

Knowledge Projection System
System Design Specification

Document

Version 3.0

7/5/2005 8:42:00 AM
Purdue University

Knowledge Project System

SDSD Page 2 of 58 5/16/2006

Approvals

Stakeholder Name Organization & Role Signature Date

David Bartlett Crane – Project Manager

Mark Boike Crane – Deputy Project Manager

William Brenner EG&G – Project Manager

Lisa Sturgeon EG&G - Technical Integrator

Rick McMullen IU – Project Manager

Chris Clifton Purdue – Project Manager

Document Change Control

Revision
Number Date of Issue Author(s) Brief Description of Change
 12/15/2004 Mourad Ouzzani and Anne C.

Catlin
Second version of the system design
specification document

Knowledge Project System

SDSD Page 3 of 58 5/16/2006

Table of Contents

Introduction... 6
1. Document Overview ... 6

1.1. Document Purpose .. 6
1.2. Document Scope ... 6
1.3. References... 6
1.4. Software Design Specification Document Development Guidance 6
1.5. Terminology.. 6

2. KPS Architecture Overview ... 6
3. Knowledge base schema... 7

3.1. XML Schemas .. 7
3.1.1. Process (Process.xsd).. 8
3.1.2. Document (Document.xsd) ... 14
3.1.3. Figures (Figure.xsd).. 15
3.1.4. Smart Tables (TableDef.xsd, TableInst.xsd, TableRow.xsd) 17
3.1.5. Smart Images (smartImage.xsd) ... 21
3.1.6. Sessions (FaultSession.xsd) .. 24
3.1.7. SchemaLib.xsd.. 27
3.1.8. Supporting Data (Link.xsd) .. 28

3.2. XML Tables .. 28
3.2.1. Summary XML Schemas, Documents, and Tables .. 28

3.3. Relational Tables .. 29
3.3.1. Dynamic Maintenance .. 29

3.3.1.1. Table Load_SourceSRA ... 30
3.3.1.2. Table EventLinks .. 30
3.3.1.3. Table NextEvent ... 31
3.3.1.4. Table SystemStartScenario ... 31
3.3.1.5. Table SystemNextScenario... 31
3.3.1.6. Table DatabaseCalls.. 31
3.3.1.7. Table DatabaseCallParameters ... 32
3.3.1.8. Table Notes ... 32
3.3.1.9. Table EventsAfterNotes.. 32
3.3.1.10. Table Warnings... 33
3.3.1.11. Table SpecialProcedures... 33
3.3.1.12. Table GeneralNotes .. 33
3.3.1.13. Table Synchronization .. 33

3.3.2. Data Mining .. 34
3.3.2.1. Table FaultSession .. 35
3.3.2.2. Table Action.. 35
3.3.2.3. Table Action_Parameter ... 35
3.3.2.4. Table Action_Link .. 35
3.3.2.5. Table Event_Node .. 35
3.3.2.6. Table Node_Link .. 35
3.3.2.7. Table Current_Node.. 35
3.3.2.8. Table Part .. 35
3.3.2.9. Table Part_Ship... 35
3.3.2.10. Table Part_Fault_Ship .. 35

Knowledge Project System

SDSD Page 4 of 58 5/16/2006

3.3.2.11. Table Ship_Class .. 35
3.3.2.12. Table Ship ... 35
3.3.2.13. Table Part_Fault.. 35
3.3.2.14. Table Fault .. 35
3.3.2.15. Table Part_Log_Ship .. 35

3.4. XML document transformation and presentation ... 35
3.5. Dynamic Maintenance Functions and Procedures.. 35

3.5.1. Supporting PL/SQL Functions.. 35
3.5.2. Parse Process PL/SQL Functions.. 35
3.5.3. Session PL/SQL Functions ... 35

3.6. Data Mining Functions and Procedures.. 35
3.6.1. Supporting PL/SQL Functions.. 35
3.6.2. Java Stored Procedures ... 35

4. Application Infrastructure... 35
4.1. Knowledge Projection Portal .. 35

4.1.1. ShipLogin.jsp .. 35
4.1.2. SoreLogin.jsp .. 35
4.1.3. MainMenu.jsp ... 35
4.1.4. TSSControl.jsp.. 35
4.1.5. StartTSS.jsp .. 35
4.1.6. Maintainer.jsp ... 35

4.1.6.1. Execute.jsp .. 35
4.1.6.2. flowchart.jsp.. 35
4.1.6.3. bottom.jsp.. 35

4.1.7. TextSession.jsp: .. 35
4.2. Client Side... 35

4.2.1. CraneQuery.java ... 35
4.2.2. StoredProcedureCall.java.. 35
4.2.3. Action.java, Chart.java ... 35
4.2.4. SaveTextSession.java.. 35
4.2.5. TextSessionSupport.java:.. 35

4.3. Troubleshooting Processing.. 35
4.3.1. Knowledge Projection Control ... 35
4.3.2. Trouble Shooting Session Processing... 35
4.3.3. Parse Process... 35
4.3.4. Fault Session Capture ... 35
4.3.5. SaveTextSession.java.. 35

4.4. Data Mining Processing.. 35
5. System Features .. 35

5.1. Login ... 35
5.2. The Fault Session component ... 35
5.3. Text Session component ... 35
5.4. TSS Status control component.. 35
5.5. Ship Side Linkage Infrastructure Ship Side Linkage Infrastructure for Maintainer
Submitted Files ... 35
5.6. Ship Side Linkage Infrastructure for SME Submitted Files ... 35
5.7. Shore Side Linkage Infrastructure for both SME and Maintainer Submitted Files...... 35
5.8. Ship Side Linkage Infrastructure for SME Submitted File Get New files Component 35

Knowledge Project System

SDSD Page 5 of 58 5/16/2006

5.9. Parse Process... 35
5.10. SaveSession... 35
5.11. Text Block Enhancement to TSS Sessions ... 35
5.12. User Interface Improvement for Session Viewer.. 35
5.13. Data Mining .. 35
5.14. Troubleshooting Session... 35

5.14.1. TSS Start Component ... 35
5.14.2. TSS Append Component .. 35
5.14.3. TSS Submit to Ship KPS Component... 35
5.14.4. TSS Send to Shore Component... 35
5.14.5. TSS Receive All Files on Ship Component.. 35
5.14.6. TSS Receive All Files on Shore Component.. 35

5.15. Scenario Viewer.. 35
5.16. Troubleshooting Session Viewer .. 35

Table of Figures

Figure 1 KPS Infrastructure: Data & Code... 7
Figure 2 Technical Manual Process Specification for SLQ-32 HVS Subtest 1 TDFD.................. 8
Figure 3 Process XSD with the Scenario element. ... 10
Figure 4 Action Block... 11
Figure 5 Condition Block.. 12
Figure 6 Document XSD .. 14
Figure 7 The Figure XSD ... 16
Figure 8 The Table Definition XSD ... 17
Figure 9 The tableInstance XSD... 19
Figure 10 The TableRow XSD ... 20
Figure 11 The smartImage XSD... 22
Figure 12 Shape block (smartImage XSD): Supports the “Use Map” web browser concept....... 22
Figure 13 The FaultSession XSD ... 25
Figure 14 KPS Data Flow and Control ... 35
Figure 15 Online Trouble Shooting .. 35

Knowledge Project System

SDSD Page 6 of 58 5/16/2006

Introduction
The Knowledge Projection System (KPS) project is an applied research project aimed at
developing technologies for improving the use of systems knowledge to efficiently provide a
more cost-effective approach for maintenance operations on Navy vessels.
The KPS is to provide the fleet with web-based troubleshooting capabilities, access to mined
data from traditional and non-traditional data sources, case based reasoning to subject matter
experts, recommendations for maintenance process improvements in the areas of technical
manuals, training, test direction flow, or logistics.

1. Document Overview
1.1. Document Purpose
Define how the application or system should work, including the proposed components and
what they will do. This also includes database design for relational and XML data.

1.2. Document Scope
This document describes the detailed architectural design for the system. It specifies all known
components needed to deliver the complete Knowledge Projection System.

1.3. References
• CBR Design Specification Document
• HPKB Design Specification Document
• Data Mining Design Specification Document
• Non-Traditional Data Design Specification Document
• HMI Design Specification Document
• System Integration Design Specification Document

1.4. Software Design Specification Document Development Guidance
• IEEE Std. 1016-1998 IEEE Recommended Practice for Software Design Descriptions

1.5. Terminology

2. KPS Architecture Overview
Figure 1 KPS Infrastructure: Data & Codeis a high level description of the Knowledge Projection
System. The infrastructure’s major component is the Oracle XML Knowledge Base. This
knowledge base hosts all the data and most of the code of the infrastructure.

Knowledge Project System

SDSD Page 7 of 58 5/16/2006

Figure 1 KPS Infrastructure: Data & Code

3. Knowledge base schema
The Purdue XML knowledge base supports scenario-based knowledge projection for dynamic
shipboard troubleshooting. In this section, we detail the different metadata components that
make up the knowledge base.

3.1. XML Schemas
The XML Knowledge Base supports scenario-based knowledge projection for dynamic
shipboard troubleshooting. The objective is to give the sailor who is troubleshooting a system
fault report “all the information he needs, exactly when he needs it.”

We have defined a number of fault-specific troubleshooting scenarios for the SLQ-32 High
Voltage Sequencer Unit and Display Control Console. The XML information to support these
scenarios includes:

• TDFD/TDD process
• Associated documents and figures
• Required table and component information.

In the XML KB, smartTables and smartImages are represented as non-traditional data types,
with content-specific storage, access, search and presentation. Other non-traditional types,
such as email, chat room and SME hotline support, are being added as we progress in the
project.

All troubleshooting information is represented as XML documents in the Knowledge Base. In
this section, we detail the different XML schemas upon which these documents are built. The
following XML schemas are the core schemas required to support dynamic troubleshooting:

(1) Process (including internal process support structures for dynamic event processing)
(2) Documents
(3) Figures

Oracle 9i
XML Knowledge Base

KPS Application Server Oracle 9i AS
J2EE oc4j for web-based client interface

JSP
Applet
Java

• JDBC connection
• XML message communication
• SQL data query

from client to Oracle 9i database

• XML/XSL or HTML for client display
• XML message communication
• SQL data retrieval

from Oracle 9i database to client

XSD, XML, XSL

Supporting Relational Tables

PL/SQL Functions and Scripts

Java Stored Procedures

Data Layers

Code Layers

Knowledge Project System

SDSD Page 8 of 58 5/16/2006

(4) smartTables
(5) smartImages
(6) FaultSession
(7) Supporting data structure

XML schema design adheres to the following general guidelines and standards:

• Schema representations include a block of keyword elements for indexing and
searching.

• There is a standard format for linking related elements that is used across all schema
representations. For example, events in the Process schema (describing the process
event flow) will contain links to elements in Documents, Figures, smartTables, and
smartImages, as needed to fully support the given step in the troubleshooting
process.

• All schema representations identify the technical manual and revision from which the
information (for tables, figures, images, components, etc.) was extracted.

To represent the knowledge required for our scenario-based troubleshooting KB, we define
eight XMLType database tables with their associated XSDs. At least one XSL is needed for
each schema to support Web browser display and operation. The schema also includes other
supporting data structures that will be accessed during the dynamic maintenance process,
session generation and off line data mining for retrieving further information.

3.1.1. Process (Process.xsd)
The Process XML schema identifies all possible activity paths through the TDFD/TDD as a
series of events. It is designed based on technical manual process specification as depicted in
Figure 2.

Figure 2 Technical Manual Process Specification for SLQ-32 HVS Subtest 1 TDFD

Process XML Schema (Figure 3) is the fundamental unit for the XML representation of
troubleshooting procedures. It has the following properties:

(1) Allows to present an online interface to troubleshooting procedures through the use of
XSL transformations

(2) Follows codified procedures step-by-step

Knowledge Project System

SDSD Page 9 of 58 5/16/2006

(3) Handles any form of special procedures by incorporating them directly into the standard
flow

(4) Automatically retrieves technical manuals, diagrams, tables at each step from clickable
links

(5) Presents information links in order of usefulness and supports search of knowledge base
(6) Visualizes diagnostic flow path as dynamically constructed flowchart

The Event Links block allows external content to be attached to the Event step. The Links to be
associated with a given step are determined by a database call. Each event is defined as being
one of the following items:

1. An action which identifies either a specific next event or information gathered from a
process. Information gathering may require input from the sailor or extraction of data
from supporting internal data structures.

2. A condition with a Boolean evaluation that is based either on the execution of a
database function or input from the sailor.

The Process XML schema is responsible for generating session data, including capture of
measurements and other relevant information. The Process will also access data mining
knowledge associated with the current event. The corresponding XSL is used to display the
Process XML dynamically in a Web browser, with all necessary linkage to content required for
active decision-making. Our linked content consists of Documents, Figures, smartTables,
smartImages and Components.

There is a single XMLType database table and validating XSD for the Process. There are five
kinds of XML documents that comply with the Process XML schema:

1. General Scenario for High Voltage and Relay Control: This is the troubleshooting
scenario start up to initiate fault specific scenarios (contained in ScenarioS0.xml)

2. High Voltage and Relay Control - Subtest 1: Test Direction Flow Diagram for SLQ-32
High Voltage Section Subtest 1 (contained in ScenarioS1.xml)

3. SME Scenarios (contained in ScenarioSME1.xml, ScenarioSME2.xml, and
ScenarioSME3.xml)

4. Specific notes for some faults (contained in
ScenarioSN<faultNumber>_<sequence>.xml): special notes are sequences of steps that
are associated with fault table elements (like the signals in the signal table associated
with a fault). The 'special notes' sequence of steps may occur over and over again as
the main scenario moves down the series of table elements. In fact, special notes also
branch off and come back to the main scenario, but they are associated with a recurring
set of table elements.

5. Specific procedures for some faults (contained in ScenarioSP_<FaultNumber>.xml):
special procedures are independent sequences of steps that branch off the main
scenario (ScenarioS1) and come back. The special procedure is triggered at a given
step and then returns to the main scenario.

The Action and Condition Blocks of the Process XSD lay out the guided steps from the
flowchart. Each step is either an action (with a single target for the “next step”) or a condition
(with a yes/no decision-based target for the “next step”.) Any action or decision target can be
determined in the most general case by a database call.

Knowledge Project System

SDSD Page 10 of 58 5/16/2006

Figure 3 Process XSD with the Scenario element.

More specifically, the schema defines one single element scenario (Figure 3). This element has
one attribute ID that gives a unique identifier in the system and the following elements1:

1. ClassInfo (String): Specifies the classification of target system to be maintained, it is
“SLQ32-HVS” for all documents.

2. Name (String): The name of the scenario.
3. Description (String): Textual description of the scenario.
4. Type (String): Specifies the type of the scenario which could be Generic, Specific, SME,

or Special Procedure.
5. Link (LinkType): Link to external documents.
6. SystemID (String): Specifies the target system ID to be maintained, it is “SLQ32” for all

documents.

1 The type is specified between parentheses.

Knowledge Project System

SDSD Page 11 of 58 5/16/2006

7. SubSystemID (String): Specifies the sub-system ID being targeted, it is “HVS” for all
documents.

8. StartEvent (String), and EndEvent (String): Give the range of event ID contained in this
scenario.

9. Sequence of Event: Is the main element that determines step by step how a
troubleshooting and maintenance scenario is conducted.

Event is defined by one attribute ID (unique identifier) and the following elements:
1. Name (String): Name of the event.
2. DetailedScenario (String),
3. Caution (String): Textual message warning about eventual cautions to take when

conducting the action related to this event.
4. Links (sequence of DatabaseCall (SchemaLib:DatabaseCallType)):
5. Textnotes (sequence of DatabaseCall (SchemaLib:DatabaseCallType))
6. A choice between Condition and Action: An event is basically either a condition to test or

an action to do.

Action (Figure 4) is defined by a sequence of the following elements:
1. A choice between two elements DatabaseCall (SchemaLib:DatabaseCallType) and Input

(SchemaLib:InputType)
2. NextEvent (NextEventType)
3. SkipToEvent (NextEventType)
4. PreviousEvent (NextEventType)

Figure 4 Action Block

Condition (Figure 5) is defined by a sequence of the following elements:
1. Input (SchemaLib:InputType): Specifies how to get the condition (Boolean) to guide the

next event to execute.
2. NextYESEvent (NextEventType): Specifies the next event if the condition is true.

NextEventType is a sequence of DatabaseCall (SchemaLib:DatabaseCallType).
3. NextNOEvent (NextEventType): Specifies the next event if the condition is false.

Knowledge Project System

SDSD Page 12 of 58 5/16/2006

4. PreviousEvent (NextEventType): Specifies the event that precedes the current one.

Figure 5 Condition Block

Here is an excerpt of XML data that complies with this schema highlighting the case of a
Condition event. This event is about running the SDT and checking that whether the fault
reporting has changed. It requests a user entry to the question “SDT fault reporting changed?”
and then do a database call (DatabaseCall) to retrieve (DataRetrieval) the next event (by calling
the function GetNextEvent or GetNextNoEvent) to execute based on the user reply (Yes or No
respectively). It also specifies how the get the previous event using a database call
(DatabaseCall) to retrieve (DataRetrieval) it (by calling the function GetPreviousEvent). In some
cases, those events are directly provided in the XML document without accessing the database.
The element Links specifies how to get all XML documents (XMLList) related to this event,
again using a database call (DatabaseCall) to retrieve (DataRetrieval) them.

Knowledge Project System

SDSD Page 13 of 58 5/16/2006

Here is an excerpt of XML data that complies with this schema highlighting the case of an
Action event. This event means that we need to swap the interchangeable SRUs. It first
specifies that the sailor need to be cautious in doing so Caution. The event consist in a
database call (DatabaseCall) to retrieve (DataRetrieval) the interchangeable SRUs by calling
the function (DisplayInterchangeableSRU). It also specifies that E5 is the next event, E3 is the
event to skip to, and E3 is the previous event. The element Links specifies how to get all XML
documents (XMLList) related to this event, again using using a database call (DatabaseCall) to
retrieve (DataRetrieval) them. These documents may include …

<Event ID="E5">
 <Name>Run SDT and Check if Fault Reporting Changed</Name>
 <Condition>
 <Input>
 <Type>User</Type>
 <Name>SDT fault reporting changed?</Name>
 <Return>Boolean</Return>
 </Input>
 <NextYESEvent>
 <DatabaseCall>
 <Type>DataRetrieval</Type>
 <Name>GetNextEvent</Name>
 <Return>Text</Return>
 </DatabaseCall>
 </NextYESEvent>
 <NextNOEvent>
 <DatabaseCall>
 <Type>DataRetrieval</Type>
 <Name>GetNextNoEvent</Name>
 <Return>Text</Return>
 </DatabaseCall>
 </NextNOEvent>
 <PreviousEvent>
 <DatabaseCall>
 <Type>DataRetrieval</Type>
 <Name>GetPreviousEvent</Name>
 <Return>Text</Return>
 </DatabaseCall>
 </PreviousEvent>
 </Condition>
 <Links>
 <DatabaseCall>
 <Type>DataRetrieval</Type>
 <Name>GetTopLinks</Name>
 <Return>XMLList</Return>
 </DatabaseCall>
 </Links>
</Event>

Knowledge Project System

SDSD Page 14 of 58 5/16/2006

3.1.2. Document (Document.xsd)
The Document XML schema (Figure 6) identifies all documents currently represented in the
XML Knowledge Base. All information relevant to the document is stored in this schema,
including elements for launching the document, identifying the document for queries, and
revision dates. . A number of our XSL Stylesheets applied to the Documents XML can be used
to display the entire set (or a portion thereof) in tabular format (with links to bring up the
document), but Documents are primarily used as destination links for other XML schema. The
KeyWords tag is found in any Knowledge Base XML object that can be searched by the
Knowledge Query component. It is used by external users (sailors, SMEs, engineers, system
designers) and internal programs (session mining, session viewing, troubleshooting feedback).

Figure 6 Document XSD

There is a single XMLType database table and validating XSD for the Documents. XML
documents complying with this schema are contained in various files named with the following
convention: Documents_<sequenceNumber> where <sequenceNumber> is a sequential
number.

More specifically, the schema defines one single element Document. This element has one
attribute ID that gives a unique identifier in the system and the following elements:

<Event ID="E4">
 <Name>Swap Interchangeable SRUs</Name>
 <Caution>Turn power off SRU prior to reinserting SRAs or reconnecting
cables</Caution>
 <Action>
 <DatabaseCall>
 <Type>DataRetrieval</Type>
 <Name>DisplayInterchangeableSRU</Name>
 <Return>Text</Return>
 </DatabaseCall>
 <NextEvent>E5</NextEvent>
 <SkipToEvent>E3</SkipToEvent>
 <PreviousEvent>E3</PreviousEvent>
 </Action>
 <Links>
 <DatabaseCall>
 <Type>DataRetrieval</Type>
 <Name>GetTopLinks</Name>
 <Return>XMLList</Return>
 </DatabaseCall>
 </Links>
</Event>

Knowledge Project System

SDSD Page 15 of 58 5/16/2006

1. ClassInfo (SchemaLib:ClassificationType): Specifies the classification of the target
system to which this document relates to, it is “SLQ32-HVS” for all documents.

2. DocumentType (String): Brief explanation of the content of the document.
3. DocumentName (String): The name of the document in the crane classification.
4. DocumentRevision (String): Specifies if the document has been subject to any revision.
5. MediaType (String): Specifies the type of media that this element refers to. It could be

"pdf", "doc", "ps", or "paper"
6. DocumentLink (String): Specifies the location of the document either as a URL.
7. Caption (String): Specifies the title with which the document is displayed.
8. Comment (String): Textual comment about the document.
9. KeyWords (SchemaLib:KeyWordsType): Represent a list of Keywords (string) elements

that give some information about the content of the document.

Here is an excerpt of XML data that complies with this schema:

3.1.3. Figures (Figure.xsd)
The Figures XML schema (Figure 7) identifies all images currently represented in the XML Knowledge
Base. All information relevant to the figure is stored in this schema, including information for launching
and searching. XSL Stylesheets applied to the Figures XML can be used to display the entire set (or a
portion thereof) in tabular format (with links to bring up the figure), but Figures are primarily used as
destination links for other XML schema. There is a single XMLType database table and validating
XSD for the Figures.

<Document ID="22">
 <ClassInfo>SLQ32-HVS</ClassInfo>
 <DocumentType>Test Direction Diagram Document</DocumentType>
 <DocumentName>SE400-M3-MMO-120/(U)SLQ-32A(V)3</DocumentName>
<DocumentRevision />
 <MediaType>pdf</MediaType>
 <DocumentLink>
 http://www.cs.purdue.edu/hpkb/DigitalDocs/SLQ32_HVS_TDDFault4.pdf
 </DocumentLink>
 <Caption>SLQ-32 HVS Subtest 1 Test Direction Diagram for Fault 4
 </Caption>
 <Comment>Includes components, special procedures and signal table …
 </Comment>
- <KeyWords>
 <KeyWord>SLQ-32</KeyWord>
 <KeyWord>HVS</KeyWord>
 …
 <KeyWord>3A5A2</KeyWord>
 <KeyWord>3A5A3</KeyWord>
 …
 <KeyWord>PWRUP</KeyWord>
 <KeyWord>8HZCL</KeyWord>
 </KeyWords>
</Document>

Knowledge Project System

SDSD Page 16 of 58 5/16/2006

Figure 7 The Figure XSD

More specifically, the schema defines one single element Figure. This element has one attribute
ID that gives a unique identifier in the system and the following elements:

1. ClassInfo (SchemaLib:ClassificationType): Specifies the classification of the target
system to which this figure relates to, it is “SLQ32-HVS” for all documents.

2. FigureType (String): Brief explanation of the content of the figure.
3. MediaType (String): Specifies the type of media that this element refers to. It could be

"jpg" or "gif" .
4. FigureLink (String): Specifies the location of the figure either as a URL.
5. Link (SchemaLib: LinkType): Link to external documents.
6. Caption (String): Specifies the title with which the figure is displayed.
7. Comment (String): Textual comment about the document.
8. KeyWords (SchemaLib:KeyWordsType): Represent a list of Keywords (string) elements

that give some information about the content of the figure.

Here is an excerpt of XML data that complies with this schema:

<Figure ID="24">
 <ClassInfo>SLQ32-HVS</ClassInfo>
 <FigureType>Component Diagram</FigureType>
 <MediaType>jpg</MediaType>
 <FigureLink>
 http://www.cs.purdue.edu/hpkb/DigitalDocs/hvs_tddfault7_components.jpg
 </FigureLink>
 <Link>
 <LinkType>Source</LinkType>
 <TableName>Documents</TableName>
 <Path>/Document[@ID="17"]/DocumentLink</Path>
 </Link>
 <Caption>HVS Test Direction Diagram Fault 7 Components</Caption>
 <Comment>SRAs with Signal and Pin Identification for
 Fault 7 Troubleshooting</Comment>
 <KeyWords>
 <KeyWord>3A5</KeyWord>
 <KeyWord>fault 7</KeyWord>
 …
 <KeyWord>TDD</KeyWord>
 </KeyWords>
</Figure>

Knowledge Project System

SDSD Page 17 of 58 5/16/2006

3.1.4. Smart Tables (TableDef.xsd, TableInst.xsd, TableRow.xsd)
The smartTables schema represents all table information found in the technical manuals used
for troubleshooting, including some information not currently listed as tables in the technical
manuals, but needed by the Process and other schema as table-accessible. The smartTable
schema supports row and cell-addressable information such that other XML schemas (e.g.,
Process, smartImage, etc) can access a specific row or cell from any smartTable. Sub-tables
can also be generated on the fly, when the Process (or smartImage, Component or other XML
schema) requires dynamic construction of a portion of a smartTable.

Three schemas are used to represent smart tables: TableDef, TableInst, and TableRow. Thus,
three XMLType database tables and three validating XSDs are defined for smartTables:

(1) TableDef (Figure 8): Basic information about table structure, it defines one single element
TableDefinition. This element has one attribute ID that gives a unique identifier in the system
and the following elements:

1. ClassInfo (SchemaLib:ClassificationType): Specifies the classification of the target
system to which this document relates to, it is “SLQ32-HVS” for all documents.

2. Description (String): Gives a textual description of the table.
3. Comment (String): Comment about the table.
4. Column: Column is defined by a attribute ID and an element Name(String) that gives the

name of the attribute to be instantiated.
5. KeyWords (SchemaLib:KeyWordsType): Represent a list of Keywords (string) elements

that give some information about the content of the corresponding XML document.

Figure 8 The Table Definition XSD

Here is an excerpt of XML data that complies with this TableDef schema:

Knowledge Project System

SDSD Page 18 of 58 5/16/2006

 (2) TableInst (Figure 9): Tables which have the same definition but they are instantiated as
different tables in the technical manuals. It defines one single element TableInstance. This
element has one attribute ID that gives a unique identifier in the system and the following
elements:

1. ClassInfo (tableInst:ClassificationType): Specifies the classification of the target system
to which this document relates to, it is “SLQ32-HVS” for all documents.

2. TableDefinitionID (integer): The ID of the table being defined.
3. Fault (integer): The fault number.
4. PowerSupply (string): The type of power supply used by the component being

maintained.

5. Relay (string): The type of realy used by the component being maintained.

6. Link (tableInst:LinkType): Link to a document related to this table instance.
7. Caption (string): Caption describing the table.
8. Comment (string): Comment about the table.
9. KeyWords (tableInst:KeyWordsType): Represent a list of Keywords (string) elements

that give some information about the content of the corresponding XML document.

<TableDefinition ID="1">
 <ClassInfo>SLQ32-HVS</ClassInfo>
 <Description>General signals and related data table - Appendix C
 </Description>
 <Comment>Tech Manual Source: SE400-M3-MMO-120/(U)SLQ-32A(V)3
 </Comment>
 <Column ID="1">
 <Name>Signals</Name>
 </Column>
 <Column ID="2">
 <Name>Function</Name>
 </Column>
 …
 <Column ID="5">
 <Name>Source SRA-PIN</Name>
 </Column>
 <KeyWords>
 <KeyWord>SLQ-32</KeyWord>
 </KeyWords>
</TableDefinition>

Knowledge Project System

SDSD Page 19 of 58 5/16/2006

Figure 9 The tableInstance XSD

Here is an excerpt of XML data that complies with this TableInst schema:

(2) TableRow (Figure 10): Actual data in a certain table instance. It defines one single element
TableInstance. This element has one attribute ID that gives a unique identifier in the system and
the following elements:

1. TableInstanceID (integer)

2. RowOrder (integer): The order of the row in the table.

<TableInstance ID="4">
<TableInstance ID="5">
 <ClassInfo>SLQ32-HVS</ClassInfo>
 <TableDefinitionID>2</TableDefinitionID>
 <Fault>3</Fault>
 <PowerSupply>null</PowerSupply>
 <Relay>null</Relay>
 <Link>
 <LinkType>Source</LinkType>
 <TableName>Documents</TableName>
 <Path>/Document[@ID="17"]/DocumentLink</Path>
 </Link>
 <Caption>HVS Subtest 1 High Voltage Relay and Control Fault 3 Signal Table
</Caption>
 <Comment />
 <KeyWords>
 <KeyWord>SLQ-32</KeyWord>
 <KeyWord>HVS</KeyWord>
 <KeyWord>Signals</KeyWord>
 <KeyWord>TDD</KeyWord>
 <KeyWord>Fault 3</KeyWord>
 </KeyWords>
</TableInstance>

Knowledge Project System

SDSD Page 20 of 58 5/16/2006

3. LastRow (Boolean): True if it the last row.

4. Column: XML element describing the column of that data (see below)

5. Comment (string): Textual comment about the data item.

6. KeyWords (KeyWordsType): Represent a list of Keywords (string) elements that give
some information about the content of the corresponding XML document.

Column is further defined with two elements:

1. ID (integer): The order of the column in the table.

2. Content defined with two elements Display (string) and Link (tableRow:LinkType).

Figure 10 The TableRow XSD

Here is an excerpt of XML data that complies with this TableRow schema:

Knowledge Project System

SDSD Page 21 of 58 5/16/2006

3.1.5. Smart Images (smartImage.xsd)
The XML representation for smartImage (Figure 11) supports the use of an image-based area
representation (such as that used in the HTML USEMAP) for clickable linkage to other XML
schema information. The XML representation of this schema provides a way to link different
parts of the figures to different elements in the other XML schema. Several XSL can be used for
generating the HTML for Web browser display to view the schema in different ways.

<TableRow ID="1049">
<TableInstanceID>17</TableInstanceID>
<RowOrder>2</RowOrder>
<LastRow>true</LastRow>
<Column>
 <ID>1</ID>
 <Content>
 <Display>RLCH/9</Display>
 </Content>
</Column>
 …
<Column>
 <ID>4</ID>
 <Content>
 <Display>LOW FOR 1.5s</Display>
 </Content>
</Column>
<Comment />
<KeyWords>
<KeyWord>Signals and Related Data</KeyWord>
 …
<KeyWord>Test Locations</KeyWord>
</KeyWords>
</TableRow>

Knowledge Project System

SDSD Page 22 of 58 5/16/2006

Figure 11 The smartImage XSD

Figure 12 Shape block (smartImage XSD): Supports the “Use Map” web browser concept
More specifically, the schema defines one single element smartImage. This element has one
attribute ID that gives a unique identifier in the system and the following elements:

1. ClassInfo (smartimage:ClassificationType): Specifies the classification of the target
system to which this document relates to, it is “SLQ32-HVS” for all documents.

2. ImageType (string): A textual description of the use of this image, for example: “Test
Image Test Image”

Knowledge Project System

SDSD Page 23 of 58 5/16/2006

3. MediaType (string): Could be either "jpg" or "gif"

4. ImageLink (string): URL of this image.

5. Link (smartimage:LinkType): Link to a document related to this image.

6. Caption (string): Textual description of the image (serves as a caption when displayed).

7. Comment (string): comment about the image.

8. KeyWords (smartimage:KeyWordsType): Represent a list of Keywords (string) elements
that give some information about the content of the corresponding XML document.

9. Tag (string):

10. BoundingBox (xsd:complexType): It is a sequence of the following elements that give the
coordinates to limit the smart image:

a. LeftX (integer):

b. UpperY (integer):

c. RightX (integer):

d. LowerY (integer):

11. Shape (xsd:complexType): This complex is explained below.

The element Shape is a sequence of the following elements:

1. ShapeLevel (integer): Gives the level of this shape within the smart image.

2. ShapeType (string): Takes one of the following values: "PIN", "SRA", or "SIGNAL"

3. ShapeDetail (string): Textual description of what this shape represents.

4. Tag (string):

5. Link (smartimage:LinkType): Link to a document related to this shape.

6. The last element is a choice of different geometric shapes as explained below:

a. Circle: It is a sequence of the following elements that allow a to define circle: (i)
CenterX (integer), (ii) CenterY (integer), and (iii) Radius (integer):

b. Rectangle: It is a sequence of the following elements that allow to define a
rectangle: (i) LeftX (integer), (ii) UpperY (integer), (iii) RightX (integer), and (iv)
LowerY (integer):

c. Line: It contains one element LineSegment that is a sequence of the following
elements that allow to define a line segment: SrcX (integer): (i) SrcY (integer), (ii)
DestX (integer), (iii) DestY (integer), and (iv) Width (integer):

Here is an excerpt of XML data that complies with this schema:

Knowledge Project System

SDSD Page 24 of 58 5/16/2006

3.1.6. Sessions (FaultSession.xsd)
The XML fault session information captures the flow of process events (including conditional
evaluations which determine direction through alternative paths), all measurements, all relevant
environmental factors, process data and other associated process or environmental data. The
session data will be captured automatically as the process is running. Off-line processing works
on this data to generate statistics that can be used as tips/recommendation during next process
The FaultSession XSD is the fundamental building block for the capture, viewing and mining of
onboard maintenance procedures activity by the sailor. There is a single XMLType database
table and validating XSD for the Session.

<smartImage ID="1">
 <ClassInfo>SLQ32-HVS</ClassInfo>
 <ImageType>Test Image</ImageType>
 <MediaType>jpg</MediaType>
 <ImageLink>http://…/DigitalDocs/hvs_tddfault6_components.jpg</ImageLink>
 <Link>
 <LinkType>Source</LinkType>
 <TableName>Documents</TableName>
 <Path>/Document[@ID="4"]/DocumentLink</Path>
 <Tag />
 </Link>
 <Link> … </Link>
 <Caption>SLQ-32 HVS Fault 6 Test Direction Diagram Figure 5-13-1-6</Caption>
 <Comment>This TDD isolates … Subtest 1 SDT returns Fault 6</Comment>
 <KeyWords>
 <KeyWord>SLQ-32</KeyWord>
 <KeyWord>Maintenance</KeyWord>
 …
 <KeyWord>Signal</KeyWord>
 </KeyWords>
 <Tag />
 <BoundingBox>
 <LeftX>0</LeftX>
 <UpperY>0</UpperY>
 <RightX>662</RightX>
 <LowerY>254</LowerY>
 </BoundingBox>
 <Shape>
 <ShapeLevel>200</ShapeLevel>
 <ShapeType>PIN</ShapeType>
 <ShapeDetail>Source PIN 54 for STBD signal to 3A5A11</ShapeDetail>
 <Tag />
 <Link>
 <LinkType>Details</LinkType>
 <TableName>Figures</TableName>
 <Path>/Figure[@ID="17"]/FigureLink</Path>
 <Tag />
 </Link>
 <Circle>
 <CenterX>213</CenterX>
 <CenterY>101</CenterY>
 <Radius>10</Radius>
 </Circle>
 </Shape>
 <Shape>
 …
 </Shape>

Knowledge Project System

SDSD Page 25 of 58 5/16/2006

Figure 13 The FaultSession XSD

More specifically, the schema defines one single element FaultSession. This element has one
attribute ID that gives a unique identifier in the system and the following elements:

1. SystemID (string): The ID of the system in which the part to be maintained resides, for
example “DECATUR_FaultSession_FSM0”

2. SubSystemID (string): The ID of the component being maintained, for example “SLQ-32”

3. FaultNo (integer): The fault number.

4. PowerSupply (string): The type of power supply used by the component being
maintained.

5. Relay (string): The type of realy used by the component being maintained.

6. Type (string): May take one of the following values "Manual”, "Synthetic", “Automatic", or
“SME"

7. Reason (string): May take one of the following values "PMS Weekly SDTs", "Other
Weekly PMS", "Other PMS", "Operational Failure", "Other"

8. ScenarioID (string):

9. Operator: Define the operator (sailor) in charge of this fault session. It contains the ID
(string) and the Name (string) of the operator.

10. ShipID (string): Unique identifier of the ship.

Knowledge Project System

SDSD Page 26 of 58 5/16/2006

11. Actions: A sequence of elements Action a defined below.

12. TotalTime (decimal): The total time it took to handle this fault session.

13. Comment (string): Textual comment about this fault session.

The element Action has an attribute “No” giving the sequence of this action within the fault
session and the following elements:

1. Event: Describe the event related to this action with the following elements:

a. ScenarioID (string): Unique ID of the scenario.

b. EventID (string): Unique ID of the associated event.

c. EventName (string): Name of the event.

d. Skipped (Boolean): Should this event be skipped? The default value is "false"

2. OccuredAt: Give the Date (date) and Time (time) of the occurrence of this event.

3. Condition (Boolean):

4. Parameters: It is a sequence of the element “Parameter” and has the following elements:

a. Type (string): May take one of the following values "Function", "Condition",
"Text", "Multiple", and "NonT". The default value is "Function">

b. Answer (string): Answer given by the operator.

c. Link (faultsession:LinkType): Link to a document related to this action.

d. Value (string)

e. ValueType (string)

f. Comment (string)

5. Links It is a sequence of the element “Link” and has the following elements:

a. ID (string)

b. Rate (decimal)

c. Comment (string)

6. ElapsedTime (decimal): The duration of this specific action.

7. Comment (string): Textual comment about this action.

Here is an excerpt of XML data that complies with this schema:

Knowledge Project System

SDSD Page 27 of 58 5/16/2006

3.1.7. SchemaLib.xsd
This schema defines XML types used in different XML documents. It basically defines one
simple type and four complex types:

1. ClassificationType (string): A string element defining the system. It may take one of the
following values: SLQ32, SLQ32-HVS, SLQ32-DCC.

2. KeywordsType: Sequence of element Keyword (String). Represent a list of Keywords
(string) elements that give some information about the content of the corresponding XML
document.

3. LinkType: Has four elements
a. LinType(string): It may take of the following values: Source, Details, Component

Document, Functional Document, Removal-Installation Document, Test
Document, Troubleshooting Document, Block Diagram, Component Diagram,
Functional Diagram, Measurement Diagram, Signal Component Diagram, Signal
Diagram, Test Diagram, Test Direction Diagram, Test Direction Flow Diagram,
Troubleshooting Diagram, Component Image, Measurement Image, or
Troubleshooting Image.

<FaultSession ID="DECATUR_FaultSession_FSM0">
 <SystemID>SLQ32</SystemID>
 <SubSystemID>HVS</SubSystemID>
 <FaultNo>6</FaultNo>
 <PowerSupply/>
 <Relay/>
 <Type>Manual</Type>
 <Reason>Operational Failure</Reason>
 <ScenarioID>S1</ScenarioID>
 <Operator>
 <ID>EW1</ID>
 <Name>Brian Townsend</Name>
 </Operator>
 <ShipID>DECATUR</ShipID>
 <Actions>
 <Action No="1">
 <Event>
 <ScenarioID>S1</ScenarioID>
 <EventID>E2</EventID>
 <EventName>Look Up Fault</EventName>
 <Skipped>false</Skipped>
 </Event>
 <OccuredAt>
 <Date>2003-10-09</Date>
 <Time>21:25:00</Time>
 </OccuredAt>
 <Parameters />
 <Links />
 <ElapsedTime>30</ElapsedTime>
 <Comment>While conducting ULM-4 range operations, unable to transmit from
STBD antennae. Most frequent faulty component is 3A5A10 status buffer card in HV
sequencer</Comment>
 </Action>
 <Action No="2">

…
 <Action No="6">
 </Actions>
 <TotalTime>65</TotalTime>

Knowledge Project System

SDSD Page 28 of 58 5/16/2006

b. TableName(string):
c. Path (string):
d. Tag (string):

4. DatabaseCallType: Defines three elements:

a. Type (string): Could be DataRetrieval or DataStoring.

b. Name (string): Name of the database call.

c. Return: The type of object returned by this database call. May take of the
following values: XMLList, XMLDocument, Image, or Text.

5. InputType: Defines three elements:

d. Type (string): Could be Function or User.

e. Name (string): Name of the input.

f. Return: May take of the following values: Boolean or Text.

3.1.8. Supporting Data (Link.xsd)
The supporting data is stored in the database to provide information during the dynamic process
execution, session generation, off line data mining and any other module that might need
additional data structure during execution. Examples of this supporting data are (1) tables of
links that maintain information about what are the appropriate links for different events in the
process associated with a certain fault number (2) tables that show for each signal the source
and load SRAs. Basically this supporting data includes structured data from the manuals that
will be accessed during the process.

3.2. XML Tables
All XML documents are stored into Oracle tables of type XMLType. For each of these tables, we
assigned a trigger to enforce strict schema validation. We created the following XML-enabled
tables.

1. Documents
2. Figures
3. TableDefs
4. TableInsts
5. TableRows
6. Processes
7. FaultSessions
8. smartImages
9. Links
10. TSSessions
11. TSSQueue

3.2.1. Summary XML Schemas, Documents, and Tables
The following table gives a summary of the XML infrastructure (XML Schema, XML
Document, and XML Table) within KPS.
XML Schema (.xsd) XML Document (.xml) XML Table (Oracle)
Process ScenarioS0, ScenarioS1, ScenarioSME<1,2,3>,

ScenarioSN<FaultNumber>_<sequence>,
ScenarioSP_<FaultNumber>

Process

Document Document_<sequence> Documents
Figure Figures, Figures_1, Figures_2, Figures_3 Figures

Knowledge Project System

SDSD Page 29 of 58 5/16/2006

TableDef TableDefs TableDefs
TableInst TableInsts_1, TableInsts_2, TableInsts_3,

TableInsts_4, TableInsts_5
TableDefs

TableRow TableRows_<sequence> (1, 32) TableRows
smartImage smartImage1, smartImage28, smartImage39,

smartImage4, smartImage51
smartImages

FaultSession FaultSession<sequence> (0, 15) FaultSessions
Link Links, Links_<sequence> (1, 9) Links
SchemaLib Used by all other XML schemas None

3.3. Relational Tables
While most of the manipulated data is stored in an XML form, we defined a number of relational
tables to support dynamic maintenance and data mining.

3.3.1. Dynamic Maintenance
The following tables are used to support Dynamic Maintenance Event Processing and Dynamic
Maintenance Resource Links Processing.

1. Load_SourceSRA: The table stores the SRAs and the SRA types given the system ID,
signal and fault number. It is used by the following database functions: CheckLoadSRA,
DisplayLoadSRA, DisplaySourceSRA, GetLoadSRA, GetSRAForReplacement.

2. EventLinks: This table stores the link ID for each event. It is used by the database
function GetTopLinks. Tips to fill in eventLinks: the fault no 0 means that the links are
independent of the fault number. They will show up with the event name regardless of
the fault number. If the links go with part of the event name like Swap or Replace SRA
then we can put those as the Eventname and the GetTopLinks function will handle
checking the rest of the name. If the LinkId is related to an SME submitted file, then an
entry is made for EventId and ScenarioId, otherwise a 'NULL' entry is made.

3. NextEvent: This table stores the next event ID and the nextNoEventID given the system
ID, scenario ID, current event ID and pervious event ID. It is used by the following
database functions: GetNextEvent, GetNextNoEvent.sql, GetPreviousEvent.sql.

4. SystemStartScenario : This table stores the start scenario ID given the system ID and
subsystem ID. It is used by the database function GetStartScenario.

5. SystemNextScenario: This table stores the next scenario ID given the system ID,
subsystem ID, current scenario ID and fault number. It is used by the database function
GetEvent.

6. DatabaseCalls: This table stores the database call statement and parameter numbers
given the database call name.

7. DatabaseCallParameters: This table stores the database call parameter names,
parameter types and parameterDataType given the database call name and parameter
ID. For In Out paramter, set ParameterType=1, otherwise set ParameterType = 0. For
integer type parameter set ParameterDataType = 1, for string type parameter set
parameterDataType = 2

8. Notes: This table stores the NotesType, NotesValue, NotesScenario, NotesEvent,
NotesText given the ScenarioId, EventID, Answer, Fault and SignalRow. This table is
used to get out of the regular scenario flow to the notes specific or general. The scenario
ID is unique over the whole system does not need to be more identified with the system
or subsystem. Answer is Y/N if the event is condition only this answer is considerd. Or -
if DO NOT CARE.
-- NotesType General Note GN /Specific Note SN
-- NotesValue Text T/Scenario S

Knowledge Project System

SDSD Page 30 of 58 5/16/2006

-- NotesScenario The scenario id if the Value is scenario
-- NotesText the text of the note if the NotesType is T (text)

9. EventsAfterNotes: This table stores the next scenarioID and next event ID given the
current ScenarioID and EventID. It is used by the database function ExitNotes.

10. Warnings: This table stores the warning given the SystemID, SubSystemID and Fault
number. It is used by the database function CheckWarnings.

11. SpecialProcedures: This table stores the Special Procedures scenario ID given the
SystemID, SubSystemID and Fault number. It is used by the database functions
CheckSpecialProcedures and LoadSpecialProcedure.

12. GeneralNotes: This table stores the note given the SystemID, SubSystemID and Fault
number. It is used by the database function CheckGeneralNotes.

13. Synchronization: This table stores information about the files that are transported through
Distance Support Mechanism. It stores the TSSessionId, MediaFileName, Version,
Direction, and TimeStamp. For each media file attached to the tssession, a separate entry
is made to the table. It is used by the GetNewFiles component to identify newly arrived
files at the replication folder.

3.3.1.1. Table Load_SourceSRA
Attribute Type Descritpion
SystemId Varchar2(20) System to Trouble Shoot. It is a string with

maximum length of 20.
FaultId Number(5) Fault number. It is a number with maximum length

of 6.
Signal Varchar2(10) Signal ID. It is a string with maximum length of 10.
SRA Varchar2(10) SRA ID. It is a string with maximum length of 10.
SRAType Varchar2(6) SRAType is either ‘Load’ or ‘Source’. It is a string

with maximum length of 6.
RowNo Number Each signal could have multiple source or load

SRAs. RowNo is the number of each SRA.
(SystemId, FaultId, Signal,
SRA)

Primary Key The primary key (SystemId, FaultId, Signal, SRA)
uniquely identifies a record in this table.

3.3.1.2. Table EventLinks
Attribute Type Description
SystemId Varchar2(20) System to Trouble Shoot. It is a string with

maximum length of 20.
SubSystemID VARCHAR2(20) Subsystem to Trouble Shoot. It is a string with

maximum length of 20.
EventName VARCHAR2(200) Event Name. It is a string with maximum length of

200.
FaultId Number(5) NULL Fault Number. It is a number with maximum

length of 5 and it should not be null.
LinkId VARCHAR2(200) Link ID. It is a number.
OrderId Number Each event could have multiple links. OrderID is

the number of each Link.
EventID VARCHAR2(200) If link is related to a SME event, then the EventId

is filled in. Otherwise it is NULL. This helps us to
retrieve the Links for SME submitted files.

ScenarioID VARCHAR2(200) If the link is for a file which is submitted by SME,
then the ScenarioId is filled in. Otherwise it is
NULL.

(SystemId,SubSystemID,Event
Name,LinkId)

PRIMARY KEY The primary key
(SystemId,SubSystemID,EventName,LinkId)

Knowledge Project System

SDSD Page 31 of 58 5/16/2006

uniquely identifies a record in this table.

3.3.1.3. Table NextEvent
Attribute Type Description
SystemId Varchar2(20) System to Trouble Shoot. It is a string with

maximum length of 20.
ScenarioId Varchar2(6) Scenario ID. It is a string with maximum length of

6.
CrtEventId Varchar2(6) Current Event ID. It is a string with maximum

length of 6.
PrevEventId Varchar2(6) Previous Event ID. It is a string with maximum

length of 6.
NextEventId Varchar2(6) Next Event ID. It is a string with maximum length

of 6.
NextNoEventId Varchar2(6) Next Event ID if the current condition is false. It is

a string with maximum length of 6.
SystemId,ScenarioId,CrtEventI
d,PrevEventId)

PRIMARY KEY The primary key
(SystemId,ScenarioId,CrtEventId,PrevEventId)
uniquely identify a record in this table.

3.3.1.4. Table SystemStartScenario
Attribute Type Description
SystemID VARCHAR2(20) System to Trouble Shoot. It is a string with

maximum length of 20.
SubSystemID VARCHAR2(20) Subystem to Trouble Shoot. It is a string with

maximum length of 20.
ScenarioID VARCHAR2(20) Scenario ID. It is a string with maximum length of

20.
 (SystemID,SubSystemID) PRIMARY KEY The primary key (SystemID,SubSystemID)

uniquely identifies a record in this table.

3.3.1.5. Table SystemNextScenario
Attribute Type Description
SystemID VARCHAR2(20) System to Trouble Shoot. It is a string with

maximum length of 20.
SubSystemID VARCHAR2(20) Subystem to Trouble Shoot. It is a string with

maximum length of 20.
ScenarioID VARCHAR2(20) Scenario ID. It is a string with maximum length of

20.
Fault VARCHAR2(20) Fault Number. It is a string with maximum length

of 20.
NextScenarioID VARCHAR2(20) Next Scenario ID. It is a string with maximum

length of 20.
SystemNextScenario_PK
(SystemID,SubSystemID,Scen
arioID,Fault)

PRIMARY KEY The primary key
(SystemID,SubSystemID,ScenarioID,Fault)
uniquely identifies a record in this table.

3.3.1.6. Table DatabaseCalls
Attribute Type Description
Name VARCHAR2(100) Database Call Name. It is a string with maximum

length of 100.
Statement VARCHAR2(500) Database Call Statement. It is a string with

maximum length of 500.

Knowledge Project System

SDSD Page 32 of 58 5/16/2006

ParameterNumber Number Database Call Parameter Number.
DatabaseCalls_PK(Name) PRIMARY KEY The primary key name uniquely identifies a

record in this table.

3.3.1.7. Table DatabaseCallParameters
Attribute Type Description
Name VARCHAR2(100) Database Call Name. It is a string with

maximum length of 100.
ParameterID Number Database Call Parameter ID
ParameterName VARCHAR2(100) Database Call Parameter Name. It is a string

with maximum length of 100.
ParameterType Number Database Call Parameter Type, either 1

(InOut Type) or 0 (non-InOut Type)
ParameterDataType Number Database Call Parameter Data Type such as

interger or String.
DatabaseCallsParameters_PK
(Name,ParameterID)

PRIMARY KEY The primary key (Name,ParameterID)
uniquely identifies a record in this table.

3.3.1.8. Table Notes
Attribute Type Description
ScenarioID VARCHAR2(20) Scenario ID. It is a string with maximum length of

20.
EventID VARCHAR2(6) Event ID. It is a string with maximum length of 6.
Fault VARCHAR2(20) Fault Number. It is a string with maximum length

of 20.
SignalRow Number Signal Row Number
Answer VARCHAR2(1) Answer , either ‘Y’ or ‘N’ . It is a string with

maximum length of 1.
NotesType VARCHAR2(2) Notes Type, either ‘GN’ (General Note) or ‘SN’

(Specific Note). It is a string with maximum length
of 2.

NotesValue VARCHAR2(1) Notes Value, either ‘T’ (Text) or ‘S’ (Scenario). It
is a string with maximum length of 1.

NotesScenario VARCHAR2(20) Notes Scenario. It is a string with maximum
length of 20.

NotesEvent VARCHAR2(6) Notes Event. It is a string with maximum length of
6.

NotesText VARCHAR2(500) Nots Text. It is a string with maximum length of
500.

Notes_PK (ScenarioId,
EventID,Answer,Fault,SignalR
ow)

Primary Key The primary key (ScenarioId,
EventID,Answer,Fault,SignalRow) uniquely
identifies a record in this table.

3.3.1.9. Table EventsAfterNotes
Attribute Type Description
ScenarioID VARCHAR2(20) Scenario ID. It is a string with maximum

length of 20.
EventID VARCHAR2(6) Event ID. It is a string with maximum length

of 6.
NextScenarioID VARCHAR2(20) Next Scenario ID. It is a string with maximum

length of 20.
NextEventID VARCHAR2(6) Next Event ID. It is a string with maximum

length of 6.
EventsAfterNotes_PK PRIMARY KEY The primary key (ScenarioID,EventID)

Knowledge Project System

SDSD Page 33 of 58 5/16/2006

(ScenarioID,EventID) uniquely identifies a record in this table.

3.3.1.10. Table Warnings
Attribute Type Description
SystemID VARCHAR2(20) System to Troubleshoot. It is a string with

maximum length of 20.
SubSystemID VARCHAR2(20) Subystem to Troubleshoot. It is a string with

maximum length of 20.
Fault VARCHAR2(20) Fault Number. It is a string with maximum

length of 20.
warning VARCHAR2(500) Warning Message. It is a string with

maximum length of 500.
Warnings_PK
(SystemID,SubSystemID,Fault)

PRIMARY KEY The primary key
(SystemID,SubSystemID,Fault) uniquely
identifies a record in this table.

3.3.1.11. Table SpecialProcedures
Attribute Type Description
SystemID VARCHAR2(20) System to Troubleshoot. It is a string with

maximum length of 20.
SubSystemID VARCHAR2(20) Subystem to Troubleshoot. It is a string with

maximum length of 20.
Fault VARCHAR2(20) Fault Number. It is a string with maximum

length of 20.
ScenarioID VARCHAR2(20) Scenario ID. It is a string with maximum

length of 20.
SpecialProcedures_PK
(SystemID,SubSystemID,Fault)

Primary Key The primary key
(SystemID,SubSystemID,Fault) uniquely
identifies a record in this table.

3.3.1.12. Table GeneralNotes
Attribute Type Description
SystemID VARCHAR2(20) System to Troubleshoot. It is a string with

maximum length of 20.
SubSystemID VARCHAR2(20) Subystem to Troubleshoot. It is a string

with maximum length of 20.
Fault VARCHAR2(20) Fault Number. It is a string with maximum

length of 20.
Note VARCHAR2(500) Note. It is a string with maximum length of

500.
GeneralNotes_PK
(SystemID,SubSystemID,Fault)

PRIMARY KEY The primary key
(SystemID,SubSystemID,Fault) uniquely
identifies a record in this table.

3.3.1.13. Table Synchronization
Attribute Type Description
TSSessionId Varchar2(500) The unique identifier for a TSSession.
MediaFileName VARCHAR2(500) The name of the file attached to the tssession. If

multiple attachments are made, then for each
attachment, a separate entry is made to the table.

Version Number It is the version number of the tssession. In each
iteration of the tssession, the version number is
incremented.

Knowledge Project System

SDSD Page 34 of 58 5/16/2006

Direction VARCHAR2(6) It identifies if the transfer was made from ship to
shore or vice versa.

TS Time Stamp It is the timestamp when the file was processed
from the replication folder or copied to the master
folder.

3.3.2. Data Mining
Data mining information related to the dynamic process is captured via sessions, which are
mined post-process to provide knowledge to be used as tips, recommendations and/or
preventative maintenance information for future shipboard troubleshooting.

The following Tables are used to support data mining functions in KPS.
1. FaultSession: all the basic information of the fault sessions.
2. Action: an ordered list of the actions (executed events) in every fault session.
3. Action_Parameter: the values of the parameters associated with every action.
4. Action_Link: the list of the links accessed while performing an action.
5. Event_Node: the tree structure that captures the action flow of every fault.
6. Node_Link: the links accessed while performing the action associated with a node in the

tree.
7. Current_Node: a pointer to the current node (in the tree) that is shown in the screen

now.
8. Part: the list of all the parts in the navy.
9. Part_Ship: the list of the parts included in a ship.
10. Part_Fault_Ship: the list of the parts in a ship, which are associated with a specific fault.
11. Ship: the list of all the ships in the navy.
12. Ship_Class: the list of the different ship classes.
13. Part_Log_Ship: the time log that captures the events that occur over the parts in the

ship.
14. Part_Fault: the list of the parts associated with a specific fault.
15. Fault: the list of all the faults that can be handled in the system.

Knowledge Project System

SDSD Page 35 of 58 5/16/2006

3.3.2.1. Table FaultSession
Attribute Type Description
FaultSession_ID varchar2(100) Primary Key
System_ID varchar2(100) e.g., SLQ32
SubSystem_ID varchar2(100) e.g., HVS
Fault_No references Fault(Fault_No)
Type varchar2(20) Manual, Synthetic, Codified, or SME
Reason varchar2(200) Why is it started?
Scenario_ID varchar2(50) Codified procedure that is followed
Operator_ID varchar2(50) Operator Information
Operator_Name varchar2(100) Operator Information
Ship_ID references Ship(Ship_ID)
Total_Time number(20,5) Time taken to finish the fault session
Comments varchar2(4000) User comments
Occured_At Timestamp When is it started?
Processed char(1) Is it processed by the miner?

3.3.2.2. Table Action
Attribute Type Description
FaultSession_ID references FaultSession(FaultSession_ID)
Action_Sequence_No number(5) Reflects the order of the actions
action_pk (FaultSession_ID,
Action_Sequence_No)

 Primary Key

Scenario_ID varchar2(50) Codified procedure that is followed
Event_ID varchar2(50) Event that is performed
Event_Skipped char(1) Is that event skipped?
Occured_At Timestamp When is it performed?
Condition char(1) Answer, if the event has a “yes/no” question?
Elapsed_Time number(20,5) Time taken to perform the event
Comments varchar2(4000) User comments

3.3.2.3. Table Action_Parameter
Attribute Type Description
FaultSession_ID
Action_Sequence_No
action_parameter_fk foreign
key(FaultSession_ID,
Action_Sequence_No)

 references Action(FaultSession_ID,
Action_Sequence_No)

Parameter_Name varchar2(100) e.g., DB Function Name
action_parameter_pk
(FaultSession_ID,
Action_Sequence_No,
Parameter_Name)

 Primary Key

Parameter_Value varchar2(100) User input value or db function return value
Parameter_Type varchar2(100) User or Function
Comments varchar2(4000)

3.3.2.4. Table Action_Link
Attribute Type Description
FaultSession_ID
Action_Sequence_No
action_link_fk (FaultSession_ID,
Action_Sequence_No)

references Action(FaultSession_ID,
Action_Sequence_No)

Knowledge Project System

SDSD Page 36 of 58 5/16/2006

Link_ID number(5) Link visited during performing this action
action_link_pk (FaultSession_ID,
Action_Sequence_No, Link_ID)

 Primary Key

Link_Rate number(5) Score given by the user
Comments varchar2(4000)

3.3.2.5. Table Event_Node
Attribute Type Description
Fault_No references Fault(Fault_No)
Node_No number Node identifier
Ship_ID references Ship(Ship_ID)
event_node_pk (Fault_No,
Ship_ID, Node_No)

 Primary Key

Event_ID varchar2(500) Event represented in this node
Count number(6) # times the event is performed
Count_Skipped number(6) # times the event is skipped
Sum_Time Number Total time taken (used to compute average)
Min_Time Number Minimum time taken
Max_Time Number Maximum time taken
All_Comments Clob All the comments when the event is performed
Skipped_Comments Clob All the comment when the event is skipped

3.3.2.6. Table Node_Link
Attribute Type Description
Fault_No
Node_No
Ship_ID
node_link_fk (Fault_No,
Node_No,ship_ID)

references Event_Node(Fault_No, Node_No,
ship_ID)

Link_ID number(5) Link visited by the event represented in the
node

node_link_pk (Fault_No,
node_No, ship_ID, Link_ID)

 Primary Key

Count number(6) # times this link is visited in this event
Sum_Rate Number Total score given (for averages)

3.3.2.7. Table Current_Node
Attribute Type Description
FaultSession_ID Primary Key
Action_Sequence_No
Fault_No
Node_No
Ship_ID
current_node_fk (Fault_No,
Node_No, Ship_ID)

references Event_Node(Fault_No, Node_No,
Ship_ID)

3.3.2.8. Table Part
Attribute Type Description
Part_SRA varchar2(10) Primary Key
Part_NIIN varchar2(10)

Knowledge Project System

SDSD Page 37 of 58 5/16/2006

3.3.2.9. Table Part_Ship
Attribute Type Description
Part_SRA references Part(Part_SRA)
Ship_ID references Ship(Ship_ID)
part_ship_pk (Part_SRA,
Ship_ID)

 Primary Key

Last_Accessed Timestamp Last time the part is accessed in this ship
Last_Replaced Timestamp Last time the part is replaced in this ship
Count_Replaced number(6) # times the part is replaced in this ship
Sum_Lifetime Number Total lifetime of the part in this ship (for

averages)

3.3.2.10. Table Part_Fault_Ship
Attribute Type Description
Part_SRA
Fault_No
part_fault_ship_pk (Part_SRA,
Fault_No, Ship_ID)

 references Part_Fault(Part_SRA, Fault_No)

Ship_ID
part_ship_fk foreign
key(Part_SRA, Ship_ID)

 references Part_Ship(Part_SRA, Ship_ID)

Last_Accessed timestamp Last time the part is accessed in this ship
fixing this fault

Last_Replaced timestamp Last time the part is replaced in this ship fixing
this fault

Count_Replaced number(6) # times the part is replaced in this ship fixing
this fault

Sum_Lifetime number Total lifetime of the part in this ship fixing this
fault (for averages)

3.3.2.11. Table Ship_Class
Attribute Type Description
Ship_Class varchar2(100) Primary key
Description varchar2(100)

3.3.2.12. Table Ship
Attribute Type Description
Ship_ID varchar2(100), Primary Key
Hull varchar2(100)
Class references

Ship_Class(Cl
ass)

Configuration varchar2(10)
Coast varchar2(10)
Variant varchar2(10)

Ship Information

3.3.2.13. Table Part_Fault
Attribute Type Description
Part_SRA references Part(Part_SRA)
Fault_No references Fault(Fault_No)
part_fault_pk (Part_SRA,
Fault_No)

 primary key

Knowledge Project System

SDSD Page 38 of 58 5/16/2006

3.3.2.14. Table Fault
Attribute Type Description
Fault_No number(10) Primary Key

3.3.2.15. Table Part_Log_Ship
Attribute Type Description
Entry_No number
Ship_ID references Ship(Ship_ID)
part_log_ship_pk (Entry_No,
Ship_ID),

 primary key

Occured_At Timestamp When this log entry occurred
Part_SRA Which part
Fault_No Which fault was fixed
part_log_fk (Part_SRA,
Fault_No, Ship_ID)

 references Part_Fault_Ship(Part_SRA,
Fault_No, Ship_ID)

Type varchar2(20) Access, Replace, or Swap

3.4. XML document transformation and presentation
We defined several style-sheets using XSL (Extensible Stylesheet Language) for transforming
XML data to HTML presentation. The following files are being used in the system:

1. event.xsl:
2. EventFeedback.xsl:
3. SessionTransform1.xsl:
4. SessionTransform2.xsl:
5. SessionTransform3.xsl:
6. SessionTransform4.xsl:
7. smartImageTableFormat.xsl:
8. smartImageUseMap.xsl:
9. TableDefinition.xsl:
10. TableInstance.xsl:
11. TableRow.xsl:

3.5. Dynamic Maintenance Functions and Procedures
There are three categories of functions and procedures for dynamic maintenance.

3.5.1. Supporting PL/SQL Functions
We defined several functions to support the trouble shooting sessions. All these functions are
defined in individual SQL scripts files invoked in the “createTables” SQL script. For each
function, we give a brief explanation of what it does, the table that is modifies and/or accesses,
the arguments that it requires, and the type of its return value.

1. ChangeSignalRow
• Description: Replace Row by val
• Target tables: None
• Arguments: val and Row
• Returns: Boolean

2. CheckInterchangeableSRA
• Description: Returns a boolean indicating if there is a SRA to be swaped based on the

fault number, power supply, relay, and row number.
• Target tables: TableDef 3, TableInstances, and TableRows.

Knowledge Project System

SDSD Page 39 of 58 5/16/2006

• Arguments: Fault number, power supply, relay, and row to display.
• Returns: Boolean

3. CheckInterchangeableSRU
• Description: Returns false
• Target tables: None
• Arguments: Fault number and row to display.
• Returns: Booelan

4. CheckLoadSRA
• Description: Returns a boolean indicating if there is a load SRA based on the SystemId,

faultId, power supply, relay, row number, and signal.
• Target tables: Load_SourceSRA
• Arguments: SystemId, faultId, power supply, relay, row number, and signal.
• Returns: Boolean

5. CheckSignal
• Description: Returns a Boolean indicating if there is a signal based on the fault number,

power supply, relay, and row number.
• Target tables: TableDef 2, TableInstances, and TableRows.
• Arguments: Fault number, power supply, relay, and row to display.
• Returns: Boolean

6. CheckSpecialProcedures
• Description: Returns false
• Target tables: None
• Arguments: Sid, SubSysID, f, and row.
• Returns: Boolean

7. DisplayAllSRA
• Description: Returns a String indicating the source and all the load SRA based on the

SystemId, faultId, Signal.
• Target tables: Load_SourceSRA
• Arguments: SystemId, faultId, Signal.
• Returns: VARCHAR2

8. DisplayInterchangeableSRA
• Description: Returns a String containing what are the SRAs to swap based on the fault

number, power supply, relay, and row number.
• Target tables: TableDef 3, TableInstances, and TableRows.
• Arguments: Fault number, power supply, relay, and row to display.
• Returns: VARCHAR2

9. DisplayInterchangeableSRU
• Description: Returns the string 'SRU'
• Target tables: None
• Arguments: Fault and row.
• Returns: VARCHAR2

10. DisplayLoadSRA
• Description: Returns a String indicating the load SRA based on the SystemId, faultId,

power supply, relay, Signal and row number.
• Target tables: Load_SourceSRA
• Arguments: SystemId, faultId, power supply, relay, Signal and row number.

Knowledge Project System

SDSD Page 40 of 58 5/16/2006

• Returns: VARCHAR2

11. DisplayNextSignal
• Description: Returns a String indicating the signal based on the fault number, power

supply, relay, and row number.
• Target tables: TableDef 2, TableInstances, and TableRows.
• Arguments: Fault number, power supply, relay, and row to display.
• Returns: VARCHAR2

12. DisplaySourceSRA
• Description: Returns a String indicating the source SRA based on the SystemId, faultId,

power supply, relay, Signal.
• Target tables: Load_SourceSRA
• Arguments: SystemId, faultId, power supply, relay, Signal.
• Returns: VARCHAR2

13. DisplaySourceSRAForAttachPulser
• Description: Returns a String which is the concatenation of "Attach Logic Pulser to Source

SRA:" + the result of DisplaySourceSRA.
• Target tables: Load_SourceSRA
• Arguments: SystemId, faultId, power supply, relay, Signal.
• Returns: VARCHAR2

14. DisplaySourceSRAForRemoval
• Description: Returns a String which is the concatenation of "Remove Source SRA:" + the

result of DisplaySourceSRA.
• Target tables: Load_SourceSRA
• Arguments: SystemId, faultId, number, power supply, relay, Signal.
• Returns: VARCHAR2

15. DisplaySpecialProcedures
• Description: Displays: "sp"
• Target tables: None
• Arguments: Fault and row.
• Returns: VARCHAR2

16. ExitNotes
• Descriptions:
• Target tables: EventsAfterNotes
• Arguments: sID, eID, nextSID
• Returns: VARCHAR2

17. ExitNotesNO
• Descriptions:
• Target tables: None
• Arguments: sID, eID, nextSID
• Returns: VARCHAR2

18. GetLoadSRA
• Description: Returns a String indicating all the load SRA based on the SystemId, faultId,

power supply, relay, Signal.
• Target tables: Load_SourceSRA
• Arguments: SystemId, faultId, power supply, relay, Signal.

19. GetNextEvent

Knowledge Project System

SDSD Page 41 of 58 5/16/2006

• Description: Returns a String contains what the next event is based on the SystemId,
ScenarioId, CrtEventId and PrevEventId.

• Target tables: NextEvent.
• Arguments: SystemId, ScenarioId, CrtEventId and PrevEventId
• Returns: VARCHAR2

20. GetNextNoEvent
• Description: Returns a String contains what the next No Event is based on the SystemId,

ScenarioId, CrtEventId and PrevEventId.
• Target tables: NextEvent.
• Arguments: SystemId, ScenarioId, CrtEventId and PrevEventId
• Returns: VARCHAR2

21. GetPreviousEvent
• Description: Returns a String contains what the Previous Event is based on the SystemId,

ScenarioId, CrtEventId and NextEventId.
• Target tables: NextEvent.
• Arguments: SystemId, ScenarioId, CrtEventId and NextEventId
• Returns: VARCHAR2

22. GetSRAForReplacement
• Description: Returns a String contains what SRA to be swapped based on the fault

number, power supply, relay, and row number.
• Target tables: TableDef 3, TableInstances, and TableRows.
• Arguments: Fault number and row to display.
• Returns: VARCHAR2

23. GetTextNotes
• Description: Returns
• Target tables: Notes
• Arguments: sID, eID, F, and Row
• Returns: VARCHAR2

24. GetTopLinks
• Description: Returns a XMLType that contains the Related Links based on the SystemId,

SubSystemId, Fault Number, Event Name, EventId, ScenarioId, and Scenario Type. The
Scenario Type helps us identify if it is an SME scenario or not..

• Target tables: Links and EventLinks. The scripts to create the table Links are in
GetTopLinks (not clear!)

• Arguments: SystemId, ScenarioId, EventId and FaultId. SystemId, SubSystemId, Fault
Number, Event Name, EventId, ScenarioId, and Scenario Type

• Returns: VARCHAR2

25. LoadSpecialProcedure
• Description: Returns
• Target tables: SpecialProcedures
• Arguments: sysID, subsysID, fID, and nextsID
• Returns: VARCHAR2

3.5.2. Parse Process PL/SQL Functions
We defined several functions to be used in the parse process. These are:

1. extractEvent
• Description: Returns

Knowledge Project System

SDSD Page 42 of 58 5/16/2006

• Target tables:
• Arguments: XMLLob and eventID
• Returns: CLOB

2. getEvent
• Description: Returns the Scenario and event specified in the arguments or find them out if

they are null
• Target tables:
• Arguments: sysID, subSysID, sID, eID, and f
• Returns: XMLType

3. CheckWarnings
• Description: Returns
• Target tables:
• Arguments: sysID, subsysID, and f
• Returns: VARCHAR2

4. CheckScenarioNotes
• Description: Returns
• Target tables:
• Arguments: sID, eID, F, Row, ans, and notesEID
• Returns: VARCHAR2

5. CheckGeneralNotes
• Description: Returns
• Target tables:
• Arguments: sysID, subsysID, and f
• Returns: VARCHAR2

3.5.3. Session PL/SQL Functions
We defined two functions and two procedures for managing sessions.

1. getSessionID
• Description: Returns unique session identifier
• Target tables: dual
• Arguments: None
• Returns: POSITVE

2. getSession
• Description: Returns
• Target tables: FaultSessions
• Arguments: sessionID
• Returns: XMLType

3. createSession
• Description: Insert into FaultSessions table the argument XML documents (xml)
• Target tables: FaultSessions
• Arguments: xml

4. updateSession
• Description: Delete from the FaultSessions table the document for which the ID is provided

and insert the argument XML document (xml)
• Target tables: FaultSessions
• Arguments: sessionID and xml

Knowledge Project System

SDSD Page 43 of 58 5/16/2006

3.6. Data Mining Functions and Procedures

3.6.1. Supporting PL/SQL Functions
For data mining, we defined one supporting procedure:

ReplaceSNSession

• Description: Insert into FaultSessions table the argument XML documents (xml)
• Target tables: FaultSessions
• Arguments: xml

3.6.2. Java Stored Procedures
We defined several Java stored procedures and functions to be used by the data mining
process. These are:
1. TransformAll corresponds to 'FSTransform.main(java.lang.String[])':
2. updateAll corresponds to 'Miner.updateAll()':
3. analyze (fsid varchar2, type varchar2) corresponds to 'Miner.analyze(java.lang.String,

java.lang.String)':
4. analyzeEvent (fsid varchar2) corresponds to 'Miner.analyzeEvent(java.lang.String)':
5. RetrieveSession(FSID varchar2, xLob CLOB, Type varchar2) returns CLOB and

corresponds to 'GetSession.retrieve(java.lang.String, oracle.sql.CLOB, java.lang.String):
6. GenerateSession returns varchar2 and corresponds to 'GetSession.generate():

4. Application Infrastructure
The dynamic maintenance is deployed following a client-server model based on a three-tier
architecture. The bottom tier consists of the knowledge base (mostly XML data) and has been
detailed in the previous Section. Figure 14 gives an overall view of the different components in
the systems and their relationships (control and data flow).

Knowledge Project System

SDSD Page 44 of 58 5/16/2006

Figure 14 KPS Data Flow and Control

4.1. Knowledge Projection Portal
The knowledge projection portal is supported through a number of cooperating JSP programs.

4.1.1. ShipLogin.jsp
The Knowledge Projection Portal connects to the knowledge base for user specified database id
and password. To access online troubleshooting, sailor logs in with OperatorID, ShipID, and
ship name. An error checking for valid identification is applied. It passes control to MainMenu.

4.1.2. SoreLogin.jsp
The Knowledge Projection Portal connects to the knowledge base for user specified database id
and password. To access online troubleshooting, sailor logs in with OperatorID and ShipID. An
error checking for valid identification is applied. It passes control to MainMenu.

4.1.3. MainMenu.jsp
Troubleshooting-based options. Sailor selects START or RESUME (troubleshooting session) to
initiate online troubleshooting. Error checking for valid option selection. Initialization of
clientMessage XML. Passes control to TSSControl.

The MainMenu.jsp has also been separated for shore and ship. The menu items are seperate
for each. It also changes depending if the trouble shooting sessions are open or close. If the
trouble shooting sessions on the ship main menu are open then options like resume, suspend,
contact shore etc are available.

clientMessa
ge

XML

Knowledge Projection

Portal

Online Troubleshooting

KPControl

clientMessage processing and routing

TSS
TSS

processing

ParseProcess
scenario event processing

SaveSession
event-based

fault session capture

Miner
event-based

 knowledge feedback

clientMessa
ge

XML

clientMessa
ge

XML

clientMessa
ge

XML nextEvent
nextEvent
knowledge
feedback

clientMessage XML
HTML

nextEvent
+

feedback
HTML

XML Knowledge Base

clientMessage XML

Knowledge Project System

SDSD Page 45 of 58 5/16/2006

4.1.4. TSSControl.jsp
TSS option processing. The clientMessage XML is updated with TSSop and current Date and
Time. Passes control to StartTSS.

4.1.5. StartTSS.jsp
Sailor selects SystemID, SubSystemID and Reason for troubleshooting. The clientMessage
XML is updated with selections. Passes control to Maintainer.

4.1.6. Maintainer.jsp
Formats web page in three frames to control troubleshooting web-based interface. Frames 1 &
3 contain HTML from KPControl. Frame 2 is a client-generated graphic:

• Frame 1: step-based guided procedure supported by execute.jsp
• Frame 2: flowchart path graphics supported by flowChart.jsp
• Frame 3: step-based knowledge data supported by bottom.jsp

4.1.6.1. Execute.jsp

4.1.6.2. flowchart.jsp

4.1.6.3. bottom.jsp

4.1.7. TextSession.jsp:
Enables passage of free format text between ship and shore.
Inputs:

1. SME name, SME email address, SME location, and task priority;
2. Questions (in text format) asked by the in-ship user;
3. Responses of the SME via phone and typed in by the in-ship user.

Outputs: all the inputs are captured and stored in a text session in the TSS in the
database.

4.2. Client Side
There are also other supporting procedures at the client side for database queries, error
checking, and graphics generation.

4.2.1. CraneQuery.java
Handles client queries to the database to retrieve data needed for user operations within the
client.

4.2.2. StoredProcedureCall.java
Handles client-based processing and client-to-database transfer of clientMessage XML. Also
handles processing, error checking, and display preparation of the returned HTML
representation of the procedure event and corresponding knowledge feedback.

4.2.3. Action.java, Chart.java
Handles the construction and processing of the flowchart graphic associated with procedure
actions taken so far.

Knowledge Project System

SDSD Page 46 of 58 5/16/2006

4.2.4. SaveTextSession.java
This is used for capture of text sessions has been added. It has two main components,
one is creating a new fault session for the first text session and secondly, appending
subsequent text sessions to the already created fault session.

4.2.5. TextSessionSupport.java:
This is a supporting functions of TextSession.jsp on the client side. The main function
of this class, generateActionsXML(), is to construct appropriate XML content that is
embedded into parameter.xml and passed to the database.

4.3. Troubleshooting Processing
Online troubleshooting is started by the sailor by running the SDT and then going through the
different steps (see Figure 15) as specified in the “ScenarioXXX.xml” XML document.

Figure 15 Online Trouble Shooting

In the following, we give more details on each components involved in the online
troubleshooting.

4.3.1. Knowledge Projection Control
The KPControl Java process serves as a router for all incoming XML messages. It responds to
the KPS client and routes the XML messages according to the XML specification.

1. KPControl.java Processes and routes the incoming clientMessage XML.

• For TSSop=START, RESUME:

 routes clientMessage to TSS component for TSS processing

KPControl

ParseProcess

store FaultSession saveSessio

Scenario XML
smartTable XML
Relational

getNextEve access

getFeedbac Relational access

genXML

genHTML Event access

AN/SLQ-32A(V)3
Shipboard
ECM System

Knowledge Project System

SDSD Page 47 of 58 5/16/2006

 routes clientMessage to ParseProcess component for event-based
processing of Codifed (fault-based) and SME scenarios

• KPControl passes back to the client

 the outgoing clientMessage containing updated values from TSS and
ParseProcess

 the ParseProcess-generated HTML representing the Scenario
nextEvent with corresponding nextEvent knowledge feedback

2. KPControl.java Identifies TSSop from clientMessage.

• For TSSop=START, RESUME

 controls troubleshooting sessions creation and determines events for
appending to the event block. In particular, detects the startup of new
fault sessions for appending.

3. KPControl.java Extracts TSSop from clientMessage.

• For TSSop=START, RESUME

 passes clientMessage to ParseProcess for current and next event
processing. Returns clientMessage and HTML document to the client
for next event presentation.

4.3.2. Trouble Shooting Session Processing
TSS.java Supports TSS processing.

• For TSSop=START:
o TSS.start

 creates a new troubleshooting session, generates a unique identifier, and
initializes the header according to clientMessage

• For TSSop=START, RESUME:
o TSS.append

 attaches time-ordered events to the troubleshooting session event block.
The TSS event block consists of status events, fault session events, free
form chat events initiated by the maintainer, and SME scenario events.
Fault session, scenario and chat events are appended by ID only. The
IDs are pointers to the full xml object stored elsewhere in the database.

• TSS.insertLink
o processes non-traditional data types submitted during scenario event processing

for representation in the external content linkage infrastructure.

4.3.3. Parse Process
This Java class does the following tasks:

1. Extracts a single event from the generic process in the database

2. Resolves the database call (call supporting functions) and generate a fault specific XML

3. Calls the save session method to save the relevant information

4. Applies the XSL (xsl/event.xsl) to the generated XML and gets HTML

There are two main arguments:

1. ParamLOB: A CLOB file (XML format) which contains the parameters passsed between
the client and the server.

Knowledge Project System

SDSD Page 48 of 58 5/16/2006

2. HTMLLOB: A CLOB created at the client for inserting the HTML

The following functions are defined in the ParseProcess Class:

1. connectToDB to connect to the database and initializes the global variable conn

2. getXMLDocument generates an XMLDocument type given an XMLType, a CLOB, or a
file_name in an ORACLE_DIRECTORY

3. printXMLDocument applies the changes made to the XMLDocument and print it

4. writeXMLDocumentToCLOB returns CLOB (passed to it as an argument). The CLOB
contains the content of the XMLDocument or XMLDocument Fragment

5. nodeExists checks whether the tag exists within the XMLElement or not

6. getValueFromDoc returns the tag value of a tag name in the XMLDocument.

7. setValueInDoc sets the tag in the XMLDocument to a certain value. Returns NULL if
can't find the Tagname otherwise returns the value

8. printCLOB prints a CLOB

9. closeDBConnection closes the database connection

10. getDatabaseCallElements fills in the global variables correspond to the database call
tags

ParseProcess.java Supports scenario processing of the current and next event from the
specified codified or SME Scenario according to the control parameters in the clientMessage.

• processes the current event to prepare for session capture.
• process the next event to prepare its representation in the client. The representation

includes next event specifications and corresponding event knowledge feedback.
ParseProcess creates an XML document representing the next event by accessing
information from supporting XML and relational tables which define and control
procedure-related data.

ParseProcess.getEvent
• extracts the targeted event from the specified scenario and, in the case of a codified

scenario, retrieves data from the fault-specific smartTable XML data layer.
• processes external content links, special procedures, text blocks, specific or general

notes, warnings, and cautions, and uses the information to create an XML document.
ParseProcess transforms the XML document into HTML using an event XSL.

ParseProcess.java Controls the creation and processing of the current scenario event for
action-based fault session capture. ParseProcess detects the start and end of scenarios for
accurate session action sequencing, and monitors triggered connecting scenarios which may
represent either the continuation of the current session or the start of a new session.
ParseProcess.java Processes the next scenario event to trigger collection of action-based
knowledge data from the data mining layer of the knowledge base.

4.3.4. Fault Session Capture
SaveSession.java Supports fault session processing. A fault session XML document is created
and stored. Actions are appended with a date and time stamp. The final fault session action
must be an end event to be considered complete.

 SaveSession.createSession
o creates a new fault session, generates a unique identifier, and initializes the

header according to clientMessage.
 SaveSession.appendSession

Knowledge Project System

SDSD Page 49 of 58 5/16/2006

o attaches time-ordered actions to the fault session action block. The fault session
action specifies the scenario, event, user supplied answers, user-supplied
comments, user-browsed external content links, parameters for non-traditional
data types, and parameters identifying database calls required during scenario
processing to resolve smartTable or relational table content.

4.3.5. SaveTextSession.java
This java class serves the purposing of storing the free format contact information between ship
and shore captured by TextSession.jsp into the database. If the TSS has not captured any such
text before, it creates a new faultsession in the TSS. Otherwise, it appends the text information to
the existing such faultsession of that TSS.
Inputs: All information captured by TextSession.jsp (see above) in the form of a XML tree
(“<Collaborate>” in parameter.xml).
Output: A new xml tree to be integrated into the corresponding TSS xmltype stored in the
database.

4.4. Data Mining Processing
Miner.java Retrieves historical action, diagnostic sequence, and part-based maintenance data
and analysis for the specified event. It returns the knowledge data as an xml document.
Miner.analyzeEvent:

 Traverses the knowledge infrastructure to locate and retrieve knowledge data for the
specified event for the currently operating scenario, fault, and ship. Troubleshooting
event feedback is a subset of the knowledge data generated by the Knowledge
Projection fault session mining module. The mining process and generated knowledge
data is identified in the data flow and control diagram for data mining.

5. System Features
This section describe system features for different individual components KPS. Components have been
determined based on the functionality they offer. The following template is used.

Purpose A general description of the functional requirement of the component (What is the
component supposed to do?)

inputs Which inputs; in what form/format will inputs arrive; from what sources input will
be derived, valid domains of each input element

processing
Describes the outcome rather than the implementation; include any validity checks
on the data, exact timing of each operation (if needed), how to handle unexpected or
abnormal situations

outputs
The form, shape, destination, and volume of the output; output timing; range of
parameters in the output; unit measure of the output; process by which the output is
stored or destroyed; process for handling error messages produced as output

External
interfaces

How does the component interact with people, the system’ hardware, other
hardware, and other component and software?

Other
Constraints

Are there any constraints in terms of security, performance, use of specific
software/standard, portability?

Knowledge Project System

SDSD Page 50 of 58 5/16/2006

5.1. Login
Purpose Login allows the user to set up a connection to KPS and start a session with KPS.
Inputs User name and password, in the format of strings according to Oracle requirements for

user name/password. Sailor name and ship name. The domain of sailor name can be any
string that consists of English letters. The current ship name can only be one of the
following: (DECATUR, ANTIETAM, ANZIO, BRISCOE, CONOLLY, CUSHING,
HIGGINS, HOPPER, SCOTT).

Processing If login is refused by the database, system will prompt the user to try again. After three
unsuccessful trials, no more inputs will be accepted. The user will need to restart the
browser to get another set of trials. The current session will obtain a JDBC connection to
the Oracle database.

Outputs The JDBC connection will be stored by the web client for the duration of the current
session and destroyed when the session ends.

External
Interfaces

The login accepts name/password information input by human users. This information
will be sent to Oracle database for verification. Upon successful connection, the control
is turned over to another module (TSS Main Menu page) from which the troubles
shooting scenario can proceed.

Other
Constraints

The login is implemented as a Java Server Page whose interpretation depends on an
Oracle Application Server (version 9i). The web browser is Microsoft Internet Explorer
(version 6.0). The implementation is portable to Apache Tomcat Application Server and
Mozilla web browser.

5.2. The Fault Session component
Purpose The fault session interactively guides the user throughout a trouble shooting session.
Inputs • Name of system, the domain is (APS-130, SLQ-32), only SLQ-32 is

implemented;
• Name of subsystem, the domain is (DCC, DTU, DSU, SIIC, FSR, XPNDR,

HVS), only HVS is implemented;
• Reason to troubleshoot, the domain is (PMS weekly SDTs, other weekly PMS,

other PMS, operational failure, other);
• Fault number, obtained from SDT, domain is integer within [?,?];
• Observations, measurements, and comments during fault session, domain is

alphanumerical string;
• The user can select the names of technical manuals and diagrams to view;
• The user answers to troubleshooting questions asked by the parse_process

component;
Outputs Troubleshooting status information to the parse_process component;
Processing The parse_process component decides what to do for the fault session. The details for

fault session operations as well as information needed to determine the following
operations are presented to the user. Users follow the instructions and fill the
information required by parse_process. History of the current fault session is shown
graphically to the user.

External
Interfaces

Communicates with parse_process stored procedure on the Oracle side. Troubleshooting
status information is sent to parse_process. The next physical step for the session is
determined by parse_process according to the status information. Upon
quitting/finishing a fault session, control is turned over the TSS main menu page of the
Login component.

Other
Constraints

The graphical presentation of fault session history requires Java Applet and web browser
with Java enabled.

Knowledge Project System

SDSD Page 51 of 58 5/16/2006

5.3. Text Session component
Purpose The Text Session allows a user to obtain direct instructions from an expert during a

troubleshooting session.
Inputs Messages input from a user as well as messages sent from the other party. The messages

can be in the format of text (chatting style), email, graphics, and video.
Outputs The history of message exchanged between both sides is sent to the database. The user

can select which parts need to be saved.
Processing User and the other party form a communication channel through which messages are

exchanged. All or partial history of these messages are stored in the database.
External
Interfaces

This feature requires access to remote database tables.

Other
constraints

The message exchange software to support this feature is yet to be determined.

5.4. TSS Status control component
Purpose This component allows the user to suspend, send to SME, resume, or exit the current

troubleshooting session.
Inputs The choice of status change: suspend, send to SME, resume, and exit.
Outputs The status change decision made by the user.
Processing The user selects a specific choice of status change and this choice is captured and sent to

the KPS.
External
Interfaces

The stored procedure called KP_control.

Other
constraints

Not applicable

5.5. Ship Side Linkage Infrastructure Ship Side Linkage Infrastructure
for Maintainer Submitted Files

Purpose The main task of this component is to make newly created files immediately part of the
KPS linkage infrastructure. We need a way to get the new files (pdf, jpg, etc) into the
linkage system to be available through KPS session viewing, scenario processing and
ship-shore transmissions.

Inputs Input is provided through an XML message in which a particular tag should contain the
path to the new file.

Processing After executing the Ship Side Linkage Infrastructure, the new file will be part of the
linkage infrastructure. It will be copied to the content directory and new links will be
created for this file through new entries in the corresponding tables (Figures, Documents
and Smart Table). Also, <table name> and <path> nodes are added for each text block
that has a new file link. This component checks if the input is in the right format. The
input is ignored if it is incorrectly formatted.

Outputs The only error message produced is if the input is not Figure (jpg, gif, bmp), Document
(pdf, doc, txt), or Smart Table.

External
interfaces

The only component that Ship Side Linkage Infrastructure interacts with is the database
and KPControl component. It takes the input from KPControl and updates the tables
inside the database.

Other
Constraints

Multiple entry of the same file should be prevented.

Knowledge Project System

SDSD Page 52 of 58 5/16/2006

5.6. Ship Side Linkage Infrastructure for SME Submitted Files
Purpose The main task of this component is to make SME submitted files a part of KPS

linkage infrastructure. SME submitted files are attached to the TSS document
and is transported by Distance Support mechanism to ship. This module makes
the newly arrived files (pdf, jpg, etc) into the linkage system to be available through
KPS session viewing, scenario processing and ship-shore transmission.

Inputs Input is provided through an XML message in which a particular tag should contain the
name of the new files, and other relevant information describing the attached file. The
path to the Distance Support replication directory should also be provided to this
component.

Processing After executing this component, the newly arrived files from shore will be a part of
linkage infrastructure on ship. It will be copied to the content directory and new links
will be created for this file through new entries in the corresponding tables (Figures,
Documents, Smart Table, EventLinks and Links).

Outputs Only error messages are printed out if the input is not in the right format.
External
interfaces

The only component that this component interacts is the database and
ReceiveFromShore component. It takes the input from ReceiveFromShore and updates
the tables inside the database.

Other
Constraints

Attached file names should be unique across the fleet. Multiples entry of the same file
should be prevented.

5.7. Shore Side Linkage Infrastructure for both SME and Maintainer
Submitted Files

Purpose The main task of this component is to make SME submitted files and maintainer
submitted files a part of KPS linkage infrastructure. Both SME submitted and
Maintainer submitted files are attached to the TSS document and is transported by
Distance Support mechanism to shore. This module makes the newly arrived files (pdf,
jpg, etc) into the linkage system to be available through KPS session
viewing, scenario processing and ship-shore transmission.

Inputs Input is provided through an XML message in which a particular tag should contain the
name of the new files, and other relevant information describing the attached file. The
path to the Distance Support replication directory should also be provided to this
component.

Processing After executing this component, the newly arrived files from ship will be a part of
linkage infrastructure on shore. It will be copied to the content directory and new links
will be created for these files through new entries in the corresponding tables (Figures,
Documents, Smart Table, EventLinks and Links).

Outputs Only error messages are printed out if the input is not in the right format.
External
interfaces

The only component that this component interacts is the database and ReceiveFromShip
component. It takes the input from ReceiveFromShip and updates the tables inside the
database.

Other
Constraints

Attached file names should be unique across the fleet. Multiples entry of the same file
should be prevented.

5.8. Ship Side Linkage Infrastructure for SME Submitted File Get New
files Component

Purpose The main purpose is to return a list the newly arrived TSS files along with their
attachments. Instead of processing all the files (both old and new), this component
returns only those files that are new. Thus it saves a lot of repeated processing. This

Knowledge Project System

SDSD Page 53 of 58 5/16/2006

component can be used both in ship and shore location.
Inputs The input to this component is the distance support replication folder.
Processing It scans the replication folder and finds out the newly arrived files by going through the

synchronization table. A list of newly arrived TSS files is created along with their
attachments. For each file, an entry is made at the synchronization table.

Outputs A list of objects. Each object contains the name of the TSS file and a list of attachment
made through this TSSession.

External
interfaces

This component interacts with the database, Receive from Ship and Receive from Shore
component. It updates the Synchronization Table in the database.

Other
Constraints

All file names that are transported by Distance Support should be unique. This
component only processes files according to their names

5.9. Parse Process
Purpose Parseprocess (1) determines the next event from the generic process in the database, (2)

saves the current fault session, and (3) generates a fault specific HTML.
Inputs Two input parameters: one holding the XML message that describes the current fault

and other relevant information, the other parameter is a placeholder for the result.
Processing The following processing tasks take place in ParseProcess:

• Based on the current system parameters including scenario, event and condition,
Parseprocess determines the next event from the generic process in the database.
If the event is Null, Parseprocess returns an error.

• Calls the save session method to save the current fault session.
• Resolves the database call and generates a fault specific XML.
• Retrieves data mining information related to the event.
• Returns results in HTML to the client.

Outputs The HTML to be displayed on the client
External
Interfaces

ParseProcess interacts with the Oracle database through a JDBC connection. All
intereactions with the Web interface are routed through the KPControl component.

Other
Constraints

Not applicable

5.10. SaveSession
Purpose Savesession allows the creation of a new fault session and the appending of a new action

to an existing fault session.
Inputs Two parameters from the Parseprocess:

1. An XML message
2. An integer array of size 2.

Processing Savesession creates a new fault session if the session ID is null otherwise it appends an
action to the current fault session. Relevant information about the new fault session or
action is obtained from the XML message it receives from ParseProcess.

Outputs None
External
Interfaces

SaveSession interacts with the Parseprocess component. It interacts with the Oracle
database through a JDBC connection.

5.11. Text Block Enhancement to TSS Sessions
Purpose This is an enhancement feature for user interactions with KPS. It allows the definition of

nay kind of visual elements, e.g., warnings, directions. It provides mechanisms to
support client requests and to store client input to be viewed in SessionViewer (file
requests, answers to questions, etc.)

Knowledge Project System

SDSD Page 54 of 58 5/16/2006

Inputs Input text blocks are read from the Scenario XML messages. The corresponding part in
this XML message specifies how the Textblock will be processed and shown in the
client side.

• One parameter in the XML message specifies the type of the TextBlock, it can
take values ‘Request’, ‘Direction’, ‘Caution’, ‘Note’ or ‘Warning’. These
options can be extended in the future.

• A Value parameter specifies the textual element that will be shown in the client
side. It may have different meanings for different TextBlock types, e.g., for
‘Warning’, it stores the actual warning message; for ‘Request’, it stores the
question that will be directed to the client.

• A ResultType parameter is meaningful when for a ‘Request’ TextBlock. It
specifies what to expect from the user as part of the request in the client side. It
can take values ‘NonT’ (file request), ‘Text’ (plain text question/answer) or
‘Multiple’ (question/answer with options).

• A Options parameter is meaningful only when the ResultType is ‘Multiple’. It
specifies the reply options for the request question in the client side, e.g., yes-no
questions.

• Result is meaningful when the type for ‘Request’ TextBlock is. It holds the
default value of the answer to the given request.

Processing Text block is interpreted at the client side. If the type is ‘Request’, then the associated
reply is routed through KP_control. If ResultType is ‘NonT’ then the linkage
infrastructure appends the necessary data to access the file in the system. The resulting
Text block is sent to SaveSession to be saved via ParseProcess calls.

Outputs Text block is saved into the appropriate FaultSession by SaveSession.
Other
constraints

Not applicable

5.12. User Interface Improvement for Session Viewer
Purpose This is an enhancement feature. It makes Session Viewer easier to use with a better look

and feel and separate the slow mining viewing process from the fast session viewing.
Input This session does not change the way Session Viewer works so the inputs to the new

Session Viewer is the same as the older Session Viewer
Processing Session Viewer page has been separated to three frames; upper, bottom and right frames:

Most event trigger buttons (bottom page activater), all information regarding to the type
of the mining process (mining process status, action id of the displayed mined data, links
for the mined data) and all the browsing elements (links to other pages) were moved to
this frame.
Upper page contains the skeleton of Fault Session without any mining data. It has the
mechanism to select a specific action type to be mined and also have triggers to update
the bottom page after the mining is done. This page loads instantly.
Bottom page only displays mining information for a specific action type. It is inactive
initially, takes some time to be loaded and can be activated by buttons in the right frame
after the mining process finishes.

Outputs Session Viewer outputs
External
Interfaces

Not Applicable

Other
Constraints

Not Applicable

Knowledge Project System

SDSD Page 55 of 58 5/16/2006

5.13. Data Mining
Purpose Provide data mining, analysis, and knowledge discovery functionalities to support

troubleshooting.
Input Use information in fault sessions.
Processing The data mining component analyzes the fault sessions to produce the following

statistical information:
- Action History

o The average, minimum and maximum times taken to execute this action
o The percentage of times this action has been skipped

- Fault History
o The percentages of times every “reason”, which can result in detecting

this fault, has occurred.
- Diagnosis History

o For every possible part failure that can cause this fault
 The percentages of times this part failure has been the actual

cause
 The expected procedure to fix this part failure
 The average time taken to complete fixing the problem

- Parts History
o Both generally and fault-specific

 Last time the part was accessed
 Last time it was replaced
 Number of time it was replaced
 Average lifetime
 The percentage of times it has been replaced versus all

replacements
- Documents History

o The percentage of times this document was accessed
o The average rate of the document, should sailors rate documents

All the above information is aggregated either over one ship, one ship class, or over the
entire fleet.

Outputs Mining results as described in Processing is stored to tables in the database.
External
Interface

All the above information is produced as part of viewing an old session, and is produced
while executing a new session. In the latter case, since the session is in action, the data
mining component can suggest skipping an event to another. The skipping suggestion is
based on the history of the current fault.

Other
constraints

Not applicable

5.14. Troubleshooting Session
The Troubleshooting Session is a major component of KP. In this section, we outline individual
requirements for its different features.

5.14.1. TSS Start Component
Purpose To initialize a new trouble shooting session instance (TSSession) in the relevant

(TSSessions) table in the database. The new instance will be in the form of an xml
document and will conform to TSSession.xsd schema.

Input The input will be a set of parameters provided in XML format. The input will be from
KPcontrol component and it requires conformance to the clientMessage.xsd schema.

Processing • A unique session Id (TSSid) will be generated for every new instance. The Id

Knowledge Project System

SDSD Page 56 of 58 5/16/2006

will be generated by concatenating the Ship ID with the unique sequence no
generated from the database.

• Header structure of the new instance will be initialized in conformance with
TSSession.xsd schema.

• A “Maintainer Activity” event will be added to the newly created instance.
Outputs New instance of Trouble shooting session (TSSession)
External
Interfaces

Input interface is KPcontrol and it interacts with the database for storing the newly
generated TSSession in the TSSessions table.

Other
constraints

Not applicable

5.14.2. TSS Append Component
Purpose To add Session, Status or SME events in the specified TSSession.
Input The input will be a set of parameters provided in XML format. The input will be from

KPcontrol component and it requires conformance to the clientMessage.xsd schema.
Processing • The events will be added in the TSSession.

• In case of Status events the current state of the TSSession will be updated to
reflect the latest event.

Outputs Modified Trouble shooting session (TSSession)
External
Interfaces

Input interface is KPcontrol and it interacts with the database for storing the modified
TSSession in the TSSessions table.

Other
constraints

Not applicable

5.14.3. TSS Submit to Ship KPS Component
Purpose To prepare the specified TSSession for submission to the KPS system on the ship.
Input The input will be a set of parameters provided in XML format. The input will be from

KPcontrol component and it requires conformance to the clientMessage.xsd schema.
Processing • Loading the specified TSSession from the database.

• Adding a “Queue to Shore” event to the TSSession.
• Expanding the contents of all included Fault Sessions. During this expansion the

links information found in these fault sessions will also be expanded if the type
of underlying link structure is “NEW FILE”. This is necessary to pass on locally
generated structures to the shore where they might not exist a priori.

• The Expanded TSSession is to be then copied into trouble shooting session
queue table (TSSqueue) where the type of queue is set to “Queue to Shore”.

Outputs New entry in the TSSqueue table.
External
Interfaces

The input interface is via KPcontrol and the output interaction is with the database for
storing the new queue document in TSSqueue table.

Other
constraints

Not applicable

5.14.4. TSS Send to Shore Component
Purpose To submit all such TSSessions in TSSqueue which are required to be submitted to shore

to the Ship KPS.
Input Null
Processing • All the TSSessions marked in TSSqueue with their queue type as “Queue to

Shore” will be scanned for copying of “NEW FILES” to the KPS directory.
• The file will be copied by setting its name to concatenation of

Knowledge Project System

SDSD Page 57 of 58 5/16/2006

figure/document/Image with the original file name.
• The file name information will be updated in the relevant TSSessions and

updated TSSessions will be copied into the KPS directory by setting the file
name as <TSSid>.xml.

Outputs New files and TSSession xml documents in KPS directory.
External
Interfaces

The input interface is via KPcontrol and the output interaction is with the KPS directory
for storing files and documents.

Other
constraints

Not applicable

5.14.5. TSS Receive All Files on Ship Component
Purpose To extract all the newly received “in process” TSSessions along with attached files from

Ship KPS to update the Ship TSSessions and Processes Tables and Ship Server Tech
Content directory.

Input Null
Processing • All the newly received TSSessions xml files in the Ship “in process” KPS

directory are parsed and TSSessions are stored in TSSqueue with their queue
type as “Queue to Ship”.

• The attached files are copied to the Ship Server Tech Content directory and the
corresponding linkage information is inserted into links and events tables.

• The copied TSSessions in TSSqueue are scanned for added SME Scenarios,
which if found are copied to Processes table.

• The TSSession is then copied into TSSessions table after adding a “Queue to
Maintainer” event to it.

Outputs New files in Ship Server Tech content directory. New Scenario entries in Processes
table. Updated TSSession entries in TSSessions table.

External
Interfaces

The input interface is via KPcontrol and the output interaction is with the Database and
Ship Server Tech Content directory.

Other
constraints

Not applicable

5.14.6. TSS Receive All Files on Shore Component
Purpose To extract all the newly received closed TSSessions along with attached files from Shore

KPS to update the Shore TSSessions and Processes Tables and Shore Server Tech
Content directory.

Input Null
Processing • All the newly received TSSessions xml files in the Shore “closed” KPS

directory are parsed and TSSessions are stored in TSSqueue with their queue
type as “Queue to Shore”.

• The attached files are copied to the Shore Server Tech Content directory and the
corresponding linkage information is inserted into links and events tables.

• The copied TSSessions in TSSqueue are scanned for added SME Scenarios,
which if found are copied to Processes table.

• The copied TSSessions in TSSqueue are scanned for “unprocessed” Fault
sessions which if found are copied to FaultSessions table.

• The TSSession is then copied into TSSessions table after removing the contents
of all the now “processed” FaultSessions.

Outputs New files in Shore Server Tech content directory. New Scenario entries in Processes
table and new Fault sessions in FaultSessions table. New TSSession entries in
TSSessions table.

Knowledge Project System

SDSD Page 58 of 58 5/16/2006

External
Interfaces

The input interface is via KPcontrol and the output interaction is with the Database and
Shore Server Tech Content directory.

Other
constraints

Not applicable

5.15. Scenario Viewer
Purpose: The scenario viewer is a tool to graphically view (e.g. as a flowchart) a scenario. Both

SME and Codified scenarios can be viewed using the viewer
Inputs: The input to the viewer is a scenario description in XML format
Processing: The viewer will parse the XML description of the scenario, extract the actions and

conditions. An XSL file will work on the extracted information and try to find a suitable
placement for them on the screen.

Outputs The output of the viewer is an html file containing the flowchart of the scenario (the
flowchart will be in the Scalable Vector Format SVG)

External
interfaces

To view the output the Adobe SVG viewer plugin need to installed. The flowchart will be
interactive. Users can explore details by clicking on the different parts of the graph

Other
Constraints

Software components used: - Adobe SVG viewer plugin is needed - The “saxon” XSLT
processor Standard used: XML, XSLT, SVG

5.16. Troubleshooting Session Viewer
Purpose This is a graphical viewer for troubleshooting sessions. It allows to browse the existing

troubleshooting sessions and see a global view of all the events done in a gives TSS.
Inputs The input to the viewer is the troubleshooting session XML document.
Processing The viewer extracts the different events from the troubleshooting sessions. Each event is

represented by a box with the event name inside the box. Different colors are used to
represent the different types of events. Three colors are used to represent:
Status Events
Session Events
SME Events
The boxes that represent session events are clickable. By clicking on a session event, the
session viewer is opened to view the current session.

Outputs An SVG image that contain a summary of the events in the TSS.
Other
constraints

Not applicable

