A Decision Procedure for Bit-Vector Arithmetic

Clark W. Barrett, David L. Dill, and Jeremy R. Levitt*
Computer Systems Laboratory, Stanford University
Stanford, CA 94305, USA

Abstract

Bit-vector theories with concatenation and extraction have
been shown to be useful and important for hardware veri-
fication. We have implemented an extended theory which
includes arithmetic. Although deciding equality in such a
theory is NP-hard, our implementation is efficient for many
practical examples. We believe this to be the first such im-
plementation which is efficient, automatic, and complete.

1 Introduction

As designs grow in complexity, design verification becomes
increasingly important and challenging. New and better ver-
ification techniques are critical to ensure correctness, main-
tain design cycle times, and protect designers from economic
losses due to undiscovered bugs. Formal methods for verifi-
cation are especially attractive because they have the poten-
tial to cover most or all of the behaviors in a design without
having to exhaustively simulate it.

The Stanford Validity Checker (SVC) [2, 9] is an auto-
matic verification tool which has been in development for
several years at Stanford University. The input to SVC is
a Boolean formula in a quantifier-free subset of first-order
logic. It may also contain Boolean operators, uninterpreted
functions, and various interpreted functions such as opera-
tions on infinite arrays and arithmetic. We have found these
constructs to be useful for modeling hardware designs. Us-
ing a combination of case-splitting and cooperating decision
procedures, SVC determines whether a formula is valid (i.e.
equivalent to true in every possible interpretation). If the
formula is not valid, SVC returns a counterexample. SVC
is used as the final step in the automatic hardware verifi-
cation paradigm of Burch and Dill [4]. In their approach a
specification and an implementation are each symbolically
simulated and the resulting states are then compared to see
if they are equivalent. This method has been shown to be
successful for verification of actual designs and is currently
being applied to the TORCH microprocessor, an aggressive
superscalar microprocessor developed for educational and
research purposes at Stanford University [11]. The powerful
and efficient decision procedures in SVC are critical for the
success of this effort.

Other formal methods such as theorem proving and mo-
del checking have been used extensively, but theorem provers
suffer from a lack of automation and model checking from

*Now at 0-in Design Automation.

Draft: to appear in the 35th Design Automation Conference
(DACQC), June 1998, San Francisco, California.

the inability to handle large designs due to state explosion.
SVC attempts to take the best (and avoid the worst) of
both worlds. First of all, SVC is able to reason at an ab-
stract level and has built-in decision procedures much like a
theorem prover. However, the logic of SVC is restricted to
be decidable, which enables it to prove or disprove all for-
mulas automatically. Secondly, SVC uses a directed acyclic
graph (DAG) structure much like that used for binary de-
cision diagrams (BDDs) in model checkers. However, SVC
does not require the DAG to be canonical. As a result, SVC
is more robust and can handle formulas that would blow up
if represented with BDDs. Such formulas may still take a
very long time to verify, but various heuristics can be ap-
plied to speed up the verification without fear of a sudden
failure due to BDD explosion.

As mentioned, a nice feature of theorem provers is their
support for abstraction. A primary goal of SVC is to make
abstraction easier by providing uninterpreted functions and
various interpreted theories. Most recently, we have com-
pleted a decision procedure for a theory of bit-vectors in
SVC. Bit-vectors (also called “words”) are a critical abstrac-
tion for reasoning about hardware structures. Intuitively, a
bit-vector is a fixed-length string of individual bits, and op-
erations on bit-vectors can be described in terms of their
effect on each bit. Alternatively, these operations can be
viewed as transformations on bit-vectors as a whole. The
advantage of the latter approach is that a property which
may be complex and difficult at the bit-level (such as addi-
tion) can be expressed easily as an operation on bit-vectors.
It is especially desirable to be able to reason about concate-
nation, extraction, bit-wise Boolean operations, and arith-
metic, since these correspond to hardware structures.

As we describe in the next section, deciding equality
of arbitrary combinations of these operations is NP-hard.
In spite of this fact, we have developed an automatic al-
gorithm for reasoning about fixed-size bit-vector addition,
negation, concatenation, and extraction which avoids expo-
nential blow-up on many practical examples.!

As mentioned above, the approach taken in SVC dif-
fers from that of both theorem provers and model check-
ers. However, there is closely related work in both areas.
Recently, successful methods for reasoning about bit-vector
operations in a model-checking paradigm have used Binary
Moment Diagrams (*BMDs) [1, 3]. These have been able
to automatically verify large arithmetic circuits. The set of
problems solvable using *BMDs is comparable to those solv-
able by SVC'’s bit-vector canonizer and a comparison of the
two is presented in Section 5 below.

Bit-vector libraries have also been developed for many
theorem provers including Boyer-Moore [8], SDVS [10], HOL
[13] and PVS [6]. All of these libraries implement the ba-
sic operations of concatenation and extraction, but none of

1Although SVC is capable of representing other Boolean bit-vector
operations, we will not discuss them in this paper.

Z[n] A bit-vector of size n. We will sometimes omit the subscript if it is obvious from the context.

valpy A constant bit-vector which is the binary representation of the decimal value val. If n is larger than is
required to represent val, then the upper bits are assumed to be 0. If n is omitted, it is assumed to be
the smallest value required to represent val. We only use values which are positive, except in the case
of (—1)},] which we use to represent the vector of size n containing all 1’s (i.e. having value 2" — 1).

Z[p[: 4] The extraction of bits ¢ through j of . We require 0 < j < i < n. We write z[i] as an abbreviation
when i = j.

Zim] © Yn] The concatenation of z and y to yield a new bit-vector of size m + n.

NOT z, The bit-vector whose bits are the negation of the bits of x.

Zim] +k] Yn) | Addition of xp,) and yp,) modulo 2F. If k is omitted, we assume it is equal to the larger of m and n.
Also, if m is less than k, then z is implicitly zero-extended to size k, whereas if k¥ < m, the intended
meaning is that only the lowest k bits of = are to be used (and similarly for » and y). Because modular
addition is associative, it is unnecessary to use parentheses when referring to more than two operands.

Zim] = Yin] True if and only if m = n and corresponding bits of x and y are equal.

Table 1: Bit-vector Theory and Definitions

them provide a complete and automatic implementation of
bit-vector arithmetic. Probably the most closely related
work is that of Cyrluk et al. in PVS. A comparison of of
their work with SVC is included in Section 4 below.

The rest of the paper is organized as follows. Section
2 describes some notation and complexity results. Section
3 explains in some detail the theory behind the SVC im-
plementation and contains the main contributions of the
paper. Section 4, as mentioned, contains a comparison of
our method with that presented in [6], and Section 5 gives
experimental results obtained using SVC on microprocessor
verification examples. Finally, Section 6 gives some conclu-
sions and directions for future work.

2 Complexity of Bit-Vector Logics

In contrast to those approaches which convert bit-vectors
into natural numbers, our approach is to remain in the bit-
vector domain; all operations, therefore, take bit-vectors as
arguments and return bit-vectors as results. Table 1 lists the
elements that make up our theory of bit-vectors. Note that
we refer to the bits in a bit-vector of size n by index, with
the least significant (right-most) bit being indexed with 0
and the most significant bit being indexed with n — 1.

In order to evaluate our decision procedure it is neces-
sary to answer the question of whether there exists a simple
algorithm for deciding expressions in this bit-vector theory.
Some complexity results are given in [6]. It is shown that
equality of terms under the core theory of fixed-size bit-
vectors with concatenation and extraction is decidable in
polynomial time. A subsequent extension to include bit-
vector Boolean operations such as AND, OR and NOT,
however, can easily be shown to produce a theory in which
deciding equality is NP-hard as follows. Consider an arbi-
trary instance of the Boolean satisfiability problem which
is a well-known NP-complete problem. A general Boolean
proposition can be encoded using 1-bit bit-vectors and the
Boolean operators. Call this encoding P. Then the satis-
fiability problem can be solved by checking the validity of
P = FALSE. If valid, the formula is unsatisfiable, other-
wise it is satisfiable.

Alternatively, consider extending the core theory by in-
cluding arithmetic operations. Unfortunately, even the most
trivial extension can quickly be seen to be NP-hard. Allow-
ing only the additional operation of adding one to any bit-
vector immediately gives us the ability to express arbitrary

propositional logic statements since

NOT zy and
Zr1] AND Y-

Tpy+1
(ziy o Yy +m D[2]

The same reduction as above shows that deciding equality
in this simple extended theory is NP-hard. This gives some
insight into the difficulty of handling bit-vector arithmetic
automatically.

Finally, one additional complication when dealing with
bit-vectors is that there are some bit-vector formulas which
are valid only because each bit-vector variable has a finite
number of possible values. For example,

ap) = bpy Vbpy = ¢y Vapy = cpj.

In order to correctly handle these formulas, we must manu-
ally force SVC to consider all possible values for each vari-
able. Fortunately, the examples we have encountered in
practice do not have this property.

3 Our Approach

As described in [2], SVC uses a framework for cooperat-
ing decision procedures very much like that developed by
Shostak [5] and used in PVS. One of the requirements of
this framework is that semantically equivalent terms should
have a unique representation, which we refer to as a canon-
ical form. We call the process of transforming terms into
their canonical form canonizing and we call the algorithm
which does it a canonizer. In SVC, not all terms need to
be canonized. Only terms which do not contain Boolean
subexpressions, which we call atomic, must be maintained
in canonical form. This policy is acceptable because non-
atomic expressions contain at least one term which SVC can
use to perform a case-split. Since SVC exhausts all possible
case-splits before reporting a counterexample, it is impossi-
ble for a false negative to result. As we will see below, the
flexibility of not having to canonize non-atomic expressions
can be exploited to delay canonization of complicated ex-
pressions until absolutely necessary. Our framework further
requires that atomic equations be written in a specific form
in which the left-hand side contains a single variable and the
right-hand side containes the rest of the terms. We call the
algorithm to do this a solver. Every time a new theory is
added to SVC, a canonizer and solver for that theory must
be provided. The canonizer and solver for bit-vectors in

Wm]

terms are omitted.

(1) [m] © Bm — 2" - apm] timtn] B
(2) NOT Qfm] = (=Dimy - ¥m] Fim] (1w
(3) wpmli : 4] = Yli—j+1]

Additionally, the following equation is added to the current knowledge database :
— 9(i+1) |

where x, y, and z are new variables. If i =m

Tpm—i-1] +iml 27 Ymjrr) +im) 2]
— 1 or j = 0 then the appropriate

(4) (w0 +pm] --- zs)[i: 0 = To +[i41] " Ts

(5) (zo +pmy - @)li:] = @olio:j] Hp-ju ccr Tslis 1 4] Hp-j4y if j>0
OVF[i:]‘](.’L‘o[j —1: 0] .. CB}C[] —1: 0])

(6) i (Lo 4y 0 ®s) = @ 4p) To 4p) o Ts if j >4

(7) (1‘0 +u o xs) = @ 4 Lo+ Ts) 27 . (—1)[,'_]'] . OVF[i_l:j](mo.. ..’L‘s) if j<i

(8) OVF[lJ (ao) — OVF[i;j](OlO; (011 oo Oik)) +1i—j+1] OVF[M](al L. ak) if k>1

(9) OVFy 1(am, ﬂ[n]) = am—1:j] +pu_jty Bn—1: 7] +ujsy ifi>jg
OVF[j:j](Oi[j —1: 0],ﬂ[] —1: 0])

(10) OVFy,.(nys Brny) — OVF(,_1,_y(ite(afn —1]=pn—1], a[n —1] o Op—9, an—2:0]), ifn>1

ite(afn — 1] = Bln— 1] Bln—1] o 0pu_sy . fin—2:0))
OVF[n:n](a[n],ﬂ[n]) — ite(a=4, a, 0[1]) ifn=1

Table 2: Rules for eliminating concatenation, negation, and extraction, flattening addition, and converting OVF terms to
non-atomic expressions. Note that o and (3 are arbitrary expressions and i = min(i, ng) where ny is the size of x.

SVC are based on properties of hardware arithmetic. They
constitute the major contribution of this paper and are de-
scribed in the next two subsections.

3.1 Canonizer

Coming up with a canonical form for bit-vector expressions
is complicated by the inclusion of bit-vector arithmetic. This
is because the same expression may be represented in non-
trivially different ways. For example, (Z[,] +[n+1] Z[n]) is
equivalent to (z[,; o Opj). Similarly, (xpy +pp 1pg) is
equivalent to (NOT zq3).

To avoid such redundancy, we translate all bit-vector ex-
pressions into a specific kind of arithmetic expression: the
addition (modulo 2" for some fixed bit-width n) of bit-vector
variables with constant coefficients. We call these bitplus ex-
pressions. In order to ensure a unique representation, vari-
ables are ordered with duplicates eliminated, and each co-
efficient is reduced modulo 2". A set of transformations
for converting bit-vector operations into bitplus expressions
is shown in Table 2. Some of these rules make use of the
OVF operator, which we define and explain below. The
first two rules are simple transformations for dealing with
concatenation and negation. Rule (3) shows how to elimi-
nate extraction at the cost of introducing new variables. We
refer to this process as slicing, and it is desirable to avoid it
whenever possible. Intuitively, repeated slicing moves from
the bit-vector abstraction to the bit-level, and in the worse
case, each bit must be considered. Section 4 provides one
illustration of how slicing can be avoided. Rules (4) and (5)
show how to eliminate extraction when applied to a bitplus
expression, and (6) and (7) show how to “flatten” bitplus
expressions to ensure that other bitplus expressions do not
appear as subexpressions.

However, a canonical form cannot always be obtained by
simple transformations (as we would expect given the fact
that the general problem is NP-hard). The difficulty comes
from the interaction of extraction and addition. Consider
the following two expressions.

(8« @ +a N2

(z3) +ra Yi3))[3]

In the first case, it is desirable to push the extraction inside
the bitplus expression which will result in 1j;;. However, in
the second case, there is no way to represent the result of
pushing the extraction inside the bitplus, because the result
depends on whether adding = and y overflows into the fourth
(most significant) bit. To deal with such cases, we introduce
a new overflow operator, OVF;;; which represents bits ¢
through j of the sum of its operands. Using this operator,
we can rewrite the second expression above as

(w31 +a1 y137)[8] = OVF(3.3(z,).

We define overflow for the general case as follows:

OVFi.1(T0ing] - - - Thny]) =)l 2 3]
Whenever the overflow operator is applied, the expression is
first checked using a simple algorithm to see if it is equivalent
to a concatenation of variables or their negations. If it is,
then the appropriate bits are extracted and then converted
back into a bitplus expression, for example,

(Torne) Fit1] ** Tk

OVF(3.1)(2 - y121,9) = ypo) + 4.

If the overflow expression cannot be written in a simple form
as above, we break it down using the last three rules shown
in Table 2.

To understand rule (8), notice that OVF{;.;1(x, y,) and
OVFy;. i(z, (y +j 2)) differ by exactly OVFY;,;1(y, z). Rule
(8) is the generalization of this property which we use to split
an overflow expression with k& arguments into two overflow
expressions that have 2 and £ — 1 arguments respectively.
This rule is applied repeatedly until all overflow expressions
have only two arguments. Then rule (9) is applied to convert
overflow expressions in which 7 > j to overflow expressions
in which ¢ = j (we show the case where m > j and n > j,
but the other cases are similar). Finally, rule (10) takes
overflow expressions resulting from the application of rule
(9) and turns them into non-atomic expressions. It does this
by making use of the ite operator which is used in SVC to

represent all Boolean operations. For arbitrary expressions,
@, B3, and v,

ite(a, 8,v) = if a then S else ~.

The intuition behind rule (10) is that we are simply comput-
ing the carry bit of an n-bit adder. If the most significant
bits are equal, then they determine and are equal to the
carry bit. If they are different, then the carry bit is prop-
agated from other n — 1 bits. The use of the ite operator
is of key importance. As we mentioned earlier, SVC does
not require a canonical form for non-atomic expressions. A
canonical form would require expressing the full logic of a
ripple-carry adder and would require looking at all the bits
of the arguments. But the decomposition we have given is
incremental, suspended until SVC does a case-split on the
equality of the most significant bits. If they are unequal,
SVC will slice off the next most significant bits. In the worst
case, we will have to look at every bit. But the incremental
approach will avoid this unless absolutely necessary.

3.2 Solver

The other main contribution of this paper is a solver for
equations involving bit-vector operations. The requirements
for the solver are very similar to those of the canonizer. In
fact, the solver can be viewed as a canonizer for equations.
In SVC, canonical equations are required to have the most
complex variable or uninterpreted function isolated on the
left-hand side, with the rest of the terms on the right-hand
side. Complexity is defined by a total ordering on expres-
sions (see [2]). In the case of bit-vectors, we arrange for
longer bit-vectors to be more complex than shorter ones, so
that we solve for the longest bit-vector in the equation. This
avoids slicing bit-vectors unnecessarily. In general, we must
be able to solve arbitrary equations of the form
ao - To +[n] ap'$p=b0'y0 +[n] bq.yq_

Using arithmetic modulo 2", we can easily isolate the most
complex variable, say z[,], with coefficient c on the left-hand
side. The resulting equation has the following form:

¢+ 2fm] = do - Wolme] Fn] *** dj * Wiy -

Now, we must eliminate ¢ in order to isolate z. If ¢ is odd,
we can do this by finding its multiplicative inverse, which is

=1 for some k < n — 2. We explain briefly why this is
true. It is well-known [7] that the set of all positive integers
less than and relatively prime to some positive integer p
forms a group under multiplication modulo p, denoted U(p).
In particular, when p = 2", every odd positive integer less
than p is in U(p). Furthermore, U(2") is isomorphic to
the (external) direct product of the cyclic groups of order
2 and 2" %, which means that each element of U(2") has
order 2* for some k < 2"~2. Thus, if ¢ is odd, there exists
k < n — 2 such that ¢ =1 modulo 2", and it follows that
the inverse is ¢> ~!. To find the inverse i of ¢, we use the
simple algorithm shown in Figure 1.

Thus, finding the inverse of ¢ requires at most 2(n —
2) n-bit multiplies, and assuming uniform distribution, the
expected number of multiplies is about 2(n — 3). In the
examples we have done, however, the coefficient is almost
always either 1 or 2" — 1, so the actual average number
of multiplications is actually much less (between 0 and 2).
After calculating the inverse, we simply multiply all terms

i = c;

while (¢ # 1) do begin
c := (¢ X ¢) mod 2°n;

i = (i X ¢) mod 2"°n;

end

Figure 1: Algorithm to find the multiplicitive inverse of c.

in the equation by the inverse and the resulting equation
will have z[,) alone on the left-hand side.

Suppose on the other hand that ¢ is even. Then we can
write ¢ = 2% - b for some k > 1 and b odd. We can then split
the equation into two equations as follows:

bz = (do-’u}o g d; -wj)[n—lzk] and
O[k] = do-wo +[k] dj S wj.
The first equation can now be solved by calculating the in-
verse of b. Furthermore, though we will have to repeat the
canonization process on the second equation, we have elimi-
nated z from it without adding any variables, ensuring that
the process will terminate.

Once we have an equation of the form

Zim] = Co - Wo +in] ** Cj - Wj,

there is one final step if m < n (which is possible since,
as mentioned in Table 1, we do not put any restrictions on
the bit-widths of variables appearing in bitplus expressions).
In this case, we know that the most significant bits of the
right-hand side of the equation must be zero. So as above,
we split it into two equations:

Zim] = Co-Wo +m] -c- ¢ -w; and
Opn—m] = (co-wo +[p -+~ ¢j-wj)[n—1:m].
Again, we may have to canonize the second equation. Even-
tually, though, our initial equation will be transformed into
a conjunction of equations, each solved for a different vari-
able. We have found that it is very desirable for efficiency
to transform these equations (via substitution) so that vari-
ables appearing on the left-hand side do not appear in the
right-hand sides of any of the other equations.

4 Avoiding Bit-Slicing

As previously mentioned, whenever part of a bit-vector vari-
able is extracted, that bit-vector is sliced into several parts,
which reduces the level of abstraction and is thus to be
avoided if possible. Our initial implementation of bit-vectors
was based on the work done by Cyrluk et al. in [6]. However,
our decision to use bitplus expressions as our internal rep-
resentation was a significant departure from their method.
As a result, we were able to increase the range of arithmetic
examples which can be verified automatically.

However, it turns out that for some examples, even the
original core theory of concatenation and extraction benefits
from this change in the internal representation. This is be-
cause bit-slicing can be avoided in many cases. Suppose w
is a bit-vector of size n and consider the following example:

wn—1:1l=wn—-2:0] = wn-—1]=w[0]

In order to canonize this formula, the decision procedure of
Cyrluk et al. generates a new variable for every bit of w,

([0] = 0p) = ((z[n—1:1]+1) o Opy) = z+2) (1)
(z[0] =1) => ((z+ (=Dppn —1:1] = z[pn-1:1]) (2)
NOT ((z +y+ (=1)))[0]) = (z+y)[0] (3)
(2" =2)- 21 +pm) (“Dw)ln—1:1] = NOT zj, y (4)
(Y © Tpp—oy 4wy Din —1] = (Tp_2] +@ Yy —2] (5)

Figure 2: Bit-Vector Arithmetic Verification Examples. z and y are bit-vectors of size n unless otherwise specified.

resulting in a conjunction of n equations:

('U)n—l = ’U)n—2) A
(wn—Z = wn—3) A
(11)1 = wo) N
(w = wp—10wWp—2--- wo)

where each w; is a new bit-vector of length one. Using our
canonizer, only the most and least significant bits are sliced,
resulting in the following two equations:

@77 2 ey Yz = 20Uz tey zm) A

(w = Tpjoym—zo2nu)

We then invoke the solver and end up with:

(Yn—21 (—Dn=21 - 27) A
(= 2m) A
(w = Z[1] ©Y[n—2] © Z[l])

Thus, instead of producing n equations, we produce only
three. The information from the other equations is stored
in the coefficients. Most of w remains as an abstract bit-
vector.

5 Results

The examples shown in Figure 2 demonstrate the kinds of
formulas which can be verified using the methods described
above. Formulas (1) through (3) are small pieces of much
larger formulas from processor verification, and (4) and (5)
are simply test benchmarks which we feel are representa-
tive of the complexity of the general problem. In general,
SVC must solve many such small problems, as well as sim-
ilar problems in other theories, as part of proving a larger
formula.

Examples three through five are easily verified using only
the SVC canonizer. These examples can also be verified
using *BMDs (in contrast, the first two examples cannot
be directly verified using only *BMDs because they include
Boolean connectives). In Table 3, the column labeled “SVC”
shows the time required to verify these examples running
SVC on a 200 MHz Pentium Pro. The second column shows
the time required to verify the same property on the same
machine using the *BMD package from Bryant and Chen
[3]. The third column shows the time required on a 300 MHz
UltraSparc-30 using Laurent Arditi’s *BMD implementation
which has special support for bit-vector and Boolean oper-
ations [1]. For the two *BMD packages, the examples were
run with four typical variable orderings and the best time
for each example is reported. In order to better compare the

Example | n | SVC | *BMD 1 | *BMD 2
1 32 2 N/A 40
2 32 2 N/A 1100
3 8 2 440 30
3 16 2 265000 70
3 32 2 | > 500000 180
4 8 2 112 80
4 16 2 26400 720
4 32 2 | > 500000 8790
5 8 30 95 60
5 16 111 22700 390
5 32 | 520 | > 500000 3780
A 32 0.2 32 80

Table 3: Results on Bit-Vector Arithmetic Verification Ex-
amples. Times are in milliseconds. Examples 1 through 5
are from Table 2. Example A is the expression x[,] + Y-

two different *BMD implementations, a simple n-bit adder
example was also done and the result is listed as example A.

Several important observations can be made from these
data. First, it is clear that *BMDs benefit greatly from
the special-purpose algorithms in Arditi’s implementation.
From example A, which does not use the special-purpose
algorithms, it also seems clear that Arditi’s package could
benefit further from implementation in a lower-level lan-
guage (Bryant and Chen’s package is in C, whereas Arditi’s
package is in Scheme). However, even given these possible
improvements, SVC would still outperform *BMDs on all
examples with the possible exception of example 5 (which
we will come back to in a moment). More importantly, the
performance of SVC is the same despite increasing bit width
on two out of three of the examples. The reason for this is
that SVC is able to maintain its bit-vector abstraction in
these examples and thus does not need to consider each bit
individually.

The reason SVC does poorly in example 5 is that it ends
up slicing = and thus the execution time depends on the
number of bits in z. However, if SVC were to split on y
instead, it could avoid slicing x. This is a problem similar
to variable ordering in *BMDs. We were able to write a
slightly modified version of example 5 which forced SVC to
split on y first. The result was an execution time of less
than 10 ms independent of bit-width. One of the areas of
ongoing research in SVC is how to automatically choose the
best variables for case-splitting.

The primary application for SVC is microprocessor ver-
ification. As mentioned above, we are currently applying it
to the TORCH microprocessor [11]. Table 4 shows the times
required to verify several formulas from this effort. These
formulas are large and require cooperating decision proce-
dures from several theories including the bit-vector theory

Example Size (KB) | Case Splits | Time (s)
PCUnitDataPath 29 1254 1.67
TakenBranch 31 38 0.15
IFetchControl 65 29676 24.1
IFetchPC 42 69374 317

Table 4: TORCH Microprocessor Verification Examples.
Time is in seconds

(thus they cannot be verified using *BMDs alone and a di-
rect comparison cannot be made). The first example, PCU-
nitDataPath, verifies that the program counter is calculated
correctly. The second example, TakenBranch, verifies that
the hardware correctly identifies when a conditional branch
should be taken. The last two examples verify various prop-
erties of the instruction fetch unit. For each example, we
show the size of the formula, the total number of case splits,
and the time required to verify the formula. We would be
unable to automatically verify these formulas without the
bit-vector decision procedure.

6 Conclusions

Our method for dealing with bit-vector arithmetic has many
advantages. First, it is complete and automatic, and al-
though the complexity of the problem dictates that there are
examples for which it will be exponentially slow, it is efficient
on the examples we have encountered so far. Second, we
reason at the word-level and avoid slicing bit-vectors when-
ever possible. This avoids some of the blow-ups in time and
space experienced by other methods. Finally, our method
is easy to implement and integrate into an environment of
cooperating decision procedures such as that found in SVC.

As we have seen, one limitation of SVC is that the choice
of which variable to split on can greatly influence its effi-
ciency. Additionally, there is no way to represent non-linear
multiplication of bit-vectors directly as there is with *BMDs.
There is also currently no way to reason about bit-vectors of
unknown size. We are working on addressing some of these
limitations. For example, we have implemented a couple
of automatic learning strategies for choosing splitters which
dramatically increase the efficiency of many examples.

Some areas of future research include finding an efficient
abstraction for Boolean bit-vector operations and finding
more efficient ways of dealing with the overflow operator.
We would also like to explore extensions to bit-vectors of
unknown size and variable extraction indices, as well as non-
linear arithmetic. We intend to continue to use SVC in our
verification of TORCH and expect that it will continue to
develop towards an important and powerful tool for auto-
matic hardware verification.

Acknowledgments

We would like to thank Yirng-An Chen for his help in under-
standing and using *BMDs. We would like to thank other
members of the TORCH verification effort for their work in
specifying and translating examples for this paper: Jeffrey
Su, Jens Skakkebak, and especially Laurent Arditi who also
provided insight and analysis for comparison with *BMDs.
Also, we would like to thank the group at SRI International
for valuable discussions, especially David Cyrluk whose work
on bit-vectors provided a valuable starting point. This work
was sponsored by DARPA contract number DABT63-96-C-

0097 and by a National Defense Science and Engineering
Graduate Fellowship. The content of this paper does not
necessarily reflect the position of the policy of the govern-
ment and no official endorsement should be inferred.

References

[1] Laurent Arditi. *BMDs Can Delay the Use of Theo-
rem Proving for Verifying Arithmetic Assembly Instruc-
tions. In Srivas [12], pages 34-48.

[2] C. W. Barrett, D. L. Dill, and J. R. Levitt. Validity
Checking for Combinations of Theories with Equality.
In Srivas [12], pages 187-201.

[3] Randal E. Bryant and Yirng-An Chen. Verification
of Arithmetic Circuits with Binary Moment Diagrams.
In 32" ACM/IEEE Design Automation Conference,
pages 535-541, San Francisco, CA (USA), 1995.

[4] J. R. Burch and D. L. Dill. Automatic Verification
of Microprocessor Control. In Dill, editor, Computer-
Aided Verification, volume 818 of Lecture Notes in
Computer Science, pages 68-79, Stanford, CA (USA),
June 1994.

[6] D. Cyrluk, P. Lincoln, and N. Shankar. On Shostak’s
Decision Procedure for Combinations of Theories. In
13" International Conference on Automated Deduc-
tion, pages 463-477, Rutgers University, NJ (USA),
July 1996.

[6] D. Cyrluk, O. Méller, and H. Rue8. An Efficient De-
cision Procedure for the Theory of Fixed-Sized Bitvec-
tors. In 9" International Conference on Computer-
Aided Verification, 1997.

[7] Joseph A. Gallian. Contemporary Abstract Algebra. D.
C. Heath and Company, second edition, 1990.

[8] Warren A. Hunt Jr. Microprocessor Design Verifica-
tion. Journal of Automated Reasoning, 5(4), December
1989.

[9] R.B. Jones, D. L. Dill, and J. R. Burch. Efficient Valid-
ity Checking for Processor Verification. In IEEE Inter-
nationl Conference on Computer-Aided Design, pages
2-6, San Jose, CA (USA), November 1995. IEEE Com-
puter Society Press.

[10] Leo G. Marcus. SDVS 18 Users’ Manual. The
Aerospace Corporation, El Segundo, CA 90245, Octo-
ber 1994. Aerospace Report ATR-94(4778)-5.

[11] M. Smith, M. Lam, and M. Horowitz. Boosting Beyond
Static Scheduling in a Superscalar Processor. In Inter-

national Symposium on Computer Architecture, pages
344-354, Seattle, WA, May 1990. IEEE/ACM.

[12] Srivas, editor. International Conference on Formal
Methods in Computer-Aided Design, volume 818 of Lec-
ture Notes in Computer Science, Palo Alto, CA (USA),
November 1996. Springer-Verlag.

[13] Wai Wong. Modelling Bit Vectors in HOL: the word
Library. In Joyce and Seger, editors, Higher Order
Logic Theorem Proving and Its Applications, volume
780 of Lecture Notes in Computer Science, pages 371—
384, Vancouver, Canada, August 1993.

