
LightWSP: Whole-System Persistence on the Cheap
Yuchen Zhou

Purdue University
West Lafayette, USA
zhou1166@purdue.edu

Jianping Zeng
Purdue University

West Lafayette, USA
zeng207@purdue.edu

Changhee Jung
Purdue Univerisity

West Lafayette, USA
chjung@purdue.edu

Abstract—Whole-system persistence (WSP) has recently at-
tracted more interest thanks to its transparency and performance
benefits over partial-system persistence where users are not only
burdened by complex persistent programming but also incapable
of using DRAM as LLC. Nevertheless, existing WSP work either
introduces high hardware cost or causes non-trivial performance
overhead. To this end, this paper presents LightWSP, a com-
piler/architecture co-design scheme that can achieve WSP in a
lightweight yet performant manner. LightWSP compiler parti-
tions program into a series of recoverable regions (epochs) with
their live-out registers checkpointed, while LightWSP hardware
persists the stores of the regions—whose boundary serves as
a power failure recovery point—enforcing crash consistency;
LightWSP leverages the battery-backed write pending queue
(WPQ) of a memory controller as a redo buffer, i.e., all stores are
first buffered in WPQ and then persisted together in non-volatile
memory (NVM) at each region end. In this way, no matter when
power failure happens, NVM is never corrupted by the stores
of the power-interrupted region, facilitating correct recovery.
In particular, LightWSP supports multiple memory controllers
on the cheap without costly speculation/misspeculation handling
mechanisms used by prior work. The experimental results with
38 applications show that LightWSP incurs only an average of
9.0% run-time overhead. This is on par with the state-of-the-art
work, that complicates the core microarchitecture significantly
with its intrusive design for memory controller speculation, yet
the hardware cost of LightWSP is near zero (0.5B per core).

I. INTRODUCTION

The emergence of non-volatile memory (NVM) technolo-
gies, exemplified by Intel’s Optane Persistent Memory [42],
has paved a new way for data persistence thanks to their irre-
sistible benefits, e.g., nonvolatility, high areal density, DRAM-
comparable speed, and byte-addressability1 [1], [2], [56], [61].
The upshot is that the core pipeline can directly persist the
data being stored to persistent memory (PM) with regular store
instructions. This allows program to achieve high-performance
data persistence without having to rely on slow block devices.

However, care must be taken to avoid crash inconsistency
across power failure. During program execution, a younger
store could be evicted (persisted) from cache to NVM before
an older one; if power failure occurs while the older is yet
to be persisted, it can lead to inconsistent NVM states in the
wake of the power failure. With that in mind, users typically
leverage transactions [20], [51], [59], [65], [95], [113] or
failure-atomic-sections (FASEs) [13], [21], [38], [48], [50],
[66], [96]—atop Intel Optane’s app-direct mode [45] where

1NVM DIMMs are attached to the regular memory bus as with DRAM
DIMMs.

NVM is used as persistent heap—to delineate a specific code
region and persist its data with crash consistency ensured. This
is so-called partial-system persistence (PSP) in that only the
stores of such user-defined code regions are to be persisted in
NVM.

While PSP looks promising for achieving data persistence
and crash consistency, it faces several challenges. First, to
ensure persistence, PSP either uses expensive persist barriers—
e.g., clwb and sfence in x86 processors—or relies on
dedicated hardware structures [51], [60], [80], [96], thus being
unable to achieve low-cost data persistence. Second, in PSP,
application-specific recovery code—tailored to data structures
being persisted—is often desired for performance reasons,
which places a significant programming burden on users [7],
[37], [91], [93], [111]. Third, PSP requires users to explicitly
manipulate the persistent heap with special memory allocator
and deallocator such as pmalloc/pfree [44], exposing
them to potential memory leaks. This further complicates
persistent programming and increases the risk of bugs [14],
[25], [29], [32]–[34], [58], [71]–[73], [76], [77], [82].

More importantly, it is quite challenging for PSP to exploit
DRAM as last-level cache (LLC) atop non-volatile main
memory. The reason is twofold: (1) existing technologies,
e.g., Intel eADR [41], cannot afford to keep volatile states of
terabyte DRAM from power failure; (2) DRAM is still used
as main memory in PSP—unlike Optane’s memory mode that
allows DRAM cache yet uses PM as volatile main memory
losing persistence. Consequently, PSP forfeits the benefit of
leveraging DRAM as LLC, though it is essential for high
performance; an ideal PSP scheme underperforms LightWSP,
that enables DRAM cache, by 46.8% on average for memory-
intensive applications and up to 160% for libquantum of
CPU2006 as shown in Figure 9.

As an alternative to PSP, whole-system persistence (WSP)
has recently attracted growing interest among researchers [15],
[19], [27], [53], [81], [98], [105], [108], [110]. Two unique
features of WSP drive this trend, i.e., transparency and per-
formance. WSP ensures persistence for all data of every kind
of program—including OS and libraries—with no source code
modification. Moreover, WSP can enable DRAM cache over
PM by using it as non-volatile main memory without com-
promising data persistence or crash consistency. Nevertheless,
existing WSP work is far from practical due to intrusive
hardware modification and/or high run-time overhead. For
example, Capri [53] resorts to over-complex redo+undo log-

215

2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO)

2379-315/24/$31.00 ©2024 IEEE
DOI 10.1109/MICRO61859.2024.00025

ging techniques for correct power failure recovery, causing
significant performance overhead—especially in the presence
of multiple memory controllers (MCs). While PPA [108]
achieves high performance with its simple recovery that re-
plays unpersisted stores in the wake of power failure, it
requires store operand registers to be intact, which is enforced
in the register renaming stage of the pipeline and thus increases
the critical path, giving significant pressure on the clock cycle
optimization. Recently, cWSP [110], the state-of-the-art, takes
a different recovery approach based on forming idempotent
regions [23], [66]–[69], [112] whose re-execution(s) across
power failure should produce the same designated output.
Despite the software-based idempotent recovery, cWSP ends
up changing both core microarchitecture and MCs to realize
its memory controller speculation that not only incurs recur-
ring communications between cores and MCs to track the
persistence status of each region but also requires special undo
logging hardware for misspeculation handling.

With the aforementioned in mind, this paper proposes
LightWSP, a compiler/architecture co-design scheme that
can achieve WSP in a lightweight yet performant manner.
LightWSP repurposes existing hardware components leaving
the core microarchitecture as is, e.g., Intel’s non-temporal
data path [47], [87] as a FIFO persist path—with the write-
combining buffer [46] disabled—and its battery-backed write
pending queue (WPQ) [43] as a redo buffer. To correctly
recover from power failure, LightWSP compiler partitions
program into a series of recoverable regions (epochs) with their
live-out registers checkpointed, while LightWSP hardware
persists the stores of the regions, whose boundary serves as a
power failure recovery point, enforcing crash consistency. That
is, all stores are first buffered in WPQ and then persisted in
PM at each region end as with buffered epoch persistency [54],
[80]. Therefore, no matter when power is cut off, PM is
protected against the stores of the power-interrupted region as
if it were not started, which facilitates correct power failure
recovery.

Although the region-level persistence requires persist order-
ing between regions (epochs), naive use of sfence at each
region boundary causes significant performance overhead. To
this end, LightWSP proposes a novel technique called lazy
region-level persist ordering that allows cores to execute a
region as soon as its preceding one finishes, by delegating
the persist ordering of regions to MCs; it is lazy in that the
ordering happens at the very end of the persist path, unlike
cWSP involving cores at the front in tracking how regions
persist. In particular, the lazy region-level persist ordering
works with no hassle even for multiple MCs; LightWSP
simply ensures that each MC is aware of the execution order
of regions and holds their stores until all of them arrive in
the WPQ to persist them all together. That way, even if the
stores of a younger region reach the WPQ—due to MC’s non-
uniform memory access—outrunning older regions, none of
the stores can ever persist before any other stores of older
regions do. The takeaway is that LightWSP can achieve high
performance for server-class manycore systems backed with

multiple MCs at a low cost.
The evaluation results with a total of 38 applications

from SPEC CPU2006/2017, SPLASH3, STAMP, NPB, and
WHISPER show that LightWSP only incurs a 9.0% run-
time overhead on average and near zero hardware overhead,
making LightWSP highly suitable for the implementation in
real silicon. The contributions of LightWSP are summarized
below:

• Ultra lightweight solution to practical whole-system per-
sistence, with only 0.5B per core hardware cost.

• Lazy region-level persist ordering that completely hides
persistence latency, allowing LightWSP to achieve high
performance, i.e., 9.0% average run-time overhead.

• High potential to work for the future CXL technology as
shown in Section V-F6.

II. BACKGROUND AND MOTIVATION

A. Non-Temporal Data Path

Intel classifies program data into two categories: temporal
data, expected to be reused, and non-temporal data, used once
and not likely to be reused shortly [47], [87]. To optimize
cache efficiency, it is advantageous to store only temporal data
in caches while not keeping non-temporal data there; caching
non-temporal data rather degrades the utilization of the caches
by occupying their space in vain, i.e., cache pollution. To
mitigate this issue, Intel processors are equipped with a non-
temporal data path that bypasses the entire cache hierarchy
and directly conveys the data from the store buffer to memory
via nt-store. Even though the non-temporal data path
was initially designed to minimize the cache pollution, prior
work [92] repurposed it—with its write combining buffer
disabled—as a persist path that we believe can be used to
achieve whole-system persistence [110].

B. Crash Inconsistency in Multiple Memory Controllers

While the non-temporal data path supports the FIFO order
of data placed therein, their final persistence can be out
of order in the presence of multiple memory controllers
(MCs) due to the non-uniform memory access (NUMA) effect.
Specifically, the distance between each core and the same
MC is different from each other, so the resulting core-to-
PM latency varies depending on where to persist. This is
problematic because LightWSP’s region-level (epoch) persis-
tency requires—for crash consistency—persisting regions in
order, i.e., stores should be strictly ordered across a region
boundary—though they can be reordered within each region
(epoch). Unfortunately, stores of a younger region may persist
before those of the older, provided the former target a near MC
while the latter do a far MC. To address this issue, prior work
either waits at each region end before moving on to the next
region, which incurs significant performance overhead [22],
[31], [51], [60], [80], or introduces complex hardware support
to guarantee that power-interrupted program can be recovered
from any inconsistent states [110].

216

C. Whole-System Persistence (WSP)

To achieve data persistence and crash consistency while
enabling DRAM cache (LLC) atop PM (main memory),
whole-system persistence WSP could be the magic bullet.
Recent studies have explored techniques for WSP, and they
can be categorized as JIT-checkpoint-oriented and non-JIT-
checkpoint-oriented approaches2 to a large extent.

1) JIT-Checkpoint-Oriented Approach: This kind of design
takes advantage of a voltage monitor to detect impending
power failure that triggers necessary state saving right before
the outage—thus being called just-in-time (JIT) checkpointing.
For example, Narayanan et al. proposed to persist all volatile
data when power is about to be cut off—using the energy
remaining in a power supply unit (PSU) [81]. However, an
excessive amount of residual energy needs to be secured
to persist the deep cache hierarchy of modern manycore
processors [6], which gets worse for the off-chip DRAM cache
as in Intel Optane’s memory mode. According to LightPC [63],
another work that also exploits the residual energy to persist
volatile data, the server-class PSU can persist at most 64 cores
with 40MB cache, while standard ATX PSU can only do
at most 32 cores with 16KB cache. This implies that it is
impossible to persist the huge DRAM of typical servers with
the residual energy of PSU, i.e., simply JIT checkpointing all
volatile states upon power failure cannot achieve WSP at a
low cost.

2) Non-JIT-Checkpoint-Oriented Approach: With that in
mind, Jeong et al. propose Capri [53] that leverages a separate
data path connecting L1 cache to PM, i.e., data reaching the
cache should be persisted in PM through the persist path.
This allows Capri to avoid checkpointing all the volatile data
including the DRAM cache in the event of power failures.
For their correct recovery, Capri guarantees that all its data
are persisted in a region granularity and provides its regions
with hardware-based failure atomicity.

However, there are several problems making it hard to
deploy Capri in practice. First, Capri puts a huge bandwidth
pressure on its separate persist path, since every 8B store
generates a 64B cacheline flush—though the rest 56B remains
the same. Second, Capri incurs substantial hardware cost. To
guarantee failure-atomic region persistence, Capri introduces
two hardware queues per core, i.e., front-end and back-end
buffers whose entry maintains both undo and redo logs in
addition to data being stored, causing non-trivial hardware
cost (54KB per core). Last but not least, it is not clear how
Capri can be extended to support multiple MCs—that are
commonly found in today’s HPC and cloud servers—without
complicating its already expensive hardware support.

In light of this, PPA [108] puts forward a simpler design
that avoids complex logging mechanisms. The key idea is
that power-interrupted program can be correctly recovered
by replaying unpersisted stores when power comes back. To
realize this, PPA (1) enforces store integrity, i.e., the operand

2Although they may also use JIT checkpointing to save some necessary
status, it is not the main idea that characterizes their proposed techniques.

registers of stores must be held in a physical register file (PRF)
even after they are committed, and (2) JIT checkpoints the
PRF—including their registers and PC—upon power failure.
Whenever PRF runs out being incapable of enforcing store
integrity further, which serves as an implicit region (epoch)
boundary, PPA lets all pending stores persisted so that their
registers are reclaimed to resume the store integrity for the
next region. In the wake of power failure, PPA can thus
replay the stores of the power-interrupted region with their
registers restored and then resume from the interruption point
(through the checkpointed PC) to achieve correct recovery.
An an optimization, PPA tries to hide the latency of the store
persistence at each region boundary by eagerly writing back
every store as soon as it reaches L1 cache. That way, its
persistence can be overlapped with the execution of subsequent
instructions in the same region.

However, the effectiveness of the optimization hinges on
the length of a region, which is heavily affected by the PRF
utilization. For example, when program demands a lot of
physical registers in some phase, the resulting region would
not be long enough to have a sufficient amount of computation
therein for the complete hiding of the persistence latency. More
importantly, enforcing PPA’s store integrity turns out to be
expensive in terms of hardware cost. That is because PPA
introduces extra complexity to the critical path of the pipeline,
e.g., its renaming stage must ensure that the mapped physical
registers are not held for store integrity, thereby putting
significant pressure on the CPU’s clock cycle optimization.
Such an intrusive pipeline modification may hinder the wide
adoption of PPA in industry.

The state-of-the-art, cWSP [110], pursues a software-based
approach, seeking to minimize the cost of necessary hardware.
It leverages idempotent region formation for correct power
failure recovery [23], [66]–[69], [112]. The cWSP compiler
divides program into a sequence of idempotent regions—
with stores persisted in a region granularity—so that the re-
execution(s) of a power-interrupted region can produce the
same designated output. Thanks to the side-effect-free nature
of an idempotent region, cWSP can recover from power
outage(s) occurred in the middle of the region by simply
restarting it. To achieve high-performance crash consistency
in the presence of multiple MCs, cWSP never ensures in-
order persistence despite their NUMA effect. That is, before
the stores of a region complete their persistence, cWSP
speculatively persists the following regions’ stores with their
data undo logged guessing that the resulting out-of-order
persistence is not caught by power failure; this is so-called
memory controller speculation. In case of misspeculation, i.e.,
power failure, cWSP can revert the inconsistent PM states by
consulting the undo logs and resume from the end of the most
recently persisted (non-speculative) region for recovery.

Unfortunately, maintaining the speculation status of regions,
i.e., identifying which regions are speculative and which are
not, makes cWSP’s core and MCs continuously communicate
with each other to keep track of whether each region has
completed the persistence of all its stores. This leads to

217

intricate hardware modification for both cWSP’s core mi-
croarchitecture and its MCs. In particular, the MCs need
additional hardware support to reduce the delay of each PM
write which is caused by the undo logging—that must copy
the original data before the write. Since this delay is imposed
on virtually all stores (though it is mitigated), cWSP may
cause significant performance degradation especially for write-
intensive workloads. Given all this, there is a compelling need
for lightweight yet performant WSP that can be practically
realized at a low cost.

III. LIGHTWSP APPROACH

The goal of LightWSP is providing a lightweight solution
to whole-system persistence (WSP) without compromising
on performance. Figure 1 shows the architecture overview
of LightWSP. It repurposes the non-temporal path for data
persistence and exploits compiler/architecture interaction for
low-cost power failure recovery; the compiler generates re-
coverable regions, while the architecture is responsible for
their crash-consistent execution (§III-A, §III-C). As shown
in the figure, LightWSP leverages MC’s battery-backed write
pending queue (WPQ) as a redo buffer, i.e., each region’s
stores are first buffered in their target WPQ so that they
later persist together failure-atomically. For high-performance
data persistence, LightWSP proposes lazy region-level persist
ordering (LRPO) that allows cores to execute regions without
persistence delay across boundary, while enforcing their persist
order in the background (§III-B). In particular, LightWSP
guarantees correct persist order even for multi-threaded pro-
gram with no hassle (§III-D) thanks to its simple LRPO and
recovery mechanisms (§III-E). The rest of this section gives
the overview of LightWSP’s design components.

Core Core

L1DCache L1DCache

PMOff-chip
DRAM Cache

Regular Path
Persist Path

Integrated Memory Controller WPQ Integrated Memory Controller WPQ

Off-chip
DRAM Cache

Front-end
Buffer

Front-end
BufferSB SB

Core

L1DCache

Front-end
BufferSB …

On-chip Caches

PM

Fig. 1. LightWSP overall architecture; grey signifies non-volatile parts.

A. Region-Level Persistence

To avoid expensive JIT checkpointing, LightWSP exploits
the non-temporal path3 for data persistence in an 8B granular-
ity (c.f., 64B for Capri). This implies that LightWSP cannot
resume program from the point of power failure on which
JIT-checkpoint-oriented approaches (§II-C1) persist PC to pick
up thereafter (i.e., roll-forward recovery). Instead, LightWSP

3LightWSP repurposes Intel’s write-combining buffer (WCB) as the front-
end buffer alongside the store buffer to release its stores as soon as possible.

resorts to roll-back recovery using region-level persistence [4],
[16]–[18], [114] where power failure in a middle of a region
can be recovered by directing the PC back to the beginning
of the unpersisted region in the wake of the failure. For this
purpose, LightWSP compiler partitions program into a series
of recoverable regions with live-out registers checkpointed via
store instructions. In particular, LightWSP regards a region as
persisted only after all its stores reach their target MCs. To
equip each region with failure atomicity, LightWSP should
ensure that all stores of the region persist in an all-or-nothing
fashion.

LightWSP realizes this by (1) tagging stores with their
region ID, (2) broadcasting the ID at each region end (i.e.,
boundary) to MCs for them to be aware of (un)persisted
regions, and (3) gating the battery-backed WPQ of MCs which
guarantees to flush only the entries of persisted regions to
PM upon power failure. That is, WPQ quarantines (gates) the
stores of each region until it is persisted, in which case its
quarantined stores can finally commit to PM in a bulk manner.
If power failure occurs before the region ID is broadcast to
MCs, i.e., the region has not reached the end, its every store
quarantined in their WPQs are discarded without affecting
the PM states. In this way, LightWSP can correctly recover
from power outages no matter when they occur in that PM
always remains consistent—which serves as a basis for its
crash consistency.

B. Lazy Region-Level Persist Ordering

While the region-level persistence requires persist ordering
between regions for correct recovery, naive use of sfence
at each region boundary causes significant performance over-
head. To this end, LightWSP proposes lazy region-level persist
ordering (LRPO) that allows cores to start their region without
waiting for the prior region to persist by offloading the enforce-
ment of regions’ persist order to MCs. With the help of LRPO,
the persistence latency of a region can be overlapped with the
execution of the following region(s), as shown in Figure 2.
Since the ordering is enforced at the end of the persist path,
i.e., MCs, it is called lazy region-level persist ordering.

Store 1
Store 2

…
Bdry (Store PC)

Store 3
Store 4

…
Bdry (Store PC)

Store 5
Store 6

…
Bdry (Store PC)

Source
Program Compiler

…

St 1-reg ID:1
Bdry-reg ID: 1
St 3-reg ID: 2
Bdry-reg ID: 2
St 5-reg ID: 3

St 2-reg ID:1
Bdry-reg ID: 1
St 4-reg ID: 2
Bdry-reg ID: 2
St 6-reg ID: 3

Region 1

Region 2

Region 3

Timeline

Region persist

Region persist

Overlap

Overlap

Offload to MCs
Offload to MCs

WPQ in MC1 WPQ in MC2

Triger flush

Triger flush

WPQ size

Tag region ID

Tag region ID

Tag region ID

Broadcast

Broadcast

Flush stores
whose reg ID = 1

Flush stores
whose reg ID = 2

Region 1

Region 2

Region 3

Region N

…

Fig. 2. Lazy region-level persist ordering.

The beauty of LRPO is that it just works fine for mul-
tiple MCs, unlike cWSP complicating its base design to

218

support them; more details are deferred to §IV-B. Note that
LightWSP’s LRPO is fundamentally different from PPA’s
region-level asynchronous persistence. To clarify, PPA’s store
persistence starts right after the stores are merged to L1 cache,
performing in parallel with the subsequent instructions of the
same region, not the following region(s). In other words, PPA
can only hide the persistence latency with its in-region ILP—
whereas LightWSP can with cross-region ILP that overlaps
the persistence latency of a region with the execution of those
instructions from many following regions. At each hardware-
delineated region boundary of PPA, if any of preceding stores
has not finished its persistence yet, the pipeline must stall until
they are all persisted.

C. Region Partitioning

There are two main goals of the region partitioning: (1)
guaranteeing the failure atomicity of region-level persistence
and (2) mitigating core pipeline stalls under LRPO. First,
for the failure atomicity, the store count of each region must
not exceed the size of WPQ to prevent its overflow to keep
PM states intact. Otherwise, they could be corrupted by the
stores of any power-interrupted region which are spilled to
PM. Second, since LRPO lets cores push stores to WPQs—
via persist paths—with no delay across regions, WPQs’ flush
rate might not keep up with cores’ push rate. In this case, the
WPQs quickly fill up and thus exert back pressure on the core,
thereby stalling the pipeline. To mitigate this issue, LightWSP
compiler limits the region size. This is because a shorter region
takes less time to be flushed and leaves more space for WPQs,
which allows them to accommodate stores from consecutive
regions without stalls.

With the aforementioned in mind, LightWSP puts a cap
on how many stores can ever exist in each region. Based on
empirical analysis, LightWSP compiler sets such an in-region
store count threshold to half of the WPQ size (see §IV-A
for details). As a result, WPQ can accommodate at least two
regions’ stores without waiting for the persistence latency, i.e.,
each region can have its stores inserted to WPQ before the
prior region’s stores are all committed to PM. Nonetheless, it
turns out that even with the half-of-WPQ threshold, WPQ can
handle stores from more than two regions most of the time.
The reason is two-fold: (1) the number of stores in each region
is usually smaller than the threshold (§V-G3); (2) WPQ starts
to flush the stores of a persisted region immediately after
receiving its region ID (boundary shown as right arrows in
Figure 2), giving room for the second next region.

In particular, there is a special case where the guarantee
of zero WPQ overflow needs to be relaxed for deadlock
avoidance. For instance, under multi-threading (or processing),
WPQ might be fully occupied by stores of many regions with
none of the regions being persisted, which leads to a deadlock.
That is because WPQ here waits to receive the region IDs
(boundaries) to make room with flushing, while it cannot
accommodate any of them due to the lack of room. However,
this case turns out to be very rare; §IV-D shows how LightWSP
handles the case.

D. Ensuring Persist Order in Multi-Threaded Program

The persist paths of different cores operate concurrently,
and their stores may arrive at MCs in an arbitrary order. Thus,
care must to taken to enforce the inter-thread persist order
for multi-threaded program with conflicting data accesses.
For example, in the presence of inter-thread dependencies,
e.g., WAW (write-after-write) and RAW (read-after-write), the
persist order may be disrupted unless the memory access order
is preserved. However, unlike the prior work [31], [60], [80],
LightWSP cannot simply preserve the order by leveraging
cache coherence in that its persist paths bypass caches.

To this end, LightWSP takes advantage of the unique char-
acteristic of data-race-free (DRF) program4, i.e., the conflicted
memory accesses of concurrent threads must be explicitly
managed in program by a synchronization primitive to order
them strictly. For instance, programmers should protect such
memory accesses using locks/semaphores or custom signal-
wait mechanisms properly implemented for the underlying
memory consistency model.

In order to follow the original happens-before order that
is dynamically established by synchronization primitives,
LightWSP compiler inserts region boundaries when encoun-
tering their instructions, e.g., memory fences or atomic oper-
ations. This allows the happens-before order to be derived by
the region execution order that is conveyed MCs—to let LRPO
comply with the order for its persistence (see more in §IV-C).

E. Failure Recovery Protocol

With the help of LightWSP’s region-level persistence
(§III-A), it is quite simple to recover from power failure no
matter when it occurs. Upon power failure which is detected
by the voltage monitor, MCs check the region persistence
status by leveraging a region ID so that their WPQ can flush
only those entries from persisted—thus keeping the PM states
consistent; all other entries in the WPQ naturally disappear
with the power failure. When power comes back, LightWSP
lets each core resume the power-interrupted program from the
beginning of the latest unpersisted region, i.e., the end of the
most recently persisted region, for correct recovery (see §IV-F
for more details).

IV. IMPLEMENTATION DETAILS

A. LightWSP’s Compiler

Threshold Determination: As a criterion for the region
formation (§III-C), LightWSP compiler requires a threshold
of store count per region which technically limits how many
stores can exist in each region. To suppress the WPQ overflow,
our threshold is empirically set as half of the WPQ size so
that the WPQ can accommodate stores from at least two
regions without stalls. At first glance, one might want to
pick a threshold a lot smaller than the half to reduce the
WPQ pressure for fewer stalls; however, this results in many
tiny regions and in turn increases the number of checkpoint

4Existing persistent programming models already assume DRF program as
their target [13], [38], [48], [66]

219

Register
Allocation

Liveness Analysis
(Checkpoint Insertion)

Region
Formation

Other Code
Optimizations

Initial Region
Boundary
Insertion

LLVM MIR Executable

Fig. 3. The workflow of LightWSP compiler; yellow indicates newly added LLVM passes.

stores for saving their live-out registers, thereby leading to
potential performance degradation. Despite, a large threshold
is not necessarily better than the small one; compared to a
small threshold, the WPQ under a large one quarantines more
stores per region for a longer time, which effectively increases
the WPQ pressure and possibly makes the following region(s)
wait for room in the WPQ. According to our experiment for
exploring the threshold, setting it as half of WPQ can achieve
high region-level persistence efficiency, while reducing the
number of necessary checkpoint stores to the most. In fact,
our threshold accomplishes virtually no structural hazard on
WPQ (§V-C), and therefore it rarely exerts back pressure on
the core pipeline via the persist path. That is, LightWSP’s
region-level persistence incurs near-zero pipeline stall!

Overall Workflow: LightWSP compiler performs region
partitioning with WPQ size in mind as inspired by previous
work [4], [16]–[18], [106], [114]. This optimization is con-
ducted at the LLVM MIR level and is scheduled after register
allocation. The overall workflow is depicted in Figure 3. To
clarify, during the region partitioning process, the compiler
counts the number of stores while traversing the control
flow graph (CFG) of the program. When the store number
reaches the predefined threshold (i.e., half of the WPQ size),
LightWSP compiler inserts a region boundary instruction.
Then, the compiler analyzes the live-out [5] registers in each
region and checkpoints them to the checkpoint storage—
indexed by register number—in PM. At each region end
(boundary), the program counter (PC) is also stored (check-
pointed) to serve as a recovery point in case the following
region gets interrupted by power failure.

However, it is challenging to perform the region partitioning
and the live-out register checkpointing together due to their
circular dependence. On the one hand, the region partitioning
pass determines where to place region boundaries and there-
fore affects live-out registers in each region. On the other hand,
the live-out register checkpointing pass inserts more stores,
which in turn affects where to place region boundaries. For
this reason, LightWSP compiler takes the same strategy as
prior work [17], [18], [39], [53], [57], [70], [106], [107], [109],
[114] to break the circular dependence as demonstrated in the
following.

Initial Region Boundary Insertion: LightWSP compiler
first treats function callsites as region boundaries. Then, it
inserts a region boundary at the entry and exit points of each
function. In particular, to avoid the number of stores exceeding
the threshold during loop execution, LightWSP compiler also
places a region boundary at the header of every loop—unless
it has no stores. That way, each loop iteration forms a region;

of course, additional boundaries are placed in the loop body, if
necessary, to ensure that no region therein has more stores than
the threshold. In addition, as discussed in §III-D, the compiler
also inserts region boundaries when meeting memory fences
and atomic operations to guarantee correct persist order for
multi-threaded program.

Checkpoint Store Insertion: With these initial region
boundaries in mind, LightWSP compiler performs liveness
analysis [5] over the partitioned CFG to figure out live-out
registers in each region. To facilitate this, the compiler splits
the basic blocks that have region boundaries therein, ensuring
that regions always start at the beginning of basic blocks;
this simplifies the computation of live-out registers of each
region. For the resulting live-out registers of each region,
LightWSP compiler inserts store instructions—to checkpoint
the registers—right after their last update point in the region.

Region Formation: Then, LightWSP compiler tries to com-
bine the initial regions with store counts below the threshold
into larger ones by traversing CFG again in topological order.
By doing this, the compiler can enlarge the region size and
usually eliminate many checkpoint stores, since some live-
out registers of a combined region are no longer live-out if
the following region redefines the registers. After the region
combining, the store count of the merged region may exceed
the store threshold. If this occurs, the compiler places a new
boundary within the region to ensure its stores never exceed
the threshold and recalculates the number of live-out registers
of the newly partitioned regions. This combining/repartitioning
process is repeated until no region has more stores than the
threshold, effectively resolving the issue of the aforementioned
circular dependence. Nevertheless, it is important to note
that the resulting regions do not necessarily have exactly the
same number of stores as the threshold; instead, the threshold
indicates the maximum number of stores allowed per region.

Region Size Extension and Checkpoint Pruning: Placing
region boundaries at the beginning of each loop header can
result in numerous small regions if their loop bodies contain
only a few stores. This can increase checkpoint stores due
to additional live-outs across that many region boundaries.
To address this issue, for loops with known iteration counts,
LightWSP compiler leverages loop unrolling to enlarge the
region size. Besides, for other loops with unknown itera-
tion counts, the compiler utilizes the speculative loop un-
rolling [39], [53] to extend the region size. The idea is
that the compiler duplicates the loop body and the loop
exit condition simultaneously while enforcing the store count
threshold. As a result, LightWSP compiler can form almost
3x longer regions and reduce checkpoint stores by 3x as well.

220

In addition, to further reduce the checkpointing overhead,
LightWSP compiler also leverages checkpoint pruning, i.e.,
it removes live-out checkpoints if their register values can
be reconstructed using other checkpointed values available at
recovery time [15], [49], [53], [57].

Checkpoint Storage Management: Since checkpoint stores
have fixed destination addresses, it allows the saved register
values to be accessed via an index within an array during
power failure recovery. Given this, LightWSP compiler al-
locates a PM-resident global array where all registers are
mapped to dedicated slots, e.g., r0 is mapped into the index
zero. This is feasible because the number of architectural
registers is already defined by the ISA. In the wake of power
failure, LightWSP recovery runtime gets all necessary register
values ready by reloading from the checkpoint storage or
reconstructing from the reloaded values in order to achieve
correct recovery.

I/O Functions: Supporting irrevocable operations such as
I/O operations has still remained an open problem. However,
recall that LightWSP compiler places region boundaries at
each function call, and therefore those functions that im-
plement I/O operations are considered separate regions. We
believe LightWSP can handle I/O operations by checkpointing
the necessary status before the I/O operations start, allowing
power-interrupted I/O operations to be restarted in the wake
of power failure.

B. Persist Order Guarantee under Lazy Region-Level Persist
Ordering

Due to LRPO and WPQ-size aware region formation, WPQ
is populated with stores from several regions. However, the
persist order of the regions does not necessarily match with
their execution order in the presence of multiple MCs that lead
to non-uniform memory access (NUMA) (§II-B). That is, the
stores of a younger region could arrive at WPQ before the
old one’s stores. LightWSP addresses the problem by making
MCs aware of the region execution order and enforcing the
correct persist order. To achieve this, LightWSP (1) tags stores
with their region ID and (2) broadcasts the ID at the region
end. First, all stores leaving store buffers are tagged with HW-
managed counter region ID—encoded as the first 16 bits
of the address which are unused in modern OS5. Second, at
each region end (boundary), i.e., the PC-checkpointing store
tagged with the region ID, it is broadcast to MCs and then
atomically increases by 1. That way, for WPQ entries of the
MC, it can identify which regions they belong to and infer the
execution order of the regions.

On the other hand, each MC manages a flush ID that
refers to the latest unpersisted region. It increments by 1 when
a region is committed, i.e., all of its stores are flushed to PM.
Once MCs receive region ID (‘bdry: Store PC’ in Figure 2),
it triggers the flush of the region’s stores buffered in their
WPQ. For this purpose, LightWSP makes the WPQ flush
only those entries whose region ID matches with the flush ID;

5Thus, each store needs only one bus transaction as usual.

any mismatched WPQ entries—from younger region(s)—still
remain until the flush ID gets updated for matching. Note that
the flush ID is stored in a dedicated persistent register which
is managed by controller logic in MC as with the previous
work [115].

The following demonstrates a complete process of how a
region is persisted to PM. When a region finishes, its region
ID (boundary) is broadcast to all MCs through a NoC router6.
If all MCs receive the boundary (i.e., the region is persisted),
their WPQ starts flushing the entries if matched. To make
sure the boundary reaches all MCs, any MC sends bdry-ACKs
to other MCs upon receiving the boundary. Once each MC
obtains the ACKs from all other MCs, i.e., the broadcast ID
(boundary) has reached all MCs, its WPQ starts to flush the
stores whose tagged region ID is the same as the flush ID of
the MC. After flushing them all, the MC sends flush-ACKs to
other MCs, which is necessary to update the flush ID of other
MCs, in case the stores of a region are spread to all MCs.
After each MC gets the ACKs from others, it recognizes that
the region—whose ID matches with the flush ID—is finally
committed, thus increasing its flush ID.

In particular, a couple of things worth mentioning. First,
such in-flight communication of both ACKs is guaranteed
to reach their targets in the event of power failure by us-
ing MC-resident battery—that is anyway necessary to keep
WPQ in the persistence domain as with Intel ADR. Second,
LightWSP’s LRPO can naturally hide the latency of the
ACKs communication—that can be built atop Intel QuickPath
Interconnect (QPI) offering a bi-directional bandwidth of 25.6
GB/s [40]. The takeaway is that LightWSP ensures correct
persist order under LRPO on the cheap.

C. Persist Order Guarantee in Multi-Threaded Program

To recognize the happens-before order dynamically formed
by synchronization primitives of multi-threaded program,
LightWSP compiler inserts a region boundary, i.e., the PC-
checkpointing store, before their instructions such as memory
fences and atomic operations. That way, the region ID can be
updated at the synchronization point, allowing the sequence of
the ID to reflect the happens-before order of threads—even if
they touch the same region in a critical section. In particular,
LightWSP saves/restores the region ID across context switches
to virtualize it. Without virtualizing the region ID, a thread,
that was once scheduled out in the middle of a critical section,
could not tag its stores with the correct region ID when it is
scheduled back in.

Figure 4 exhibits an example of how LightWSP achieves
the correct persist order of regions in multi-threaded program.
Suppose three threads enter a critical section based on their
happens-before order, i.e., Thread 1 → Thread 2 → Thread 3.
The region ID with which their stores are tagged atomically
increases by 1 whenever a boundary is reached (§IV-B), i.e.,
N, N + 1, and N + 2 shown in the figure; for the sake of

6Based on FIFO buffer, store orders are guaranteed.

221

simplicity, we here ignore the effects of the first boundary
assume that all stores target a single MC.

When Thread 1 leaves the critical section releasing the lock,
i.e., it reaches the second boundary in the figure broadcasting
the region ID (N), the MC recognizes this with bdry-ACKs
exchange and triggers its WPQ to start flushing the store of
the thread (❶). Although the WPQ already buffers a store
of Thread 2 (top green WPQ entry in the figure) before
receiving Thread 1’s boundary, LightWSP enforces the correct
persist order of the threads’ stores—which follows the original
happens-before order—with matching their region ID. That is,
the WPQ only flushes Thread 1’s stores to PM. After flushig
them all, which is notified by flush-ACKs exchanges, the MC
updates its flush ID to N + 1 (§IV-B). Finally, the same process
is repeated for Thread 2 (❷) and Thread 3 (❸).

Critical Section

Thread 1 Thread 2 Thread 3
WPQ

⓿ Current Region ID: N
Current MC flush ID: N

Tim
e O

rder

St 1 Region ID: N

St 2 Region ID: N

St 3 Region ID: N

St 1 Region ID: N + 1

Bdry (Store PC) Region ID: N

St 2 Region ID: N + 1

St 3 Region ID: N + 1

St 1 Region ID: N + 2

Bdry (Store PC) Region ID: N + 1

St 2 Region ID: N + 2

St 3 Region ID: N + 2

Bdry (Store PC) Region ID: N + 2

❶ Trigger WPQ flush;
flush stores whose Region
ID == N; flushID[MC]++.

❷ Trigger WPQ flush;
flush stores whose Region
ID == N + 1; flushID[MC]++.

❸ Trigger WPQ flush;
flush stores whose Region
ID == N + 2; flushID[MC]++.

St 1,
St 2,
St 3,

Bdry

Bdry

Happens-
before order

Fig. 4. An example of LightWSP persist order guarantee with multi-threads.

D. Deadlock Resolution
With multithreading or multiprocessing, a deadlock may

occur as discussed in §III-C. For deadlock detection, each
MC leverages a single bit to indicate whether it contains a
region ID (boundary) corresponding to the flush ID. When a
WPQ gets full, LightWSP checks if the bit is 0, i.e.,, absence
of the boundary in the WPQ thus detecting a deadlock—as
the WPQ has no room to receive any boundary for which its
entries wait. To resolve such a detected deadlock, LightWSP
exceptionally lets the WPQ overflow yet with fallback, i.e.,
the WPQ flushes stores of the region—corresponding to the
current flush ID of MC—with them undo-logged. Here, the
MC declines other regions’ stores but only accepts the stores
of the currently persisting region until the WPQ receives the
corresponding region ID (boundary). In particular, care must
be taken for correct recovery of power failure in case it occurs
before the region ID (boundary) is received. In the wake of
the power failure, LightWSP first restores the original memory
values using their undo log if they ended up being overwritten
by the WPQ overflow. Note that according to our experiment,
the undo logging does not a significant performance overhead
given that the deadlock rarely occurs; see §V-F5.

E. The Size of WPQ
Recall that the region partitioning threshold is determined

by WPQ size, and a smaller region size tends to result in

more checkpoint stores, leading to performance degradation.
Thus, the WPQ size of LightWSP should be sufficiently large
but not too much considering the resulting hardware cost.
Previous work [35], [60], [101] has deployed 4KB WPQ (64
entries with 64B data granularity), while some designs [53],
[100] have utilized 1KB WPQ size (16 entries with 64B data
granularity) or 8KB WPQ size (128 entries with 64B data
granularity) [3]. However, as revealed by prior work [97], the
WPQ in commodity integrated memory controller (iMC) is
only 512B (8 entries with 64B data granularity). Hence, to
align LightWSP’s design with the practical configuration, we
set LightWSP’s WPQ size to 512B as well with 64 entries (8B
granularity). Note that the size of the front-end buffer aligns
with the WPQ size, and it is also set to 64 entries.

F. Power Failure Recovery

When power failure occurs, LightWSP conducts a series
of actions regarding the flush ID—which indicates the latest
unpersisted region (§IV-B). Note that the flush IDs in MCs
may be different from each other at the point of power
failure—because perhaps only one MC receives all the flush-
ACKs by the point, while other MCs are still waiting for the
in-flight ACKs. However, those in-flight ACKs are guaranteed
to reach their target MCs by leveraging battery power as
discussed in §IV-B. Despite power failure, MCs can thus still
update their flush ID and start to flush their WPQ.

Specifically, in the event of power failure, LightWSP per-
forms the following steps: (1) In case bdry-ACKs and flush-
ACKs are on their way, MCs wait a fixed amount of time,
i.e., worst-case ACK communication latency, to ensure that
the in-flight ACKs reach their destinations; LightWSP opts for
this—rather than retrying the ACKs exchange across MCs—
to simplify the remaining steps. (2) MCs retrieve the current
flush ID that must be the same across all MCs, whether or not
flush ID has just been updated by the failure-atomic ACKs
communication in Step 1; recall that such a per MC flush ID
is updated only after the MC gets flush-ACKs from all other
MCs (§IV-B). (3) To commit only the WPQ entries (stores) of
persisted region(s), each MC scans its WPQ entries to check if
their tagged region ID matches with the flush ID of the MC, as
long as it has received the corresponding bdry-ACKs from all
other MCs; the implication is that those entries being flushed
belong to persisted region(s). (4) Each MC sends flush-ACKs
to other MCs; once the ACKs are fully exchanged among all
MCs, the region is committed. (5) Repeat the process from
Step 1 to Step 4 until there is no more WPQ entry of any
persisted region. (6) All WPQs discard their remaining entries
that must be a part of unpersisted region(s).

In particular, LightWSP’s recovery process is simple and
fast. In the wake of the power failure, LightWSP just resumes
the interrupted program from the recovery point7, i.e.,, PC
referring to the beginning of the latest unpersisted region, with
its input registers restored from their checkpoint.

7region ID is restored by reading the flush ID.

222

G. Buffer Snooping
LightWSP has two different data paths, i.e., the regular data

path (caches) and the non-temporal data path. Due to the deep
cache hierarchy, cache writeback data virtually always reaches
the target MC later than the data placed on the persist path
does [51], [92]. However, though chances are extremely low,
the cache writeback data may reach the MC earlier, which can
break the correct region persist order. Figure 5 shows such an
example for which there are two regions; their stores share
the same address (i.e., A = 1 and A = 2). Now, suppose A is
evicted from LLC after several instructions following A = 2.
Most of the time, the persist path is faster and thus yields an
arrival order of ❶→❷→❸, in which case the persist order
is enforced correctly. However, in some rare cases, the order
might change e.g., because of the memory scheduling delay in
the MC or a particular access pattern of program that evicts
the cacheline quickly. In this case, other two arrival orders
❶→❸→❷ or ❸→❶→❷ would be possible—though ❶→❷
are always serialized by the FIFO persist path. Under the epoch
persistency model [54], [80] that allows in-region ordering
yet bans cross-region one, the former case (❶→❸→❷) is
allowable, whereas the latter case (❸→❶→❷) is prohibited
due the inability to ensure the persist order of the two regions.

A =1

A =2

region 1

region 2

…

…

…

…

PM

❸A is evicted from LLC, A = 2

❶ A = 1

Regular Path Persist Path

❷ A = 2

Fig. 5. An example of corrupted persist order.

To prevent such a problem, LightWSP silently drops the
dirty cacheline eviction from LLC. However, this may cause
a stale-load problem as shown in Figure 6. Suppose that a
CPU executes store and load instructions, that have the same
address to the cache block A, in sequence. Here, St A first
completes and reaches LLC after a while (❶). Then, LLC
evicts the block A silently dropping it (❷). After that, Ld A
encounters an LLC miss so it lets the MC fetch the block (❸).
However, this fetch occurs while St A is still pending on the
persist path. That is why the block brought from PM for the
load is not up to date value (❹). Unfortunately, the data of St
A is arrived at the MC too late (❺), thus causing the stale-load
problem.

Taking this into consideration, LightWSP proposes a simple
buffer-snooping to guarantee that a store always reaches MCs
earlier than the cacheline eviction. To achieve this, whenever
a dirty cacheline eviction happens in L1 cache, LightWSP
consults the front-end buffer (via CAM search) to check
whether the same data exists therein. If the conflicting entry is
found in the buffer (which is said buffer conflict), LightWSP
attempts to find another conflict-free victim in the same set

Regular Path Persist Path Time Order

CPU

LLC

iMC

St A

A

Ld A

AFetch A

Stale load

❶

❷
Silently drop

❸

❹

❺

Fig. 6. Stale load problem.

for eviction without unnecessary delay—unlike cWSP [110]
which always waits until the entry data persists. To elaborate,
if a cacheline in the set also conflicts with any front-buffer
entry, LightWSP tries another cacheline and consults the buffer
again. This process continues until conflict-free victim is
found. In the worst case where the cachelines of the set are all
conflicted, the eviction is delayed until the conflicting entry of
the buffer is removed—after its data reaches the MC’s WPQ
with the resulting ACK received by the buffer. In this way,
LightWSP can prevent the stale-load problem.

Note that the front-end buffer snooping happens when there
is a dirty cacheline eviction in L1 caused by its cache miss.
Thus, the search latency (2 cycles; see §V-G2) is hidden by
L2 cache access (44 cycles, Table I), and thus never affect
the performance. However, the snooping technique impacts
L1 cache replacement behaviors and may cause performance
degradation. Despite, in our evaluation, due to the deep cache
hierarchy, such buffer conflicts are rare and seldom influence
performance (see Section V-F3).

H. LLC Load Miss Handling

In the event of an LLC read miss, the requested data might
still remain in WPQ. However, LightWSP cannot serve the
LLC read miss request from WPQ since the different data
granularity, i.e., 8B (WPQ) vs 64B (cacheline). Nevertheless,
we found out that WPQ hit rate is quite low (only 0.039 hits
per million instructions; see §V-G1). Given this, whenever a
memory controller receives a load request, LightWSP simul-
taneously loads the data from PM and searches WPQ (CAM
search). Fortunately, this WPQ search latency can be hidden
by the PM load with no extra actions needed. The reason is
two-fold: (1) WPQ search (2 cycles; see §V-G2) is faster than
PM load, and (2) most of the time, the LLC read request
encounters a WPQ miss. While chances are low, the request
could lead to a WPQ hit. In this case, LightWSP just drops the
previous PM load and reloads the data from PM after the WPQ
hit entry is flushed into PM. Note that during the period that a
WPQ hit is waiting for its flush, the memory controller can still
handle other LLC miss requests in the way mentioned above.
That is, both PM load and WPQ search happen in parallel.
However, although WPQ hit increases the LLC miss handling
time which is thoroughly modeled in our evaluation, the ultra-
low WPQ hit rate makes it possible for LightWSP to maintain
its high performance.

223

TABLE I
SYSTEM CONFIGURATION

OS Ubuntu 18.04 and Linux Kernel 5.4.46

Processor 8-core 4-width OoO processor at 2 GHz,
ROB/IQ/SQ/LQ: 224/97/56/72

L1 ICache 32KB/core , 8-way, 64B block, 3 cycles
L1 DCache 64KB/core, 8-way, 64B block, 4 cycles

L2 Cache 16MB shared, 16-way, 64B block,
inclusive, 44 cycles

DRAM Cache (LLC) shared direct-mapped 4GB, DDR4 2400 8x8
PMEM 32GB, read/write=175ns/90ns [100], [102]

Memory Controller 2 MCs, 2 channels/MC
64-entry 8B-granularity WPQ

Persist Path 20ns worst-case latency and
4GB/s bandwidth on-chip network [51], [92]

Front-end Buffer 64-entry FIFO queue

V. EVALUATION

A. Methodology

We implemented LightWSP’s compiler techniques de-
scribed in §IV-A in the LLVM 13.0.1 compiler infrastruc-
ture [62]. All evaluated programs including OS and runtime
libraries are compiled with the default -O3 flag in addition
to enabling our compiler optimizations. We conduct all our
experiments on top of the gem5 [10] simulator. It models
an Intel Skylake-X 8-core (one hardware thread per core)
processor that has two integrated memory controllers (iMC),
each of which manages a DRAM cache as an off-chip direct-
mapped cache as in Intel PMem’s memory mode. Table I
shows detailed configurations.

We evaluated LightWSP with both single-threaded (SPEC
CPU 2006/2017 [11], [36]) and multi-threaded (Splash3 [89],
NPB-CPP [75], STAMP [79] and WHISPER [80]) bench-
marks. Our default WPQ size is 64, and the store threshold
in each region is 32, i.e., half of the WPQ size. In particular,
we set the bandwidth of persist path (non-temporal data path)
to 4GB/s as prior work does [92]. We ran these benchmarks
using the full-system simulation mode of the gem5 with Linux
Kernel 5.4.46 compiled by LightWSP’s compiler. Therefore,
the OS code is partitioned to a series of recoverable regions
with their live-out registers checkpointed and pruned (§IV-A).
For SPEC CPU2006/2017, we fast-forwarded 10 billion in-
structions and simulated the following 5 billion instructions—
excluding region boundary (i.e., PC-checkpointing store) and
other checkpoint store instructions. On the other hand, we
simulated the entire program execution for STAMP, NPB-CPP,
WHISPER, and SPLASH3. Lastly, all results are normalized
to the unmodified program that does not have region boundary
and checkpoint stores.

Our baseline is Intel Optane PMem’s memory mode with the
original binary. That is, the baseline does not offer persistency
or crash consistency, though it takes advantage of the DRAM
cache. For performance evaluation, we compare LightWSP
with Capri, PPA, and cWSP. In particular, we made some
necessary changes to Capri’s source code—which we got
from the authors—to make it accommodate multiple memory
controllers (MCs).

B. Performance Evaluation

Figure 7 shows the slowdown of Capri, PPA, and LightWSP
for benchmarks from SPEC CPU2006/2017, STAMP, NPB-
CPP, SPLASH3, and WHISPER. Compared with the baseline,
Capri, PPA, and LightWSP incur 50.5%, 8.1%, and 9.0% run-
time overhead, respectively. As discussed in §II-C, Capri’s
greater data granularity imposes significant bandwidth pres-
sure on its dedicated persist path, resulting in a non-negligible
performance overhead when operating at a 4GB/s bandwidth.
It is worth noting that Capri’s run-time overhead can be
reduced to around 20% with its default setting, i.e., 32GB/s
bandwidth, but such high bandwidth might not be practical. In
particular, to ensure correct persist order with multiple MCs,
Capri must stop the traffic of its separate data path until all
the previous region’s stores are flushed in PM, leading to non-
trivial performance degradation. Notably, LightWSP achieves
similar performance with the pure hardware approach PPA
which is beneficial from LightWSP’s lazy region-level persist
ordering (LRPO), hiding most of the persistence delay at
each region end (§III-B). Even though PPA achieves region-
level asynchronous persistence (§II-C), it must wait at each
persistence barrier till all the stores of the prior region are
persisted.

C. Region-Level Persistence Efficiency

LightWSP proposes lazy region-level persist ordering to
hide the persistence latency across its recoveral regions. This
is one of the reasons for its outstanding performance. In this
section, we compare the persistence efficiency of LightWSP
and PPA via the following formula.

Persistencee f f % = ((Tp −Twait)/(Tp))∗100 (1)

Tp is the Persistence Latency without using any optimizing
techniques. For LightWSP, Twait is the waiting time that it must
pay when the WPQ gets full. PPA’s Twait is the waiting time at
each region boundary (persist barrier). Higher efficiency means
that more of persistence latency can be hidden. Figure 8 shows
the efficiency results of LightWSP and PPA. Overall, PPA and
LightWSP achieve an average efficiency of 89.3% and 99.9%,
respectively. Compared with PPA, LightWSP achieves 12.6%
higher region-level persistence efficiency, thus more efficiently
hiding the persistence delay.

D. PSP vs WSP

To demonstrate the superiority of enabling DRAM as cache,
we implement an optimized version of BBB [6] whose per-
formance is close that of Intel eADR [41], [90]. BBB here
behaves like an ideal PSP scheme that does not require heavy
JIT-checkpointing techniques used in LightPC [63]. Figure 9
compares LightWSP to this ideal PSP scheme for memory-
intensive applications and demonstrate the evaluation results.
As shown in the figure, LightWSP incurs an average of
only 3% performance overhead, while the ideal PSP scheme
exhibits a 51.2% performance slowdown on average and up to
260% for libquantum of CPU2006 due to the inability to
use DRAM as LLC.

224

bzip2
h264ref
hm

m
er

lbm
lib

quan
m

cf
m

ilc
nam

d
geom

ean

dsjeng
im

agick
lbm
leela
nab
nam

d
xz geom

ean

intruder
labyrinth
ssca2
vacation
geom

ean

cg ep is ft lu m
g

sp geom
ean

cholesky
ff

t
radix
barnes
raytrace
lu-cg
lu-ncg
ocean-cg
w

ater-ns
w

ater-sp
geom

ean

rb tatp
tp

cc
geom

ean
geom

(all)

1.0 1.0

1.5 1.5

2.0 2.0

2.5 2.5

3.0 3.0
E

xe
cu

ti
on

S
lo

w
do

w
n

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER

3.0

Capri PPA LightWSP

Fig. 7. Slowdown of Capri, PPA and LightWSP compared to the baseline (original binaries running under Intel Optane’s memory mode).

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER70 70

75 75

80 80

85 85

90 90

95 95

100 100

P
er

si
st

en
ce

E
ffi

ci
en

cy
(%

)

PPA LightWSP

Fig. 8. Region-level persistence efficiency.

lbm

lib
quan

m
ilc

geom
ean

rb tatp

tp
cc

geom
ean

geom
(all)

1.0 1.0

1.2 1.2

1.4 1.4

1.6 1.6

1.8 1.8

2.0 2.0

E
xe

cu
ti

on
S

lo
w

do
w

n

CPU2006 WHISPER

2.6

PSP-Ideal LightWSP

Fig. 9. Slowdown of the ideal PSP scheme and LightWSP for memory-
intensive applications.

E. LightWSP vs cWSP

This section compares LightWSP with the state-of-the-art
work cWSP. For fair performance comparison, we exclude
the NPB benchmark suite as cWSP does not use it. Fig-
ure 10 shows average slowdowns of cWSP and LightWSP
for the remaining benchmark suites. Although cWSP offers
slightly better performance, i.e., an average slowdown of
5.7% compared to LightWSP’s 8.5%, cWSP requires intrusive
hardware modifications to both cores and MCs—for undo-
logging acceleration to mitigate the critical path extension
of every write, as discussed in §II-C. In contrast, LightWSP
leaves the original microarchitecture of cores/MCs as is yet
delivers comparable performance to cWSP.

CPU2006 CPU2017 STAMP SPLASH3 WHISPER Geomean1.00 1.00

1.05 1.05

1.10 1.10

1.15 1.15

1.20 1.20

E
xe

cu
ti

on
S

lo
w

do
w

n

cWSP LightWSP

Fig. 10. LightWSP vs cWSP.

F. Sensitivity Analysis

1) WPQ Size: As we discussed before in §IV-E, the size
of WPQ can impact the performance. Thus, we conduct a
sensitivity study for different WPQ sizes, i.e., 64, 128, 256,
corresponding to different region sizes 32, 64, and 128; the

size of the front-end buffer remains consistent with the WPQ
size. Figure 11 shows the average slowdown of different WPQ
size configurations, i.e., 64, 128, and 256, for the same set of
benchmark suites used before. Generally, with a smaller WPQ
size, LightWSP shows a higher slowdown, while 256-entry
WPQ demonstrates the best performance. Note that even with
a 256-entry WPQ, its size is only 2 KB, which is significantly
smaller than the 8 KB structure (also battery-backed) used in
prior work [3]. Given that Intel’s eADR [41], [90] battery
already supports the JIT-checkpointing of the entire cache
hierarchy (around 16MB) upon power failure, it would be
possible to enlarge LightWSP ’s WPQ for greater scalability
targeting those applications with huge write intensiveness.

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER1.00 1.00

1.05 1.05

1.10 1.10

1.15 1.15

1.20 1.20

E
xe

cu
ti

on
S

lo
w

do
w

n

WPQ-256 WPQ-128 WPQ-64 (default)

Fig. 11. Slowdown of different WPQ size configurations.

2) Region Size: We also conduct a sensitivity analysis on
store thresholds while keeping the same WPQ size, i.e., 64.
Figure 12 shows that LightWSP achieves the highest average
performance for different benchmark suites, when the store
threshold is set to half of WPQ size, i.e., 32. This is because
LightWSP achieves a balance between region-level persistence
efficiency and live-out register checkpoint overhead.

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER1.0 1.0

1.1 1.1

1.2 1.2

1.3 1.3

1.4 1.4

1.5 1.5

E
xe

cu
ti

on
S

lo
w

do
w

n

St-Threhold-16 St-Threhold-32 (default) St-Threhold-64

Fig. 12. Slowdown of various store threshold configurations.

3) Cache Eviction Victim Selection: To address the stale
load problem, when a data eviction occurs in the L1 cache,
LightWSP needs to consult the front-end buffer first. If the
buffer has the same data, i.e., buffer conflict, then LightWSP
chooses another conflict-free cacheline (victim) to be evicted.
This may change cache’s LRU replacement behaviors, since
some recently used cachelines may be evicted to prevent

225

TABLE II
CONFLICT RATE

Benchmarks CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER
Conflict Rate 0‰ 0‰ 0‰ 0.0031‰ 0.0012‰ 0.00001‰

stale loads. Thus, we try to explore the performance impact
on different victim selection policies. To be more specific,
we evaluated 3 different victim selection policies, i.e., (1)
LightWSP scans all the cachelines (L1 cache is 8-way thus
we have 8 victims) to find a conflict-free victim (default); (2)
LightWSP only scans only half way through the cacheline
list, i.e., 4 cachelines, for victim selection; and (3) LightWSP
delays the eviction until the corresponding conflicted buffer
entry is flushed, rather than selecting a victim cacheline.

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER1.00 1.00

1.05 1.05

1.10 1.10

1.15 1.15

1.20 1.20

E
xe

cu
ti

on
S

lo
w

do
w

n

Full Victim (default) Half Victim Zero Victim

Fig. 13. Slowdown of different victim selection polocies.

Figure 13 shows the performance results of these 3 vic-
tim selection policies, i.e., full-victim, half-victim, and zero-
victim. The takeaway is that different victim selection policies
do not reveal a significant performance difference. That is
because the buffer conflict rate is very low as shown in Table
II). It highlights that the average conflict rate of all benchmarks
is less than 0.01%—though NPB, SPLASH3, and WHISPER
have some conflicts.

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER0 0

1 1

2 2

3 3

4 4

C
ac

he
M

is
s

R
at

e
(%

)

Full Victim (default) Half Victim Zero Victim Stale Load

Fig. 14. Cache miss rat with/without buffer snooping.

To better understand the performance of the three victim
policies, we measure their cache performance in comparison
to that of a special case (stale-load) where L1 cache eviction
does not snoop the front buffer—thus suffering the stale load
problem. Figure 14 shows that cache miss rates of full-victim,
half-victim, zero-victim, and stale-load on average. Overall,
the 3 victim policies show similar miss rates while the state-
load case shows a higher rate—which is clearly observed
in NPB, SPLASH3, and WHISPER; specifically, full-victim,
half-victim, and zero-victim policies reduce the cache miss
rates of these benchmark suites by up to 12.62%, 17.98%,
and 18.05%, respectively.

4) Persist Path Bandwidth: We also explore the impact
of the persist path bandwidth on the performance. Figure
15 shows the results of 3 different bandwidths, i.e., 1GB/s,
2GB/s, and 4GB/s. Basically, with the decrease of the persist
path bandwidth, LightWSP shows a higher slowdown. That
is, the front-end buffer more quickly fills up with lower
persist bandwidth, which exerts back pressure on store buffer,
possibly leading to pipeline stalls.

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER1.0 1.0

1.5 1.5

2.0 2.0

2.5 2.5

3.0 3.0

E
xe

cu
ti

on
S

lo
w

do
w

n

4GB/s (default) 2GB/s 1GB/s

Fig. 15. Slowdown of different bandwidth configurations.

TABLE III
CXL CONFIGURATION

Device CXL IP Memory
Technology Max. bandwidth Latency

(read/write)
CXL-I Hard IP DDR5-4800 38.4 GB/s 158ns/120ns
CXL-II Hard IP DDR4-2400 19.2 GB/s 223ns/139ns
CXL-III Soft IP DDR4-3200 25.6 GB/s 348ns/241ns

CXL-PMEM Simulation Intel Optane read:6.6 GB/s
write: 2.3 GB/s 245ns/160ns

5) The Number of Threads: This section presents
LightWSP’s performance with different number of threads (8,
16, 32, and 64). Figure 16 illustrates the results with a fixed
WPQ size of 64. As the number of threads increases, the run-
time overhead also increases. That is because more threads
cause a higher contention on the shared WPQs, resulting
in more front-end buffer stalls. With more threads, we also
see more WPQ overflow. Despite, the WPQ overflow rate is
low—1.9 overflows per 10000 instructions under a 64-thread
case. The overflow rate can be reduced by 5.22x by enlarging
the WPQ to 256. In addition, for vacation application in
STAMP, we use low-contention input for 8 threads and high-
contention input for other thread numbers, we do not see clear
performance degradation when using high-contention input—
around 13% run-time overhead at 8-thread and around 14%
run-time overhead for other thread numbers.

STAMP NPB SPLASH3 WHISPER1.0 1.0

1.1 1.1

1.2 1.2

1.3 1.3

1.4 1.4

1.5 1.5

E
xe

cu
ti

on
S

lo
w

do
w

n

8-thread (default) 16-thread 32-thread 64-thread

Fig. 16. Slowdown of different thread count configurations.

6) CXL-based LightWSP: Compute Express Link (CXL)
emerges as a promising high-performance interconnection
technology, offering an alternative approach to using NVM
as main memory without going through Intel’s integrated
memory controller (iMC) as in Optane’s memory [24], [74],
[78]. Therefore, this section explores LightWSP’s performance
when CXL is used to connect the persist path to NVDIMM—
that can save DRAM contents upon power failure with battery
power—or persistent main memory (PMEM). We evaluate four
distinct CXL configurations shown in Table III; the first three
CXL NVDIMM devices are modeled with parameters drawn
from a recent study [94], while the fourth configuration is a
CXL-based PMEM device with applying additional 70ns CXL
interconnect latency [64]. Figure 17 shows the results, across
various configurations. It highlights that LightWSP works well
with CXL technologies, causing an average run-time overhead
of less than 16%.

226

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER geom(all)1.0 1.0

1.1 1.1

1.2 1.2

1.3 1.3
E

xe
cu

ti
on

S
lo

w
do

w
n

1.3
CXL-I CXL-II CXL-III CXL-PMem

Fig. 17. Slowdown of different CXL configurations.

G. Other Analyses

1) LLC Cache Miss Handling: As mentioned in §IV-H,
for LLC load miss, LightWSP simultaneously loads the data
from PM and conducts a WPQ search in case the newest data
is resident in the WPQ. In case of a WPQ hit, LightWSP
has to postpone its PM load until the hit entry is committed
to PM. To assess the potential performance impact of this
technique, we evaluate the hit rate on the WPQ under our
default configuration. As depicted in Figure 18, the WPQ
hit rate is very low. Across all the benchmarks evaluated,
the average WPQ hit rate is only 0.039 hits per million
instructions, indicating a minimal performance impact due to
the waiting delay upon a WPQ hit.

CPU2006 CPU2017 STAMP NPB SPLASH3 WHISPER0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

W
P

Q
H

it
T

im
es

(p
er

m
ill

io
n

in
st

s) 1.1

WPQ-256 WPQ-128 WPQ-64 (default)

Fig. 18. WPQ hit rate.
2) Front-End Buffer/WPQ Search Overhead: As discussed

in IV-G and IV-H, LightWSP consults the front-end buffer
and WPQ on L1 cache eviction and LLC miss, respectively.
This requires CAM (content-addressable memory) searching.
To this end, we use CACTI 7.0 [8] with 22 nm technology to
calculate the search delay of both the front-end buffer and
the WPQ under 64 entries and an 8-byte granularity. The
simulation results highlight the low latency of searching the
front-end buffer and the WPQ, i.e., 0.99ns (2 cycles).

3) Instruction Count and Region Statistics: We compare
the dynamic instruction count of LightWSP and the baseline.
On average, compared with the baseline, LightWSP incurs
7.03% more instructions mainly due to its checkpoint stores.
Additionally, LightWSP’s average instruction count per region
is 91.33 while the average store count per region is 11.29.

4) Hardware Cost Analysis: This section analyzes
LightWSP’s hardware cost and compares it to PPA and
Capri. LightWSP’s front-end buffer holds 8-byte entries with
a default capacity of 64 entries, totaling 512B. This is fully
covered by Intel’s 1KB WCB [46]. The WPQ size is also
512B, which aligns with practical configurations in iMC,
and does not incur additional hardware cost. MC’s hardware
overhead is a 2B flush ID per MC. Therefore, in our 8-core
configuration with 2 MCs, the hardware cost of LightWSP
is near zero, amounting to only 0.5B per core. In contrast,
PPA incurs 337B overhead per core due to hardware support
for facilitating its store integrity. For Capri, its hardware cost
is notably more substantial than PPA, i.e., 54KB per core.

VI. RELATED WORK

Many different schemes have been proposed to provide
data persistence and crash consistency. Among these schemes,
some only consider partial-system persistence (PSP) which
persists only the stores of user-defined regions of code [3], [6],
[9], [12], [25], [28], [35], [37], [48], [51], [56], [66], [71]–[73],
[76], [77], [82], [83], [85], [86], [88], [92], [99], [100], [103],
[104], [113]. However, PSP often requires dedicated interfaces,
such as persistent transactions, which are difficult and error-
prone, thus burdening programmers. Also, software-based PSP
work usually leverages write-ahead-logging (WAL) at each
transaction, causing non-trivial performance overhead. In par-
ticular, to guarantee the correct persist order, flushes/fences
are often introduced which places the logging operations on
the critical path thus incurring excessive CPU stalls. While
some hardware-based WAL [30], [52], [55], [84], [93] can
overlap the logging latency with the execution of subsequent
instructions, they still suffer high delay for the synchronization
of the persist operations at each transaction end.

LightWSP is not the first to use a separate path to achieve
data persistence. Some of work [3], [35], [51], [53], [100],
[110] also utilize a separate persist path. However, most of
their paths are connected from L1 cache to PM. Their common
problem is write amplification causing non-trivial bandwidth
pressure on the data path. That is because every 8-byte store
generates substantial 64-byte traffic over the path. Instead,
LightWSP leverages the non-temporal data path that conveys
8-byte data being stored down to PMEM bypassing the cache
hierarchy, thus reducing the bandwidth pressure by 8x.

Finally, previous research has also explored the use of
battery-backed buffers to achieve crash consistency [3], [6],
[26], [35], [41], [53], [56], [81], [100]. However, some ap-
proaches within this spectrum entail substantial battery re-
quirements. For instance, Intel’s eADR [41] and Viyojit [56]
are typical examples that necessitate a considerable battery
size. Besides, other methodologies demand extensive hardware
modifications to ensure their correct persist order, such as
cache tag extensions (e.g., LAD [35]) or alterations to cache
coherence mechanisms, as observed in prior work such as
TSOPER [26] and BBB [6]. In contrast, LightWSP only needs
minor modification on its MCs (e.g., flush ID), and they
demand only a small battery considering the small WPQ size.

VII. CONCLUSION

This paper presents LightWSP, a lightweight yet performant
whole-system persistence (WSP) scheme. LightWSP compiler
partitions program into a series of regions whose boundary
serves as a recovery point. For efficient persist ordering
between the regions, LightWSP proposes lazy region-level
persist ordering that completely hides their persistence latency.
Overall, LightWSP incurs a 9.0% average run-time overhead
with near-zero hardware cost, bringing WSP closer to practice.

ACKNOWLEDGMENT

We thank anonymous reviewers. This work was supported
by NSF grants 2001124 (CAREER), 2153749, and 2314681.

227

REFERENCES

[1] “Micron and Intel Announce Update to 3D XPoint Joint Development
Program,” https://newsroom.intel.com/news-releases/micron-intel-
announce-update-3d-xpoint-joint-development-program/, accessed:
2023-03-21.

[2] “Micron NVDIMMs: Persistent Memory Performance,”
https://www.micron.com/-/media/client/global/documents/products/
product-flyer/nvdimm flyer.pdf, accessed: 2023-03-21.

[3] A. Abulila, I. E. Hajj, M. Jung, and N. S. Kim, “Asap: architecture
support for asynchronous persistence,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, 2022, pp.
306–319.

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
principles, techniques, & tools. Pearson Education India, 2007.

[5] V. A. Alfred, S. L. Monica, and D. U. Jeffrey, Compilers Principles,
Techniques & Tools. pearson Education, 2007.

[6] M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin, “Bbb:
Simplifying persistent programming using battery-backed buffers,” in
2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2021, pp. 111–124.

[7] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, “Bztree:
A high-performance latch-free range index for non-volatile memory,”
Proceedings of the VLDB Endowment, vol. 11, no. 5, pp. 553–565,
2018.

[8] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 1–25, 2017.

[9] A. Bhattacharyya, A. Somashekhar, and J. S. Miguel, “Nvmr: non-
volatile memory renaming for intermittent computing,” in Proceedings
of the 49th Annual International Symposium on Computer Architecture,
2022, pp. 1–13.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[11] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017:
Next-generation compute benchmark,” in Companion of the 2018
ACM/SPEC International Conference on Performance Engineering,
2018, pp. 41–42.

[12] M. Cai, C. C. Coats, and J. Huang, “Hoop: efficient hardware-assisted
out-of-place update for non-volatile memory,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 584–596.

[13] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
locks for non-volatile memory consistency,” ACM SIGPLAN Notices,
vol. 49, no. 10, pp. 433–452, 2014.

[14] B. Choi, R. Burns, and P. Huang, “Understanding and dealing with hard
faults in persistent memory systems,” in Proceedings of the Sixteenth
European Conference on Computer Systems, 2021, pp. 441–457.

[15] J. Choi, J. Choi, J. Hyunwoo, and C. Jung, “Caphammer: Exploiting
capacitor vulnerability of energy harvesting systems,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2024.

[16] J. Choi, H. Joe, Y. Kim, and C. Jung, “Achieving stagnation-free
intermittent computation with boundary-free adaptive execution,” in
2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2019, pp. 331–344.

[17] J. Choi, L. Kittinger, Q. Liu, and C. Jung, “Compiler-directed high-
performance intermittent computation with power failure immunity,”
in 2022 IEEE 28th Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). IEEE, 2022, pp. 40–54.

[18] J. Choi, Q. Liu, and C. Jung, “Cospec: Compiler directed specula-
tive intermittent computation,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
399–412.

[19] J. Choi, J. Zeng, D. Lee, C. Min, and C. Jung, “Write-light cache
for energy harvesting systems,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–13.

[20] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “Nv-heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 1, pp. 105–118, 2011.

[21] A. Conway, A. Gupta, V. Chidambaram, M. Farach-Colton, R. Spillane,
A. Tai, and R. Johnson, “{SplinterDB}: closing the bandwidth gap
for {NVMe}{Key-Value} stores,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 2020, pp. 49–63.

[22] M. Dananjaya, V. Gavrielatos, A. Joshi, and V. Nagarajan, “Lazy
release persistency,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 1173–1186.

[23] M. De Kruijf and K. Sankaralingam, “Idempotent code generation:
Implementation, analysis, and evaluation,” in Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO). IEEE, 2013, pp. 1–12.

[24] P. Desnoyers, I. Adams, T. Estro, A. Gandhi, G. Kuenning, M. Mes-
nier, C. Waldspurger, A. Wildani, and E. Zadok, “Persistent memory
research in the post-optane era,” in Proceedings of the 1st Workshop
on Disruptive Memory Systems, 2023, pp. 23–30.

[25] B. Di, J. Liu, H. Chen, and D. Li, “Fast, flexible, and comprehensive
bug detection for persistent memory programs,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 503–516.

[26] P. Ekemark, Y. Yao, A. Ros, K. Sagonas, and S. Kaxiras, “Tsoper: Ef-
ficient coherence-based strict persistency,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2021, pp. 125–138.

[27] G. Fang, J. Choi, and C. Jung, “Hybrid power failure recovery for
intermittent computing,” in ACM/IEEE International Conference on
Computer-Aided Design (ICCAD), 2024.

[28] A. Freij, H. Zhou, and Y. Solihin, “Secpb: Architectures for secure non-
volatile memory with battery-backed persist buffers,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 677–690.

[29] K. Genç, M. D. Bond, and G. H. Xu, “Crafty: Efficient, htm-compatible
persistent transactions,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2020, pp. 59–74.

[30] E. Giles, K. Doshi, and P. Varman, “Bridging the programming gap
between persistent and volatile memory using wrap,” in Proceedings
of the ACM International Conference on Computing Frontiers, 2013,
pp. 1–10.

[31] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and
T. F. Wenisch, “Relaxed persist ordering using strand persistency,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 652–665.

[32] H. Gorjiara, Verifying Correctness of Persistent Memory Programs.
University of California, Irvine, 2022.

[33] H. Gorjiara, W. Luo, A. Lee, G. H. Xu, and B. Demsky, “Checking
robustness to weak persistency models,” in Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, 2022, pp. 490–505.

[34] H. Gorjiara, G. H. Xu, and B. Demsky, “Yashme: Detecting persistency
races,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2022, pp. 830–845.

[35] S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless atomic
durability with persistent memory,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
466–478.

[36] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[37] G. Hodgkins, Y. Xu, S. Swanson, and J. Izraelevitz, “Zhuque: Failure
is not an option,it’s an exception,” in 2023 USENIX Annual Technical
Conference (USENIX ATC 23), 2023, pp. 833–849.

[38] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster,
“Nvthreads: Practical persistence for multi-threaded applications,” in
Proceedings of the Twelfth European Conference on Computer Systems,
2017, pp. 468–482.

[39] S.-Y. Huang, J. Zeng, X. Deng, S. Wang, A. Sifat, B. Bharmal, J.-B.
Huang, R. Williams, H. Zeng, and C. Jung, “Rtailor: Parameterizing
soft error resilience for mixed-criticality real-time systems,” in 2023
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 344–
357.

[40] Intel, “An Introduction to the Intel® QuickPath Interconnect,”
https://www.intel.com/content/www/us/en/io/quickpath-technology/
quick-path-interconnect-introduction-paper.html.

228

https://newsroom.intel.com/news-releases/micron-intel-announce-update-3d-xpoint-joint-development-program/
https://newsroom.intel.com/news-releases/micron-intel-announce-update-3d-xpoint-joint-development-program/
https://www.micron.com/-/media/client/global/documents/products/product-flyer/nvdimm_flyer.pdf
https://www.micron.com/-/media/client/global/documents/products/product-flyer/nvdimm_flyer.pdf
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html

[41] Intel, “eADR: New Opportunities for Persistent Memory Applications,”
https://www.intel.com/content/www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-memory-applications.html.

[42] Intel, “Intel optane persistent memory,” https://www.intel.com/
content/www/us/en/products/docs/memory-storage/optane-persistent-
memory/overview.html, accessed: 2023-03-21.

[43] Intel, “Persistent Memory Learn More Series Part 2,”
https://www.intel.com/content/www/us/en/developer/articles/training/
pmem-learn-more-series-part-2.html.

[44] Intel, “Persistent memory programming,” https://pmem.io./.
[45] Intel, “Why Is the Intel Optane Persistent Memory in Memory Mode

Not Persistent?” https://www.intel.com/content/www/us/en/support/
articles/000055895/memory-and-storage/intel-optane-persistent-
memory.html, accessed: 2023-03-21.

[46] Intel, “Intel® 64 and ia-32 architectures optimization refer-
ence.” https://cdrdv2-public.intel.com/671488/248966-046A-software-
optimization-manual.pdf, 2023, accessed: 2023-04-20.

[47] Intel, “Intel 64 and ia-32 architectures software developer’s manual,”
Volume 3A: System Programming Guide, Part, vol. 1, p. 64, 2024.

[48] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 2, pp. 427–442, 2016.

[49] C. J. Jaeseok Choi, Hyunwoo Joe and J. Choi, “Defending against emi
attacks on just-in-time checkpoint for resilient intermittent systems,” in
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2024.

[50] J. Jeong, J. Hong, S. Maeng, C. Jung, and Y. Kwon, “Unbounded
hardware transactional memory for a hybrid dram/nvm memory sys-
tem,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 525–538.

[51] J. Jeong and C. Jung, “Pmem-spec: persistent memory speculation
(strict persistency can trump relaxed persistency),” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 517–529.

[52] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-
assisted logging with asynchronous and direct-update for persistent
memory,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 520–532.

[53] J. Jeong, J. Zeng, and C. Jung, “Capri: Compiler and architecture
support for whole-system persistence,” in Proceedings of the 31st In-
ternational Symposium on High-Performance Parallel and Distributed
Computing, 2022, pp. 71–83.

[54] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist
barriers for multicores,” in Proceedings of the 48th International
Symposium on Microarchitecture, 2015, pp. 660–671.

[55] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic dura-
bility in non-volatile memory through hardware logging,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017, pp. 361–372.

[56] R. Kateja, A. Badam, S. Govindan, B. Sharma, and G. Ganger, “Viyojit:
Decoupling battery and dram capacities for battery-backed dram,” ACM
SIGARCH Computer Architecture News, vol. 45, no. 2, pp. 613–626,
2017.

[57] H. Kim, J. Zeng, Q. Liu, M. Abdel-Majeed, J. Lee, and C. Jung,
“Compiler-directed soft error resilience for lightweight gpu register file
protection,” in Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 989–
1004.

[58] W.-H. Kim, R. M. Krishnan, X. Fu, S. Kashyap, and C. Min, “Pactree:
A high performance persistent range index using pac guidelines,”
in Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, 2021, pp. 424–439.

[59] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, 2016, pp. 399–411.

[60] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu,
P. M. Chen, and T. F. Wenisch, “Delegated persist ordering,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–13.

[61] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating stt-ram as an energy-efficient main memory alternative,”

in 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2013, pp. 256–267.

[62] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International symposium on
code generation and optimization, 2004. CGO 2004. IEEE, 2004, pp.
75–86.

[63] S. Lee, M. Kwon, G. Park, and M. Jung, “Lightpc: hardware and
software co-design for energy-efficient full system persistence,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 289–305.

[64] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal et al., “Pond: Cxl-based
memory pooling systems for cloud platforms,” in Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2023, pp.
574–587.

[65] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“Dudetm: Building durable transactions with decoupling for persistent
memory,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 329–343, 2017.

[66] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung,
“ido: Compiler-directed failure atomicity for nonvolatile memory,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2018, pp. 258–270.

[67] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” ACM Sigplan Notices, vol. 50, no. 5,
pp. 1–10, 2015.

[68] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-directed lightweight
checkpointing for fine-grained guaranteed soft error recovery,” in
SC’16: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2016,
pp. 228–239.

[69] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Compiler-directed soft
error detection and recovery to avoid due and sdc via tail-dmr,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 16, no. 2,
pp. 1–26, 2016.

[70] Q. Liu, C. Jung, D. Lee, and D. Tiwarit, “Low-cost soft error resilience
with unified data verification and fine-grained recovery for acoustic
sensor based detection,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–12.

[71] S. Liu, S. Mahar, B. Ray, and S. Khan, “Pmfuzz: Test case generation
for persistent memory programs,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 487–502.

[72] S. Liu, K. Seemakhupt, Y. Wei, T. Wenisch, A. Kolli, and S. Khan,
“Cross-failure bug detection in persistent memory programs,” in Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020,
pp. 1187–1202.

[73] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan, “Pmtest: A fast
and flexible testing framework for persistent memory programs,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2019, pp. 411–425.

[74] Y. Liu, Y. Ren, M. Liu, H. Li, H. Guo, X. Miao, X. Hu, and H. Chen,
“Optimizing file systems on heterogeneous memory by integrating
{DRAM} cache with virtual memory management,” in 22nd USENIX
Conference on File and Storage Technologies (FAST 24), 2024, pp.
71–87.

[75] J. Löff, D. Griebler, G. Mencagli, G. Araujo, M. Torquati, M. Dane-
lutto, and L. G. Fernandes, “The nas parallel benchmarks for evaluating
c++ parallel programming frameworks on shared-memory architec-
tures,” Future Generation Computer Systems, vol. 125, pp. 743–757,
2021.

[76] V. J. Marathe, M. I. Seltzer, S. Byan, and T. Harris, “Persistent mem-
cached: Bringing legacy code to byte-addressable persistent memory.”
in HotStorage, 2017.

[77] A. Memaripour and S. Swanson, “Breeze: User-level access to non-
volatile main memories for legacy software,” in 2018 IEEE 36th
International Conference on Computer Design (ICCD). IEEE, 2018,
pp. 413–422.

[78] T. Miemietz, V. Reusch, M. Roitzsch, and H. Härtig, “An nvm perfor-
mance study towards whole system persistence on server platforms,”
in Proceedings of the 1st Workshop on Disruptive Memory Systems,
2023, pp. 45–51.

229

https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/overview.html
https://www.intel.com/content/www/us/en/developer/articles/training/pmem-learn-more-series-part-2.html
https://www.intel.com/content/www/us/en/developer/articles/training/pmem-learn-more-series-part-2.html
https://pmem.io./
https://www.intel.com/content/www/us/en/support/articles/000055895/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055895/memory-and-storage/intel-optane-persistent-memory.html
https://www.intel.com/content/www/us/en/support/articles/000055895/memory-and-storage/intel-optane-persistent-memory.html
https://cdrdv2-public.intel.com/671488/248966-046A-software-optimization-manual.pdf
https://cdrdv2-public.intel.com/671488/248966-046A-software-optimization-manual.pdf

[79] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi-processing,” in 2008 IEEE
International Symposium on Workload Characterization. IEEE, 2008,
pp. 35–46.

[80] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” ACM SIGPLAN
Notices, vol. 52, no. 4, pp. 135–148, 2017.

[81] D. Narayanan and O. Hodson, “Whole-system persistence,” in Pro-
ceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, 2012,
pp. 401–410.

[82] I. Neal, A. Quinn, and B. Kasikci, “Hippocrates: Healing persistent
memory bugs without doing any harm,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2021, pp. 401–414.

[83] Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. L. Miller, “Ssp: Eliminating
redundant writes in failure-atomic nvrams via shadow sub-paging,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 836–848.

[84] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Efficient
hardware undo+ redo logging for persistent memory systems,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 336–349.

[85] S. Pandey, A. K. Kamath, and A. Basu, “Gpm: leveraging persistent
memory from a gpu,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 142–156.

[86] S. Pandey, A. K. Kamath, and A. Basu, “Scoped buffered persistency
model for gpus,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, 2023, pp. 688–701.

[87] A. Raad, L. Maranget, and V. Vafeiadis, “Extending intel-x86 consis-
tency and persistency: Formalising the semantics of intel-x86 memory
types and non-temporal stores,” Proceedings of the ACM on Program-
ming Languages, vol. 6, no. POPL, pp. 1–31, 2022.

[88] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015, pp. 672–685.

[89] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,”
in 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2016, pp. 101–111.

[90] S. Scargall and S. Scargall, “Persistent memory architecture,” Program-
ming Persistent Memory: A Comprehensive Guide for Developers, pp.
11–30, 2020.

[91] D. Schwalb, T. Berning, M. Faust, M. Dreseler, and H. Plattner, “nvm
malloc: Memory allocation for nvram.” Adms@ Vldb, vol. 15, pp. 61–
72, 2015.

[92] S. M. Shahri, S. A. V. Ghahani, and A. Kolli, “(almost) fence-
less persist ordering,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2020, pp. 539–554.

[93] S. Shin, S. K. Tirukkovalluri, J. Tuck, and Y. Solihin, “Proteus: A
flexible and fast software supported hardware logging approach for
nvm,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, 2017, pp. 178–190.

[94] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal,
J. Lou, I. Jeong et al., “Demystifying cxl memory with genuine
cxl-ready systems and devices,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, 2023, pp.
105–121.

[95] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 1, pp. 91–104, 2011.

[96] T. Wang, S. Sambasivam, Y. Solihin, and J. Tuck, “Hardware supported
persistent object address translation,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, 2017, pp.
800–812.

[97] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and modeling non-volatile memory systems,” in 2020

53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 496–508.

[98] Y. Wu, B. Min, M. Ismail, W. Xiong, C. Jung, and D. Lee, “{IntOS}:
Persistent embedded operating system and language support for multi-
threaded intermittent computing,” in 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24), 2024, pp.
425–443.

[99] Y. Xu, J. Izraelevitz, and S. Swanson, “Clobber-nvm: log less, re-
execute more,” in Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 346–359.

[100] S. Yadalam, N. Shah, X. Yu, and M. Swift, “Asap: A speculative
approach to persistence,” in 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2022, pp.
892–907.

[101] F. Yang, Y. Lu, Y. Chen, H. Mao, and J. Shu, “No compromises: Secure
nvm with crash consistency, write-efficiency and high-performance,” in
Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1–6.

[102] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory.”
in FAST, vol. 20, 2020, pp. 169–182.

[103] C. Ye, Y. Xu, X. Shen, H. Jin, X. Liao, and Y. Solihin, “Preserv-
ing addressability upon gc-triggered data movements on non-volatile
memory,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 19, no. 2, pp. 1–26, 2022.

[104] C. Ye, Y. Xu, X. Shen, Y. Sha, X. Liao, H. Jin, and Y. Soli-
hin, “Specpmt: Speculative logging for resolving crash consistency
overhead of persistent memory,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2023, pp. 762–777.

[105] J. Zeng, “Compiler and Architecture Co-design
for Reliable Computing,” 7 2024. [Online]. Avail-
able: https://hammer.purdue.edu/articles/thesis/ b Compiler and
Architecture Co-design for Reliable Computing b /26356696

[106] J. Zeng, J. Choi, X. Fu, A. P. Shreepathi, D. Lee, C. Min, and C. Jung,
“Replaycache: Enabling volatile cachesfor energy harvesting systems,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 170–182.

[107] J. Zeng, S.-Y. Huang, J. Liu, and C. Jung, “Soft error resilience at near-
zero cost,” in Proceedings of the 38th ACM International Conference
on Supercomputing, 2024, pp. 176–187.

[108] J. Zeng, J. Jeong, and C. Jung, “Persistent processor architecture,”
in MICRO-56: 56th Annual IEEE/ACM International Symposium on
Microarchitecture, 2023.

[109] J. Zeng, H. Kim, J. Lee, and C. Jung, “Turnpike: Lightweight soft error
resilience for in-order cores,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 654–666.

[110] J. Zeng, T. Zhang, and C. Jung, “Compiler-directed whole-system per-
sistence,” in Proceedings of the 51th Annual International Symposium
on Computer Architecture, 2024.

[111] J. Zha, L. Huang, L. Wu, S.-a. Zheng, and H. Liu, “A consistency
mechanism for nvm-based in-memory file systems,” in Proceedings of
the ACM International Conference on Computing Frontiers, 2016, pp.
197–204.

[112] Y. Zhang and C. Jung, “Featherweight soft error resilience for gpus,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 245–262.

[113] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing
the performance gap between systems with and without persistence
support,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, 2013, pp. 421–432.

[114] Y. Zhou, J. Zeng, J. Jeong, J. Choi, and C. Jung, “Sweepcache:
Intermittence-aware cache on the cheap,” in MICRO-56: 56th Annual
IEEE/ACM International Symposium on Microarchitecture, 2023.

[115] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture, 2019, pp. 157–
168.

230

https://hammer.purdue.edu/articles/thesis/_b_Compiler_and_Architecture_Co-design_for_Reliable_Computing_b_/26356696
https://hammer.purdue.edu/articles/thesis/_b_Compiler_and_Architecture_Co-design_for_Reliable_Computing_b_/26356696

