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Abstract
Upgrade is one of the most disruptive yet unavoidable main-
tenance tasks that undermine the availability of distributed
systems. Any failure during an upgrade is catastrophic, as it
further extends the service disruption caused by the upgrade.
The increasing adoption of continuous deployment further
increases the frequency and burden of the upgrade task. In
practice, upgrade failures have caused many of today’s high-
profile cloud outages. Unfortunately, there has been little
understanding of their characteristics.
This paper presents an in-depth study of 123 real-world

upgrade failures that were previously reported by users in
8 widely used distributed systems, shedding lights on the
severity, root causes, exposing conditions, and fix strategies
of upgrade failures. Guided by our study, we have designed
a testing framework DUPTester that revealed 20 previously
unknown upgrade failures in 4 distributed systems, and ap-
plied a series of static checkers DUPChecker that discovered
over 800 cross-version data-format incompatibilities that can
lead to upgrade failures. DUPChecker has been requested by
HBase developers to be integrated into their toolchain.

CCSConcepts: •Computer systems organization→Avail-
ability; • Software and its engineering→ Software test-
ing and debugging; Automated static analysis.

Keywords: upgrade failure, distributed systems, study, bug
detection
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1 Introduction
Internet services today live on distributed systems. Distributed
system software upgrade is one of the most disruptive main-
tenance tasks. No matter with a full-stop upgrade, where
the whole service goes down and then restarts with every
node running a newer version of the software, or a rolling
upgrade, where nodes take turns to go down and then restart,
the internet service would suffer a not-available or partially-
available period. Yet, software upgrade is unavoidable as ven-
dors need to add new features, improve performance, and
deploy patches. With the rise of continuous deployment [52]
in the industry, the frequency of distributed system software
upgrade could reach thousands of deployments in a single
day [72] in a major Internet company.
Unfortunately, distributed systems could experience fail-

ures during software upgrade. In this paper, we define software-
upgrade failures as those failures that only occur during
software upgrade. For example, they may be triggered by
interaction between two code versions of the same software
or between an upgrade operation and a regular software
operation, and hence never occur under regular execution
scenarios. They are not caused by failure-inducing configu-
ration changes [66, 76], which do not involve software code
upgrade, or bugs purely about the new version of the soft-
ware [79], which can be triggered on a fresh installation of
the new version and do not require an upgrade scenario.
Software upgrade failures have unique properties that

make them particularly problematic:
Large Scale. Upgrade is typically performed on the entire

system. Consequently, an upgrade failure can often paralyze
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the entire cluster. For example, when Windows Azure failed
to upgrade to a new version in 2014, the failure brought
down all third-party websites hosted on Azure as well as
Microsoft’s own services including Xbox Live and the Win-
dows Store [25]. Section 3 shows that 28% of the software
upgrade failures we studied bring down the entire cluster.

Vulnerable Context. During upgrade, the system has to go
through a no-service (full-stop upgrade) or partial-service
(rolling upgrade) period. Failures under this context are par-
ticularly difficult to mask. They can greatly aggravate the
service disruption caused by the upgrade operation itself,
and severely affect vendors’ reputations. For example, on
February 29th, 2012, Azure’s service went down after it hit
the leap-day bug [28]; in an effort to resolve the issue, devel-
opers deployed an upgrade that broke compatibility with a
network plugin, causing another three-hour outage.
Persistent Impact. Upgrade often involves the old version

and the new version handing over information through per-
sistent storage. Consequently, an upgrade failure can corrupt
system state persistently that cannot be easily recovered by
rolling back to the old version. For example, in 2014, an up-
grade caused severe data loss at Dropbox, which brought the
site down and took around two days to fully restore [10].

Difficult to Expose in House. Exposing upgrade failures re-
quires running two versions of software side by side (rolling
upgrade) or one right after the other (full-stop upgrade) 1.
This is not supported by traditional testing—the state-of-
practice testing framework [18] used by modern distributed
systems only runs test cases against a single version of the
system. Similarly, it goes beyond most traditional bug de-
tectors that focus on bugs inside one version. Careful ca-
nary deployment [3] can potentially expose upgrade failures.
However, without testing support, it is often unaffordable in
terms of resources and time [2] when an urgent upgrade is
requested.

Indeed, a large portion of real-world catastrophic service
outages were caused by upgrade failures. For example, out
of the five postmortem reports published on the Microsoft
Azure Blog [24], which only describes the most severe out-
ages in Azure history, three involve software upgrade fail-
ures. Our study also found the portion of severe failures to
be much higher in upgrade failures than that in non-upgrade
failures (Section 3). The importance of upgrade failures will
only increase with the wider adoption of continuous deploy-
ment.
In the past, while many have studied system failures [41,

54, 62–64, 66–68, 70, 73, 75, 78, 80], none of them offered
detailed analysis on software upgrade failures, partly due to
the challenge in collecting them. Despite their importance,
software upgrade failures only consist of a small percent-
age of all system failures and hence rarely show up when

1Note that, all the failures that can occur during full-stop upgrades can also
occur during rolling upgrades.

one takes a random sample. For example, among the 198
randomly sampled distributed system failures studied by a
previous work [80], only 7 are upgrade failures.

To the best of our knowledge, only two prior studies, both
of which focus on more severe types of failures, briefly dis-
cussed upgrade failures. Gunawi et al. [46] studied 597 pub-
licly available postmortem reports about cloud service out-
ages; they found that 16% of these failures involve hardware
or software upgrades. Liu et al. [61] studied 112 high-severity
incidents from a Microsoft Azure production cluster and
found that 21% were caused by incompatible data-format as-
sumptions, which sometimes are caused by software upgrade.
Neither study investigated further to provide a detailed anal-
ysis of software upgrade failures.

This paper provides the first in-depth analysis on software
upgrade failures based on 123 real-world upgrade failures
from widely-used distributed systems, including Cassandra,
the Hadoop Distributed File System (HDFS), Hadoop MapRe-
duce, Hadoop YARN, HBase, Kafka, Mesos, and ZooKeeper.
For each case, we carefully analyzed its report and source
code to thoroughly understand the symptom severity, the
root cause, and the propagation chain in between.

Symptom-severity study. We find that upgrade failures are
significantly more critical than non-upgrade failures. 38% of
the software upgrade failures that we study are marked with
“Blocker” severity compared to only 10% for non-upgrade
failures. We also find that 67% of the software upgrade fail-
ures affect all or a majority of users. In comparison, only
24% of all failures have such a catastrophic effect based on
a previous study [80]. Finally, we find that only 37% of the
software upgrade bugs were caught before corresponding
versions were released to public, with the majority (63%)
exposed in production. More details are in Section 3.
Root-cause study. About two thirds of software upgrade

failures are caused by incompatible interaction between two
software versions. The interaction occurs through either
persistent data (60%) or network messages (40%), with the
latter being a particular concern during rolling upgrades.
Incompatible assumption about data syntax or semantics
causes one version to fail to parse (about two thirds of the
incompatibility) or handle (about one third of the incom-
patibility) storage files or network messages generated by
another version. Our detailed study provides guidance on
how to automatically detect incompatibilities and how to
avoid cross-version incompatibilities during programming.
More details are presented in section 4.
Triggering-condition study. By definition, all of these fail-

ures require a full-stop upgrade (57% of the cases) or a rolling
upgrade (43% of the cases) to expose, which is not part of
today’s standard testing framework [18]. Fortunately, our
study revealed two unique characteristics of upgrade failures
that answer key questions for the design of upgrade testing:
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1. What software versions should be tested? Although
in theory there can be a polynomial number of combi-
nations of software versions to test, we find that more
than 80% of the failures can be exposed by running two
consecutive major/minor versions, and another 9% by
running system instances with just a two-version gap.

2. What workload should be tested? Different from tra-
ditional production failures that by definition cannot
be triggered by existing in-house test inputs, more
than 70% of upgrade failures can be triggered by run-
ning workloads that already exist in these systems’
stress test or unit test cases under an upgrade scenario,
given the right version combination. More details are
in Section 5.

Tackling upgrade failures.Guided by our triggering-condition
study, we built an upgrade testing framework DUPTester and
applied it to 4 real-world distributed systems. DUPTester
adapts and utilizes existing stress testing and unit test cases
of each distributed system to systematically test the system
(full-stop and rolling) upgrade procedure. DUPTester reveals
20 previously unknown upgrade failures.
Guided by our root-cause study, we designed a static

checker DUPChecker to search for incompatibility on data
of enum types and data defined using serialization libraries.
DUPChecker identified more than 800 previously unknown
incompatibility problems between actively maintained ver-
sions of 7 distributed systems, with close to 300 of them
confirmed by developers based on our reports. We also got
the request from HBase developers to integrate DUPChecker
into their tool chain. Note that, after developing DUPChecker ,
we noticed that similar incompatibility checkers for serial-
ization libraries already exist in open-source world [26, 29].
The fact that these existing tools have not been used by de-
velopers of these systems and that incompatibility problems
still widely exist in these popular systems led us to realize
the limitations of static incompatibility checkers, including
DUPChecker , which we discuss in Section 6.2.

DUPTester and DUPChecker well complement each other:
DUPTester can expose upgrade failures with all types of root
causes and clearly demonstrate the symptoms of every up-
grade failure, as long as the triggering workload is covered;
DUPChecker does not rely on workload design, but only tack-
les a specific type of root cause and cannot predict the exact
symptom of the potential upgrade failure. Future research
can work on combining the strengths of these two tools. All
our code and failure-study data will be released.

2 Methodology

Cassandra HBase HDFS Kafka MapReduce Mesos Yarn ZooKeeper

44 13 38 7 1 8 8 4

Table 1. Numbers of upgrade failures we analyzed.

We choose popular data-intensive distributed systems
as our targets, including HDFS distributed file system [47],
Hadoop MapReduce data-analytic framework [48], Mesos
and Hadoop YARN application resource management frame-
works [37, 49], HBase and Cassandra key-value stores [34,
35], ZooKeeper in-memory key-value store [38], and Kafka,
a stream-processing service [36].
We selected the set of failures from the issue trackers

of the mentioned distributed systems. In the issue tracker,
among issues before 2018, we search for resolved and valid
bugs whose titles contain the word “upgrade”, and among
issues after 2018, we search for resolved and valid issues
whose entire report contains the keyword “upgrade" so that
we can get more representatives from more recent systems.
We then repeatedly perform rounds of random selection. In
each round we random select one case from each system
and manually check their reports to exclude non-upgrade
failures, such as those purely about the new version. In the
end, we get 123 failures as shown in Table 1. During this
procedure we exhausted the filtered issues from MapReduce,
Mesos, Yarn, and ZooKeeper.

Threats to Validity. As with all characteristics studies,
the results of our study should be interpreted with the fol-
lowing limitations in mind.
(1) Representativeness of bug reports from issue trackers.There
could be upgrade failures encountered by users that are not
reported to the issue tracker, particularly since some upgrade
failures could be mitigated by downgrading to an old ver-
sion, or fully restarting the entire cluster (at the expense
of longer service down time). In addition, the issue tracker
covers upgrade failures encountered during unit testing, in-
tegration testing, staging, canary deployment, etc. Upgrade
failures detected in one of these stages could show different
characteristics.
(2) Limitations of the filtering criteria.We could have missed
real upgrade failures whose issue report do not contain the
keyword “upgrade”. We did try other keywords like “update”,
and found that the resulting issue reports contain manymore
false positives (i.e., non-upgrade failures). We settled down
on our filtering methodology because we favor reducing
false positives over reducing false negatives—there should
be more upgrade failures out there, which we will not have
time to fully study any way.
(3) Representativeness of selected distributed systems. We at-
tempt to study a wide variety of popular open source dis-
tributed systems: the 8 studied systems cover different types
of functionalities, different architectures (master-worker ver-
sus peer-to-peer), and different languages (Java and C++).
However, without accurate market information it is difficult
to conclude whether we have chosen the most widely-used
open source distributed systems. In addition, closed-source
distributed systems could have different characteristics.
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(4) Possible observer errors. There is a risk of observer errors.
To minimize the effect, each failure was investigated inde-
pendently by at least two inspectors. All inspectors used the
same detailed written classification methodology, and any
disagreement is discussed in the end to reach a consensus.

3 Severity of Upgrade Failures
3.1 Priority Assigned by Developers
To understand the severity of upgrade failures, we examined
the priority field of each bug ticket. This is a required field in
the issue tracker of every system we studied. It gets an initial
assignment from the bug reporter and its final assignment
by developers of the target system after the failure is fully
diagnosed. In all systems except for Cassandra, there are
five priority settings with decreasing severity and urgency:
Blocker, Critical, Major, Minor, and Trivial. Cassandra’s issue
tracker uses three settings: Urgent, Normal, and Low.

For comparison, we also checked the priority assignment
of non-upgrade bugs. To obtain them, we first search for all
the resolved and valid bugs from each distributed system.
We further remove the set of upgrade failures.

Finding 1. Upgrade failures have significantly higher prior-
ity than regular failures.

The percentage of high priority bugs among upgrade fail-
ures is significantly higher than that in non-upgrade failures.
The percentage of Blocker bugs, the most severe and urgent
ones, is 3.8X in upgrade failures than that in non-upgrade
failures (38% versus 10%). The percentage of high priority
bugs, including Blocker and Critical, rises from a small por-
tion of 20% in non-upgrade failures to a majority of 53% in
upgrade failures. The comparison in Cassandra shows a sim-
ilar trend. Among upgrade bug reports in Cassandra, 18%
of them have the highest priority, Urgent, and only 7% have
the lowest priority, Low. In comparison, among non-upgrade
bug reports in Cassandra, only 6% have the Urgent priority,
and yet as many as 41% have the Low priority.

3.2 Symptoms of Upgrade Failures
To understand why upgrade failures receive significantly
higher priority compared to non-upgrade failures, we further
check the symptom of each upgrade failure.

Finding 2. The majority (67%) of upgrade failures are cat-
astrophic (i.e., affecting all or a majority of users instead of
only a few of them). This percentage is much higher than that
(24%) among all bugs [80].

Here, we use the same definition of catastrophic failures as
used in a prior study [80]. That prior study analyzed all fail-
ures in Cassandra, HBase, HDFS, Hadoop MapReduce, and
Redis [71], and found that only 24% of them are catastrophic.
As shown in Table 2, 34 out of 123 (28%) upgrade bugs

brought down the entire cluster. In particular, 22 of them
brought down all of the worker nodes (or all peer nodes in

Cassandra which uses a peer-to-peer design). For example, in
MESOS-3834 [23], the old version did not include an ID field
in its checkpoint, while the new version always assumed
the existence of an ID in every checkpoint. As a result, the
upgrade brought down every agent (worker) node when the
new version running in the agent node fails to find the ID in
the checkpoint saved by the old version. The other 5 whole-
cluster failures occurred because the master node crashed.
Note that these systems all contain a High Availability (HA)
feature that is supposed to tolerate a master node crash by
automatically failing over to a secondary master. However,
because these failures are deterministic, they immediately
crashed the secondary master after the fail over.
Sometimes (18 cases), the symptom only occurs during

the period of rolling upgrade2. These failures do not corrupt
persistent data or bring down the whole cluster, and the
service can go back to normal when the rolling upgrade fin-
ishes. However, the damage is still huge, as a rolling upgrade
can take long time and all failures of this type turned out
to be catastrophic— with new nodes unable to work with
the old nodes, the partitioned cluster suffers severe quality
degradation for a long time. For example, in CASSANDRA-
4195, developers changed the UUID version that is part of the
gossip networking protocol in a new version of Cassandra.
During a rolling upgrade, accepting gossip from nodes run-
ning the new version causes old-version nodes to perform
schema migration. These old-version nodes then run into
a schema ID parsing error. With all the old-version nodes
stuck in the process of schema migration, the whole cluster
stops working. Note that, although these failures would not
have happened during full-stop upgrades, it is impractical to
force system administrators always using full-stop upgrades
without knowing the existence of a rolling-upgrade bug.

Notably, upgrade bugs can also cause catastrophic data
loss. For example, in HDFS-5988 [15], if the cluster was up-
graded from a version using an older filesystem checkpoint,
not supporting inode, to the new checkpoint format, the en-
tire filesystem would become inaccessible by the upgraded
cluster. Specifically, when the new version loads a fsimage, it
checks if the version generated the fsimage supports inode.
If not, it proceeds to load and parse the fsimage, and create
all the files checkpointed in the fsimage, except that it skips
populating the inode map. The new version later performs
checkpoint in its own fsimage format, skipping the inodes
since the inode map is not populated. Eventually, loading
this new fsimage fails with all the files lost, because loading
fsimage in the new version cannot work without inodes.
Upgrade bugs can also cause catastrophic performance

degradation. For example, in CASSANDRA-13441 [6], when a
node with Cassandra 3.0 upgrades, it updates the timestamp
of system tables in the schema, which causes all other nodes

2Failures caused by rolling upgrade do not always belong to this category,
as they may cause data corruption or whole cluster down.
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Symptom All Catastrophic Catastrophic in Production
Whole cluster down (all nodes crash, master node crash) 34 34 18
Severe service quality degradation during rolling upgrade 16 16 10
Data loss and data corruption 20 15 12
Performance degradation (increased latency, wasted computation, etc.) 10 4 4
Part of cluster down (part of worker nodes down, secondary master down) 12 7 3
Incorrect service result (failed read/write requests, UI error, etc.) 24 6 4
Unknown* 7 – –
Total 123 82 51

Table 2. Symptoms of failures observed by end-users or operators. The last column shows the number of catastrophic failures
caught after software release. *: Developers filed these two reports without explaining the failure symptom.

in the cluster to perform schema migration. This process
repeatedly occurs whenever a node performs upgrade, and
eventually leads to millions of migration tasks, each resulting
in a flood of network traffic bouncing across the cluster.
There are 7 upgrade failures that bring down part of the

cluster. These failures require some special conditions to be
triggered on each node. They can still be catastrophic when
the condition is met in a large number of the nodes. For
example, in HDFS-8676 [16], each DataNode deletes its trash
directory synchronously at the same time after the upgrade
operation finalizes. When the trash directory is large, the
deletion operation takes a long time and thus delays the
DataNode’s heartbeat with NameNode, which is the master,
causing the NameNode to mark the affected DataNodes as
dead. In the issue report, the reporter experiencedNameNode
losing hundreds of DataNodes.

In addition to the detailed symptom breakdowns above, we
also checked how many upgrade failures have easily observ-
able symptoms like node crashes or fatal exceptions, instead
of subtle symptoms, like periodic performance degradation
or random packet loss [50, 51, 57].

Finding 3. Most (70%) upgrade failures have easy-to-observe
symptoms like node crashes or fatal exceptions.

This finding indicates that many of these upgrade failures
have the potential to be identified through automated testing
without sophisticated testing oracles.

3.3 When were Upgrade Failures Caught?
To understand how many upgrade bugs leaked into released
code, we compared the creation date of each bug report
against the release date of the affected new version (i.e.,
the destination of the upgrade). For example, in MESOS-
3834 [23], the failure happened during an upgrade from ver-
sion 0.22 to 0.24. It is categorized as a caught-after-release
bug, because MESOS-3834 was filed after the release date
of Mesos 0.24. We excluded 11 issues whose reports do not
contain user-reported version information. Among the re-
maining 112 upgrade failures, only 42 were caught before
release, while the remaining 70 escaped into production code.

Finding 4. Themajority (63%) of upgrade bugs were not caught
before code release.

da
ta

ty
pe data defined using serialization lib. 7

Syntax enum 2
system-specific data 41

mishandling of serialization lib. 6
Semantics incomplete version handling 16

other semantics issue 5

total 77
Table 3. Incompatible cross-version interaction categories

4 Root Causes of Upgrade Failures
We categorize the root causes of software upgrade failures
into four types: incompatible cross-version interaction (63%),
broken upgrade operation (33%) misconfiguration (3%), and
broken library dependency (2%). Our analysis of root cause
patterns guides the design of our static checker -DUPChecker
- described in Section 6, and suggest good practices that could
avoid many failures.

Finding 5. About two thirds of upgrade failures are caused
by interaction between two software versions that hold incom-
patible data syntax or semantics assumption.

4.1 Incompatible cross-version interaction.
We further categorize incompatible cross-version interaction
along two dimensions: (1) what type of data is the target of
the failure-causing incompatibility—persistent data or tran-
sient network data. (2) what type of incompatible assumption
the two versions hold: data syntax incompatibility, which
leads to data parsing errors, or data semantics incompatibil-
ity, which leads to data processing errors.
Along the first dimension, we found that 60% of incom-

patibility is centered on persistent storage data, while 40%
is centered on network messages. The former could lead to
failures during both full-stop upgrades and rolling upgrades.
For example, the MESOS-3834 bug and the HDFS-5988 bug
discussed in Section 3.2 are both caused by storage data
incompatibility. The latter only manifests during rolling up-
grades. For example, the failures in CASSANDRA-4195 and
KAFKA-7403 both belong to this type.
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Along the second dimension, we found that close to two
thirds of incompatibility is about syntax difference of the
same data in different versions, and the remaining one third
is about semantic difference. Since the different categories
along this dimension provide direct guidance to future work
in detecting and fixing upgrade bugs, we discuss each cate-
gory in details below.

4.1.1 Data syntax incompatibility. At the first glance,
syntax incompatibility should be easy to catch than seman-
tics incompatibility. In practice, this depends on whether the
corresponding message/file data syntax is clearly defined.

Finding 6. Close to 20% of syntax incompatibilities are about
data syntax defined by serialization libraries or enum data
types. Given their clear syntax definition interface, automated
incompatibility detection is feasible.

Serialization library data. To avoid the hassle of writing
error-prone serialization/deserialization functions, develop-
ers often adopt declarative serialization libraries such as
Google Protocol Buffers [26]. Using a serialization library,
developers could declare a data format like declaring data
members in a class and the (de)serialization functions will
be generated automatically.
One common problem is that the new version adds a re-

quired data member for a class. Then, during a rolling up-
grade, the serialization library in a new node cannot find this
data member in the data generated by an old node and trig-
gers an upgrade failure. For instance, in HDFS-14726 [12],
developers added a new required data member - commit-
tedTxnId - which causes exceptions during rolling upgrade.
The fix for this type of problems is to change the new data
member from required to optional, as suggested by almost
all serialization libraries [26, 30].

Enum. There were also syntax incompatibilities on data
of enum types. In HDFS-15624 [13], developers used index
to serialize and deserialize values in the StorageType enum.
When they added a new storage type NVDIMM in the middle
of the enum class, later members in StorageType all have
their indices incremented by one causing incompatibility if
any of them is used in communicating with the old version.
A good practice adopted by developers is to pad the enum
class with enough placeholder values so that inserting a new
member does not change other existing members’ indices.

As we can see, the above problems have clear patterns and
are feasible to automatically detect and fix, which we will
practice in Section 6.2.

Finding 7. Most (about 80%) data syntax incompatibilities
are caused by missing or incomplete deserialization functions
for system-specific data.

System-specific data. There is still much message/file
data that is not defined by serialization libraries due to back-
ward compatibility concerns or due to its complexity. They
require developers to provide (de)serialization functions.

17 failures occurred because developers did not anticipate
receiving data defined in a slightly different syntax and the
software aborted without corresponding deserializer. For
example, in CASSANDRA-4195 the old node receives an Ap-
plicationState message with a UUID field that it does not
know how to deserialize. These problems are fixed by either
checking the version and rejecting the received data (as in
CASSANDRA-4195), or implementing a correct deserializa-
tion function (often for deserializing legacy data).
In 24 cases, developers actually were aware of and did

implement deserialization functions for different syntax. Un-
fortunately, the deserialization function is buggy and cannot
parse the target data.
To detect missing-deserializer problems, the main chal-

lenge is to figure out what data is to be serialized and how its
syntax is defined, which is feasible but complicated without
the standard interface provided by serialization libraries. A
good defensive practice is to insert version IDs in any data
that is written to storage or sent over network and always
check the version ID in the deserialization function.
To detect incomplete-deserializer problems, one can po-

tentially generate unit tests that target developers’ deserial-
ization functions.

4.1.2 Data semantics incompatibility. The remaining
one third of cross-version incompatibility is about data se-
mantics (27 cases).

A number of them are about data using serialization library—
although the library correctly serializes and deserializes data,
the exact meaning of the data is interpreted differently be-
tween the two versions. An example from KAFKA-7403 [21]
where a client runs Kafka version 0.11 and a broker runs
Kafka version 2.1.0. When the client sends an OffsetCom-
mitRequest to the broker, it sets the retentionTime field to
be DEFAULT. This message is correctly parsed by the broker,
but the DEFAULT setting triggers a semantics error in the
broker’s message handling. Broker version 2.1.0 assumes a
DEFAULT setting of the retentionTime field to mean that
expireTimestamp will not be used and hence it sets ex-
pireTimestamp to be None. Unfortunately, this semantics
assumption is not held by older versions of the software.
Eventually expireTimestamp is used with an invalid None
setting, and the system fails.

Finding 8. Close to two thirds of of data semantics incompat-
ibilities are caused by incomplete version checking and han-
dling.

Many semantics incompatibilities are caused by version
checking and handling problems. Incorporating a version
identifier, typically an integer number, in the data being ex-
changed and checking it during deserialization is a common
strategy to avoid cross-version incompatibility. However, it
is difficult to conduct proper version handling.
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We summarize the following lessons and good-practice
suggestions about how to properly conduct version checking
and version handling by studying developers’ patches and
discussions. Adopting these practices would prevent most
of these incomplete version handling cases.

(1) If version checking is used to manage cross-version in-
teraction, every version of source code should have their own
distinct version identifier. For example, KAFKA-10173 [19]
happened because developers changed a data format but did
not change corresponding version identifier.

(2) Enough room should be left between consecutive ver-
sion identifiers in case a new software version is released in
between existing versions. In CASSANDRA-5102 [7], a devel-
oper complained that “I think it highlights a deeper problem,
which is that if we ever do need to do another protocol bump
in a minor, stable branch, we’re out of luck because there’s no
space between VERSION_117 and VERSION_12”. A possible
approach is to map a version number’s major, minor, and
bug-fix digits to the first, second, and fourth byte respectively
in its version identifier integer.
(3) Each version identifier should be mapped to a set of

features that are supported in the parsing logic. For example,
HDFS stores a snapshot as an image file called fsimage with
a version identifier called LayoutVersion. In HDFS-1936 [14],
because developers bumped up HDFS 0.20’s LayoutVersion
from 19 to 31, HDFS 0.20 starts generating fsimage with Lay-
outVersion 31. However, HDFS 0.20 does not perform fsimage
compression which is expected for any LayoutVersion larger
than 24. Thus, when a later version tries to deserialize the
fsimage generated by HDFS 0.20, it checks the LayoutVersion
(31) and expects the fsimage to be compressed, but run into
deserialization error. This example shows that it is hard to
keep track of the semantic meaning of each version iden-
tifier and handle each version identifier differently in the
parsing logic. Instead, developers propose to decouple sup-
ported features in the deserialization function using feature
sets and each version identifier can be mapped to a set of
such features. For instance, HDFS 0.20 can be mapped to
{edits_checksum, image_checksum, ...}, and the dese-
rialization function invokes parsing logic corresponding to
a feature only if it is contained in HDFS 0.20’s feature set.
(4) If version checking is used to manage cross-version

interaction, the version ID should be used in all messages that
may be exchanged cross versions. For example, in CASSANDRA-
6678 [8], during a rolling upgrade from Cassandra 1.2 to
2.0, an upgraded node re-joins the Cassandra cluster and
sends a gossip message to other nodes running Cassandra
1.2. Upon receiving such a gossip message, a Cassandra 1.2
node N1 checks the version identifier of the upgraded node
N2 and sends a pull schema request if the check passes. This
check should fail because schema migration is forbidden
during rolling upgrade to avoid schema conflict. However,
the version identifier of N2 is only obtained when Cassan-
dra’s MessagingService establishes a connection between

Figure 1. HDFS-11856 [11]: Blocks are under-replicated as
upgraded nodes are incorrectly marked as bad permanently.

N1 and N2. If a race condition happens and N1 receives the
gossip message before the MessagingService connection is
established, it will treat N2 as a Cassandra 1.2 node and the
check will pass. The fix to this problem is to simply add the
version ID into the gossip message, so that version checking
can be easily conducted.

4.2 Broken upgrade operation.
About one third of the failures are caused by unexpected
interaction between the upgrade operation and specific reg-
ular operations of the system. HDFS-11856 [11] is such an
example, illustrated in Figure 1. when the system is perform-
ing a rolling upgrade, a HDFS client sets up a write pipeline
with DataNode 1 and DataNode 2, so that any newly writ-
ten data is first sent to DataNode 1 and then replicated to
DataNode 2. Later on, DataNode 2 starts its upgrade, as part
of a rolling upgrade procedure. It notifies the client about its
up-coming restart. The client handles any unreachable data
node by waiting for 30 seconds, which is enough for a non-
upgrade restart or network glitches. However, an upgrade
operation typically takes more than 30 seconds. This longer-
than-expected period of unavailability caused the client to
mark DataNode 2 as a bad DataNode. If there are no other
DataNodes in the cluster, any newly written data will be
under-replicated, which could result in data loss.

4.3 Others
4 cases happen when a configuration worked in the old
version but no longer works in the new version. All of these
4 cases were fixed by adjusting the configuration setting
and developers improved documentation for the upgrade
procedure accordingly. Note that, they are different from
failure-inducing configuration changes [66, 76], as it was the
lack of change that led to failures.
Broken dependency occurs when the distributed system

stops working with a library after an upgrade of itself or the
library. They are rare in our study.
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5 Triggers of Upgrade Failures
This section discusses the findings on the opportunities for
automated testing to detect upgrade failures. It guides the
design of our testing framework - DUPTester - described in
Section 6.

5.1 Triggering Version Combinations
A unique challenge faced by testing upgrade failure is that
it requires two versions of the software. Theoretically this
could be an expensive exercise as one needs to enumerate N 2

combinations where N is the number of different versions of
the software. Therefore we study the minimum gap between
versions that is required to trigger each failure.

Major Gap 2 1 0 0 0 0 any
Minor Gap any any >2 2 1 <1 any

# of Upgrade Failures 3 37 3 8 31 6 32
percentage 2.5% 31% 3% 7% 26% 5% 27%

Table 4. Gaps between software versions required to expose
the upgrade failures. “< 1”: the two versions are different
bug-fix versions within the same minor version. The last
column includes failures that can be exposed by upgrading
from any old version to a particular new version.

All studied systems adopt a three-digit release version
numbering scheme in the form of <major>.<minor>.<bug-
fix>. Therefore, we measured the gaps using major-version
difference or minor-version difference, if the major version
is the same. For example, the first row in Table 4 means
that given a version X.Y.Z, upgrading to it from any release
with major version (X-2) can trigger the upgrade failure. The
total number of failures in the table is fewer than the total
number of upgrade failures studied, because the reporter did
not report versions in one case.

Finding 9. All but 14 upgrade failures can be triggered by
consecutive major or minor versions.

This suggests that instead of enumerating O(N 2) version
combinations, one only needs to test theO(N ) combinations
of consecutive versions to expose a vast majority (over 80%)
of the upgrade failures. In addition, another 9% of upgrade
failures can be exposed by testing versions with gap 2 (either
major version gap or minor version gap).

An interesting fact is that logically one would expect that
there would be more upgrade failures between major ver-
sions since a major version implies a significant change.
However, most bugs are between minor versions.

5.2 Triggering Workload
Number of nodes. A unique question for distributed sys-
tems is how many nodes are needed to expose failures. We
checked all the 123 failure reports that have this information.

In theory, the number of node types needed to expose fail-
ures is also important. However, since most of the studied
systems only have 2 to 3 types of nodes, we consider the
number of nodes as the main complexity contributor.

Finding 10. All of the upgrade failures require no more than
3 nodes to trigger.

More than half (57%) of upgrade failures only require a sin-
gle (worker) node to trigger (when the system has a master-
worker architecture, we only count the number of worker
nodes). They are mostly caused by incompatibility on per-
sistent data between versions. To expose these failures, one
only needs to first start the node with the old version to
generate persistent data, and then upgrade the node to a new
version to load the data. Another 43% of upgrade failures
require 2 nodes. Some of them are caused by incompatibility
on network messages, and hence require at least two nodes
to trigger, one running an old version and the other running
the new version. Others involve communication between
the master and the secondary master, or between worker
nodes that serve different roles like the HDFS failure that
requires multiple nodes to form a write pipeline. There is
only one case that requires 3 nodes to trigger: ZOOKEEPER-
1805[31]. Here, a rolling upgrade operation interferes with
ZooKeeper’s leader election, and the failure can only be trig-
gered when two nodes send different peerEpoch to a third
node that is in the middle of an upgrade operation.
Timing. Distributed systems are inherently concurrent and
non-deterministic. Since non-deterministic bugs are notori-
ously difficult to expose [63], a natural question is whether
upgrade failures are deterministic. Fortunately, we find that:

Finding 11. Close to 90% of the upgrade failures are deter-
ministic, not requiring any special timing to trigger.

In other words, as long as the required failure-triggering
workloads are performed with the right combination of soft-
ware versions, these failures are guaranteed to manifest—a
testing tool does not need to explore different timing.
The remaining 11% failures are non-deterministic. The

previous HDFS-11856 [11] shown in Figure 1 is such an
example. It requires the upgrade to occur on a DataNode
after the write pipeline is formed.
Operations and configurations.We next analyze what op-
erations, in addition to the upgrade itself, and configurations
are needed to expose the failures. Since every distributed
satem that we study comes with (1) a default workload gen-
erator that generates most common system operations like
read andwrite for stress testing purpose; (2) a large set of unit
tests, we particularly check whether the failure-triggering
operations are part of the stress-testing workload or unit
tests, or neither—if neither, much manual effort is needed to
design testing operations to trigger upgrade failures.
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Finding 12. Half of upgrade bugs can be triggered by stress-
testing operations with default configurations.

This is a great news: simply running the stress testing in the
context of software upgrades with default configuration can
expose these failures. For example, CASSANDRA-4195 can
be triggered by running rolling upgrade on a 2-node cluster
with default configuration.

For the remaining failures that require special configura-
tions or operations or both, there is still an opportunity to
expose them without extra manual effort in test-case design.
Finding 13. 7% of upgrade failures need non-default config-
uration to be triggered. Fortunately, most of these non-default
configurations (78%) are covered in existing unit tests.

About one third of upgrade failures need special operations
to trigger. Fortunately, about 60% of them are already covered
by existing unit tests or can be covered by new combinations
of existing tests.

For example, in KAFKA-6238 [20], a configuration file
from the old version is used to start a new version, and
the user did not update a conflict value in the field mes-
sage.version, which crashed all the upgraded brokers. This
field and value exist in one of Kafka’s unit tests and could
have been used to expose the failure. As another example, in
CASSANDRA-10652 [4], upgrade failure happened because a
table system_traces generated by Cassandra’s tracing tool
is not properly upgraded. Although the tracing functionality
is not run by default in Cassandra’s stress testing, it is tested
in Cassandra’s unit test test_cqlsh_completion.

5.3 State of the Art of Upgrade Testing
Our findings in this section suggest that there exist opportu-
nities to expose software upgrade failures through automated
testing, which system developers may not be aware of.

Among the 8 systemswe studied, Cassandra, Mesos, Kafka,
and HDFS contain some limited testing scripts for upgrade
operations. Cassandra and Kafka’s upgrade testing uses mul-
tiple Java Virtual Machines (JVM) [17] to mimic multiple
nodes in a cluster that run different software versions and
communicate with each other. Mesos uses multiple processes
to mimic multiple nodes in a similar manner. HDFS uses JU-
nit testing framework for a more limited upgrade testing:
instead of running two versions, it prepares a limited set of
pre-defined filesystem images generated by older versions
and tests whether the new version can work with these old
images. Some of these images come after an upgrade failure
is caught and fixed, and serve for regression testing purpose.
The percentage of upgrade failures that are caught-after-

release in these four systems are actually not smaller than
other systems. In fact, Cassandra has close to 80% of upgrade
failures caught-after-release, the highest among all systems
that we studied.

Based on our study, we see at least two key limitations of
the upgrade testing schemes used by these 4 systems. First,

they do not solve the problem of testing-workload genera-
tion. Particularly, their upgrade testing scripts are separate
from their stress testing or unit testing framework, with
testing workload designed from scratch, instead of lever-
aging the mature and much larger amount of workload al-
ready designed for stress testing and unit testing. In fact, in
CASSANDRA-10822 [5], one developer said “Our coverage
of upgrade scenario is really bad (as exemplified by this) and
we need to fix that ASAP.” Second, there are also no mech-
anisms for their upgrade testing to systematically explore
different version combinations, different configurations, dif-
ferent upgrade scenarios (e.g., full-stop, rolling, adding new
nodes during upgrade, etc.), etc. In KAFKA-10173 [19], one
developer said “I’ve also just discovered that our system test
that covers application upgrades had suffered an oversight
that made it skip these versions.”

6 Testing and Detecting Upgrade Failures
Guided by our study, we have designed DUPTester , short for
Distributed system UPgrade Tester, to expose upgrade fail-
ures through in-house testing (Section 6.1, and DUPChecker ,
short for Distributed system UPgrade Checker, to detect up-
grade failures caused by data-syntax incompatibility through
static program analysis (Section 6.2). DUPTester has exposed
20 previously unknown upgrade failures in 4 distributed
systems; DUPChecker has detected 878 potential incompati-
bilities in 7 distributed systems and is requested by HBase
developers to integrate into their toolchain.

6.1 DUPTester Upgrade Testing Framework
6.1.1 Testing environment. To support efficient and sys-
tematic testing of a large number of workloads, version com-
binations, and upgrade scenarios, DUPTester packages what
the target system (e.g., Cassandra) is supposed to run on each
physical node, with all its dependencies, in a container [22].
DUPTester pre-loads these containers with many different
versions to save the installation time. DUPTester simulates a
3-node cluster of the target distributed system on one single
physical machine using a container orchestration tool [9]—
based on our Finding 10, most upgrade failures can be trig-
gered using 3 nodes or fewer. DUPTester preserves any per-
sistent data generated by a container in a shared directory
between each container instance and the host machine, so
that the persistent data is accessible by other containers even
after the container who generated the data shuts down.

For every pair of versions to test, old and new, DUPTester
systematically tests three upgrade scenarios:

1. Full-stop upgrade. The cluster with old software ex-
ecutes a testing workload; after the workload is pro-
cessed, the cluster gracefully shuts down; the cluster
then restarts with every node using the new software.

2. Rolling upgrade. A rolling upgrade from old software
to new software starts on a cluster; immediately next,
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before the rolling upgrade ends, the cluster starts exe-
cuting a testing workload.

3. New node joining. Several nodes running a new ver-
sion joining a cluster of nodes running the old version,
while the cluster executes a testing workload.

In all cases, upgrading a node is done by replacing its
corresponding container with another container instance
that (1) runs the newer version of the target system and
(2) inherits the old instance’ persistent data by sharing the
same directories on the host machine. Following Finding 2,
DUPTester treats error log message, exceptions, and crashes
as indication for upgrade failures.

6.1.2 Testing workload. As discussed in Section 5.3, a
main challenge facing all existing systems is to come up
with workload for upgrade testing. Guided by our Finding
12 & 13, DUPTester will make the best use of existing stress
testing and unit testing.
Leveraging stress testing is straightforward. Test cases in

stress testing consist of client-side commands to be issued to
a cluster. DUPTester directly uses them as testing workload
in the three upgrade scenarios described above.
Leveraging unit testing is much harder. On one hand,

widely-adopted distributed systems all have rich suites of
unit tests, offering a precious source of testing workload. For
example, the latest stable version of Cassandra (3.11.9) has
209,447 lines of source code and 122,418 lines of unit tests.
On the other hand, a unit test invokes internal functions of a
system-under-test from a specially designed test harness and
hence cannot be directly used as testing workload during
system upgrade.

To make use of unit tests, DUPTester designs two schemes.
One scheme aims to translate some unit tests into client-

side scripts that can be used directly as testing workload for
all three upgrade scenarios discussed above. We describe the
DUPTester test translator in details in Section 6.1.3.

The other scheme executes each unit testu as it is in the old
versioned system, and then checks if a cluster with the new
versioned software can successfully start from the persistent
state left by u. Since not all unit tests produce valid system-
wide persistent states, DUPTester first restarts a cluster with
the same version old. If the restart fails, DUPTester concludes
that unit test u is invalid for full-system testing and moves
on to the next unit test. This scheme is easy to carry out, but
can only test full-stop upgrade scenarios.

6.1.3 DUPTester Unit test translator. To better leverage
unit tests, DUPTester develops a test translator that trans-
forms some unit tests into client-side Python programs.

At high level, DUPTester translator first constructs an ab-
stract syntax tree (AST) for each unit test, and then synthe-
sizes a Python program based on this AST.
During this process, DUPTester needs to handle situa-

tions where direct translation does not work. For example,

Failure From To C.? Cause

Ca
ss
an
dr
a

15794 3.11.4 4.0 ✓ Data-syntax Incomp.
16258 3.11.6 4.0 Data-syntax Incomp.
16301 3.11.9 4.0 ✓ Code Incompatibility
16292 3.0.0 3.2.0 Data-syntax Incomp.
16257 2.1.0 2.2.0 Data-syntax Incomp.
16264 2.0.0 2.1.0 Data-semantics Incomp.
16265 2.0.0 2.1.0 Data-syntax Incomp.
16266 2.0.0 2.1.0 ✓ Data-syntax Incomp.
16267 1.1.0 1.2.0 ✓ Data-semantics Incomp.
16268 1.1.0 1.2.0 Data-syntax Incomp.
16269 1.1.0 1.2.0 Data-syntax Incomp.

H
Ba

se

25239 2.3.3 3.0 Broken Upgrade Op.
24430 2.2 2.4 Broken Dependency
24556 2.2 2.3 ✓ Broken Dependency
25238 2.2.0 2.3.3 ✓ Data-syntax Incomp.
25259 2.1.1 2.2.0 Broken Upgrade Op.
25260 2.0.6 2.1.1 Broken Upgrade Op.

Kafka10041 1.1 2.4 ✓ Broken Dependency

H
iv
e 24440 2.3.7 3.0.0 Data Syntax Incomp.

24493 2.1.1 2.3.7 Upgrade Operation
Table 5. DUPTester’s result on real-world systems. Failure number
is the report ticket number on JIRA. C.? : whether the bug is already
confirmed by developers.

DUPTester replaces some Java library functions and classes
with corresponding Python functions and classes, like replac-
ing Java HashMap objects with Python dictionary objects,
etc. In addition, DUPTester replaces some software-specific
test methods or software internal functions with correspond-
ing Python functions that can be issued from the client side.
For example, for Cassandra, DUPTester replaces every invo-
cation to a unit test method CQLTester.execute(q)with an
invocation to Cluster.Session.execute(q) in the target
Python program. The current prototype of DUPTester does
not guarantee to translate all statements. When DUPTester
cannot translate a statement s , it omits s and all the state-
ments that depend on s from the resulting Python program.

We have developed such a unit test translator for Cassan-
dra. To adapt the translator for other systems, developers
mainly need to specify the mapping between those unit test
methods or software internal functions, which are invoked in-
side unit tests, and external commands, which can be issued
by the clients. We expect that few updates are needed to such
a specification across code versions, as the interface of these
functions and commands is typically stable, even though
their internal implementation may change frequently.

6.1.4 Evaluation results. We used DUPTester to test the
upgrade procedure among the recent release versions of 4
distributed systems: Cassandra, HBase, Kafka, and Hive. In
addition to Cassandra, HBase, and Kafka, which are part of
our upgrade failure study in earlier sections, we added Hive
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here to evaluate how well DUPTester performs in systems
that we have not studied.
We picked the version gap to be either 1–2 minor ver-

sions or 1 major version guided by Finding 9. We carefully
studied detected failures and filtered out those caused by
operator errors. As shown in Table 5, DUPTester is able to
find 20 previously unknown (to our best knowledge) upgrade
failures in four distributed systems. 7 of them are already
confirmed by developers. A majority of them (14 out of 20)
are severe failures that crash the upgraded node. 10 out of 20
are caused by data-syntax incompatibility; 2 are caused by
data-semantics incompatibility; 4 are caused by broken up-
grade operation; 3 are caused by broken dependency. 2 cases
(CASSANDRA-16301, CASSANDRA-16292) require special
configurations or special operations that are not covered
by the stress testing. Fortunately, DUPTester covered them
by by utilizing unit tests. For Cassandra, we also compared
the 11 upgrade failures found by DUPTester against its ex-
isting upgrade testing scripts. Based on our checking, they
were missed by existing testing scripts mainly because the
triggering workloads and configurations are not covered by
existing testing scripts. We explain some upgrade failures
discovered by DUPTester below.

CASSANDRA-15794 is a failure that not only prevents the
system from successful upgrade but also successful down-
grade. In this case, when Cassandra 3.11.4 is upgraded to 4.0,
if the data generated by Cassandra 3.11.4 has a special form
called COMPACT STORAGE, Cassandra 4.0 fails to start be-
cause it does not support COMPACT STORAGE. However,
before it fails, Cassandra 4.0 already generated commit logs
(Cassandra’s Write Ahead Log). This effectively stops the
user from working around the problem by downgrading the
system to Cassandra 3.11.4, because Cassandra 3.11.4 does
not recognize commit logs generated by Cassandra 4.0 and
crashes.

CASSANDRA-16301 is discovered by loading the data gen-
erated by an existing unit test. If Cassandra 3.11.9 is started
with a configuration called OldNetworkTopologyStrategy,
when it is upgraded to Cassandra 4.0, the node crashes be-
cause OldNetworkTopologyStrategy is removed in Cassan-
dra 4.0. This configuration is not tested in Cassandra’s stress
testing tool, but it is exercised in a unit test function called
testUpdateKeyspace in Cassandra 3.11.9.

CASSANDRA-16292 is a case that can only be discovered
using the unit test translator. Our translator successfully
translated a unit test called testCachedPreparedStatements
in Cassandra 3.10. It creates two Cassandra KeySpaces, cre-
ates one table in each KeySpace, and later drops one of the
KeySpaces. Executing these translated commands in the up-
grade procedure from Cassandra 3.0 to Cassandra 3.2 crashes
Cassandra 3.2. DUPTester’s stress testing strategy does not
trigger this failure, because the operation - DROP KEYSPACE -

is not exercised in stress testing. In addition, the data gener-
ated by testCachedPreparedStatements cannot be used
to perform upgrade, because this unit test uses internal
functions and only generates corrupted data. This case also
shows that translated unit tests could be applied to testing
a wider range of versions, because testCachedPrepared-
Statementswas only introduced in Cassandra 3.10 but could
be used to test Cassandra 3.0 and 3.2.

HBASE-25238 is discovered by DUPTester when it applies
the stress testing strategy between HBase 2.2.0 and 2.3.3.
The upgraded node fails to start with an InvalidProto-
colBufferException. The root cause is that the upgraded
HBase master node tries to parse data generated and seri-
alized by 2.2.0, but the parsing fails because the format of
serialized data is changed between 2.2.0 and 2.3.3.

message ReplicationLoadSink {

required uint64 ageOfLastAppliedOp = 1;

+ required uint64 timestampStarted = 3;

}

Figure 2. Incompatibility in data serialization protocols of
HBase 2.2.0 and 2.3.3. The added a data member timestamp-
Started makes HBase 2.2.0 and 2.3.3 incompatible.

Figure 2 shows the usage of Protocol Buffers [26] in HBase
2.2.0 and 2.3.3 that declared the format of serialized data
ReplicationLoadSink. It includes several data members
such as ageOfLastAppliedOp. The required keywordmeans
this data member must appear exactly once in the serialized
data. However, HBase 2.3.3 adds a required data member
in ReplicationLoadSink and breaks its compatibility with
2.2.0 causing the upgraded node to crash.

Afterwe reportedHBASE-25238, developers quickly raised
its priority to “Critical”, and we saw positive comments from
HBase lead developers like “we need to be careful while
merging PRs which modify existing proto message to avoid
such issues in future” and “looks like we might need source
compatibility report for protos”.

False positives and negatives. DUPTester experienced four
false positives. Three of them are because the stress testing
tool is incompatible with the other version during rolling
upgrade. One is because the upgrade procedure between spe-
cific versions has unique requirements that DUPTester did
not follow. To evaluate false negatives, we apply DUPTester
on 15 randomly sampled cases from our study, DUPTester
can trigger 5 of them. Half of the false negatives are because
unit tests translated by DUPTester do not cover parameters
introduced by the new version for some software internal
functions. The remaining ones require better input genera-
tion — the effectiveness of DUPTester is limited by the target
system’s stress testing and unit test suite.
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6.2 DUPChecker Static Upgrade Bug Detector
Checker design Guided by our root-cause study in Sec-
tion 4, we designed a static checker DUPChecker to search
for two types of data-syntax incompatibility across versions:
(type-1) on data defined by serialization libraries and (type-2)
on data of enum types, as suggested by Finding 6.
Note that, we later found that similar incompatibility

checkers for serialization libraries (type 1) already exist
in open-source world [26, 29], although we could not find
records about whether they have been applied to large dis-
tributed systems and what are the checking results if they
have been. Therefore, our contribution in that front is mainly
on applying the checkers to see howwidely this type of prob-
lems exist in today’s large distributed systems, which can
then provide guidance for future research.

The first type is about data defined by serialization li-
braries. As discussed in Section 4.1.1 and Figure 2, a mes-
sage/file format can be defined in a language-neutral pro-
tocol file using serialization library. When a new version
changes a format in one of the following ways, upgrade
failures could happen [26, 30]: 1) the tag number, which indi-
cates the position of the data member in the serialized data,
is changed; 2) a required data member is added or removed;
3) the required qualifier of a data member is changed to
non-required, which may cause failures if the new version
generates data that does not contain its no-longer-required
data member, 4) there should be an 0 value in an enum if it
has a data member added or deleted.

DUPChecker searches for such syntax incompatibility for
popular serialization libraries, including Protocol Buffers
and Thrift [30]. Specifically, DUPChecker creates a parser
for protocol files by extending the PyParsing module [27]
with the serialization library’s grammar, which then allows
DUPChecker to compare the data format of the same data
member from different versions and report any incompati-
ble change of the first two categories as an error, and any
incompatible change of the third category as a warning. For
example, DUPChecker easily detects HBASE-25238 (Figure
2), as it breaks the second rule.

System Bug Ticket # of ERR. # of WARN.
HBase HBASE-25340 7 23
HDFS HDFS-15700 21 47
Mesos MESOS-10202 8 12
YARN YARN-10508 42 0
Accumulo Accumulo-13946 20 0
Hive HIVE-HIVE-24454 260 0
Impala IMPALA-10370 342 96

Total 700 178
Table 6. Bugs found by DUPChecker in 7 systems.

As shown in Table 6, we applied DUPChecker to 7 dis-
tributed systems, comparing every pair of currently main-
tained versions that are not declared as incompatible for each

system. HBase, HDFS, Mesos, and YARN are all the systems
in our initial failure study (Table 1) that use any type of popu-
lar serialization libraries: they all use Protocol Buffer library.
We added Accumulo and Impala, which use Apache Thrift
library extensively, and Hive, which uses Protocol Buffer
library extensively, to see whether similar problems exist
beyond the initial set of systems under study.
In total, DUPChecker found 878 incompatibilities, includ-

ing 700 violations of category 1 and 2 (i.e., errors) and 178
violations of category 3 and 4 (i.e., warnings), as shown in
Table 6. These are all previously unknown problems, never
reported to these systems before we did. Particularly, a vi-
olation of category 1 or 2 is guaranteed to cause system
failures, as long as the corresponding serializer and dese-
rializer are executed. Developers from HBase and Impala
quickly confirmed all our reports, acknowledging these in-
deed break version compatibility; HBase developers also
requested DUPChecker to be incorporated to their toolchain.
The other systems’ developers have not responded. Finally,
DUPChecker is also able to detect already known bugs caused
by such incompatibility, such as HDFS-9788, IMPALA-8243,
MESOS-2371, MESOS-3989, YARN-5632, etc.

False positives and negatives. In theory, DUPChecker can
report a false positive when the new-version software check-
and-rejects a message with a particular version number. Our
manual checking of DUPChecker’s found no such false pos-
itives. By design, DUPChecker only searches for bugs that
are related to the four types of changes to message/file for-
mats using Protocol Buffers or Apache Thrift libraries, and
is unable to detect other types bugs.

The second type is about incompatibility of enum-typed
data, as discussed in Section 4.1.1. To detect such incompati-
bility, DUPChecker first identifies the enum class whose mem-
ber’s index has been written to a serialized output stream
through data flow analysis. DUPChecker checks the parame-
ters of the serialized output’s write function to see whether
they contain the index of any variable whose type is the
enum. DUPChecker assumes if the index of the enum-typed
variable is written, it could be any member from it. For se-
rialized outputs, we currently only consider variables of
DataOutput type in Java since they are the most common
type used as output in serialization functions. And then
DUPChecker checks whether the enum class has member ad-
dition or deletion across two versions. If so DUPChecker con-
siders it as a bug. If the enum class doesn’t have member
addition or deletion, DUPTester treats it as vulnerabilities
to future changes which should have comments to inform
developers to preserve the order and add index range check.

We applied DUPChecker to the same set of applications as
the first type and found 2 new bugs one which has already
been confirmed and fixed by the developers, and 6 vulner-
abilities, and 3 of them are already confirmed and fixed. In
addition, DUPChecker is also able to detect already known
bugs of this type, such as HBase-15624. In comparison, this
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type of incompatibility problems are much rarer than the
first type, as there are much fewer uses of enum-typed data
in messages and files than those using serialization libraries.

False positives and negatives. DUPChecker reports a viola-
tion if a data member is changed in a enum and any member
of this enum is serialized. Thus, when only the members
whose indices are not changed are serialized, DUPChecker
could report false positives. In the 8 issues we reported to de-
velopers, 7 of them are already confirmed and fixed. For false
negatives, by design, DUPChecker only checks serialized out-
put ofDataOutput type, so it is unable to detect enum classes
serialized to other type of output.

7 Future Research Directions
Our study and tool evaluation aim to offer motivation and
guidance for future research to tackle the challenging prob-
lem of upgrade failures along several directions.
Testing.DUPTester demonstrates that it is feasible to achieve
better testing guided by the triggering conditions revealed in
our study. However, relying on workloads in default stress
testing and existing unit tests limits DUPTester’s ability in
exploring the test space. Techniques such as fuzz testing [1,
44, 81] and symbolic execution [39, 40, 55, 74] could be ap-
plied to automatically explore the test space and trigger more
upgrade failures.
Static analysis. DUPChecker demonstrates that applying
static analysis on data format declarations could detect hun-
dreds of incompatibilities. In addition to changed enum-
typed data, our study also reveals upgrade failures caused by
changed file names, changed default configuration values,
missing deserialization functions, and changed constants.
More static analysis techniques could be developed to detect
these incompatibilities in the future, but will face challenges
like identifying data that affects (de)serialization through
inter-procedural dependencies, matching code regions that
get refactored between versions, etc.
Data serialization library. Although using data serializa-
tion libraries does not eliminate upgrade failures, it does
make data-incompatibility checking much easier, as demon-
strated by DUPChecker . Unfortunately, in the systems that
we have studied, many message classes and file classes use
custom serializers and deserializers, which contribute to the
majority of data syntax incompatibilities in our study. A
broader adoption of potentially more flexible and efficient
serialization libraries could help eliminate upgrade failures
in the field.

8 Related Work
8.1 Studies on Software System Failures.
Software failures have been thoroughly studied [41, 54, 62–
64, 66–68, 70, 73, 75, 78]. Different subcategories of failures
have been analyzed, including distributed system failures [58,

67, 70], concurrency bugs [56, 63], OS bugs [41, 68], configu-
ration errors [66, 76], bugs introduced by bug fixes [79], and
other bugs [42, 53, 60, 77]. To the best of our knowledge, this
paper is the first to analyze software upgrade failures.

Studies mentioning upgrade failures. Liu et al. [61]
studied 112 high-severity incidents from Microsoft Azure
production cluster. They pointed out that software upgrade
is one of the reasons for incompatible data-formats. However,
they did not offer any details regarding software upgrade
problems and did not offer solutions to address data-format
incompatibility. Gunawi et al. [46] studied 597 publicly avail-
able post-mortem reports about cloud service outages. One
of their findings is that 16% of these outages involve hard-
ware or software upgrade. They did not conduct detailed
root cause, severity, or triggering study for these upgrade
problems. Tudor et al. [43] analyzed 55 upgrade failures from
a e-commerce system, a database system, and Apache web
server. Their study focuses on upgrade failures caused by
misconfiguration, broken dependency, and operator error.
Our study is the first to focus on upgrade failures caused by
software defects in distributed systems.

Studies on distributed system failures. Yuan et al. [80]
analyzed 198 failures on five open source distributed systems.
Their study focuses on how a problem propagates from a
component error to a system failure, and found that error
handling is both the last line of defense and the weakest link.
Some other studies [45, 70] focused on understanding major
root causes of cloud failures (e.g., software bugs and miscon-
figurations), without discussion about upgrade failures.

8.2 How to Perform Upgrade?
Others have proposed more robust ways to perform system
upgrade [32, 33, 43, 59, 65, 69]. Some of the upgrade failures
could be eliminated if such proposals are used in practice. Our
study provides motivation and guideline for future research
on system upgrade techniques.

Ajmani et al. [32, 33] propose a centralized upgrade data-
base to schedule upgrade operations on each node in a dis-
tributed system. It requires software developers to provide
a thorough specification that details the behavior of each
object and how the abstract state of one object in the new
version maps to that in the old version. It could help avoid
upgrade failures under the condition that such a detailed
specification is correctly provided.
Imago [43] supports atomic upgrade for distributed sys-

tems. It starts the new version of the target system in a set
of new physical or virtual machines (i.e., a shadow of the
running old-version system), transfers persistent data from
the running old-version system to the new-version cluster,
and finally switches over to the new-version cluster to finish
the upgrade. If any problem occurs during the launching
of the new system, Imago gives up the upgrade. Imago can
mitigate the impact of an upgrade failure in production—the
system simply sticks to the old version, at the cost of running
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a second copy of the whole cluster. Orthogonal from Imago,
DUPTester and DUPChecker aim to effectively expose and
detect threats to upgrade failures before code release, and
hence lower the cost of system upgrade.

MVEDSUA [69] supports reliable, low-latency updates to
stateful services by augmenting dynamic software updating
(DSU) with multi-version execution (MVE). MVEDSUA forks
the current program (the leader) and connect it via MVEwith
the child (the follower), whichwill perform the update.When
the update on the follower completes, the MVE system feeds
it the events it missed, already processed by the leader. MVE
system compares the responses of both versions. In response
to any disagreement during the comparison, MVEDSUA can
terminate the follower, effectively rolling back the update.
MVEDSUA can mitigate the impact of an upgrade failure in
production just like Imago, and is orthogonal to DUPTester
and DUPChecker .

Li et al. [59] discusses the state-of-the-art update deploy-
ment practices in Microsoft Azure, including stage and ca-
nary deployment, and develops a tool called Gandalf which
improves the safety of update deployment. Gandalf continu-
ously monitors system signals, including service-level logs
and performance counters, to detect anomalies. Gandalf ana-
lyzeswhether an anomaly is caused by an update deployment
using correlation analysis and decides if the deployment
should be stopped. Orthogonal from Gandalf, DUPChecker
and DUPTester aim to expose upgrade failures before they
happen in stage or canary deployment.

9 Conclusions
This paper presents the first in-depth analysis of upgrade
failures fromwidely-deployed distributed systems. We found
that the majority of upgrade failures have severe conse-
quences, while only a small portion of them were caught
before code release. Guided by our findings about root causes
and triggering conditions of upgrade failures, we designed an
upgrade testing framework DUPTester and a static upgrade
bug checker DUPChecker . Both have found previously un-
known upgrade bugs in multiple distributed systems. Partic-
ularly, DUPChecker has been requested by HBase developers
to integrate into their toolchain. We believe DUPTester and
DUPChecker are just the starting point in tackling this critical
problem of software upgrade failures. We release our dataset
and tools at “https://github.com/zlab-purdue/ds-upgrade” to
help followup research.
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