
Compiler-Directed Whole-System Persistence

Jianping Zeng
Purdue University

zeng207@purdue.edu

Tong Zhang
Samsung Electronics

t.zhang2@samsung.com

Changhee Jung
Purdue University

chjung@purdue.edu

Abstract—Nonvolatile memory (NVM) technologies have
gained increasing attention thanks to their density and durability
benefits. However, leveraging NVM can cause a crash consistency
issue. For example, if a younger store is evicted (persisted)
to NVM from volatile caches before an older one and power
failure occurs in between, it might be impossible to correctly
resume the interrupted program in the wake of the failure.
Traditionally, addressing this issue involves expensive persist
barriers for enforcing the original store order, which not only
incurs a high run-time overhead but also places a significant
burden on users due to the difficulty of persistent programming.

To this end, this paper presents cWSP, compiler/architecture
codesign for lightweight yet performant whole-system persistence
(WSP). In particular, cWSP compiler partitions not only user
applications but also OS and runtime libraries into a series
of recoverable regions (epochs), thus enabling persistence and
crash consistency for the entire software stack. To achieve
high-performance crash consistency, cWSP leverages advanced
compiler optimizations for checkpointing a minimal set of regis-
ters and proposes simple hardware support for expediting data
persistence on the cheap. Experimental results with 37 appli-
cations from SPEC CPU2006/2017, DOE Mini-apps, SPLASH3,
WHISPER, and STAMP, show that cWSP incurs an average run-
time overhead of 6%, outperforming the state-of-the-art work
with a significant margin.

I. INTRODUCTION

Nonvolatile memory (NVM) [2], [8], [12], [13], [45], [50],

[65], [77], [106], [122] technologies have been deemed an

alternative to DRAM thanks to their irresistible features, e.g.,
nonvolatility, byte-addressability, lower cost per bit, and near-

zero standby power. They are now commercialized by many

vendors, e.g., Intel Optane persistent memory (PMEM) [54],

Everspin STT-MRAM [1], and Fujitsu ReRAM [76]. Consid-

ering this, many cloud service providers and national labs—

such as Microsoft Azure [28] and Argonne National Lab’s

Aurora [118]—already equip their server fleets with PMEM as

a key to offering data-intensive workloads sufficient memory

[34], [35], [63], [88], [113], [123]. However, indiscriminately

replacing DRAM with PMEM incurs significant performance

loss in that PMEM is slower than DRAM. According to Peng

et al. [103], PMEM leads to 2-18x slowdown compared to

DRAM for their graph benchmark applications.

Thanks to the emerging cache-coherent CXL (Compute

eXpress Link) [22] technology, which offers high-bandwidth

and low-latency interconnect based on PCIe interface, it is now

practically possible to mitigate the performance issue of NVM.

This is because CXL can enable a deeper and wider memory

hierarchy at low cost. For example, local DRAM can serve as

a last-level cache (LLC) positioned between the conventional

L3 cache and the CXL-enabled low-tier PMEM, which is

akin to Intel PMEM’s memory mode [54] where DRAM acts

as an LLC atop PMEM main memory. Adopting such deep

cache hierarchy effectively lowers the chance of accessing

slow NVM, making its performance drawbacks more tolerable.

The upshot is that users can benefit from NVM’s enticing

features, such as nonvolatility, with a minimal impact on run-

time performance.

Figure 1 illustrates the normalized execution time of using

CXL PMEM compared to that of CXL DRAM for memory-

intensive applications with 4 different cache hierarchies1: (1)

2-level caches comprised of 64KB 8-way L1 data cache with

4-cycle hit latency and 1MB 8-way L2 with 14-cycle hit

latency; (2) 3-level caches by adding a 16MB 16-way L3 with

44-cycle hit latency; (3) 4-level caches by adding a 128MB

16-way L4 with 82-cycle hit latency [6]; (4) 5-level caches by

adding a 4GB direct-mapped DRAM cache. The clear trend

in the figure is that the performance loss gradually drops from

2.14x to only 1.34x along with the deeper hierarchy [6], [100].

This trend implies that the performance loss of NVM would

be ignorable for the future deeper memory hierarchy enabled

by CXL. More importantly, big data applications still benefit

from CXL-enabled NVM owing to its high density, thereby

maintaining their performance.

CPU2006 Mini-apps WHISPER all gmean1.0 1.0
1.5 1.5
2.0 2.0
2.5 2.5
3.0 3.0

N
or
m
al
iz
ed

S
lo
w
do
w
n

2 levels 3 levels 4 levels 5 levels

Fig. 1: Normalized slowdown of CXL PMEM main memory

to CXL DRAM main memory with varying levels of caches

However, the naive use of NVM can lead to a crash

inconsistency. To illustrate, suppose users try to insert a new

node to the beginning of a doubly-linked list, which is done

by (1) setting the new node’s next pointer to the address of the

old head node and (2) resetting the old head node’s previous

pointer to the address of the new node. Now, assume a scenario

where the second store persists in NVM with the cacheline

evicted from LLC while the first store is cached. If power

is suddenly cut off here, the data stored in the cache is lost.

This causes the new node’s next pointer to become a dangling

pointer, leading to inconsistent NVM states.

Considering this, Intel proposes eADR [26] to preserve

the contents of volatile caches across power failure by just-

1Other architectural parameters are listed in Section IX.

961

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00074



in-time (JIT) checkpointing them to NVM right before the

failure. Unfortunately, eADR requires a constant and high

energy supply for the JIT checkpointing process. This becomes

unsustainable, especially with the growing LLC size, e.g., a

384MB L3 in the AMD EPYC 9654P CPU [52]. Even worse,

eADR falls short in covering other volatile components, e.g.,
registers and DRAM—at terabyte scale [110], which is the

reason why eADR cannot guarantee crash consistency at all.

Thus, to make program persistent with NVM, users should

resort to partial-system persistence (PSP) where NVM gets a

separate address space next to DRAM’s main memory space as

with Intel PMEM’s app-direct mode [19], [21], [29], [43], [56],

[69]–[71], [107], [108], [114], [125], [126]. However, PSP
faces 4 challenges: (1) run-time or hardware cost, (2) difficulty
of enabling DRAM cache, (3) programming burden, and (4)
vulnerability to bugs. First, software-based PSP schemes [78],

[124], [125] require the insertion of persist barriers—e.g.,
clwb and sfence in x86—to flush the data stored to NVM

address space, while hardware-based schemes [57], [70], [95],

[126] accelerate the store persistence using costly architectural

support. Second, since DRAM serves as main memory, both

PSP schemes cannot afford to exploit DRAM as the last-

level cache (LLC)2, thereby losing the performance benefit of

the DRAM cache. Third, users are burdened with rewriting

data structures with memory persistency [102] in mind, often

leading to designing custom recovery logic for their crash

consistency. That is why persistent programming is generally

hard and error-prone [5], [86], [111], [116], [132]. Last, PSP

requires a special memory allocator such as pmalloc [23],

introducing the potential risk of persistent memory leaks. This

renders already error-prone persistent programming even more

complex and buggy [40], [42], [67], [84], [85], [90], [91], [97].

Given PSP’s deficiencies, the interest in whole-system per-

sistence (WSP) [58], [96], [130] is growing in both academia

and industry. Since NVM serves as main memory in WSP

allowing DRAM to be repurposed as LLC without hassle,

WSP can enable deeper cache hierarchy and achieve high

performance. Moreover, WSP transparently ensures the store

persistence and the crash consistency for all kinds of pro-

gram. However, WSP faces skepticism due to its complicated

hardware design and substantial energy requirements [96] for

flushing all the volatile states to NVM before impending

power failure. The state-of-the-art WSP solution, Capri [58],

addresses the skepticism to some extent but is still deemed

impractical for several reasons: (1) significant storage overhead

of 54KB per core for Capri’s hardware buffers; (2) high

amount of energy for JIT-checkpointing the buffers without

power interruption; (3) complex hardware loggings and their

demand for extremely high bandwidth of persist data path;

and (4) inability to efficiently guarantee crash consistency for

multiple memory controllers (MCs), and so on.

To this end, this paper presents cWSP, a synergistic compil-

er/architecture codesign to achieve lightweight yet performant

2Unless additional hardware support is devised to use a portion of DRAM
as cache leaving the rest for main memory.

WSP. The key idea is that cWSP can recover potentially incon-

sistent NVM states by re-executing a small portion of code.

As such, cWSP compiler partitions any program including

operating systems (OS) and runtime libraries—as long as they

can be translated into LLVM bitcode [72]—into a series of

idempotent regions (epochs) [32]. Since they are designed to

be free of memory antidependence, they can be re-executed

multiple times yet still generate the same correct output. This

allows cWSP to resume program from the beginning of the

power-interrupted region, i.e., the end of the most recently

persisted region. The takeaway is that cWSP obviates Capri’s

expensive hardware buffers and their JIT checkpointing while

maintaining high performance.

Another prior work iDO [78] also leverages idempotent

processing for power failure recovery. However, iDO works

for only user applications and slows them down significantly;

the reason is twofold: (1) iDO compiler generates superfluous

memory writes to NVM which has limited write bandwidth

and high write latency; (2) iDO causes the core pipeline to

stall at the end of each region because 2 persist barriers are

inserted before and after the region boundary. In contrast,

cWSP addresses these issues with 2 pillars: (1) its compiler

optimization eliminates unnecessary memory writes; (2) its

hardware enables asynchronous store persistence, allowing the

core pipeline to execute other instructions while persisting

previous stores. In particular, cWSP persists the 8-byte data

being stored to NVM through a FIFO persist path—built on

Intel’s existing non-temporal data path [27] with its write-

combining buffer (WCB) disabled—immediately after the

store instruction is committed. In this way, cWSP enables fast

store persistence and lowers the bandwidth requirement for

the persist path by 8x compared to all prior work relying on

64-byte data persistence [3], [41], [57], [70], [114], [126].

Last but not least, cWSP introduces a novel concept of mem-
ory controller speculation, aiming to efficiently ensure crash

consistency in the presence of multiple memory controllers

(MCs) that have non-uniform memory access (NUMA) time.

This pivotal feature distinguishes cWSP from prior schemes

[30], [41], [44], [57], [58], [70], [95]. They conservatively

wait at each region (epoch) boundary for previous stores to

persist in case the NUMA leads to a reordering of stores

across regions and the resulting crash inconsistency on power

failure in-between. In contrast, cWSP assumes power failure is

unlikely between regions and speculatively persists the stores

of the subsequent regions with no stall at their boundaries. As

a safe net, the MCs undo-log the stores upon their arrival to

handle potential misspeculation (i.e., power failure occurred).

Upon misspeculation, cWSP reverts the speculative NVM

updates with undo logs to maintain consistent NVM states

across the power failure.

The experimental results with 37 applications from SPEC

CPU2006/2017 [10], [46], Mini-apps [64], [121], SPLASH3

[109], WHISPER [95], and STAMP [92] demonstrate that

cWSP incurs an average of only 6% run-time overhead and

a storage overhead of 176 bytes, making cWSP highly suit-

able for implementation on silicon, whereas the state-of-the-

962



art WSP work incurs a 27% run-time overhead despite its

significant hardware overheads. In summary, cWSP makes the

following contributions:

• cWSP is the first approach to a lightweight yet performant

WSP—only a storage cost of 176 bytes (346x reduction

of the state-of-the-art work’s 54KB)—while supporting

multiple MCs efficiently.

• cWSP eliminates the expensive yet power-hungry JIT

checkpointing in prior approaches thanks to the intelligent

compiler/architecture codesign.

• cWSP works well even for future CXL-based deeper

and wider memory hierarchy—Section IX-C shows that

cWSP incurs only a 4% run-time overhead for memory-

intensive applications running on CXL-enabled NVM.

• cWSP provides a complete compiler toolchain—based

on Clang/LLVM 13.0—that can rebuild the entire Linux

software stack with crash consistency ensured.

II. BACKGROUND AND MOTIVATION

A. Persist Path and Stale Read Issue

Prior PSP schemes [3], [57], [70], [95], [114], [126] utilize

the existing non-temporal path [27] as a dedicated persist path

of NVM stores—and thus drop their dirty cacheline evictions

from LLC—to deliver the data to NVM in order, achieving

strict persistency [102]. Here, data merged on L1 data cache

are also placed on the persist path so that it directly transfers

the data to NVM, bypassing the lower-level caches and thus

avoiding costly persist barriers. However, these schemes come

with some challenges. First, they demand a high-bandwidth
persist path, which is not always feasible, as they persist a

64-byte cacheline to NVM for every 8-byte store merged into

L1 data cache. Moreover, they delay the persistence of a store

until it is merged into L1 data cache, significantly impacting

the performance, especially given the high L1 data cache miss

rate—22% for 470.lbm of CPU2006 in our simulation.

More importantly, the use of the persist path without caution

can cause a stale read issue [57], leading to wrong program

output due to the lack of ordering guarantees between the per-

sist path and the regular (cache) data path. Figure 2 (a) and (b)

show how the issue occurs; in this example, str 100,[A];

str 200,[A]; and load ldr r0,[A] all access the same

memory location A. Here, the two stores are merged into the

same cacheline—which is later silently dropped from LLC as

in prior schemes [3], [57], [70], [95], [126]—while the two

memory updates are sent to NVM through the persist path.

Suppose the cacheline is dropped (�) from LLC before str
100,[A] and str 200,[A] persist because of congestion

in the persist path. If the core pipeline encounters an LLC

miss for the load when only the first store has persisted (�),

then the load ends up reading an outdated value from NVM—

instead of the up-to-date value of 200.

To address the issue, prior work such as BBB [3] and DPO

[70] include front-end persist buffers (PBs)—containing the

stores for the example shown in Figure 2 (a)—in the cache

coherence domain. That way, the load in Figure 2 (a) reads

���������	
�
���

��������	
�
���

��� �����	
�

���

���
��� 
���


���


�����
���

������

����������

���� ����
����

����
����

��

��

���

 ���!��
 ��" ####��������

	��
�
���
���

�$��

���

Fig. 2: (a) Original assembly code; (b) stale read issue oc-

curred; (c) crash inconsistency for multiple MCs

the up-to-date data from the PBs. However, the prior work

significantly complicates the already complex cache coherence

protocol. On the other hand, other prior work like HOPS [95]

delays the loads missing in LLC—in case the up-to-date data

are pending on the persist path—until they persist in NVM.

For this purpose, HOPS requires a bloom filter near memory

controllers to check if the data are pending. The implication

is that every NVM store must pay for long latency to access

the backend bloom filter, which might hurt the performance.

Either way, these prior schemes come with notable overheads,

rendering them unsuitable for lightweight yet performant WSP

targeting the CXL-enabled deeper memory hierarchy.

B. Multiple Memory Controllers and Crash Inconsistency

The presence of multiple memory controllers (MCs) in a

server system [53] poses a daunting challenge in maintaining

the FIFO ordering of the persist path, which is the basis for

crash consistency, though they enable large memory space.

As shown in Figure 2 (c), due to non-uniform memory access

across MCs, a younger store—e.g., str2 in the 2nd region

R1—could persist in NVM (�) before an older one (�) if

they are destined to different MCs. This can cause inconsistent

NVM states when power failure occurs in between (�). To

address this issue, many prior proposals [30], [41], [57], [58],

[70], [95] simply wait at region boundaries for prior stores to

be persisted, thus degrading the performance.

C. Region-Level WSP with Persist Path

Capri [58], the state-of-the-art WSP scheme, addresses

the challenges of persisting stores with compiler/architecture

codesign for a wide range of applications3. Capri relies on a

hardware-managed redo buffer [60], [61], [99] as the basis for

crash consistency. For this reason, Capri compiler partitions

input program into a series of recoverable regions with the

buffer size in mind, preventing the buffer overflow during

region execution and ensuring correct power failure recovery.

Figure 3 (a) shows Capri’s high-level architectural diagram.

During region execution, Capri copies the dirty cachelines

touched by the region’s stores to the redo buffer—next to

the L1 data cache as shown in the figure. Each cycle, Capri

attempts to transfer the data in the redo buffer to NVM

through the persist path. For failure-atomic region persistence,

Capri employs a 2-phase approach. It moves the redo buffer

entries to a battery-backed proxy buffer—managed by the

memory controller—and then from there to NVM media. The

3We get Capri compiler’s source code from authors and figure out that it
cannot compile runtime libraries though it covers the OS and user code.

963



�%����
��		�


��
����&

��
�

�% ����
��		�


��

��
�
�����'���(

���

�
�)*
��		�


�
�)*�
��		�


�

���+���*

��
��������

��
�

�
��� ���

����������
�������

�%
��
����&
��

� 

�%

��

�� 

,

���+���*�

��
��������

� ��

��
�
�����'���(

���
�������	


'( '�(

�
������
!"��������
�*
���������

Fig. 3: (a) Capri architecture for PMEM memory mode; (b)

cWSP architecture for PMEM memory mode; shaded boxes

are in persistence domain; round boxes are newly proposed by

either architecture; the thin persist path of cWSP indicates its

lower bandwidth requirement

2-phase persistence ensures that either the proxy buffer or

NVM remains intact across power failure.

However, such a redo buffer approach forces the CPU

pipeline to stop at each region end until all its buffered stores

are moved to the persistent domain (proxy buffer) before

preceding to the next region, causing significant slowdown.

To solve this issue, Capri lets the redo buffer battery-backed

as well. This allows the next region to immediately start in that

the prior one has buffered its stores already in the persistent

domain (redo buffer).

D. Limitations of Prior WSP Work

Capri faces 5 issues, rendering its practical use impossible.

First, its hardware buffers incur a high storage cost, totaling

(N + 1) × M × 18KB, where N corresponds to the memory

controller count, M to the core count. For example, Capri

results in a storage overhead of 88MB for AMD 128-core

EPYC 9754 processors with 12 MCs [53]. Second, Capri

requires a considerable amount of energy at all times for

JIT checkpointing, leading to battery maintenance burden and

environmental impact [68], [93], [104], while power failure is

scarce in server fleets. Third, Capri relies on an over-complex

redo+undo logging to recover potentially inconsistent NVM

status by using undo or redo logs depending on where the 2-

phase persistence is power-interrupted. This complex hardware

logging scheme ends up amplifying NVM writes by 8x and

demands an extravagant bandwidth for the persist path.

Forth, Capri incurs extra hardware cost for resolving the

stale read issue. That is, Capri delays DRAM cache eviction

to scan the proxy buffer and invalidate the matched proxy

buffer entry of the same address. Even if no matching entry

is found, which is a common case, Capri cannot release the

DRAM cache eviction. That is because the data being matched

might be pending on the persist path; therefore, Capri should

wait for the worst-case data delivery latency in case the data

is to be found within the latency [58]. Finally, Capri causes

a high run-time overhead for server-class cores with many

MCs [53] due to frequent persistence stalls at the end of short

regions—29 instructions in regions on average.

III. CWSP OVERVIEW

Figure 3 (b) shows the architectural diagram of cWSP. In

particular, cWSP’s persist path connects each core to MC

unlike Capri’s starting from L1 data cache. As will be shown

in Section IX-C, cWSP works well for CXL-based NVM, in

which case the persist path ends at CXL Home Agent [22],

though cWSP assumes the less complex Intel PMEM memory

mode by default for a fair comparison to the state-of-the-art

work Capri.

A. Region-Level Crash Consistency for All

To achieve crash consistency for the entire Linux software

stack, cWSP compiler is capable of partitioning any C/C++

program including the OS kernel into a series of idempotent

regions [32], [78], [80], [81], [83], [133], that are free of

memory antidependence also known as write-after-read de-

pendence, serving as the basis for recovery-via-resumption.

Similarly, cWSP also ensures crash consistency for C/C++

libraries and the Linux kernel by partitioning their functions

such as malloc and sbrk; see Section IV for details.

B. Asynchronous Store Persistence

Unlike all prior work [3], [44], [57], [58], [78], [95], [125],

cWSP for the first time decouples store persistence from cache

access. That is, cWSP persists the data being stored as soon

as the store is committed. To achieve this, cWSP repurposes

Intel’s write-combining buffer (WCB) as a volatile persist

buffer (PB) that connects from store queue (SQ) to the memory

controller (MC) as shown in Figure 3 (b). Each time a store

is committed, its data is copied to the PB and then transferred

to the MC along the persist path in the background. The

implication is twofold: (1) cWSP persists stores at 8-byte

granularity and thus brings an eightfold reduction in the persist

path bandwidth, compared to the prior work based on 64-byte

cacheline granularity; (2) cWSP exerts practically no pressure

on the SQ, which would otherwise slow down the core pipeline

execution. Further details are deferred to Section V-A.

C. Memory Controller (MC) Speculation for Multiple MCs

To ensure high-performance crash consistency even in the

presence of multiple memory controllers (MCs), cWSP pro-

poses memory controller speculation. While the stores of a

region are on their way to NVM locations, cWSP speculatively
persists the following regions’ stores with the data logged

in NVM, despite non-uniform memory access across MCs,

assuming power failure is unlikely in the meantime. cWSP

leverages undo logging to enable in-place updates and avoid

costly read redirection. If misspeculation (i.e., power failure)

occurs, cWSP reverts the speculative NVM updates using the

undo logs, thereby maintaining consistent NVM states across

power failure; details are provided in Section V-B.

D. Power Failure Recovery Protocol

Since the memory controller speculation of cWSP allows

multiple regions to be persisted concurrently, care should be

taken to ensure correct power failure recovery. It is possible

964



that these regions have at least some of their stores persisted

before power failure. This paper calls such regions unpersisted.

On the other hand, a region is called persisted only after its

stores are all persisted.

In the wake of power failure, cWSP resumes the interrupted

program in 3 steps with identifying a boundary between

persisted and unpersisted regions: (1) reverting speculative

NVM updates using undo logs; (2) preparing the inputs to

the oldest unpersisted region, the entry of which serves as

the recovery point; and (3) restarting the region from the

beginning; details are found in Section VII.

IV. CWSP COMPILER AND RUNTIME SYSTEM

A. Cutting Memory Antidependence

To partition program into a series of idempotent regions,

it is a critical step to ensure the absence of memory antide-

pendencies within each region. For this purpose, cWSP uses

the same idempotent processing algorithm developed by De

Kruijf et al. [32]. First, cWSP compiler treats function call-

sites and synchronization points—such as atomic operations

and memory fences—as initial region boundaries. cWSP also

inserts a region boundary at the header of each loop, forming a

region per iteration; of course, extra boundaries are inserted in

the loop body to split other memory antidependence therein.

Second, cWSP compiler computes a set of cutting points for

antidependence pairs of memory using LLVM’s alias analysis.

Later, cWSP compiler uses a hitting set algorithm to find out

the best partitioning strategy. As Figure 4 (a) shows, a region

boundary separates r2 = ldr [r0] and str r1,[r0]
and keeps them in two separate regions.

B. Checkpointing Live-Out Registers

�#�-��
����$%&&���&
����$%���%
�'�-���� ����

��
�	
 �������

������������

���

���

���

����� ���! ���"

 ������ �� ��

���-��
���� ���������
�����������
���� ���������
���������
���� ���������
���-�
�� ����
�	
 �������
���� ���������

������������
��-����#�$

���

���

���

���

%�&���'��
!��
���

�����������
���������
���-�
�����(�)�����
�	
 ���������

�������"�*
������*�

Fig. 4: (a) Cut memory antidependence; (b) inserts the check-

points for live-out registers and then prunes all 3 checkpoints

in region Rg1; note that region Rg0/R1 are already persisted

before power failure (�), whereas Rg2 is not

However, solely preventing memory antidependence within

regions is insufficient to achieve WSP, as volatile registers lose

their data upon power failure. To address this issue, cWSP

compiler checkpoints (saves) registers to a designated storage

in NVM, indexed by architectural registers and managed by

cWSP hardware. cWSP compiler first calculates a set of live-
out registers for each region using LLVM’s liveness analysis
and then checkpoints their values to NVM. Figure 4 (b) shows

that ckpt r3 is inserted in region Rg0 since r3 is live-out—
i.e., it is used by some later region(s).

C. Pruning Register Checkpoints

To mitigate the potential increase in write pressure on the

persist path caused by inserted checkpoints (essentially store

instructions), cWSP leverages the optimal checkpoint pruning

algorithm of Penny [66]. We found out that this optimal check-

point pruning, originally designed for soft error resilience,

can efficiently eliminate redundant checkpoints without com-

promising the crash consistency guarantee. The intuition be-

hind the checkpoint pruning is that many checkpoints are

unnecessary if they can be reconstructed using immediate

values and/or the remaining checkpoints at recovery time. For

example, all 3 checkpoints in region Rg1 are eliminated as

shown in Figure 4 (b), improving the performance greatly (see

Section IX-B). Across power failure (�) occurred in region

Rg2, cWSP’s recovery runtime first executes Rg2’s recovery

slice (RS)—on the right of Figure 4 (b)—to reconstruct the

values of region Rg2’s 3 live-in registers. As shown in the RB,

r0 and r1 are reconstructed from 100 and 1, respectively, while

r3 is done by (1) loading the value checkpointed in region Rg0

and (2) applying the shift instruction over the value. With these

input registers restored, cWSP then resumes the interrupted

program from the beginning of the region Rg2.

D. cWSP Runtime and Linux Kernel

Ensuring crash consistency for the entire software stack—

covering user program, runtime libraries, and the Linux

kernel—is crucial for the successful implementation of cWSP.

However, this is not adequately addressed in previous ap-

proaches [58], [84], [95], [128], due to the lack of C library

in LLVM community and the incompatibility between the

Clang/LLVM compiler and the GNU C library glibc [36].

To overcome this obstacle, cWSP introduces a comprehensive

crash-consistent runtime for the first time. We patch essential

libraries, including glibc, LLVM C++ library libcxx [39],

LLVM compiler-rt [37], and LLVM stack unwinding

library libunwind [38]. In addition, we patch the config-

uration of glibc to allow for its compilation with cWSP

compiler. In particular, all the assembly files pertaining to

x86 64 are manually patched to insert region boundaries and

checkpoints. It is also feasible to lift assembly code up to

LLVM bitcode using mature lifting tools, e.g., Remill [101], in

which case cWSP compiler optimizations can be automatically

applied along with the recoverable region formation.

V. CWSP HARDWARE IMPLEMENTATION

A. Asynchronous Store Persistence: Challenges and Solutions

1) Preventing Stale Read Issue on the Cheap: Recall that

the stale read issue arises on LLC load misses. That is because

there is no ordering guarantee between the persist path and

the regular path where LLC silently drops dirty cachelines on

their eviction, though the data of committed stores move to

both paths in our case. That is, there is a potential for a race

condition [98] between (1) the read on the regular data path

965



and (2) the write on the persist path. Fortunately, we found out

that the stale read issue almost never occurs due to the faster

persist path, i.e., data being read by those loads missing LLC

are sure to have already persisted in NVM. The load-after-
persist order is made most of the time in that the data carried

over the persist path can directly head to NVM whereas they

go through multiple levels of caches in the regular path.

����
 ������� ��� � ��
��

	
������	� ���

 � 	���������
�  ������� 
��������������
��

�������	


���������	
����
��������������

� 	

Fig. 5: Solving stale read issue by delaying dirty cacheline

writeback from the WB of the private L1D to the shared L2

Given the rare occurrence of the stale read issue, any

possible solution must be lightweight enough to minimize

the impact on the core pipeline execution. With that in mind,

cWSP enforces the load-after-persist order occasionally, i.e.,
when the data is about to reach the shared L2 on the regular

path. That is, cWSP only needs to ensure that no writeback is

made to the L2 until the same data—once placed in the persist

path—is eventually written to NVM. To achieve this, cWSP

delays the writeback of dirty cachelines from the private L1D’s

write buffer (WB) to the shared L2, provided the persist path

has not yet flushed the corresponding data to NVM. As shown

in Figure 5, when a cacheline at the WB head is about to be

drained, a check signal with the cacheline address is issued

to search for a matching entry in the PB. If found, cWSP

holds the writeback of the head until the matched PB entry is

persisted in NVM.

Coherence-Agnostic PB: The upshot of the above simple

technique is that the PB is out of cache coherence domain, i.e.,
the entire caches and the coherence protocol both remain the

same. That is because cWSP ensures a memory read always

retrieves the up-to-date data either from the caches on their

hits or from NVM when missing in the DRAM cache (LLC).

Thus, accessing the PB for loads becomes unnecessary, while

prior work [3], [70], [95] consults PB either directly from the

core or through cache coherence requests for loads thereby

complicating already complex cache coherence mechanisms.
astar
bzip2
gobm

k
h264ref
lbm
lib
quan

m
ilc

nam
d

sjeng
soplex
gm

ean

dsjeng
im
agick

lbm
leela
nab
nam

d
xz gm

ean

lulesh
xsb

ench
gm

ean

cholesky
ff
t
lu-cg
lu-ncg
ocg
oncg
radix
raytrace
w
ater-ns

w
ater-sp

gm
ean

p
c
rb sps
tatp
tp
cc

gm
ean

km
eans

ssca2
vacation
gm

ean
A
ll
gm

ean

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6

#
L
1D

W
B

E
nt
ri
es

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP

baseline (original Skylake core) cWSP

Fig. 6: Average occupancy of the WB of L1 data cache for

baseline and cWSP

At first glance, one might think that delaying the WB

writeback could potentially slow down pipeline execution,

especially when the WB is full and a new WB entry needs

to be allocated for an incoming dirty eviction. However, our

empirical evaluation shows that this delay has no adverse effect

on performance at all (see Section IX-B). Figure 6 shows that

both the baseline and cWSP maintain an average occupancy

of only 0.39 WB entries, implying minimal pressure on the

WB. This negligible impact can be attributed to two factors.

First, the persist path is way faster than the regular path. When

a dirty cacheline is about to be written back from the WB

to L2, its corresponding PB entry is most likely persisted

in NVM already, resulting in no matching found in the PB.

Second, content-addressable memory (CAM) searching for the

(50-entry) PB can complete in just 1 cycle (0.5ns), causing

technically no delay on the WB writeback; this is supported

by IBM’s report on a 0.6ns CAM search time for a 64x72

CAM with 65nm CMOS technology [4].

�����������
�
���

�����������
�
���
�
 

��� ����

��

���

����

����

����

�����������	�
����������


��

����
���	

��
�
���	��
����

�
���	���
�����

Fig. 7: (a) assembly code; (b) a false positive

False Positives: Note that cWSP guarantees the absence

of false negatives for the PB searching, since it creates

a PB entry for each store before the data is merged into

L1D. However, theoretically, cWSP could mis-identifies a PB

entry though it does not collide with the WB head entry,

causing false positives and unnecessary delay in the WB

writeback. Nevertheless, we never observed false positives in

our experimentation, owing to the huge speed gap between

the regular path and the way faster persist path. Figure 7

illustrates a hypothetical false positive scenario. Consider two

committed stores—str1 and str2—writing values 100 and 200,

respectively, to the same memory address A. In this scenario,

str1’s data (100) has already been persisted in NVM via the

persist path, and its corresponding dirty cacheline has been

evicted from the L1 data cache to the WB. Meanwhile, the

core pipeline allocates a PB entry for str2, which misses the

L1 data cache. Here, if the WB is about to flush str1’s dirty

cacheline to the L2, str2’s PB entry is mistakenly perceived

as a match with str1 at the WB head, causing a false positive.

2) Lowering Persist Path Bandwidth at No Cost: Due

to the 8-byte data granularity of the persist path, cWSP’s

write pending queue (WPQ) maintains 8-byte entries as well.

Therefore, care must be taken to ensure correctness in that the

memory system transfers data at a 64-byte granularity. If a

load misses the LLC (DRAM cache) and encounters a WPQ

hit, then it can only get the corresponding 8-byte WPQ entry

failing to retrieve the remaining 56-byte data, in which case

program correctness is broken.

To address this potential incorrectness without complex

hardware support, cWSP simply postpones serving those loads

hitting the WPQ until the matching WPQ entry persists in

NVM. In particular, this delay has no practical impact on

performance owing to the remarkably low WPQ hit ratio.

Figure 8 shows 0.98 hits per 1 million instructions. Such a low

hit ratio has a twofold implication: (1) with an increasingly

deeper memory hierarchy where fewer read requests reach the

966



NVM, the WPQ hit ratio gets even lower; (2) cWSP effectively

expands the WPQ’s capacity by eightfold—compared to con-

ventional WPQ whose entry size is 64-byte—without requiring

additional storage. Consequently, cWSP is well-suited for the

future deeper/wider memory hierarchy.

astar
bzip2
gobm

k
h264ref
lbm
lib
quan

m
ilc

nam
d

sjeng
soplex
gm

ean

dsjeng
im
agick

lbm
leela
nab
nam

d
xz gm

ean

lulesh
xsb

ench
gm

ean

cholesky
ff
t
lu-cg
lu-ncg
ocg
oncg
radix
raytrace
w
ater-ns

w
ater-sp

gm
ean

p
c
rb sps
tatp
tp
cc

gm
ean

km
eans

ssca2
vacation
gm

ean
A
ll
gm

ean

0 0

5 5

10 10

15 15

W
P
Q
H
P
M
I

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP

100.0 100.0 100.0 100.0 100.0

Fig. 8: WPQ hits per 1 million instructions

B. Memory Controller Speculation

1) Store Persistence without Stalling at Region Boundaries:
With multiple memory controllers (MCs), the stores of a

younger region could persist before those of older regions

due to the non-uniform memory access (NUMA) time of the

MCs. As mentioned earlier in Section II-B, this out-of-order

region persistence breaks the FIFO nature of the persist path

that serves as the basis for crash consistency. As such, prior

schemes [30], [41], [57], [58], [70], [95] resort to stalling the

core pipeline at each region boundary (transaction end) until

every store of the region persists. That is, they do not allow

inter-region persist reordering, leading to high performance

loss server-class cores backed with many MCs [53].

To achieve correct yet performant crash consistency in the

presence of multiple MCs, we make two observations. First,

despite the NUMA effect, the resulting persist reordering

within a region is not harmful, since it can be correctly recov-

ered (re-executed) thanks to cWSP’s idempotent region forma-

tion. So, we are only concerned about the inter-region persist

reordering that makes the idempotent recovery incorrect—

since idempotence holds on a per-region basis. Second, nev-

ertheless, the inter-region persist reordering can be alright,

provided it is not caught by power outages. Even if they occur,

cWSP’s recovery runtime can leverage conventional logging to

revert the out-of-region-order persists that might corrupt the

input(s) to the oldest unpersisted region—being re-executed

by the recovery protocol (Section III-D); and the recovery

cost should be insignificant given the rarity of power failure.

Those observations inspire us to develop memory controller
speculation, assuming that the oldest unpersisted region never

encounters power failure. With that in mind, cWSP keeps

speculatively persisting the data of the following regions,

without waiting for the oldest to get persisted.

Note that the oldest unpersisted region is non-speculative

and vice versa in that the prior one has already been persisted,

whereas the following regions are under speculation. In case

power failure interrupts the persistence of the oldest unper-

sisted region (i.e., misspeculation), cWSP undo-logs any data

being speculatively persisted. This allows cWSP to restore the

memory status to point where the oldest unpersisted region is

about to start—for the correct re-execution of the idempotent

region (Section III-D).

To illustrate, consider 4 consecutive regions: Rg0, Rg1, Rg2,

and Rg3. Suppose Rg0 has been persisted. Rg1 is currently the

oldest unpersisted region, i.e., it is non-speculative, whereas

Rg2 and Rg3 are under speculation. While Rg1 persists its data

being stored in NVM, cWSP speculatively persists and undo-

logs the data of Rg2 and Rg3, preparing them for potential

reversal in the event of power failure. When the speculation

turns out to be true, i.e., Rg1 has persisted all its stores without

power interruption, Rg2 thus becomes non-speculative, which

causes Rg2’s logs to be deallocated. Here, Rg3 still remains

speculative though.

��!�
�� ���

��	�
���


��	����

��

��
�
�����

���

��

��
�
�����

���

��	����������	���������	�
���!$���� 
��� ���� �$��!� ����

�� ��	
����������������������������

�������

���!$���� ����!����� ���!���� ����$!����

������ ������ ������

������� �������������

� �

�������� �����!!����"���#��
$��� �������� ������	��
%��
����"�����������

���
�

&&'

���
�


���!�
����

Fig. 9: Hardware organization for MC speculation; RBT is

newly proposed, while PB is built on Intel WCB

To track speculation state and perform its corresponding

actions, cWSP should recognize (1) if a region is speculative

(or non-speculative) and (2) if it is persisted. For this reason,

cWSP tracks two kinds of information, i.e., speculation and

persistence metadata, for each region. As shown in Figure 9,

cWSP prepares two FIFO queues4: the region boundary table

(RBT) for the speculation metadata and the persist buffer (PB)

for the persistence metadata, respectively. At a high level, each

region is treated speculative upon entry into the RBT and

remains so until it moves to the RBT head that always points

to a non-speculative region. The RTB head entry is removed

as soon as its corresponding region (i.e., the oldest unpersisted

one) is persisted. The implication is that RBT size determines

the number of speculative regions.

Specifically, when the core pipeline commits a region

boundary instruction, cWSP allocates an RBT entry for the

current region being started. The RBT entry contains 4 items:

(1) Region ID, a hardware-managed counter that atomically

increases to ensure unique ID allocation across all cores; (2)

PendingWrs indicating the number of unpersisted stores in

the region; (3) MCBitVec tracking the IDs of the MCs to

which the region’s stores are directed; and (4) RS Pointer
referring to the starting address of the region’s recovery slice

(RS), which is encoded in the region boundary instruction;

Section VII details RS. Similarly, when a store instruction

commits, cWSP performs two actions. First, a PB entry is

allocated to track its persistence status. Here, each PB entry

contains 5 items: (1) Region ID—never overflowing as at

most 128 regions are allowed to be persisted concurrently,

given 8 cores and 16 RBT entries by default—of the current

4They have one read/write port and one search port to complete CAM
searching in one cycle.

967



region which is retrieved from the RBT tail entry; (2) store

address Addr; (3) Data being stored; (4) a boolean LogBit
telling if the store is from a speculative region and thus should

be undo-logged; and (5) a boolean Sent stating if the store

has been delivered to NVM. Second, for the committed store,

cWSP increases the RBT tail entry’s PendingWrs by 1 and

updates its MCVectBit with the store’s MC ID.

As shown in Figure 9, the coordination between the RBT

and the PB is crucial for keeping the speculation status of

every region up-to-date. Each cycle the PB keeps sending its

entry to the target MC (�) with the Sent set in a pipelined

manner—unless the WPQ is full, which is not common (see

Section IX-L). Technically, the first 4 items of the PB entry

(i.e., Region ID, Addr, Data, and LogBit) are sent to

the WPQ of the target MC5. Upon the arrival of the Data
at the WPQ, it is considered persisted—as the WPQ is in

the persistent domain [24]—and undo-logged if the LogBit
is set. Simultaneously, the MC acknowledges the PB (�),

which deallocates the entry if it is the head of the PB. Then,

cWSP identifies the RBT entry corresponding to Region
ID and decreases its PendingWrs by 1 (�). Finally, if the

PendingWrs becomes zero with the entry pointed by the

RBT head (i.e., the non-speculative region is now persisted),

cWSP deallocates the entry, making the following region

non-speculative; this results in (1) reclaiming its undo logs

(see Section V-B2) and writing the RBT head entry’s RS
Pointer to NVM for future power failure (�).

�������������	
��� �������� �����
����
�
�����
��������

��������

��������
�
�

���

���-��� �
�
�

����������� �
�

�����!�����"�
�

���

���

���

���

���������
�������
���	����
���"�#$%

���������
����	�



������

������������������ ���������

�������������������

��������
��� "���������������	��


�
�������
�

�����	��

�������
������

�
�	��������
�����

Fig. 10: (a) Naive undo logging at MC; (b) cWSP hardware

undo logging at MC; (c) Log overwriting issue; Rg0 is non-

speculative, while Rg1 and Rg2 are speculative

2) Hardware Undo Logging: Since the undo logging is

on the critical path for every NVM write, its implementation

should be performant. Figure 10 (a) shows how the critical

path of each NVM write is extended by a naive implementation

with fetching the old value from the address of the store (�);

performing the log write (i.e., the address and the value) (�);

performing the in-place data write (�); and responding to the

core (�). Obviously, this causes a high run-time overhead.

To this end, cWSP proposes asynchronous undo logging,

i.e., the MC immediately acknowledges a store arriving there

(�), while its data is undo-logged and written to NVM in

the background (�-�) as shown in Figure 10 (b). This allows

5This requires one bus transaction for x86 64 since an Addr occupies only
48 bits thus being encoded with Region ID and LogBit into an 8-byte.

the latter to be off the critical path. To achieve this correctly,

cWSP requires that for each store, the undo logging and the

data write should be failure-atomic as a whole. That is, the

MC should secure enough energy for completing the entire

operation (�-�) without power interruption in between—as

Intel ADR secures the energy necessary for flushing all WPQ

entries [24]. That way when power is about to be cut off, cWSP

guarantees to flush every WPQ entry with its data undo logged.

Note that the MC starts the undo logging of data being stored

(�-�) as soon as it gets to WPQ. Nevertheless, when the WPQ

entry is about to be flushed to NVM, its undo-logging might

not have been finished, in which case the MC should hold the

flushing until their completion order (�→�) is enforced for

correct recovery. The rationale here is that the failure-atomic

operation—including the undo logging—is only possible for

the entries present in WPQ, not those already removed there.

In particular, care must be taken to prevent undo logs from

being overwritten, which would otherwise corrupt NVM states

causing incorrect power failure recovery. Figure 10 (c) shows

how the undo log overwriting issue arises. Here, Rg0 is non-

speculative, i.e., the oldest unpersisted region to be re-executed

in case of power failure, while Rg1 and Rg2 are speculative.

Suppose addresses A, B, and C happen to be the same, i.e.,
str1’s log is overwritten by str2’s log if they share the same

log location. When power failure (�) occurs in Rg2, cWSP

mistakenly uses the str2’s log to revert Rg1’s speculative

NVM updates, resulting in inconsistent NVM states. That is

because ld in Rg0 incorrectly reads 200 (not 100) when it

restarts in the wake of the power failure.

To this end, cWSP leverages append-only logging for elim-

inating the overwriting within a region and across regions.

The implementation principle here is twofold: (1) lightweight

log management without additional hardware support and (2)

simple log deallocation with no search cost. In light of this,

cWSP requires that each MC should (1) maintain the logs of

stores arriving there in its local NVM space—rather than re-

sorting to centralized logging with inter-MC communication—

(2) manage the logs on a per-region basis such that each

region’s logs can be deallocated using the Region ID; upon

receiving the first store of a speculative region, the target MC

allocates a log array for the Region ID in its own log area;

once a region gets non-speculative, its idempotent recovery

no longer requires its own logs—though it needs those of the

following speculative region(s). This implies that cWSP can

safely deallocate the logs of the non-speculative region without

compromising the recovery guarantee. To achieve that, cWSP

consults the MCVecBit of the RBT head—referring to the

non-speculative region—and signals its target MCs to reclaim

the log arrays corresponding to the Region ID. Notably,

the size of the log area is limited since each region has only

a handful of stores (4 on average) and the number of regions

being concurrently persisted is capped by the RBT size.

VI. CRASH CONSISTENCY FOR SYSTEM CALLS

In the pursuit of whole-system persistence, cWSP faces a

challenge in ensuring consistent NVM states during system

968



calls that require context switch from the user space to

the kernel space. This challenge arises because the entry
function—invoked by every system call—is implemented

using assembly code, and it cannot be partitioned by cWSP

compiler into idempotent regions. As a result, the entry
function is not recoverable if power failure occurs therein.

���

���

�(�� -������(���
�������
���
�
�

�������		$	
	�
�	�

����	�����

����������

	
�������
�������

��$�$��	
�

�$������������
�
�
�

���	�

���	�-���	�����
���	�.��$��.�	����

�	���


����	����

������������

������
�$������������

� 	�!�	��$�
�	���
 ���	� �	���


���	�-���	�����
���	�.��$��.�	����

��"

��#
��$

���

��"

��#

Fig. 11: Region formation for Linux system calls

To address the above challenge, we manually delineate

region boundaries and insert register checkpoints in the entry
function, i.e., entry_SYSCALL_64 in the assembly file

entry_64.S. The overhead caused by these checkpoints

is minimal, since a typical system call involves more than

4000 instructions [117], though other auxiliary functions

called by entry_SYSCALL_64 should also be instrumented.

Figure 11 shows that 2 region boundaries are inserted at

the entry and exit points of entry_SYSCALL_64, and

another region boundary is inserted right before the callsite

do_syscall_64; it transfers the program control to the

beginning of sys_read function pointed to by the input

register %rax; region boundaries for other callsites are omitted

in the figure. With the help of the manual annotation on

entry_SYSCALL_64 and its auxiliary functions, cWSP can

ensure crash consistency for all in that cWSP compiler already

recompiles the glibc and the Linux kernel.

VII. RECOVERY PROTOCOL

�	���	�%�����	����&

�'�-��
�!#� �'
����������	�
��������	�
	
�-���	 	��

��

��� 	��	���


��	�	���	��

���

��

�

���

�������	
���������������
������
���
	��-���	 ���� 	���
�����������
	�������������������
��� �����������  � ���

!�� "��"���#$�����	���	������%�"�����
&'#���"����%�� ������	������
����"���"��������
(��"��������������!�

������	)��% ����

Fig. 12: Recovery process for the interrupted (�) Rg1 and Rg2

In the wake of power failure, cWSP follows its recovery

protocol to resume the power-interrupted program from the

recovery point—the beginning of the oldest unpersisted region.

That is, for the preparation of the region re-execution, cWSP’s

recovery runtime (1) leverages undo logs to make NVM states

consistent and (2) jumps to the region’s recovery slice (RS)

where its live-in registers are restored. Figure 12 shows how

the recovery protocol works. Suppose Rg0 has already been

persisted, and Rg1 is the oldest unpersisted region while Rg2

is speculative. When power failure interrupts Rg1 and Rg2,

cWSP’s runtime first signals all MCs to revert speculative

NVM states; each MC processes its own per-region logs

in a reverse chronological order of Region ID and then

deallocates all its logs (�). The runtime then jumps to Rg1’s

RS (�) that restores its live-in register r3. Finally, at the end of

the RS, it transfers the program control back to the beginning

of Rg1, and the program resumes the execution as is thereafter.

VIII. DISCUSSION

Recovery for Multi-Cores: To ensure correct power failure

recovery for multi-threaded applications on multi-core proces-

sors, cWSP maintains inter-thread dependency [59] by treating

synchronization primitives, such as atomics and fences, as

region boundaries as with prior techniques [11], [49], [55],

[57], [78], [130]. That way, cWSP ensures that stores prior

to synchronization primitives are not only merged into the L1

data cache but also persisted before the primitives are com-

mitted. As a result, for data-race-free (DRF) program assumed

by C/C++ 11 onward, a dependent thread can only enter a

critical section after a source thread has already persisted the

stores of the section and exited the section. The implication

is twofold: (1) upon power failure, there is at most one thread

in the same critical section; (2) in the wake of power failure,

each thread resumes its execution from the end of the latest

persisted section (region) independently without the need to

track the happen-before relationship among threads.

Why Not Use Store Queue as Persist Buffer: Utilizing the

store queue (SQ) as a persist buffer would result in stores being

held in the SQ for an extended period, thereby putting more

pressure on the SQ. While enlarging the SQ could alleviate the

pressure to some extent, it would also increase the latency of

the critical store-to-load forwarding [112], [119], thus affecting

the core pipeline performance.

I/O and Device States: To the best of our knowledge,

supporting irrevocable operations like I/O has been an open

problem. Despite, cWSP can be extended to have battery-

backed redo buffers—organized as a FIFO queue—to ensure

consistent I/O device states across power failure. We suggest

that the number of the redo buffers should match the RBT

size with each buffer indexed by a Region ID. This allows

multiple regions to be persisted concurrently as with the RBT.

During the execution of a region, its I/O operations are held

in the corresponding redo buffer. Once the oldest unpersisted

region becomes persisted, i.e., all its I/O operations already

arrive at the corresponding redo buffer, cWSP flushes their

data to the corresponding devices.

In the event of power failure, cWSP performs two actions

for recovery. First, it exploits the system’s ACPI (Advanced

Configuration and Power Interface) [62], [96] to save device

states—including internal buffers and registers—to NVM.

Second, cWSP examines the FIFO queue from front to rear to

flush I/O data of each persisted region to their target devices.

To ensure in-order region persistence, cWSP stops such an

examination when an unpersisted region is encountered even

969



if there might exist following persisted regions. As such, the

device states get consistent back with those when the oldest

unpersisted region started in the first place. When power

comes back, cWSP’s runtime resumes the execution of the

device driver code from the beginning of the oldest unpersisted

region—which is the recovery point as always.

Software Bugs: Software bugs can corrupt memory data and

in turn lead to system crash. However, this is different from

what cWSP pursues since they are two different problems.

For example, any existing systems that maintain crash consis-

tency, including databases and long-running machine learning

(ML)/high performance computing (HPC) applications, could

still experience crash caused by software bugs.

No Power Failure Recovery Test: At this moment, cWSP

does not conduct experiments for system-level recovery from

power failure, which we admit is a limitation of the current

evaluation. We leave addressing the limitation for our future

work. Nevertheless, the recovery overhead of cWSP would

be negligible since it re-executes only tens of instructions in

power-interrupted regions as described in Section IX-E.

IX. EVALUATION AND ANALYSES

We implement our compilation optimizations atop LLVM

[72] that compile all the evaluated applications with -O3 flag;

they are statically linked against cWSP runtime. Our compiler

passes consist of about 4000 LOC with comments excluded.

We implement our hardware design atop gem5 [9] simulator

to model an 8-core Skylake processor [33] with 2 memory

controllers (MCs). Each of them manages DRAM as an off-

chip direct-mapped LLC as with Intel PMEM’s memory mode.

Each core is equipped with a 64KB 8-way private L1 data

cache with 4-cycle hit latency and a 32KB 8-way private L1

instruction cache with 3-cycle hit latency. All the 8 cores

share a 16MB 16-way L2 cache with 44-cycle hit latency.

The DRAM cache is configured to 4GB DDR4 2400 8x8.

We set NVM main memory to 32GB with read/write latency

of 175ns/90ns [126], [127]. Each MC has a 24-entry battery-

backed WPQ, while RBT/PB sizes are set to 16/50. The round-

trip latency of the persist path is set to 20ns (40 cycles) as with

prior schemes [57], [58], which is considered conservative

as a prior work Hermes [7] assumes a separate data path

of 36-cycle round-trip latency. In addition, cWSP’s persist

path requires a bandwidth of only 4GB/s, which is realistic

considering a 25GB/s DRAM bus [25]. We treat the original

program running on the original hardware platform without

crash consistency support as our baseline.

To highlight WSP’s benefits, we evaluate a variety of

benchmarks, e.g., CPU2006/2017 [10], [46], SPLASH3 [109],

WHISPER [95], STAMP [92], and Mini-apps [64], [121]. We

simulate CPU2006/2017 program with reference input and

modify the source code of WHISPER to stress the DRAM

cache. all SPLASH3/WHISPER/STAMP applications are sim-

ulated in gem5 FS mode. As with prior schemes [31], [32],

[51], [75], [82], [108], [115], [129], [131], we synchronize

the simulation window by measuring the number of function

calls—a constant across different binary versions generated

by varying compiler optimizations—in the baseline to fast-

forward 5 billion instructions and then simulate 1 billion

instructions in gem5’s O3CPU model.

A. Run-time Overhead Analysis

astar
bzip2
gobm

k
h264ref
lbm
lib
quan

m
ilc

nam
d

sjeng
soplex
gm

ean

dsjeng
im
agick

lbm
leela
nab
nam

d
xz gm

ean

lulesh
xsb

ench
gm

ean

cholesky
ff
t
lu-cg
lu-ncg
ocg
oncg
radix
raytrace
w
ater-ns

w
ater-sp

gm
ean

p
c
rb sps
tatp
tp
cc

gm
ean

km
eans

ssca2
vacation
gm

ean
A
ll
gm

ean

1.0 1.0
1.1 1.1
1.2 1.2
1.3 1.3
1.4 1.4

N
or
m
al
iz
ed

S
lo
w
do
w
n

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP

Fig. 13: Normalized slowdown of cWSP to the baseline; the

persist path bandwidth is 4GB/s; lower is better

Figure 13 shows that cWSP incurs an average of only

6% run-time overhead across 37 applications. Notably, cWSP

incurs higher overheads for SPLASH3 applications, e.g.,
lu-contig and radix. This is because: (1) their baselines

have a short execution time due to their low L1 data cache

miss rates (∼2%); they have good data locality due to many

sequential/repeated writes; (2) these sequential/repeated writes

exert a high pressure on the persist path, overflowing the

PB/WPQ frequently and thus causing the higher overheads.

In contrast, other applications exhibit less normalized run-time

overheads due to less frequent NVM writes.

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP All gmean1.0 1.0
1.2 1.2
1.4 1.4
1.6 1.6
1.8 1.8

N
or
m
al
iz
ed

S
lo
w
do
w
n 3.0 3.9 3.6 5.5 5.8 3.6 4.2

ReplayCache Capri-4GB Capri-32GB cWSP-4GB cWSP-32GB

Fig. 14: Normalized slowdown of cWSP and other WSP

schemes; lower is better; the numbers after dash in the legend

indicate the persist path bandwidth

In addition, we compare cWSP with two prior WSP

schemes, ReplayCache [128] and Capri [58], to underscore the

exceptional performance of cWSP. ReplayCache is adapted to

to the evaluated server-class processor since it was originally

designed for energy harvesting systems [16]–[18], [20], [48],

[79], [87], [89], [105], [134] where WSP is the norm. In

the evaluation of cWSP and Capri, we consider two persist

path bandwidth configurations: a practical 4GB/s and an ideal

32GB/s. As shown in Figure 14, cWSP outperforms both

prior schemes across all benchmarks. ReplayCache results

in a significant slowdown (4.3x) due to its software-oriented

design, while Capri backed with 4GB/s persist path bandwidth

incurs an average of 27% run-time overhead due to the

contention on the persist path. Only with the ideal persist path

bandwidth, can Capri be on par with cWSP.

B. Performance Impact of Each Optimization

To show how each cWSP optimization affects the run-time

overhead, we break down the overhead as shown in Figure 15.

Region Formation: reveals that cWSP’s region formation

incurs an average of only 4% run-time overhead.

Persist Path: is the combination of above optimization

with persisting stores to NVM through the persist path. This

increases the average run-time overhead to 10% primarily

because of the contention for the persist path.

970



astar
bzip2
gobm

k
h264ref
lbm
lib
quan

m
ilc

nam
d

sjeng
soplex
gm

ean

dsjeng
im
agick

lbm
leela
nab
nam

d
xz gm

ean

lulesh
xsb

ench
gm

ean

cholesky
ff
t
lu-cg
lu-ncg
ocg
oncg
radix
raytrace
w
ater-ns

w
ater-sp

gm
ean

p
c
rb sps
tatp
tp
cc

gm
ean

km
eans

ssca2
vacation
gm

ean
A
ll
gm

ean

1.0 1.0
1.2 1.2
1.4 1.4
1.6 1.6
1.8 1.8

N
or
m
al
iz
ed

S
lo
w
do
w
n

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP

+Region Formation

+Persist Path

+MC Speculation

+WB Delaying

+WPQ Delaying

+Pruning (cWSP)

Fig. 15: The performance impact of each cWSP optimization; lower is better

MC Speculation: is the combination of all above optimiza-

tions with MC speculation. The resulting overhead remains the

same since a 16-entry RBT is sufficiently large to cover the

persist path latency; details deferred to Section IX-H.
WB Delay: is the combination of all above optimizations

with delaying the writeback from the L1D’s WB; there is no

extra overhead incurred (see Section V-A1 for the reason).
WPQ Delay: is the combination of all above optimizations

with delaying the response from the WPQ in MC for loads

hitting in the WPQ. There is no observable increase in the

run-time overhead (see Section IX-A for the reason).
Pruning (cWSP): uses all above optimizations along with

checkpoint pruning, lowering the average run-time overhead

to only 6%. This technique dramatically reduces the overheads

of certain applications, e.g., water-ns and LULESH.

C. Run-Time Overhead Analysis for CXL-Based NVM

TABLE I: CXL memory devices

Device CXL IP
Memory

Technology
Max. Bandwidth

Latency
(read/write)

CXL-A (NVDIMM) Hard IP DDR5-4800 38.4GB/s 158ns/120ns
CXL-B (NVDIMM) Hard IP DDR4-2400 19.2GB/s 223ns/139ns
CXL-C (NVDIMM) Soft IP DDR4-3200 25.6GB/s 348ns/241ns

CXL-D (PMEM) Simulation Intel Optane
6.6GB/s for read
2.3GB/s for write

245ns/160ns

*
�������!��

�����������	


��������
�������

��
�	�������
��

��

��

��

���

�� ��

��
�
���	�������

���� !�
�������	


����"


������
#$����������%
���	�&����

Fig. 16: cWSP architecture

for CXL-based NVM; local

DRAM served as an LLC

atop the NVM

To showcase the scalability

of cWSP for the future far

CXL-based NVM, we model

three CXL NVDIMMs (CXL-

A to CXL-C) in our simula-

tor with the parameters from

a recent empirical analysis of

CXL DRAM memory [120].

Additionally, we model an-

other CXL PMEM (CXL-D)

by adding 70ns CXL intercon-

nect latency [74] to the existing

PMEM technology [127]. We

keep all other parameters the

same as those listed in Section IX, except for the latency and

bandwidth parameters of the CXL-based NVM.
Figure 16 depicts the high-level architecture of cWSP where

local DRAM works as an LLC atop of CXL-based NVM.

Note that the persistence domain just moves from the battery-

backed WPQ of conventional MC—as shown in Figure 3 (b)—

to the one of CXL Home Agent (HA)6, keeping the persist path

6It controls the communication between the processor core and the CXL-
based NVM, e.g., translating load/store requests into PCIe transactions [22].

length technically the same. The implication of the battery-

backed WPQ of the HA is that the data being stored become

persistent as soon as they arrive in the WPQ. In other words,

on power failure occurs, data buffered in the WPQ are ensured

to be flushed to the CXL-based NVM through the internal

buffers along the way, i.e., cWSP does not have to pay for

the long latency of traveling from the HA to the CXL-based

NVM. With the help of the same persist path length, cWSP

maintains high performance for such a deep cache hierarchy.

astar

lbm

lib
quan

m
ilc

gm
ean

lulesh

xsb
ench

gm
ean

p
c

rb sps

tatp

tp
cc

gm
ean

all
gm

ean

1.00 1.00
1.05 1.05
1.10 1.10
1.15 1.15
1.20 1.20

N
or
m
al
iz
ed

S
lo
w
do
w
n

CPU2006 Mini-apps WHISPER

CXL-A-cWSP CXL-B-cWSP CXL-C-cWSP CXL-D-cWSP

Fig. 17: Normalized slowdown of cWSP to the baseline

(original program on CXL devices without crash consistency

support) with varying CXL configuration; lower is better

Figure 17 shows the normalized slowdown of cWSP across

selected memory intensive applications with varying CXL

devices. The memory footprints of those program range from

2.5GB to 6GB. Notably, cWSP maintains an average of only

4% run-time overhead, regardless of the speed of the under-

lying CXL memory. Intriguingly, cWSP exhibits a slightly

higher overhead with faster CXL memory. This is because

cWSP benefits less from the speed enhancement in comparison

to the baseline—primarily due to store persistence, leading

to a higher normalized overhead. This trend aligns with the

observation made with fast NVM technology, as detailed in

Section IX-M. Note that cWSP incurs higher overheads for

some applications, e.g., lbm and XSBench, due to more RBT

overflow caused by their shorter regions; see Section IX-E.

D. Comparison to Partial-System Persistence

To highlight the benefits of enabling DRAM as a cache, we

implement an optimized version of BBB [3] that behaves as

an ideal PSP scheme like Intel eADR with DRAM disabled.

We believe that this ideal PSP attains the performance akin to

LightPC [73], a system that replaces DRAM with slower PCM

RAM and relies on the modified OS to flush the entire volatile

data to NVM right before power failure. We then compare

cWSP to this ideal PSP scheme across those selected memory

intensive applications; their L2 miss rates range from 20%

to 100%. Figure 18 shows that cWSP incurs an average of

only 3% run-time overhead, thanks to enabling the DRAM

cache. In contrast, the ideal PSP scheme causes a substantial

971



52% performance slowdown on average in that every single

memory operation must access slower NVM.

astar

lbm

lib
quan

m
ilc

gm
ean

lulesh

xsb
ench

gm
ean

p
c

rb sps

tatp

tp
cc

gm
ean

all
gm

ean

1.0 1.0
1.2 1.2
1.4 1.4
1.6 1.6
1.8 1.8

E
xe
cu
ti
on

S
lo
w
do
w
n

CPU2006 Mini-apps WHISPER

2.6 2.1
cWSP BBB/eADR/LightPC

Fig. 18: Normalized slowdown of cWSP and the ideal PSP

(BBB/eADR/LightPC) to the baseline; lower is better

E. Region Characteristics

astar
bzip2
gobm

k
h264ref
lbm
lib
quan

m
ilc

nam
d

sjeng
soplex
gm

ean

dsjeng
im
agick

lbm
leela
nab
nam

d
xz gm

ean

lulesh
xsb

ench
gm

ean

cholesky
ff
t
lu-cg
lu-ncg
ocg
oncg
radix
raytrace
w
ater-ns

w
ater-sp

gm
ean

p
c
rb sps
tatp
tp
cc

gm
ean

km
eans

ssca2
vacation
gm

ean
A
ll
gm

ean

0 0

50 50

100 100

150 150

#
In
st
ru
ct
io
ns

P
er
R
eg
io
n

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP

Fig. 19: Average number of instructions in regions

Given the critical role of idempotent region size in in-

fluencing power failure recovery time and the efficiency of

the asynchronous store persistence, we collect the number of

dynamic instructions in each region and report the average

numbers in Figure 19. It shows that there are 38.15 instructions

in each region on average, which signifies cWSP’s fast failure

recovery. Furthermore, with a 16-entry RBT, cWSP overlaps

the long persistence latency of the oldest unpersisted region

with the execution latency of 572 (16x38.15) instructions.

F. Impact of Deeper Cache Hierarchy

astar
bzip2
gobm

k
h264ref
lbm
lib
quan

m
ilc

nam
d

sjeng
soplex
gm

ean

dsjeng
im
agick

lbm
leela
nab
nam

d
xz gm

ean

lulesh
xsb

ench
gm

ean

cholesky
ff
t
lu-cg
lu-ncg
ocg
oncg
radix
raytrace
w
ater-ns

w
ater-sp

gm
ean

p
c
rb sps
tatp
tp
cc

gm
ean

km
eans

ssca2
vacation
gm

ean
A
ll
gm

ean

1.0 1.0

1.1 1.1

1.2 1.2

1.3 1.3

E
xe
cu
ti
on

S
lo
w
do
w
n

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP

1.4 1.5

cWSP-L3

Fig. 20: cWSP’s slowdown with L3 cache

To show how cWSP performs for a deeper cache hierarchy,

i.e., a 3-level SRAM cache atop DRAM cache, we add a

shared 16-way set-associative writeback L3 cache of 44-cycle

hit latency to both cWSP and the baseline. We also change

the existing L2 cache in Figure 3 (b) to a private 8-way set-

associative L2 with 1MB and 14-cycle hit latency. Figure 20

depicts that cWSP still incurs a low run-time overhead, i.e.,
only 8% on average, thanks to the efficient asynchronous store

persistence; see Section IX-H for details.

G. Impact of Persist Path Bandwidth

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP All gmean1.0 1.0

1.2 1.2

1.4 1.4

1.6 1.6

N
or
m
al
iz
ed

S
lo
w
do
w
n 1.8 2.4

1GB 2GB 4GB (default) 10GB 20GB 32GB

Fig. 21: cWSP’s slowdown with varying persist path band-

width from 1GB/s up to 32GB/s; lower is better

Since cWSP persists stores to NVM through the persist

path, its bandwidth plays a key role in determining the overall

performance. To explore the impact of persist path bandwidth

on cWSP’s performance, we conduct experiments with varying

persist path bandwidth, from 1GB/s up to 32GB/s, as shown

in Figure 21. The key trend is that the run-time overhead of

cWSP decreases as the bandwidth rises. Thanks to cWSP’s

8-byte persist granularity, cWSP’s run-time overhead remains

the same once the bandwidth rises beyond 10GB/s, confirming

cWSP’s low demand for persist path bandwidth.

H. Sensitivity to Region Boundary Table (RBT) Size

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP All gmean1.00 1.00
1.05 1.05
1.10 1.10
1.15 1.15
1.20 1.20

N
or
m
al
iz
ed

S
lo
w
do
w
n

RBT-8 RBT-16 (default) RBT-32

Fig. 22: cWSP’s normalized slowdown with varying RBT size

The region boundary table (RBT) is so critical that its

size highly affects how frequently the core pipeline stalls;

the core pipeline stalls at a region boundary if RBT is full.

We systematically vary RBT size from 8 to 32 to assess

cWSP’s performance. As shown in Figure 22, cWSP’s run-

time overhead rises to 11% on average and up to 20% for

SPLASH3, when setting RBT size to 8. This is because the

regions of SPLASH3 program are relatively short, leading to

more pipeline stalls for a 8-entry RBT. Here, cWSP’s run-time

overhead decreases to only 4% with a 32-entry RBT.

I. Sensitivity to Persist Path Latency

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP All gmean1.00 1.00
1.05 1.05
1.10 1.10
1.15 1.15

N
or
m
al
iz
ed

S
lo
w
do
w
n

Lat-10 Lat-20 (default) Lat-30 Lat-40

Fig. 23: cWSP’s slowdown with varying persist path latency

from 10ns to 40ns

To show the impact of persist path latency on cWSP’s per-

formance, we vary the persist path latency from 10ns to 40ns.

Figure 23 shows that the persist path latency can be almost

entirely overlapped by region execution, even if the latency

increases up to 40ns, thanks to the efficient asynchronous

store persistence enabled by RBT. Notably, SPLASH3 exhibits

a higher run-time overhead caused by more frequent NVM

writes; please refer to Section IX-A for details.

J. Sensitivity to Write Buffer (WB) Size

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP All gmean1.00 1.00
1.05 1.05
1.10 1.10
1.15 1.15

N
or
m
al
iz
ed

S
lo
w
do
w
n

WB-8 WB-16 WB-32 (default)

Fig. 24: cWSP’s slowdown with varying L1D’s WB size

To show the impact of delaying dirty cacheline writeback

from the L1D’s WB, we conduct a series of simulations with

varying the WB size. Figure 24 depicts that cWSP’s overhead

remains the same no matter how small the WB is owing to the

faster enough persist path; refer to Section V-A for details.

972



K. Sensitivity to Persist Buffer (PB) Size

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP All gmean1.00 1.00
1.05 1.05
1.10 1.10
1.15 1.15

N
or
m
al
iz
ed

S
lo
w
do
w
n

PB-20 PB-40 PB-50 (default) PB-60

Fig. 25: cWSP’s slowdown with varying PB size

As a critical component, the PB should be large enough

so as not to congest the persist path frequently. Figure 25

shows that cWSP’s performance is insensitive to PB size.

Here, cWSP’s overhead rises to only 7% even if the PB size

is 20, thanks to the asynchronous store persistence; cWSP sets

default PB size to 50 for maximal performance.

L. Sensitivity to NVM WPQ Size

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP All gmean1.0 1.0
1.1 1.1
1.2 1.2
1.3 1.3

N
or
m
al
iz
ed

S
lo
w
do
w
n

WPQ-8 WPQ-16 WPQ-24 (default) WPQ-32

Fig. 26: cWSP’s slowdown with varying WPQ size

As a shared component among multiple cores, NVM WPQ

should be appropriately sized to keep the pressure on it low.

Figure 26 shows that a 24-entry WPQ is large enough maintain

cWSP’s low run-time overhead; it is cheap to scale the WPQ

size to 24 owing to its 8-byte granularity. As the WPQ

size decreases to 8, cWSP still incurs a moderate run-time

overhead, i.e., 11% on average. Notably, cWSP incurs an up

to 31% overhead for SPLASH3 due to a high pressure on the

WPQ caused by its frequent NVM writes.

M. Sensitivity to NVM Technology

To analyze how NVM technologies affect the performance

of cWSP, we evaluate cWSP for 3 NVM technologies: PMEM

[126], STT-MRAM [15], and ReRAM [14]. Figure 27 shows

that cWSP maintains its low overhead (8%), regardless of

the NVM technique. Note that cWSP incurs a marginally

elevated overhead with fast NVM techniques, e.g., ReRAM.

This phenomenon arises from the fact that cWSP benefits less

from faster NVM techniques than the baseline—due to the

store persistence, resulting in a higher normalized overhead;

the same phenomenon appears for faster CXL devices (see

Section IX-C).

CPU2006 CPU2017 Mini-apps SPLASH3 WHISPER STAMP All gmean1.0 1.0
1.1 1.1
1.2 1.2
1.3 1.3

N
or
m
al
iz
ed

S
lo
w
do
w
n

PMEM (default) STTRAM ReRAM

Fig. 27: cWSP’s slowdown with varying NVM technologies

N. Hardware Overhead

cWSP incurs only a storage overhead of 176 bytes for the

16-entry RBT whose entry size is 11 bytes (see Figure 9).

Note that cWSP does not incur hardware overhead for the PB

since it can be covered by the Intel 1KB write-combing buffer

(WCB) [27]. We also use CACTI [94] with 22nm technology

to calculate the hardware overhead of the RBT. The calculation

results turn out that the RBT costs only 0.001mm2.

X. OTHER RELATED WORK

In general, there are two types of application-level crash

consistency schemes that are implemented by software: (1)

failure-atomic sections (FASEs) protected by the outermost

pair of lock and unlock as in iDO [78] and (2) persistent

transactions such as Clobber-NVM [125] and LAD [44]. On

one hand, iDO achieves correct power failure recovery using

idempotent processing and live-out register checkpointing.

However, it incurs a high run-time overhead due to intro-

ducing persist barriers at each region boundary. On the other

hand, Clobber-NVM undo logs program stores as with other

transaction-based schemes yet in a more intelligent way. That

is, rather than undo logging every store in a transaction,

Clobber-NVM does only antidependent therein—since others

are to be reinitialized during the re-execution of power-

interrupted transaction. In a sense, Clobber-NVM resembles

the MC speculation of cWSP in that it also undo-logs cross-

idempotent-region stores that might be antidependent on some

prior region’s loads. However, Clobber-NVM still suffers from

persist barrier cost between the transactional store and its log

stores. LAD [44] uses a hardware redo buffer in MC to log

memory updates of transactions. Unfortunately, LAD needs

to fall back to undo logging upon full redo buffer. Moreover,

LAD suffers from frequent core pipeline stalls, i.e., 163 cycles

on average, at end of short each transaction; its size is limited

to the redo buffer size.

LightPC [73] and Zhuque [47] offer crash consistency and

persistence at the process level. They are inferior to cWSP

for 3 reasons: (1) requiring extensive modifications on the OS

source code or C library, (2) having poor performance due

to the inability to enable DRAM; LightPC uses PCM RAM,

while Zhuque maps the memory objects of user processes to

PMEM space, and (3) consuming a lot of energy to dump

entire volatile states to NVM upon power loss as with the

pioneering work on WSP [96].

XI. CONCLUSION

This paper presents cWSP, a compiler-directed whole-

system persistence (WSP) scheme. cWSP compiler partitions

input program into a series of idempotent regions so that

the program can correctly recover from power failure by re-

executing the oldest unpersisted region. During the execution

of the idempotent regions, cWSP architecture persists their

data being stored in a performant way without breaking the

recovery guarantee. Experimental results with 37 applica-

tions from SPEC CPU2006/2017/DOE Mini-apps/SPLASH3/

WHISPER/STAMP highlight the low run-time overhead of

cWSP, i.e., 6% on average, achieving a 4.5x reduction com-

pared to that of the state-of-the-art work.

ACKNOWLEDGMENT

We thank anonymous reviewers and our shepherd for their

valuable comments. This work was supported by NSF grants

2001124 (CAREER), 2153749, and 2314681.

973



REFERENCES

[1] S Aggarwal, H Almasi, M DeHerrera, B Hughes, S Ikegawa, J Janesky,
HK Lee, H Lu, FB Mancoff, K Nagel, et al. Demonstration of a reliable
1 gb standalone spin-transfer torque mram for industrial applications.
In 2019 IEEE International Electron Devices Meeting (IEDM), pages
2–1. IEEE, 2019.

[2] Hiroyuki Akinaga and Hisashi Shima. Resistive random access memory
(reram) based on metal oxides. Proceedings of the IEEE, 98(12):2237–
2251, 2010.

[3] Mohammad Alshboul, Prakash Ramrakhyani, William Wang, James
Tuck, and Yan Solihin. Bbb: Simplifying persistent programming
using battery-backed buffers. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 111–124.
IEEE, 2021.

[4] Igor Arsovski and Reid Wistort. Self-referenced sense amplifier for
across-chip-variation immune sensing in high-performance content-
addressable memories. In IEEE Custom Integrated Circuits Conference
2006, pages 453–456. IEEE, 2006.

[5] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake
Larson. Bztree: A high-performance latch-free range index for non-
volatile memory. Proceedings of the VLDB Endowment, 11(5):553–
565, 2018.

[6] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy
Ranganathan. Memory hierarchy for web search. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 643–656. IEEE, 2018.

[7] Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David
Novo, Ataberk Olgun, Mohammad Sadrosadat, and Onur Mutlu. Her-
mes: Accelerating long-latency load requests via perceptron-based off-
chip load prediction. In 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1–18. IEEE, 2022.

[8] Abhishek Bhattacharyya, Abhijith Somashekhar, and Joshua San
Miguel. Nvmr: non-volatile memory renaming for intermittent com-
puting. In Proceedings of the 49th Annual International Symposium
on Computer Architecture, pages 1–13, 2022.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower,
Tushar Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM
SIGARCH computer architecture news, 39(2):1–7, 2011.

[10] James Bucek, Klaus-Dieter Lange, et al. Spec cpu2017: Next-
generation compute benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, pages 41–42.
ACM, 2018.

[11] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas:
Leveraging locks for non-volatile memory consistency. ACM SIGPLAN
Notices, 49(10):433–452, 2014.

[12] Yangyin Chen. Reram: History, status, and future. IEEE Transactions
on Electron Devices, 67(4):1420–1433, 2020.

[13] Ping Chi, Shuangchen Li, Yuanqing Cheng, Yu Lu, Seung H Kang,
and Yuan Xie. Architecture design with stt-ram: Opportunities and
challenges. In 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 109–114. IEEE, 2016.

[14] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, Yu Wang, and Yuan Xie. Prime: A novel processing-in-memory
architecture for neural network computation in reram-based main
memory. ACM SIGARCH Computer Architecture News, 44(3):27–39,
2016.

[15] Ping Chi, Cong Xu, Tao Zhang, Xiangyu Dong, and Yuan Xie. Using
multi-level cell stt-ram for fast and energy-efficient local checkpoint-
ing. In 2014 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 301–308. IEEE, 2014.

[16] Jongouk Choi, Hyunwoo Joe, and Changhee Jung. Capos: Capac-
itor error resilience for energy harvesting systems. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
41(11):4539–4550, 2022.

[17] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung.
Achieving stagnation-free intermittent computation with boundary-free
adaptive execution. In 2019 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), pages 331–344. IEEE, 2019.

[18] Jongouk Choi, Larry Kittinger, Qingrui Liu, and Changhee Jung.
Compiler-directed high-performance intermittent computation with
power failure immunity. In 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 40–54. IEEE,
2022.

[19] Jongouk Choi, Qingrui Liu, and Changhee Jung. Cospec: Compiler
directed speculative intermittent computation. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 399–412, 2019.

[20] Jongouk Choi, Jianping Zeng, Dongyoon Lee, Changwoo Min, and
Changhee Jung. Write-light cache for energy harvesting systems. In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, pages 1–13, 2023.

[21] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages 133–
146, 2009.

[22] CXL Consortium. Compute express link: The breakthrough cpu-to-
device interconnect. https://www.computeexpresslink.org/, 2023.

[23] Intel Corporation. Persistent memory programming. https://pmem.io.
[24] Intel Corporation. Deprecating the pcommit instruction.

https://www.intel.com/content/www/us/en/developer/articles/technical/
deprecate-pcommit-instruction.html, 2016.

[25] Intel Corporation. Memory performance in a nutshell.
https://www.intel.com/content/www/us/en/developer/articles/technical/
memory-performance-in-a-nutshell.html, 2016.

[26] Intel Corporation. eadr: New opportunities for persistent memory
applications. https://www.intel.com/content/www/us/en/developer/
articles/technical/eadr-new-opportunities-for-persistent-memory-
applications.html, 2021.

[27] Intel Corporation. Intel® 64 and ia-32 architectures optimization refer-
ence. https://cdrdv2-public.intel.com/671488/248966-046A-software-
optimization-manual.pdf, 2023.

[28] Microsoft Corporation. Intel optane dc persistent memory,
azure netapp files, and azure ultra disk for sap hana.
https://azure.microsoft.com/en-us/blog/intel-optane-dc-persistent-
memory-azure-netapp-files-and-more-for-sap-hana/.

[29] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Effi-
cient algorithms for persistent transactional memory. In Proceedings of
the 30th on Symposium on Parallelism in Algorithms and Architectures,
pages 271–282, 2018.

[30] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and Vijay Na-
garajan. Lazy release persistency. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1173–1186, 2020.

[31] Marc De Kruijf and Karthikeyan Sankaralingam. Idempotent processor
architecture. In 2011 44th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 140–151. IEEE, 2011.

[32] Marc De Kruijf and Karthikeyan Sankaralingam. Idempotent code
generation: Implementation, analysis, and evaluation. In Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 1–12. IEEE, 2013.

[33] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius Mandelblat,
Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin,
and Adi Yoaz. Inside 6th-generation intel core: New microarchitecture
code-named skylake. IEEE Micro, 37(2):52–62, 2017.

[34] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the clouds:
a study of emerging scale-out workloads on modern hardware. Acm
sigplan notices, 47(4):37–48, 2012.

[35] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. A case for specialized
processors for scale-out workloads. IEEE Micro, 34(3):31–42, 2014.

[36] Free Software Foundation. Gnu c standard library. https://www.gnu.
org/software/libc/.

[37] LLVM Foundation. compiler-rt runtime libraries. https://compiler-
rt.llvm.org/.

[38] LLVM Foundation. A llvm-compatible unwinder. https://bcain-llvm.
readthedocs.io/projects/libunwind/en/latest/.

[39] LLVM Foundation. A new c++ standard library for llvm. https://libcxx.
llvm.org/.

[40] Kaan Genç, Michael D Bond, and Guoqing Harry Xu. Crafty: Efficient,
htm-compatible persistent transactions. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 59–74, 2020.

974



[41] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M Chen,
Satish Narayanasamy, and Thomas F Wenisch. Relaxed persist ordering
using strand persistency. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 652–665. IEEE,
2020.

[42] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Yashme: de-
tecting persistency races. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 830–845, 2022.

[43] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang,
Haibing Guan, and Haibo Chen. Pisces: A scalable and efficient
persistent transactional memory. In 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19), pages 913–928, 2019.

[44] Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. Distributed
logless atomic durability with persistent memory. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 466–478, 2019.

[45] Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. Platform
storage performance with 3d xpoint technology. Proceedings of the
IEEE, 105(9):1822–1833, 2017.

[46] John L Henning. Spec cpu2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News, 34(4):1–17, 2006.

[47] George Hodgkins, Yi Xu, Steven Swanson, and Joseph Izraelevitz.
Zhuque: Failure is not an option,{it’s} an exception. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23), pages 833–849, 2023.

[48] Ali Hoseinghorban, Amir Mahdi Hosseini Hosseini Monazzah, Mostafa
Bazzaz, Bardia Safaei, and Alireza Ejlali. Coach: Consistency aware
check-pointing for nonvolatile processor in energy harvesting systems.
IEEE Transactions on Emerging Topics in Computing, 2019.

[49] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly
Keeton, and Patrick Eugster. Nvthreads: Practical persistence for
multi-threaded applications. In Proceedings of the Twelfth European
Conference on Computer Systems, pages 468–482, 2017.

[50] Yiming Huai et al. Spin-transfer torque mram (stt-mram): Challenges
and prospects. AAPPS bulletin, 18(6):33–40, 2008.

[51] Shao-Yu Huang, Jianping Zeng, Xuanliang Deng, Sen Wang, Ashrarul
Sifat, Burhanuddin Bharmal, Jia-Bin Huang, Ryan Williams, Haibo
Zeng, and Changhee Jung. Rtailor: Parameterizing soft error resilience
for mixed-criticality real-time systems. In 2023 IEEE Real-Time
Systems Symposium (RTSS), pages 344–357. IEEE, 2023.

[52] Advanced Micro Devices Inc. Amd epyc 9654p. https://www.amd.
com/en/products/cpu/amd-epyc-9654p, 2023.

[53] Advanced Micro Devices Inc. Amd epyc 9754. https://www.amd.com/
en/products/cpu/amd-epyc-9754, 2023.

[54] Intel. Intel optane dc persistent memory quick start guide.
https://www.intel.com/content/dam/support/us/en/documents/memory-
and-storage/data-center-persistent-mem/Intel-Optane-DC-Persistent-
Memory-Quick-Start-Guide.pdf, June 2020.

[55] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic
persistent memory updates via justdo logging. ACM SIGARCH Com-
puter Architecture News, 44(2):427–442, 2016.

[56] Jungi Jeong, Jaewan Hong, Seungryoul Maeng, Changhee Jung, and
Youngjin Kwon. Unbounded hardware transactional memory for a
hybrid dram/nvm memory system. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 525–
538. IEEE, 2020.

[57] Jungi Jeong and Changhee Jung. Pmem-spec: persistent memory specu-
lation (strict persistency can trump relaxed persistency). In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 517–529,
2021.

[58] Jungi Jeong, Jianping Zeng, and Changhee Jung. Capri: Compiler and
architecture support for whole-system persistence. In Proceedings of
the 31st International Symposium on High-Performance Parallel and
Distributed Computing, pages 71–83, 2022.

[59] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas.
Efficient persist barriers for multicores. In Proceedings of the 48th
International Symposium on Microarchitecture, pages 660–671, 2015.

[60] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Dhtm:
Durable hardware transactional memory. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA),
pages 452–465. IEEE, 2018.

[61] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. Atom:
Atomic durability in non-volatile memory through hardware logging. In

2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 361–372. IEEE, 2017.

[62] Asim Kadav, Matthew J Renzelmann, and Michael M Swift. Fine-
grained fault tolerance using device checkpoints. 48(4):473–484, 2013.

[63] Vasileios Karakostas, Osman S Unsal, Mario Nemirovsky, Adrian
Cristal, and Michael Swift. Performance analysis of the memory man-
agement unit under scale-out workloads. In 2014 IEEE International
Symposium on Workload Characterization (IISWC), pages 1–12. IEEE,
2014.

[64] Ian Karlin, Jeff Keasler, and J Robert Neely. Lulesh 2.0 updates and
changes. Technical report, Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), 2013.

[65] AV Khvalkovskiy, Dmytro Apalkov, S Watts, Roman Chepulskii,
RS Beach, Adrian Ong, X Tang, A Driskill-Smith, WH Butler, PB Viss-
cher, et al. Basic principles of stt-mram cell operation in memory
arrays. Journal of Physics D: Applied Physics, 46(7):074001, 2013.

[66] Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-
Majeed, Jaejin Lee, and Changhee Jung. Compiler-directed soft error
resilience for lightweight gpu register file protection. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 989–1004, 2020.

[67] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap,
and Changwoo Min. Pactree: A high performance persistent range
index using pac guidelines. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles CD-ROM, pages 424–439,
2021.

[68] Andreas Köhler and Lorenz Erdmann. Expected environmental impacts
of pervasive computing. Human and Ecological Risk Assessment,
10(5):831–852, 2004.

[69] Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Pe-
ter M Chen, Satish Narayanasamy, and Thomas F Wenisch. Language-
level persistency. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), pages 481–493. IEEE,
2017.

[70] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M Chen, and Thomas F Wenisch. Delegated
persist ordering. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[71] R Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony
Demeri, Changwoo Min, and Sudarsun Kannan. Durable transactional
memory can scale with timestone. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 335–349, 2020.

[72] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004.,
pages 75–86. IEEE, 2004.

[73] Sangwon Lee, Miryeong Kwon, Gyuyoung Park, and Myoungsoo Jung.
Lightpc: hardware and software co-design for energy-efficient full
system persistence. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, pages 289–305, 2022.

[74] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, et al. Pond: Cxl-based memory pooling systems
for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, pages 574–587, 2023.

[75] Lin Li, Vijay Degalahal, Narayanan Vijaykrishnan, Mahmut Kandemir,
and Mary Jane Irwin. Soft error and energy consumption interactions:
A data cache perspective. In Proceedings of the 2004 international
symposium on Low power electronics and design, pages 132–137,
2004.

[76] Fujitsu Semiconductor Memory Solution Limited. https://www.fujitsu.
com/jp/group/fsm/en/products/reram/ReRAM whitepaper 2023e.pdf,
2023.

[77] Gang Liu, Kenli Li, Zheng Xiao, and Rujia Wang. Ps-oram: Efficient
crash consistency support for oblivious ram on nvm. In Proceedings of
the 49th Annual International Symposium on Computer Architecture,
pages 188–203, 2022.

[78] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H
Noh, and Changhee Jung. ido: Compiler-directed failure atomicity for
nonvolatile memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258–270. IEEE,
2018.

975



[79] Qingrui Liu and Changhee Jung. Lightweight hardware support for
transparent consistency-aware checkpointing in intermittent energy-
harvesting systems. In 2016 5th Non-Volatile Memory Systems and
Applications Symposium (NVMSA), pages 1–6. IEEE, 2016.

[80] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari.
Clover: Compiler directed lightweight soft error resilience. ACM
Sigplan Notices, 50(5):1–10, 2015.

[81] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari.
Compiler-directed lightweight checkpointing for fine-grained guaran-
teed soft error recovery. In SC’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 228–239, 2016.

[82] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. Low-
cost soft error resilience with unified data verification and fine-grained
recovery for acoustic sensor based detection. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, page 25.
IEEE Press, 2016.

[83] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari.
Compiler-directed soft error detection and recovery to avoid due and
sdc via tail-dmr. ACM Transactions on Embedded Computing Systems
(TECS), 16(2):32, 2017.

[84] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. Pmfuzz:
test case generation for persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 487–502,
2021.

[85] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-failure bug detection in
persistent memory programs. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1187–1202, 2020.

[86] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira
Khan. Pmtest: A fast and flexible testing framework for persistent
memory programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 411–425, 2019.

[87] Yongpan Liu, Zewei Li, Hehe Li, Yiqun Wang, Xueqing Li, Kaisheng
Ma, Shuangchen Li, Meng-Fan Chang, Sampson John, Yuan Xie,
et al. Ambient energy harvesting nonvolatile processors: from circuit
to system. In Proceedings of the 52nd Annual Design Automation
Conference, pages 1–6, 2015.

[88] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos,
Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic,
Sachin Idgunji, Emre Ozer, et al. Scale-out processors. ACM SIGARCH
Computer Architecture News, 40(3):500–511, 2012.

[89] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,
Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan
Narayanan. Architecture exploration for ambient energy harvesting
nonvolatile processors. In 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), pages 526–537.
IEEE, 2015.

[90] Virendra J Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Per-
sistent memcached: Bringing legacy code to byte-addressable persistent
memory. In 9th {USENIX} Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), 2017.

[91] Amirsaman Memaripour and Steven Swanson. Breeze: User-level
access to non-volatile main memories for legacy software. In 2018
IEEE 36th International Conference on Computer Design (ICCD),
pages 413–422. IEEE, 2018.

[92] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. Stamp: Stanford transactional applications for multi-
processing. In 2008 IEEE International Symposium on Workload
Characterization, pages 35–46. IEEE, 2008.

[93] Sunil Kumar Mohapatra, Priyadarshini Nayak, Sushruta Mishra, and
Sukant Kishoro Bisoy. Green computing: a step towards eco-friendly
computing. In Emerging trends and applications in cognitive comput-
ing, pages 124–149. IGI global, 2019.

[94] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. Cacti 6.0: A tool to model large caches. HP laboratories,
1:1–24, 2009.

[95] Sanketh Nalli, Swapnil Haria, Mark D Hill, Michael M Swift, Haris
Volos, and Kimberly Keeton. An analysis of persistent memory use
with whisper. ACM SIGPLAN Notices, 52(4):135–148, 2017.

[96] Dushyanth Narayanan and Orion Hodson. Whole-system persistence.
In Proceedings of the seventeenth international conference on Archi-

tectural Support for Programming Languages and Operating Systems,
pages 401–410, 2012.

[97] Ian Neal, Andrew Quinn, and Baris Kasikci. Hippocrates: healing
persistent memory bugs without doing any harm. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 401–414,
2021.

[98] Robert HB Netzer and Barton P Miller. What are race conditions? some
issues and formalizations. ACM Letters on Programming Languages
and Systems (LOPLAS), 1(1):74–88, 1992.

[99] Tri M Nguyen and David Wentzlaff. Picl: A software-transparent,
persistent cache log for nonvolatile main memory. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 507–519. IEEE, 2018.

[100] Anant Vithal Nori, Jayesh Gaur, Siddharth Rai, Sreenivas Subramoney,
and Hong Wang. Criticality aware tiered cache hierarchy: A fundamen-
tal relook at multi-level cache hierarchies. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA),
pages 96–109. IEEE, 2018.

[101] Trail of Bits. Remill: a static binary translator from machine code
instructions to llvm bitcode. https://github.com/lifting-bits/remill, 2024.

[102] Steven Pelley, Peter M Chen, and Thomas F Wenisch. Memory
persistency. In 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pages 265–276. IEEE, 2014.

[103] Ivy B Peng, Maya B Gokhale, and Eric W Green. System evaluation
of the intel optane byte-addressable nvm. In Proceedings of the
International Symposium on Memory Systems, pages 304–315, 2019.

[104] Jens F Peters, Manuel Baumann, Benedikt Zimmermann, Jessica
Braun, and Marcel Weil. The environmental impact of li-ion batteries
and the role of key parameters–a review. Renewable and Sustainable
Energy Reviews, 67:491–506, 2017.

[105] Shashank Priya and Daniel J Inman. Energy harvesting technologies,
volume 21. Springer, 2009.

[106] Moinuddin K Qureshi, John Karidis, Michele Franceschini, Vijay-
alakshmi Srinivasan, Luis Lastras, and Bulent Abali. Enhancing
lifetime and security of pcm-based main memory with start-gap wear
leveling. In 2009 42nd Annual IEEE/ACM international symposium on
microarchitecture (MICRO), pages 14–23. IEEE, 2009.

[107] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. Hemem: Scalable tiered memory management for big data
applications and real nvm. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages 392–407, 2021.

[108] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei
Wu, and Onur Mutiu. Thynvm: Enabling software-transparent crash
consistency in persistent memory systems. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 672–685. IEEE, 2015.

[109] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros.
Splash-3: A properly synchronized benchmark suite for contemporary
research. In 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 101–111. IEEE,
2016.

[110] Samsung. Samsung electronics unveils industry’s highest-
capacity 12nm-class 32gb ddr5 dram, ideal for the ai era.
https://news.samsung.com/global/samsung-electronics-unveils-
industrys-first-and-highest-capacity-12nm-class-32gb-ddr5-dram-
ideal-for-the-ai-era, 2023.

[111] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and
Hasso Plattner. nvm malloc: Memory allocation for nvram. Adms@
Vldb, 15:61–72, 2015.

[112] Tingting Sha, Milo MK Martin, and Amir Roth. Scalable store-load
forwarding via store queue index prediction. In 38th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’05), pages 12–
pp. IEEE, 2005.

[113] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In 2020 USENIX annual technical conference (USENIX ATC 20), pages
205–218, 2020.

[114] Sara Mahdizadeh Shahri, Seyed Armin Vakil Ghahani, and Aasheesh
Kolli. (almost) fence-less persist ordering. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 539–554. IEEE, 2020.

976



[115] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris
Wilkerson, Seth H Pugsley, and Zeshan Chishti. Efficiently prefetching
complex address patterns. In Proceedings of the 48th International
Symposium on Microarchitecture, pages 141–152, 2015.

[116] Seunghee Shin, Satish Kumar Tirukkovalluri, James Tuck, and Yan
Solihin. Proteus: A flexible and fast software supported hardware
logging approach for nvm. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 178–
190, 2017.

[117] Livio Soares and Michael Stumm. {FlexSC}: Flexible system call
scheduling with {Exception-Less} system calls. In 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
10), 2010.

[118] Rick Stevens, Jini Ramprakash, Paul Messina, Michael Papka, and
Katherine Riley. Aurora: Argonne’s next-generation exascale super-
computer. Technical report, Argonne National Lab.(ANL), Argonne,
IL (United States), 2019.

[119] Sam S Stone, Kevin M Woley, and Matthew I Frank. Address-
indexed memory disambiguation and store-to-load forwarding. In
38th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’05), pages 12–pp. IEEE, 2005.

[120] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, et al.
Demystifying cxl memory with genuine cxl-ready systems and devices.
In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 105–121, 2023.

[121] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
Xsbench-the development and verification of a performance abstraction
for monte carlo reactor analysis. The Role of Reactor Physics toward
a Sustainable Future (PHYSOR), 2014.

[122] Vineet Veer Tyagi and DPCM Buddhi. Pcm thermal storage in
buildings: A state of art. Renewable and sustainable energy reviews,
11(6):1146–1166, 2007.

[123] Ranjan Sarpangala Venkatesh, Tony Mason, Pradeep Fernando, Greg
Eisenhauer, and Ada Gavrilovska. Scheduling hpc workflows with
intel optane persistent memory. In 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages
56–65. IEEE, 2021.

[124] Haris Volos, Andres Jaan Tack, and Michael M Swift. Mnemosyne:

Lightweight persistent memory. ACM SIGARCH Computer Architec-
ture News, 39(1):91–104, 2011.

[125] Yi Xu, Joseph Izraelevitz, and Steven Swanson. Clobber-nvm: log
less, re-execute more. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 346–359, 2021.

[126] Sujay Yadalam, Nisarg Shah, Xiangyao Yu, and Michael Swift. Asap:
A speculative approach to persistence. In 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), 2022.

[127] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In 18th {USENIX} Conference on File and Storage
Technologies ({FAST} 20), pages 169–182, 2020.

[128] Jianping Zeng, Jongouk Choi, Xinwei Fu, Ajay Paddayuru Shreepathi,
Dongyoon Lee, Changwoo Min, and Changhee Jung. Replaycache:
Enabling volatile cachesfor energy harvesting systems. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 170–182, 2021.

[129] Jianping Zeng, Shao-Yu Huang, Jiuyang Liu, and Changhee Jung. Soft
error resilience at near-zero cost. In 2024 38th ACM International
Conference on Supercomputing (ICS). ACM, 2024.

[130] Jianping Zeng, Jungi Jeong, and Changhee Jung. Persistent processor
architecture. In Proceedings of the 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 1075–1091, 2023.

[131] Jianping Zeng, Hongjune Kim, Jaejin Lee, and Changhee Jung. Turn-
pike: Lightweight soft error resilience for in-order cores. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 654–666, 2021.

[132] Jin Zha, Linpeng Huang, Linzhu Wu, Sheng-an Zheng, and Hao Liu.
A consistency mechanism for nvm-based in-memory file systems.
In Proceedings of the ACM International Conference on Computing
Frontiers, pages 197–204, 2016.

[133] Yida Zhang and Changhee Jung. Featherweight soft error resilience
for gpus. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 245–262. IEEE, 2022.

[134] Yuchen Zhou, Jianping Zeng, Jungi Jeong, Jongouk Choi, and
Changhee Jung. Sweepcache: Intermittence-aware cache on the cheap.
In Proceedings of the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 1059–1074, 2023.

977


