

We consider two further datasets, lower frequency with a similar configuration as in Equation (12) at 12Hz, and an unrealistic 
48

case with the source beneath the surface, at 7 Hz, but we increase the size of the domain.
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Fig. E.23. Pressure field at 15 Hz trained with isotropic Whittle–Matérn covariance 𝝀 = (1, 1), and wavespeed range of (1500, 5000) Equation (15) and tested with Table 9

𝝀OOD3 = (0.20, 0.20), and wavespeed range of (2000, 3500) with the different architectures for multiple realizations of the new GRF out-of distribution, realizations of 
the wave speed. Left column shows independent GRF realization of the wave speed (see Equation (10)). Second column shows the real part of the pressure field 
solution to the wave PDE at frequency 15 Hz, obtained with software hawen [35], which we consider as the reference solution, Other columns show the approximated 
reconstructions using the different architectures. In each case, we show the real parts of the pressure fields, and the relative error with the reference solution on a 
logarithmic scale.

Remark E.1. Similarly as in Section 4 we deliberately avoid increasing the epochs of the training algorithm or the size of the training dataset 
to compensate the network.

Experiments of 7 Hz (different configuration)

Experiment 7 Hz

⎧⎪⎨
2D domain of size 3.81 × 3.81 km2

40000 GRF wave speeds generated, imposing 1.5 km s−1 ≤ 𝑐(𝑥) ≤ 3 km s−1 (E.1)
49

⎪⎩ The data are 𝑝 that solve Equation (8) at frequency 𝜔∕(2𝜋) = 7 Hz.
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Fig. E.24. Pressure field reconstructed trained with isotropic Whittle–Matérn covariance 𝝀 = (1, 1), and wavespeed range of (1500, 5000) Equation (15) and tested 
with Table 9 𝝀OOD4 = (0.10, 0.20), and wavespeed range of (2000, 3500) with the different architectures for multiple realizations of the new GRF out-of distribution, 
realizations of the wave speed. Left column shows independent GRF realization of the wave speed (see Equation (10)). Second column shows the real part of the 
pressure field solution to the wave PDE at frequency 15 Hz, obtained with software hawen [35], which we consider as the reference solution, Other columns show the 
approximated reconstructions using the different architectures. In each case, we show the real parts of the pressure fields, and the relative error with the reference 
solution on a logarithmic scale.
50
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Fig. E.25. Pressure field reconstructed at 15 Hz trained with isotropic Whittle–Matérn covariance 𝝀 = (1, 1), and wavespeed range of (1500, 5000) Equation (15) and 
tested with Table 10 𝝀OOD5 = (0.10, 0.30), and wavespeed range of (2000, 6000) with the different architectures for multiple realizations of the new GRF out-of 
distribution, realizations of the wave speed. Left column shows independent GRF realization of the wave speed (see Equation (10)). Second column shows the real part 
of the pressure field solution to the wave PDE at frequency 15 Hz, obtained with software hawen [35], which we consider as the reference solution, Other columns

show the approximated reconstructions using the different architectures. In each case, we show the real parts of the pressure fields, and the relative error with the 
reference solution on a logarithmic scale.
51
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Fig. E.26. Pressure field reconstructed at 15 Hz trained with isotropic Whittle–Matérn covariance 𝝀 = (1, 1), and wavespeed range of (1500, 5000) Equation (15) and 
tested with Table 11 𝝀OOD6 = (0.25, 0.75), and wavespeed range of (2000, 6000) with the different architectures for multiple realizations of the new GRF out-of 
distribution, realizations of the wave speed. Left column shows independent GRF realization of the wave speed (see Equation (10)). Second column shows the real part 
of the pressure field solution to the wave PDE at frequency 15 Hz, obtained with software hawen [35], which we consider as the reference solution, Other columns

show the approximated reconstructions using the different architectures. In each case, we show the real parts of the pressure fields, and the relative error with the 
reference solution on a logarithmic scale.
52
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Fig. E.27. BP 2004 [12]. Using the networks trained in row 1 of Table 3.

Fig. E.28. Illustration of the full-wave dataset for Experiment 1 that considers a computational domain of size 3.81 × 3.81 km2 with a source buried in the domain. 
The wave speed and pressure field are represented on a Cartesian grid of size 128 × 128 with a grid step of 30 m. The complete dataset corresponds to 40 000 couples 
made up of a wave speed model and associated acoustic wave.

Fig. E.29. Comparison of test-loss for 𝜔∕(2𝜋) = 7 Hz. Each architecture is trained 9 times, the relative L2-loss, ‖ref − 
approx‖L2 ∕‖ref‖L2 , on the test set is shown in 

the diagram.
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Fig. E.30. Pressure field reconstructed at frequency 7 Hz with the different architectures for three test-cases. First column shows independent GRF realization of the 
wave speed (see Equation (10)). Second column shows the solution of the wave PDE obtained with software hawen [35], which we consider as the reference solution, 
see Equation (10). Other columns show the approximated reconstruction using the different architectures: FNO, see Kovachki et al. [66]; sequential structure (sFNO, 
see Section 2); and the solutions provided by sFNO + 𝜀I, Section 2. In each case, we show the real part of the pressure field, and the relative error with the reference 
solution using a logarithmic scale.
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Fig. E.31. Comparison of test-loss for 𝜔∕(2𝜋) = 12 Hz. Each architecture is trained 9 times, the relative L2-loss, ‖ref −
approx‖L2 ∕‖ref‖L2 , on the test set is shown in 

the diagram.

Fig. E.32. Pressure field reconstructed at frequency 12 Hz with the different architectures for two GRF realizations of the wave speed. Left column shows independent 
GRF realization of the wave speed (see Equation (10)). Second column shows the real and imaginary parts of the pressure field solution to the wave PDE at frequency 
12 Hz, obtained with software hawen [35], which we consider as the reference solution, see Equation (10). Other columns show the approximated reconstructions using 
the different architectures: FNO, see Kovachki et al. [66]; sequential structure (sFNO, see Section 2); and the solutions provided by sFNO+ 𝜀I, Section 2. In each case, 
we show the real and imaginary parts of the pressure fields, and the relative error with the reference solution on a logarithmic scale.

Both the wave speeds and the pressure field solution are represented on a Cartesian grid of size 128 × 128 pixels, that is, using 
a grid step of 30 m. We illustrate in Fig. E.28 a realization of the wave speed model and the corresponding pressure field. (See 
Figs. E.29 and E.30.)

E.5. Experiments at 12 Hz

Experiment 2

⎧⎪⎨⎪⎩
2D domain of size 1.27 × 1.27 km2

40000 GRF wave speeds generated, imposing 1.5 km s−1 ≤ 𝑐(𝑥) ≤ 5 km s−1

The data are 𝑝 that solve Equation (8) at frequency 𝜔∕(2𝜋) = 12 Hz.

(E.2)
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See Figs. E.31 and E.32.
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E.6. Wavefield reconstruction at 15𝐻𝑧

See Fig. E.33.

Fig. E.33. Pressure field reconstructed at frequency 15 Hz with the different architectures for two GRF realizations of the wave speed. Left column shows independent 
GRF realization of the wave speed (see Equation (10)). Second column shows the real and imaginary parts of the pressure field solution to the wave PDE at frequency 
12 Hz, obtained with software hawen [35], which we consider as the reference solution, see Equation (10). Other columns show the approximated reconstructions using 
the different architectures: FNO, see Kovachki et al. [66]; sequential structure (sFNO, see Section 2); and the solutions provided by sFNO+ 𝜀I, Section 2. In each case, 
we show the real and imaginary parts of the pressure fields, and the relative error with the reference solution on a logarithmic scale.
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