
CloVR: Fast-Startup Low-Latency Cloud VR

Yuqi Zhou , Voicu Popescu

Fig. 1: (a) Overhead visualization of eight users (red dots) in a City virtual environment (VE) with 25 million triangles. The users are
co-located in the same real world room and are wearing VR headsets that can render up to one million triangles. A server running on a
laptop is reducing the VE either through our CloVR approach of near-far partitioning with continuous progressive refinement (b-d), or
through conventional visibility computation (e-g). With CloVR the user quickly sees a complete view of the VE (b), which is then refined
progressively by increasing the near region with strict visual continuity (from b to c to d). With the conventional approach the user is
provided with an incomplete view (e) that is filled in as objects are received (f and g).

Abstract— VR headsets have limited rendering capability, which limits the size and detail of the virtual environment (VE) that can be
used in VR applications. One solution is cloud VR, where the "thin" VR clients are assisted by a server. This paper describes CloVR, a
cloud VR system that provides fast loading times, as needed to let users see and interact with the VE quickly at session startup or after
teleportation. The server reduces the original VE to a compact representation through near-far partitioning. The server renders the far
region to an environment map which it sends to the client together with the near region geometry, from which the client renders quality
frames locally, with low latency. The near region starts out small and grows progressively, with strict visual continuity, minimizing startup
time. The low-latency and fast-startup advantages of CloVR have been validated in a user study where groups of 8 participants wearing
all-in-one VR headsets (Quest 2’s) were supported by a laptop server to run a collaborative VR application with a 25 million triangle VE.

Index Terms—Cloud VR, Near-Far Partitioning

1 INTRODUCTION

Virtual Reality (VR) technology has rapidly advanced in recent years,
offering powerful immersive experiences for users at accessible cost.
Untethered VR headsets are now available with on-board rendering,
tracking, and power. However, such all-in-one VR headsets have lim-
ited rendering capability, which limits the size and detail of the virtual
environment (VE) that can be used in VR applications. Reducing the
rendering load to make large VEs tractable on "thin" VR clients can
take one of two fundamental approaches. One approach is visibility
computation, which reduces rendering load by finding the subset of the
VE visible to the user and by restricting rendering to this visible set.
A second approach is level of detail (LoD) adaptation, which reduces
rendering load by rendering distant parts of the VE from simplified
representations. A straightforward and effective LoD method is to par-
tition the scene into a near and a far region, rendering the near scene in
full detail, from geometry, and rendering the far region in lower detail,

• Yuqi Zhou is with Purdue University. E-mail: zhou1168@purdue.edu
• Voicu Popescu is with Purdue University. E-mail: popescu@purdue.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

from an environment map (i.e., a cubemap or a skybox). However,
both the visibility and the LoD approaches to reducing rendering load
require handling the VE at its full complexity, which could exceed the
capabilities of the VR headset. What is needed is to completely insulate
the VR client from the complexity of the VE.

Internet advances have allowed the virtualization of many computing
applications. Interactive visualization is a challenging candidate for
virtualization since it requires frequent communication between the
server and the client as the user is free to change the view and to interact
with the dataset as they desire. For each frame, the client has to send
the view parameters to the server and then the server has to render
and send the frame to the client, which incurs a latency at least equal
to the network round-trip time between the server and the client. As
network latencies have decreased, cloud interactive visualization is now
starting to become practical on conventional, non-immersive displays,
such as laptop, tablet, or phone screens. However, VR has strict latency
requirements [19] that networks cannot yet meet. Consequently, a pure
cloud VR approach where all rendering happens on the sever is not
yet tractable. The solution is to partition the load between the server
and the client, with the server reducing the VE to a more compact
representation that the client can render locally with low latency. In
addition to latency, a second cloud VR design concern is a fast VR
application startup time. Once the user has initiated a VR application
session or has teleported to a new location in the VE, the user should
be able to see and interact with the VE as quickly possible, without

https://orcid.org/0000-0003-3357-7837
https://orcid.org/0000-0002-8767-8724


lengthy loading times.
In this paper we describe CloVR, a client-server system for cloud

VR that includes a novel approach to progressive refinement for fast
startup at session initialization and after teleportation. CloVR reduces
the original VE to a size manageable by thin VR clients through near-
far partitioning: the server renders the far region to an environment
map which is sent to the client along with the geometry of the near
region; the client renders output frames from the near region geometry
and the far region environment map, with low latency. CloVR starts out
with a small initial near region which is then grown progressively. In
terms of transfer from the server, the near region is grown discretely,
one ring at the time. In terms of visualization, the near region is grown
with strict visual continuity: as a new ring arrives at the client, the
ring is injected into the visualization gradually, maintaining frame to
frame continuity. Fig. 1 illustrates the process. The CloVR approach
starts with a 10m near region (yellow in a), which loads quickly yet
provides the user with a complete view of the VE (b). The near region is
grown by transferring from the server rings of increasing radii (magenta
and green in a). When a ring arrives, the new geometry is deployed
over several frames with visualization continuity that gradually morphs
frame b into c and then into d. We also refer the reader to the video
accompanying our paper. Fig. 1 compares CloVR to an approach based
on visibility that completes the user frame one object at a time, as
objects are received from the server (e-g). Here the objects are sent in
decreasing order of their frame footprint, and even so early frames are
far from complete (e).

We have evaluated CloVR both analytically and through a user study.
The analytical evaluation confirms that CloVR provides a complete
visualization of the VE early on in the loading process, unlike the
visibility-based methods that render visible objects as they arrive from
the server. We conducted a user study with two experiments. The first
experiment (N = 20) confirmed the early visualization completeness
advantage of CloVR over visibility-based methods, and it showed that
CloVR’s gradual increase of the near region with visual continuity does
not come at a significant performance penalty. The second experiment
(N = 16) confirmed that CloVR can support eight users simultaneously,
allowing them to work together in a collaborative VR application with
stringent multi-user synchronization requirements.

In summary, our paper contributes:
• A method that supports fast startup at session initialization and

after teleportation, with progressive refinement that guarantees
visual continuity.

• A cloud VR system that allows thin clients to explore complex
VEs with low latency, with the help of a server running on a
laptop.

• An analytical and empirical evaluation of the cloud VR system.

2 RELATED WORK

Researchers have analyzed the feasibility of a pure cloud VR approach
where all rendering happens at the server, which requires a network
round-trip for the client to request and then receive the frame. The
conclusions are that network latency remains a challenge [33], and that
5G cellular networks and beyond should have ultra-low latency, with
an upper bound of 20ms [21].

To address the latency issue, researchers have examined hybrid ap-
proaches, where some of the VE is rendered locally, on the client. For
example, the CloudVR [11] system renders most of the VE on a remote
server while small objects close to the user are rendered on the VR
client, noting that avoiding latency is particularly important for the
objects with which the user interacts. Another approach for combating
latency is to use the frame received from the server to reconstruct addi-
tional frames locally, on the client, through warping, which keeps the
visualization responsive while waiting for the next server frame, at the
cost of lower quality intermediate frames [13]. Instead of partitioning
the VE geometry, researchers have also proposed partitioning the shad-
ing load between the server, in charge of expensive global illumination
effects that require ray-tracing, and local illumination effects that can
be handled by the client [28].

Reducing rendering load as a way of improving frame rate and frame
quality is a long standing problem in computer graphics research. In
complex 3D scenes, the user might have line of sight to only a small
fraction of the scene due to occlusions. One approach for reducing the
rendering load is to find and only render the visible set. Visibility has
been studied extensively, with no complete solution. Some visibility
algorithms search for visible triangles heuristically, by probing the
dataset with visibility rays [14]. Such sampled-based algorithms have
a low computational cost, but they can miss some visible triangles.
Continuous visibility algorithms can produce a complete visible set,
for example by probing for visible triangles not with rays but with
beams [35], with the shortcoming of an increased computational cost.
The camera offset space visibility algorithm [9] takes a hybrid, i.e.,
sample-based and continuous, approach that estimates the camera trans-
lation space region under which a pixel center is covered by a scene
triangle; the resulting visible set is nearly complete, but it can miss
some visible triangles and include some hidden triangles. At a funda-
mental level, even if the visible set is exact, the visibility approach to
reducing rendering load has the disadvantage that the visible set could
be too large, i.e., it does not allow the application to enforce a rendering
budget.

Another approach for rendering load reduction is to compute an
alternate representation of the 3D scene that has fewer triangles but that
produces identical, or at least similar, frames to those obtained from the
original representation. The idea is to reduce the level-of-detail (LoD)
of distant objects with a small screen footprint, but LoD computation
is challenging [18]. Interactive computer graphics applications often
use a simple scheme that has two levels of detail: full detail for the
objects close to the user, and low detail for distant objects, which are
prerendered in an environment map [3]. Near-far scene partitioning
and environment mapping has recently been used in the context of
VR for rendering load reduction [23]. Whereas the environment map
was previously reserved to the very distant parts of the scene, like the
mountains at the horizon in an outdoor scene, the work introduces an
intermediate region that maintains continuity between the near and
far regions, which allows using environment mapping at closer dis-
tances. Our CloVR system uses this prior art approach [23] to maintain
geometric continuity between the near and far regions.

Another effort for reducing rendering load in VR proposes rendering
distant objects only once, i.e., monoscopically, to leverage the fact these
objects contribute little to the disparity between the left and right eye
frames [5]. A similar 2x load reduction is pursued by rendering the VE
just once, from the midpoint of the interpupillary segment, and using
the resulting depth image to reconstruct the left and right frames by
3D warping [26]. However, complex VEs require far more aggressive
rendering load reduction factors.

The networking research community has also investigated distribut-
ing VR applications [4, 12, 17]. Due to the widespread availability
of 360o videos, one focus is saving bandwidth by not transferring the
parts of the 360o frame that the user does not see, i.e., to implement
view frustum culling at the server [8, 25]. For free-viewpoint videos,
also known as volumetric or 3D videos, the transfer and rendering load
reduction provided by view-frustum culling was augmented with occlu-
sion culling and with hierarchical LoD schemes, by taking advantage
of the uniform structure of the RGBD frames [7, 16, 24, 32].

We target VEs modeled with triangle meshes, as needed by many VR
applications. The triangle mesh representation of VEs is less uniform
than that of videos, which complicates occlusion culling and LoD
computation. One approach relies on the server to convert the VE to a
uniform representation, by computing environment maps on a uniform
2D grid partitioning the ground plane [15]. The user is confined to
a discrete set of possible viewpoints. The idea of simplifying LoD
adaptation by discretizing the VE has also been used by a VR system
where rendering is done on a workstation with a high-performance
GPU [27]. Another example is a system that voxelizes the VE on the
server and the client reconstructs and renders the VE from the voxels
using marching cubes [29]. A method focusing on urban environments
reduces the VE complexity by replacing it with a database of 2D
images [22]. Our approach renders nearby objects from geometry,



Fig. 2: CloVR approach (left) and system overview (right).

avoiding the quality loss inherent to the discretization of the VE.
Researchers have also proposed differentiating between higher la-

tency cloud servers and highly responsive edge servers, investigating
optimal resource allocation [20], including with the help of deep learn-
ing [34]. In our work the server runs on a laptop, and the server and
clients are co-located, which corresponds to the scenario of a low-
latency edge server, exclusively dedicated to a single collaborative VR
application.

3 CloVR APPROACH TO CLOUD VR
Fig. 2 gives an overview of our CloVR approach. The server partitions
the VE into a near and a far region using a vertical cylinder. Partitioning
proceeds at object level. Any object that has a vertex inside the cylinder
is assigned to the near region. The server renders all geometry in the far
region to an environment map from a viewpoint O, on the cylinder axis,
at a typical viewing distance. The server transfers the environment map
and the near region geometry to the client. The client renders output
frames from the near region geometry and the far region environment
map. The client never downloads or renders the VE at its original
complexity. The client only renders geometry in the near region, which
allows for tuning the rendering load to the client’s rendering capabilities.
The output frames are rendered locally, with low latency.

For a fast startup, the near region starts out small and is then grown
progressively. The initial near region radius is 0 (R0 in Fig. 2), so the
server first sends an environment map that captures the entire VE. Then
the initial region is grown to its first non-zero size (R1), and the near
region geometry and new environment map are sent to the client. Once
the client receives the new data, the visualization switches gradually to
the larger near region, with visual continuity, as described in Sec. 3.1.
Once the user receives the first near region with non-zero radius, the
user is not only provided with a complete visualization of the VE,
but also with a functional VE: the user can see nearby geometry with
correct depth perception, the user can interact with nearby geometry,
and the user can see their own avatar and those of other nearby users.
The near region is enlarged repeatedly until it reaches its final size (i.e.,
R3 in Fig. 2).

In the case of a multi-user collaborative VR application, the clients
have to communicate their state (e.g., avatar pose) to the other clients
in real time. For this, each client reports its relevant state to the server,
which relays it to the other clients. Furthermore, all users within the
same near region (red dots in Fig. 2) rely on the same reduced version
of the VE, amortizing server computational load by leveraging user
locality.

3.1 Fast Progressive Startup with Visual Continuity
Once a client receives the geometry Gi of the additional objects needed
to extend the near region from Ri−1 to Ri and the new environment
map EMi, switching abruptly to the larger near region creates an abrupt,
significant, and therefore highly objectionable change in the user’s view.
The cause of this change is illustrated in Fig. 3, panels a and b. U is the
user viewpoint, and O is the environment map viewpoint, i.e., the near
region center. When the near region is extended from Ri−1 to Ri, an
object P in Gi jumps in the user view from pi−1 to pi; U pi−1 is the user

Fig. 3: Near region extension with visual continuity. Initially (panel a),
the near region has radius Ri−1; a VE object P is in the far region and
projects to pi−1. If the near region is extended abruptly to Ri (panel
b), the projection of P jumps from pi−1 to pi. For a near region with
radius R ∈ [Ri−1,Ri] (panel c), our gradual extension projects P to the
intermediate position q, as explained in Alg. 1.

ray parallel to the environment map ray OP along which P is captured
in EMi−1; U pi is the user ray through the actual 3D position of P.

In order to inject geometry Gi gradually into the visualization, in-
stead of rendering Gi from the user viewpoint right away, Gi is first
rendered from O, where it was visible in EMi−1, and then the viewpoint
is gradually switched to U . Panel c in Fig. 3 shows the image projection
of P to q for a frame that is part of the gradual deployment of the new
geometry. In Fig. 1, rendering new geometry from the user viewpoint
as soon as it becomes available creates a jump from e to g, whereas our
gradual deployment morphs e into g, creating intermediate frames such
as f.

The gradual deployment is implemented by projecting geometry
vertices with Alg. 1. A vertex P is projected based on its distance r
to the partitioning cylinder axis, which is here assumed to be vertical
(line 1). To maintain continuity between the near and far regions, the
near region is further subdivided into two subregions: a near subregion
for r < Rn, and an intermediate subregion for Rn < r < R (Fig. 3, c).
The smaller the radius Rn, the larger the intermediate region width
R−Rn, and the more gradual the switch between the environment map
viewpoint and the user viewpoint. However, the smaller the radius Rn
the smaller the distortion-free region surrounding the user. In practice
we use Rn = 0.7R, which provides a good compromise.

There are three cases. If P is in the near subregion (line 2), then P is
not displaced (line 3), and it is projected conventionally (line 12). If P
is in the far region (line 4), then P is first displaced to point Q which
is at the intersection of the vertical cylinder through P and a ray (line
6), after which it is projected (line 12). The ray starts at U and has the
direction in which P is seen from O (line 5). This way, P appears in the
output frame as if it were looked up in the environment map, which is
where it was seen in the previous frames. If P is in the intermediate

Algorithm 1 Vertex projection for gradual near region extension with
visual continuity.

Input: Vertex P, current near region radius R ∈ [Ri−1,Ri], the near
subregion radius Rn, user viewpoint U , user view MV PU , environ-
ment map viewpoint O

Output: Vertex projection q
1: r = length(O.xz−P.xz)
2: if r < Rn then // in near subregion
3: Q = P
4: else if r > R then // in far region
5: d = normalize(P−O)
6: Q = Ray(U,d) ∩ Cylinder(O,r)
7: else // in intermediate subregion (Rn < r < R)
8: w = R− r/(R−Rn)
9: dU = normalize(P−U); dO = normalize(P−O)

10: d = normalize(dU w+dO(1−w))
11: Q = Ray(U,d) ∩ Cylinder(O,r)
12: return q = MV PU ×Q



subregion (line 7), then P is first displaced to a point Q that is also at
the intersection of the vertical cylinder through P and a ray (line 11).
Like before, the ray starts at U , but now the ray direction is a linear
interpolation (line 10) between the the direction dU in which P is seen
from U and the direction dO in which P is seen from O (line 9). The
weights of the linear interpolation wU and wO are determined by the
ratio in which r splits the interval [Rn,R] (line 8).

As R grows from Ri−1 to R, the ring [R,Rn] moves over a vertex P,
changing its projection gradually from pi−1 to pi, maintaining visual
continuity (panel c of Fig. 3). Alg. 1 displaces vertices on their original
cylinder. This comes at a cost of a ray-cylinder intersection, which
requires solving a quadratic equation. This additional cost is warranted
since it allows rendering geometry in the far region while waiting for
the growing near region to incorporate it in the visualization.

The radii Ri−1 and Ri are an input to Alg. 1. We select the sequence
of radii that define the growth of the near region based on several con-
siderations. One consideration is to keep the amount of data contributed
by each ring constant. Assuming a uniform geometric density on the
ground plane, this leads to decreasing radii changes, in order to keep
the area of larger and larger rings constant. Another consideration is to
take into account visibility–not all geometry inside farther rings is visi-
ble due to occlusion by the geometry of smaller, nearby rings, so one
could choose thicker distant rings for the same amount of data. A third
consideration is that farther rings have a smaller output image footprint
due to perspective foreshortening, so the contribution of individual
rings decreases with distance, which argues in favor of thicker farther
rings. A fourth consideration is that each ring brings its own cubemap,
which is not useful once the next next ring is loaded, overhead that
increases with the number of rings. In practice, we take into account all
these competing factors to start with rings of equal area (e.g., 314 m2

for the City VE from Fig. 1), and then merge consecutive rings based
on visibility and distance from user (e.g., resulting in rings of radii of
10m, 14m, 17m, 22m, 32m, and 63m for City).

4 EVALUATION

We have evaluated CloVR both analytically and empirically. We com-
pared our startup approach with continuous refinement (CloVR) to the
same approach but with discrete visual refinement (CloVRD), as well
as to two visibility-based startup approaches (Vis0 and Vis1).

CloVR. This condition uses our approach as described in Sec. 3. The
radius R of the cylinder starts at 0m and is increased discretely (i.e., to
10m, 14m, 17m, 22m, 32m, and 63m for City).

CloVRD. This condition is identical to CloVR except that the visual-
ization switches abruptly to the larger near region once the next ring’s
data is received from the server.

Vis0. The first visibility-based approach partitions the VE into a near
and a far region using a vertical cylinder of radius R (i.e., R = 63m for
City). The objects in the far region are prerendered to an environment
map from a reference viewpoint O which is on the cylinder axis, at a
height h (e.g., h = 1.3m for City) above the ground plane. The objects in
the near region are rendered from O to measure their visibility footprint.
The objects in the near region whose visibility footprint is zero are
discarded. The server sends the visible near region objects and the
cubemap to the client. The client displays a blank screen while waiting
for all the data to arrive.

Vis1. The second visibility-based approach proceeds like Vis0, ex-
cept that the near objects are sent in decreasing order of their visibility
footprint, and that the client displays each object as soon as it is re-
ceived, without waiting for all objects to arrive first.

4.1 Analytical Evaluation
We have investigated the CloVR and the three approaches (CloVRD,
Vis0 and Vis1) in terms of three quantitative, objective metrics.

Object Visualization Completion (OVC). The OVC metric is the
percentage of objects that are shown in a user frame F∗, out of the total
of number of objects that are shown in the corresponding ground truth
frame F . An object is shown in a user frame if it appears at least at one
pixel in the frame. The ground truth frame is computed by rendering
the entire VE from geometry. The OVC metric is given by Eq. 1, where

Fig. 4: Analytical comparison of loading approaches for the City VE in
terms of object visualization completion (left), object footprint completion
(middle), and visual continuity (right).

oi are the n objects shown by the ground truth frame F , and F∗(oi) is
the footprint of object oi in the user frame F∗. OVC is 0 for Vis0 until
the end of the loading process where it jumps to 100%. Fig. 4, top,
shows the OVC for the three approaches (excluding Vis0) for a user
viewpoint U that is 1m to the left of the near region center O. The x
axis is the loading completion in terms of object geometry for Vis0
and Vis1, and in terms of the near region radius R for CloVRD and
CloVR. As expected, for Vis0 the OVC is 0% until the last object arrives
from the server, when it jumps to 100%. For Vis1, OVC increases
linearly from 0% to 100%. For both CloVRD and CloVR, OVC starts
out high, because most objects are on screen from early on, either
part of the environment map, or part of the near region. CloVRD and
CloVR incorrectly omit an object on the rare occasion when the object
is visible from the user viewpoint U but not from the environment map
viewpoint O, or when the intermediate region morph alters the visibility
from U .

OVC(F∗,F) =
1
n

n

∑
i=1

(F∗(oi)> 0) ? 1 : 0 (1)

Object Footprint Completion (OFC). The OFC metric is similar
to the OVC metric, but the OFC metric doesn’t just check whether
an object is represented by at least a pixel in the frame, and instead
it also checks whether the footprint of the object is the same as the
footprint the object has in a ground truth frame. Given a frame F∗ and
its corresponding ground truth frame F , the OFC metric is given by
Eq. 2, where F∗(oi) is the footprint of object oi in F∗ and F(oi) is the
footprint of object oi in F . n is the total number of objects shown in F .
The footprint of an object in F∗ is capped to its footprint in F , to avoid
incorrectly skewing the frame OFC value when occluding objects are
missing making the footprint of objects larger than what they should
be. For Vis0, OFC is 0% until the loading process completes, and then
it jumps to 100%. Fig. 4, middle, gives the OFC metric for the three
approaches, excluding Vis0. The main difference with the OVC metric
is that now OFC increases super-linearly for Vis1 as the objects with
the largest footprint are transferred first.

OFC(F∗,F) =
∑

n
i=1 min(F∗(oi),F(oi))

∑
n
i=1 F(oi)

(2)

Visual Continuity (VC). We investigate the visual continuity provided
by the various approaches by computing the Structural Similarity Index
Measure [30] between consecutive frames, with a window size equal to
the entire image. Since the user view and the geometry do not change,
there should be no changes between frames. The VC metric is given
in Fig. 4, bottom. As expected, Vis1 suffers from visual discontinuity,
i.e., a drop of the VC value, every time an object arrives, with larger
discontinuities earlier on as the objects with larger footprints arrive. The
final visual discontinuity is due to the environment map’s inclusion in
the visualization. CloVRD suffers from visual discontinuity every time
a new geometry ring is included in the visualization. CloVR provides
good visual continuity throughout the loading process.



Fig. 5: Third-person (top) and first-person (bottom) views of the three
locations used in Experiment 1: two locations in the City VE, i.e., City1
(a, d) and City2 (b, e), and one location in the Factory VE (c, f ).

4.2 Empirical Evaluation: User Study

We evaluated CloVR in a user study with two experiments. The user
study was approved by our university’s Institutional Review Board,
the Purdue University Human Research Protection Program with the
IRB number IRB-2023-622. The first experiment investigates using
the CloVR approach to support a single user starting up (or teleporting)
in a complex VE with unique geometries, requiring a substantial data
transfer, as described in Sec. 4.2.1. The second experiment investigates
using the CloVR approach to support multiple users engaged simultane-
ously in a collaborative VR application, co-located in the same region
of the VE, as described in Sec. 4.2.2.

Setup. The server and the clients were located in the same real
world room, i.e., a classroom on our university campus. The server
and the client software were implemented using Unity 3D [2], version
2021.3.18f. The server was run on a Windows 11 Dell G7 7500 laptop
with an Intel(R) Core(TM) i7-10750H CPU, 32.0 GB of RAM, a Killer
1650i wireless module, and an NVIDIA GeForce RTX 2070 graphics
card. The clients were run on Meta Quest 2 headsets [1]. The client
headsets were connected through WiFi to the laptop’s hotspot. The lap-
top’s upload speed is 2,400 Mbps and the Quest 2 maximum download
speed is 1,200 Mbps.

Participants. We have recruited N = 26 participants; 6 self-identified
as females, 19 self-identified as males, and 1 declined to answer the
gender question; all were over 18 years of age, with an average age
of 25.3 ± 3.35; regarding the VR experience question, 4 participants
answered "never", 8 "once", 12 "occasionally", and 2 "frequently". 8
participants were assigned to session 1, 10 to session 2, and 8 to session
3. The sessions were run on consecutive days.

Pre-experiment activities. The session started with administering
an eligibility questionnaire. The eligibility questionnaire was aimed to
exclude participants who are prone to severe motion sickness, who have
mobility or muscular skeletal issues that prevent them from wearing a
headset, or who do not have normal or corrected vision. No participant
was found to be ineligible. Participants then filled out the consent
form. Consenting participants answered the demographics question-
naire. Each participant was then involved in both experiments. The
total time involvement of each participant was at most 90 minutes, door
to door.

4.2.1 Experiment 1: CloVR support for a single user

The first experiment investigates the ability of the CloVR approach to
support fast startup at session initialization and after teleportation, with
progressive refinement. The investigation is carried out for a complex
VE with unique objects that amount to a significant data transfer at
startup.

Experimental design. The first experiment exposed participants
to the various approaches for loading the VE. We opted for a within

Fig. 6: Box-plots of total loading time (left) and of complete visualization
loading time (right), for the four approaches and the three VE locations,
over all participants.

subjects design with each participant being exposed to all four condi-
tions Vis0, Vis1, CloVRD, and CloVR, in counterbalanced order. The
within subjects design allows contrasting the conditions with fewer
participants compared to a between subjects design.

Procedure. Participants worked individually. A participant put on the
VR headset and read an initial instructions screen. Then a participant
initiated loading a VE. We used two locations in the City VE and one
location in the Factory VE, see Fig. 5, for each of the four conditions,
totaling 12 trials. We used two locations in the City VE because the
buildings are not of uniform complexity, which could translate in results
variability. The Factory VE is compact and uniform, which does not
warrant multiple locations. The participant had a virtual position 2m
away from the center of the near region. Participants were seated for
a consistent viewpoint, as needed for a consistent comparison of the
various download conditions. Since participants are wearing a headset
it is not possible to eliminate completely viewpoint and view direction
discrepancies, as playing back pre-recorded paths immersively makes
participants prone to cybersickness. Each loading trial took at most
25s. After each trial, participants answered a questionnaire in the VR
application, as described below. A participant’s total involvement in
Experiment 1 lasted at most 20 minutes.

Data collection. The client headset recorded the time needed for
the various loading stages and the frame rate. After each trial, the
participant answered three or four questions about the VE loading they
had just experienced, on a five-point Likert scale:

• Q1 (all): The loading time was acceptable.
• Q2 (Vis0): I found the blank screen during loading to be boring.
• Q2 (Vis1): I liked seeing the VE fill in as it loaded.
• Q2 (CloVRD, CloVR): I liked seeing a complete version of the

VE being refined during loading.
• Q3 (Vis1): The pattern in which the VE filled in was confusing.
• Q3 (CloVRD, CloVR): The VE refinement was confusing.
• Q4 (all): Overall, the download process was acceptable.

Data analysis. We analyzed the loading time, frame rate, and Likert
answer data using the non-parametric Friedman test [6], as our data
did not have a normal distribution. When the Friedman test indicated
a significant difference between conditions, a Wilcoxon [31] post-hoc
analysis was conducted to investigate pairwise differences, with a
Bonferroni corrected significance level of α = 0.05/6, where 6 is the
number of pairwise comparisons. We used the SPSS statistical software
package [10].

Results and discussion.
We attempted to run all eight participants of the first session in

parallel, which was over the capabilities of the network, resulting in
long delays unrelated to the conditions tested. This made the data of six
of the eight participants unusable. For sessions two and three we ran
three participants in parallel, and the sessions completed as expected.
Therefore, for Experiment 1, we report data for 2 + 8 + 10 = 20 of the
26 participants.

Loading times. The loading times for the four conditions and the



Fig. 7: Progressive loading times as a function of the growing near
region radius, for the two near-far partitioning methods and the three VE
locations, averaged over all Experiment 1 participants.

three VE locations are given in Fig. 6. The left panel gives the total
loading time. For all four methods, the loading is complete when all
the geometry of the (final) near region as well as the environment map
of the far region are received. The statistical analysis of the differences
is given in Tab. 1. There is a significant difference between the four
conditions for all three VE locations. There is a small but statistically
significant difference between Vis0 and Vis1: Vis0 is slightly but con-
sistently faster than Vis1 because for Vis0 the headset does not render
while waiting for the data to arrive, whereas for Vis1 the headset renders
the objects as they arrive. There is no significant difference between
CloVRD and CloVR, which indicates that the gradual deployment of
the new ring does not significantly slow down the download of the next
ring. City2 corresponds to a location in the urban VE that has a higher
geometric density than the City1 location, which is reflected by longer
loading times for each of the four conditions (Fig. 6). The relative
loading time increase from City1 over City2 is lower for the CloVR
than for the Vis conditions, as the environment maps have similar sizes.

There is a significant difference between the loading times of any
of the two visibility methods and any of the the two progressive near-
far partitioning methods, i.e., for any of the four pairs in {Vis0, Vis1}
x {CloVRD, CloVR}. The difference is due to the fact that CloVRD
and CloVR transfer more data from the server, i.e., they transfer an
environment map for each intermediate ring, whereas Vis0 and Vis1
only transfer the final environment map. For example, for City1 the
geometry data totals 113MB, the final environment map is 2.76MB, and
the intermediate environment maps total 21.4MB. Therefore Vis0 and
Vis1 transfer a total of 116MB whereas CloVRD and CloVR transfer
a total of 134MB. At the cost of a delay of the completion of the
loading process, the intermediate environment maps provide a complete
visualization of the VE early on.

The right panel of Fig. 6 gives the time it takes to load a visually
complete version of the VE; for the Vis methods this corresponds to
the total loading time, while for the CloVR methods this corresponds to
loading the geometry of the first ring with its environment map. The
CloVR methods need 4s or less to download a functional and visually
complete VE, whereas the Vis methods need at least 15s. The CloVR
methods prioritize loading all geometry in a region of 10m radius, con-
nected with visual continuity to an environment mapping visualization
of the geometry beyond 10m. This initial region is sufficient (1) for

Vis0 -
Vis1

Vis0 -
CloVRD

Vis0 -
CloVR

Vis1 -
CloVRD

Vis1 -
CloVR

CloVRD -
CloVR

City1
Friedman: χ2 = 50.22, p <0.001∗

Z -3.25 -3.92 -3.92 -3.92 -3.92 1.12
p 0.001∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.263

City2
Friedman: χ2 = 50.22, p <0.001

Z -3.02 -3.92 -3.92 -3.92 -3.92 -0.53
p 0.002∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.601

Factory
Friedman: χ2 = 49.5, p <0.001∗

Z -3.02 -3.92 -3.92 -3.92 -3.92 -0.97
p 0.002∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.332

Table 1: Friedman (χ2, p) and posthoc Wilcoxon (Z and p) analysis of
loading time differences between the four conditions at the three VE
locations. Statistical significance indicated with an asterisk.

Fig. 8: Box-plots of average frame rate during loading, for the four
approaches and the three VE locations, over all participants.

a quality stereoscopic visualization, as the left-right eye disparity is
highest for nearby objects and is very low beyond 10m; (2) for view-
point translation by walking within the 10m radius region; (3) for the
user to see correctly their own avatar as well as the avatar of nearby
collaborators.

Fig. 7 shows that the rings selected for increasing the near region for
the CloVR approaches do achieve an adequate transfer load balancing
with an approximately linear growth of the near region as a function
time.

Frame rate. In terms of frame rate, once loading completes, the
frame rate is the same for all four approaches as they are rendering
the same reduced version of the VE. The post-loading frame rates
are 66.1 ± 3.98 fps, 57.7 ± 3.14fps , and 71.8 ± 0.16fps for City1,
City2, and Factory. Rendering the original VEs on the headsets is
prohibitively expensive, resulting in frame rates of 5.09 ± 2.78fps for
City, and 26.3 ± 1.69fps for Factory. Both the visibility and the near-
far partitioning approaches succeed at reducing the rendering load to
enable comfortable frame rates.

The average frame rates during loading are given in Fig. 8, and the
statistical analysis in Tab. 2. Like for total loading times, there is a
significant difference between the four conditions, and the pairwise
difference between CloVRD and CloVR is not significant, which again
indicates that the gradual deployment of the new ring does not affect
rendering performance. As expected, Vis0 has the highest frame rate
since it does not render anything during loading. Somewhat surprisingly
however, for City1 and City2, Vis1 has a significantly lower frame rate
than both CloVRD and CloVR. We attribute this difference to the greedy
object transfer scheduling of Vis1, which transfers objects with larger
screen footprint first. These objects are often also the more complex
objects, which require the largest CPU computational effort to decode
from the packets received from the server. On the other hand, CloVRD
and CloVR send objects in distance order, i.e., ring by ring, which
mixes more complex objects with simpler objects, achieving a better
balancing of the decoding load.

Preference questionnaire. The answers to the preference ques-
tionnaire are shown in Fig. 9, which awards a score of 1 to 5 for the
strongly disagree to strongly agree answers of the Likert scale. We
have opted to have negative questions in the preference questionnaire
to avoid mechanical answers. The negative questions are Q2 for Vis0

Vis0 -
Vis1

Vis0 -
CloVRD

Vis0 -
CloVR

Vis1 -
CloVRD

Vis1 -
CloVR

CloVRD -
CloVR

City1
Friedman: χ2 = 50.58, p <0.001

Z -3.92 -3.73 -3.92 -3.92 -3.92 -0.37
p <0.001∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.709

City2
Friedman: χ2 = 45.78, p <0.001

Z -3.92 -3.51 -3.44 -3.92 -3.92 -0.64
p <0.001∗ <0.001∗ <0.001∗ <0.001∗ <0.001∗ 0.526

Factory
Friedman: χ2 = 33.9, p <0.001

Z -3.77 -3.92 -3.92 -2.32 -1.12 -0.9
p 0.002∗ <0.001∗ <0.001∗ 0.021 0.263 0.37

Table 2: Analysis of frame rate differences between the four conditions
at the three VE locations.



Fig. 9: Box-plots of answers to preference questionnaire for the four
approaches and three VE locations, over all participants. Higher value
always means better.

("blank screen boring"), Q3 for Vis1, CloVRD, and CloVR ("confusing
intermediate visualizations"). For consistency, i.e., for higher values
to always mean better, the answers to these negative questions were
flipped, i.e., a value of x was replaced with 6− x.

For download time acceptability (Time, Q1 in Fig. 9), the Friedman
test indicates significant differences between the four conditions only
for the Factory VE (χ2 = 20.82, p < 0.001). The Wilcoxon posthoc
analysis reveals that the only pairwise difference that clears the Bonfer-
roni corrected significance threshold of 0.05/6 = 0.008 is Vis0 versus
Vis1 (Z = −3.26, p = 0.001). Although Vis0 is faster than Vis1, not
seeing anything on screen during loading frustrates the participant,
who has an exaggerated perception of the Vis0 loading time. Although
CloVRD and CloVR have both longer loading times than both Vis0
and Vis1, the completeness of the intermediate visualization of the VE
made the longer loading times acceptable to participants. For the City
VE locations, no differences were significant, again, validating the
hypothesis that slightly longer times are acceptable if they mean more
complete intermediate visualizations.

For visualization completeness during loading (Completeness (Q2)
in Fig. 9), Vis0 received low scores, i.e., participants found the blank
screen during loading to be boring. There are significant differences
between the four conditions for all three VE locations, as shown in
Tab. 3. Vis1 had significantly higher scores than Vis0, i.e., participants
preferred seeing the VE fill in as it loaded to seeing a blank screen. The
participants’ preference for seeing the VE fill in as it loaded (Vis1) was
higher than their preference for seeing a complete visualization of the
VE that is being refined during loading (CloVR). In other words, some
indication of progress was more important to participants than seeing a
complete VE early on. Some participants noted that computer games
load objects individually rather than the entire scene once, like Vis1,
and that they have never seen the environment load all at once and then
refine through warping, like CloVR and CloVRD, which is a possible
explanation for the higher scores given to Vis1. Furthermore, for Vis1
the completeness question asked whether participants liked seeing the
VE fill in as it loaded, and not whether the VE was complete early on.
This suggests a comparison to Vis0, i.e., participants indicated their
preference for seeing objects as they load, as opposed to waiting for
all objects to arrive, hence the favorable score. CloVRD and CloVR
were preferred to not seeing anything during loading (Vis0), and the
difference was significant for Factory.

Participants found Vis1 to provide the least confusing visualization
during loading (Clarity (Q3) in Fig. 9), but no pairwise differences were
significant. The concept of displaying objects one at a time as they
arrive is simple and intuitive, hence the participant preference. CloVRD
and CloVR show a complete visualization of the VE early on and then

Vis0 -
Vis1

Vis0 -
CloVRD

Vis0 -
CloVR

Vis1 -
CloVRD

Vis1 -
CloVR

CloVRD -
CloVR

City1
Friedman: χ2 = 19.78, p <0.001∗

Z -3.35 -1.39 -1.8 -3.15 -2.68 -1.37
p <0.001∗ 0.163 0.071 0.002∗ 0.007∗ 0.169

City2
Friedman: χ2 = 25.21, p <0.001∗

Z -3.77 -2.59 -2.03 -2.62 -2.88 -1.16
p <0.001∗ 0.01 0.042 0.009 0.004∗ 0.248

Factory
Friedman: χ2 = 32.77, p <0.001∗

Z -3.98 -3.21 -3.27 -2.63 -2.8 -0.3
p <0.001∗ 0.001∗ 0.001∗ 0.009 0.005∗ 0.763

Table 3: Analysis of visualization completeness preference differences
between the four conditions at the three VE locations.

manipulate it in a way unfamiliar to the user during the refinement that
expands the near region. Participants noted the novelty of the CloVR
refinement approach but found it more confusing than the "familiar"
and "common" refinement implemented by Vis1. The differences in
this highly subjective measure were not significant in our small-scale
study.

In terms of overall preference (Overall (Q4) in Fig. 9), CloVR was
always preferred to CloVRD and to Vis0. Vis1 was always preferred
to anyone of the three other conditions. However, the differences are
small and the standard deviations large. The only pairwise significant
differences were recorded for City2 (Friedman χ2 = 8.77, p = 0.032)
for Vis1 versus Vis0 (Wilcoxon Z =−3.15, p = 0.002), and for Factory
(Friedman χ2 = 9.66, p = 0.022) for Vis1 versus Vis0 (Wilcoxon Z =
−2.94, p = 0.003).

In conclusion:
1. unlike the visibility methods, CloVR provides a functional and

visually complete initial version of the VE early on in the loading
process;

2. unlike the visibility methods and unlike the discrete visual refine-
ment CloVRD method, CloVR refines the VE progressively, with
visual continuity; this did not come at the price of a significant
loading time or frame rate penalty;

3. CloVR has a slightly higher total loading time than the visibility
methods, and participants did not find the extended loading time
to be objectionable;

4. CloVR has a high frame rate during loading;

5. participants had the lowest preference (2/5) for waiting until all
data is loaded before any of the VE is displayed, a neutral prefer-
ence (3/5) for growing the near region discretely or continuously,
and the highest preference (4/5) for seeing objects being displayed
as they arrived.

4.2.2 Experiment 2: CloVR support for a multiple users
The second experiment investigates the ability of the CloVR approach to
allow multiple co-located users to explore complex VEs simultaneously,
with low latency. Experiment 2 investigates multi-user interaction post
download, where the emphasis is on the timely communication of
low-volume but strictly-real-time data streams.

Experimental design and setup. We ran Experiment 2 in two ses-
sions, each with eight participants (Fig. 10, left), for a total of 16
participants. All eight participants of a session were connected to the
server simultaneously, and they were divided into two groups (i.e.,
teams) of four.

Task. The participants in each group had to collaborate to collect
spheres that appeared in the City VE (Fig. 10, right). The VE was ren-
dered using the CloVR near-far partitioning approach. Each participant
used a handheld controller to aim a virtual laser. A sphere was collected
if all four members of the group aimed their virtual laser pointer at
the sphere for 2s. The only data that had to be transferred was the
poses of the eight virtual laser pointers, so the campus WiFi had the
necessary bandwidth to support the eight participants simultaneously.
Each client sent the pose of their virtual laser pointer to the server and
the server relayed all poses to all clients. A participant saw the virtual



Fig. 10: Top: illustration of experiment room with eight participants (com-
posite image shown to preserve participant privacy). Bottom: sphere
collected collaboratively by a group of four participants with their virtual
laser pointers.

laser pointers of the other three members of their group, but not of the
other group. Furthermore, the spheres visible to one group were not
visible to the other group. This way, groups were not competing for the
same sphere. However, a group saw their own score, i.e., the number of
collected spheres, as well as the score of the other group, which created
indirect competition.

Procedure. Once participants put on the headsets, they were shown a
screen with textual instructions that explained the collaborative task of
collecting spheres, the goal of collecting as many spheres as possible,
and the scores shown on screen. Then each client headset loaded the
VE from the server. Whereas for Experiment 1 we tested loading perfor-
mance assuming each object is unique, for Experiment 2 we leveraged
object instancing in the City VE which greatly reduces the amount
of data that has to be transferred. Once the VE loaded, participants
performed the collaborative sphere collection task. The participants
were located at random locations within a 5 m region concentric with
the near region used by the CloVR approach.

A sphere appears in the VE one at a time. A sphere is visible until
collected by the group, after which a new sphere appears. There were
three types of spheres: Easy, i.e., stationary spheres, Intermediate,
i.e., spheres moving with a 0.5m/s velocity, and Hard, i.e., spheres
moving on with a 1.5m/s velocity. The position of each participant
was chosen randomly in a 5m x 2m rectangular ground plane region.
The participants were seated so they could not translate their viewpoint
over large distances. The initial view direction of the participants was
aligned. The Intermediate and Hard spheres moved on predetermined
piece-wise linear trajectories that avoided intersections with the VE
geometry and that kept them in front of the participants. Participants
collected spheres in three trials. At the beginning of each trial, the
score resets. A trial ends after 3min. The spheres alternated in difficulty
from Easy, to Hard, to Intermediate, and then back to Easy. After each
trial participants completed an experience questionnaire as described
below. The questionnaire was administered in the VR environment so

Fig. 11: The time needed to collect a sphere as a function of the number
of selection misses, and of the sphere type.

participants did not have to remove the headset between trials.
Data collection. The objective metrics for Experiment 2 are the VE

loading times, the frame rate for each client, the scores for each group
and for each trial, the time needed to select each sphere, the type of
each sphere selected, the number of misses when selecting each sphere,
and the round-trip latency λi from participant i to the other members of
the group. A miss is defined as a participant losing the selection of a
sphere. The round-trip latency λi is given by Eq. 3, where τis (or τ js)
is the time to communicate from client i (or j) to the server, and τsi (or
τs j) is the time to communicate from the server to client i (or j).

λi = τis +max
j ̸=i

(τs j + τ js)+ τsi (3)

λi is measured by sending a message M1 from client i to the server,
when the server receives M1 it sends a message M2 to each of the other
clients j in the group, when a client j receives M2 from the server
it acknowledges it back to server with a message M3 j, and when the
server receives all acknowledgments it sends a message M4 back to
client i letting it know that all other clients received its message M1. λi
is measured on the clock of client i as the total time elapsed between
sending M1 and receiving M4. Since λi is measured on the same clock,
no synchronized clocks are needed. λi/2 is a good estimate of time it
takes for the pose of the virtual laser pointer of i to be known to all the
other clients in the group.

The subjective data collected for Experiment 2 are the five-point
Likert scale answers to an experience questionnaire with 4 questions:

• EQ1: It was easy to collaborate to select spheres.
• EQ2: The team worked well together.
• EQ3: The lasers of my teammates were updated without delay.
• EQ4: The system was laggy, that is it was slow to respond.
Results and discussion. Experiment 2 leveraged repeated objects in

the VE to reduce download times. The average loading times were
6.38 ± 3.43s, which is about one fourth of the download times for
Experiment 1 (Fig. 6, left, CloVR), which considered all VE objects
unique. This demonstrates that the CloVR approach works for VEs with
scene graphs that repeat objects. Of course, repeated objects alleviate
the networking bottleneck, but not the rendering bottleneck, i.e., the
VR headset cannot render all the instances of the repeated objects. The
average frame rate for the clients was 50.9 ± 9.9fps. The round-trip
latency λi had a maximum value of 195ms, and average of 58 ± 14ms.

Groups succeeded in selecting on average 26.3 ± 10.9 spheres
in a 3min trial. Fig. 11 shows that there are more misses for more
challenging spheres. The correlation coefficient is 0.927. The "hardest"
sphere required over 24s and 69 misses. The "easiest" sphere was
collected in 2.72s with zero misses. The average collection time is
4.07 ± 1.45, 4.37 ± 1.38, and 7.13 ± 5.14s, and the average number
of misses is 3.56 ± 3, 3.73 ± 2.72, and 14.9 ± 17.0, for the Easy,
Intermediate, and Hard spheres.

The answers to the experience questionnaire show that participants
found it easy to collaborate to select spheres (3.94 ± 0.73 for EQ1),
that the team worked well together (3.98 ± 0.6 for EQ2), and that the
system was not laggy (3.9 ± 1.08 for EQ4, flipped for consistency).
However, the participants did notice the delay in the update of the
teammate virtual laser pointers (2.48 ± 0.9 for EQ3).



5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We have presented CloVR, an approach for making complex virtual
environments tractable on thin clients, such as a low-end all-in-one VR
headset. A server deployed on a laptop reduces the VE through near-far
partitioning, renders the far region geometry to an environment map,
and transfers the environment map and near region geoemetry to the
VR clients, where they are used to render quality frames locally, with
low latency. The near region starts out small to reduce startup time, and
is then increased gradually, with visual continuity. The advantages of
CloVR are confirmed analytically, as well as in a user study with two
experiments, one where participants worked independently, and one
where eight participants worked collaboratively.

The CloVR approach reduces rendering load by only rendering ge-
ometry close to the user. The radius of this near region has to be chosen
such that the amount of geometry it encompasses is tractable on the
thin VR client on which the application relies. For the VEs we used, the
near region radius starts at 10m and expands gradually to 63m, which
provides ample space for the user to translate the viewpoint by walking.
Before the user can walk to the edge of the near region, other limiting
factors become relevant such as exertion or reaching the boundaries of
the physical world hosting the VR application. These factors typically
require teleportation, which is fully supported by the CloVR approach.
Future work could examine providing support for VR applications that
entail long distance viewpoint translation, e.g., flying a helicopter over
an urban environment, which requires shifting the near region as the
user viewpoint approaches its boundaries.

Another limitation is that the morph is implemented at vertex level,
which can create intersection artifacts for large triangles that cross
between the near and far regions. One solution is to subdivide all
triangles that cross a near region growth ring, on the server, as a pre-
process, but this could lead to a large number of additional triangles.
A second solution, which we have adopted, is to rely on tessellation
shaders to subdivide on the client, as needed, at run time. For our
City and Factory VEs the subdivision was only needed for the few
street, sidewalk, and floor triangles, but the solution could incur a
large performance penalty for VEs that require extensive subdivision.
The ultimate solution is to bypass triangle subdivision by applying the
morph at fragment level, which could become practical in the future.

Our study shows that CloVR can quickly download a functional and
visually complete version of the VE, which is then progressively refined
by increasing the near region. Experiment 1 asked participants to
observe passively the complete download process. Future experiments
could ask participants to complete a task as quickly as possible, without
waiting for the entire download to complete, which has the potential to
confirm the benefit of CloVR’s fast initial download both in terms of
task completion and of participant preference metrics.

Our experiments involve a small number of participants and future
work could work on gathering additional evidence for the differences
between the methods. Instead of the Likert scales future work could
resort to direct pairwise comparisons between methods forcing the user
to choose one of the two options. Future work could also investigate
the detectability thresholds for the intermediate region size and for the
near region expansion speed in two-alternative forced choice (2AFC)
experiments that measure the minimum size and maximum speed be-
yond which participants consistently identify the CloVR approach from
a CloVR / ground truth pair.

Our approach supports dynamic VEs, but all dynamic objects, even
those in the far region, have to be rendered through geometry. This
works well when there are only a few dynamic objects in the far region,
e.g., cars moving through the City VE or workers moving through the
Factory VE, but could lead to an excessive rendering load in VEs where
most or all objects are dynamic.

CloVR achieves scalability at the server with the number of clients
in terms of computational cost by leveraging client locality. However,
CloVR does not achieve scalability in terms of network bandwidth, as
the server has to send the data to each client. Experiment 1 demonstrates
that a simple laptop server can support three clients during the startup
phase (i.e., download phase), and Experiment 2 demonstrates support
for eight clients collaborating in real time. Future work should pursue

scalability in terms of network bandwidth by leveraging the fact that all
clients in the same region need the same data. One approach is to rely
on clients who have received the data to send it to other clients, which
requires direct client-to-client connections.

Our study placed the server and participants in the same real-world
room, which corresponds, for example, to the scenario of a deploying
a VR application as part of an on-campus laboratory session. Future
work should investigate remote participants, who could each be at a
different location, which is likely to increase the participant to par-
ticipant latency. Such a geographically distributed collaborative VR
scenario does require that each client have adequate network bandwidth.
In addition to limiting the rendering load on the client, the near-far
partitioning scheme employed by CloVR can also be used to adjust
the amount of data that has to be transferred, and future experiments
should investigate adapting the near region radius independently for
each client based on the client’s available bandwidth.

In order to make complex VEs tractable on thin VR clients, common
practice is to over-simplify the VEs, which can lead to a cartoon-like
appearance. Our work contributes to the effort of bringing to thin
VR clients complex VEs without sacrificing visual detail, which is a
prerequisite for VR applications in education, simulation, and training
that rely on placing the user in authentic settings. The CloVR approach
was developed and evaluated for immersive VR, but it promises benefits
in the context of other forms of distributed interactive visualization on
thin clients such as phones, tablets, or laptops.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grants No. 2212200, 2219842, 2309564, and
2318657.

REFERENCES

[1] Oculus headset. https://www.oculus.com/. Accessed: 2023-10-01. 5
[2] Unity 3d engine. https://unity.com/. Accessed: 2023-10-01. 5
[3] J. F. Blinn and M. E. Newell. Texture and reflection in computer generated

images. Commun. ACM, 19(10):542–547, oct 1976. doi: 10.1145/360349.
360353 2

[4] T. Feng, H. Sun, Q. Qi, J. Wang, and J. Liao. Vabis: Video adaptation
bitrate system for time-critical live streaming. IEEE Transactions on
Multimedia, 22(11):2963–2976, 2019. 2

[5] L. Fink, N. Hensel, D. Markov-Vetter, C. Weber, O. Staadt, and M. Stam-
minger. Hybrid mono-stereo rendering in virtual reality. In 2019 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), pp. 88–96,
2019. doi: 10.1109/VR.2019.8798283 2

[6] M. Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the american statistical
association, 32(200):675–701, 1937. 5

[7] B. Han, Y. Liu, and F. Qian. Vivo: Visibility-aware mobile volumet-
ric video streaming. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, MobiCom ’20. Asso-
ciation for Computing Machinery, New York, NY, USA, 2020. doi: 10.
1145/3372224.3380888 2

[8] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical
360-degree streaming for smartphones. In Proceedings of MobiSys, 2018.
2

[9] J. Hladky, H.-P. Seidel, and M. Steinberger. The camera offset space:
Real-time potentially visible set computations for streaming rendering.
ACM Transactions on Graphics (TOG), 38(6):1–14, 2019. 2

[10] IBM Corp. IBM SPSS Statistics [Computer software]. Version 27.0, 2022.
5

[11] T. Kämäräinen, M. Siekkinen, J. Eerikäinen, and A. Ylä-Jääski. Cloudvr:
Cloud accelerated interactive mobile virtual reality. In Proceedings of the
26th ACM international conference on Multimedia, pp. 1181–1189, 2018.
2

[12] V. Kelkkanen, M. Fiedler, and D. Lindero. Synchronous remote rendering
for vr. International Journal of Computer Games Technology, 2021:1–16,
2021. 2

[13] J. Kim, P. Knowles, J. Spjut, B. Boudaoud, and M. Mcguire. Post-render
warp with late input sampling improves aiming under high latency con-
ditions. Proceedings of the ACM on Computer Graphics and Interactive
Techniques, 3(2):1–18, 2020. 2

https://www.oculus.com/
https://unity.com/
https://doi.org/10.1145/360349.360353
https://doi.org/10.1145/360349.360353
https://doi.org/10.1109/VR.2019.8798283
https://doi.org/10.1145/3372224.3380888
https://doi.org/10.1145/3372224.3380888


[14] T. Koch and M. Wimmer. Guided visibility sampling++. Proc. ACM
Comput. Graph. Interact. Tech., 4(1), apr 2021. doi: 10.1145/3451266 2

[15] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering high-
quality immersive virtual reality on today’s mobile devices. In Proceedings
of the 23rd Annual International Conference on Mobile Computing and
Networking, MobiCom ’17, p. 409–421. Association for Computing Ma-
chinery, New York, NY, USA, 2017. doi: 10.1145/3117811.3117815
2

[16] K. Lee, J. Yi, Y. Lee, S. Choi, and Y. Kim. GROOT: A Real-time Streaming
System of High-Fidelity Volumetric Videos. In Proc. ACM MobiCom,
Sept. 2020. 2

[17] T. Liu, S. He, S. Huang, D. Tsang, L. Tang, J. Mars, and W. Wang. A
benchmarking framework for interactive 3d applications in the cloud. In
2020 53rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pp. 881–894. IEEE, 2020. 2

[18] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney. Level of
Detail for 3D Graphics. Elsevier Science Inc., USA, 2002. 2

[19] M. Meehan, S. Razzaque, M. Whitton, and F. Brooks. Effect of latency on
presence in stressful virtual environments. In IEEE Virtual Reality, 2003.
Proceedings., pp. 141–148, 2003. doi: 10.1109/VR.2003.1191132 1

[20] A. Mehrabi, M. Siekkinen, T. Kämäräinen, and A. yl̈ J¨s̈lki. Multi-tier
cloudvr: Leveraging edge computing in remote rendered virtual reality.
ACM Transactions on Multimedia Computing, Communications, and Ap-
plications (TOMM), 17(2):1–24, 2021. 3

[21] Z. Nadir, T. Taleb, H. Flinck, O. Bouachir, and M. Bagaa. Immersive
services over 5g and beyond mobile systems. IEEE Network, 35(6):299–
306, 2021. 2

[22] J. Park, I.-B. Jeon, S.-E. Yoon, and W. Woo. Instant panoramic texture
mapping with semantic object matching for large-scale urban scene re-
production. IEEE Transactions on Visualization and Computer Graphics,
27(5):2746–2756, 2021. doi: 10.1109/TVCG.2021.3067768 2

[23] V. Popescu, S. H. Lee, A. S. Choi, and S. Fahmy. Complex virtual
environments on thin vr systems through continuous near-far partitioning.
In 2022 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 35–43. IEEE, 2022. 2

[24] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward practical vol-
umetric video streaming on commodity smartphones. In Proc. of ACM
HotMobile, 2019. 2

[25] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical viewport-
adaptive 360-degree video streaming for mobile devices. In Proceedings
of MOBICOM, 2018. 2

[26] A. Schollmeyer, S. Schneegans, S. Beck, A. Steed, and B. Froehlich.
Efficient hybrid image warping for high frame-rate stereoscopic rendering.
IEEE Transactions on Visualization and Computer Graphics, 23(4):1332–
1341, 2017. doi: 10.1109/TVCG.2017.2657078 2

[27] M. Schütz, K. Krösl, and M. Wimmer. Real-time continuous level of detail
rendering of point clouds. In 2019 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR), pp. 103–110, 2019. doi: 10.1109/VR.2019.
8798284 2

[28] M. Stengel, Z. Majercik, B. Boudaoud, and M. McGuire. A distributed,
decoupled system for losslessly streaming dynamic light probes to thin
clients. In Proceedings of the 12th ACM Multimedia Systems Conference,
pp. 159–172, 2021. 2

[29] P. Stotko, S. Krumpen, M. B. Hullin, M. Weinmann, and R. Klein. Slam-
cast: Large-scale, real-time 3d reconstruction and streaming for immersive
multi-client live telepresence. CoRR, abs/1805.03709, 2018. 2

[30] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions
on image processing, 13(4):600–612, 2004. 4

[31] F. Wilcoxon. Individual comparisons by ranking methods. Springer, 1992.
5

[32] A. Zhang, C. Wang, B. Han, and F. Qian. YuZu: Neural-Enhanced
volumetric video streaming. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pp. 137–154. USENIX
Association, Renton, WA, Apr. 2022. 2

[33] S. Zhao, H. Abou-zeid, R. Atawia, Y. S. K. Manjunath, A. B. Sediq, and
X.-P. Zhang. Virtual reality gaming on the cloud: A reality check. In 2021
IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE,
2021. 2

[34] P. Zhou, Y. Xie, B. Niu, L. Pu, Z. Xu, H. Jiang, and H. Huang. Qoe-
aware 3d video streaming via deep reinforcement learning in software
defined networking enabled mobile edge computing. IEEE Transactions
on Network Science and Engineering, 8(1):419–433, 2020. 3

[35] Y. Zhou, L. Wu, R. Ramamoorthi, and L.-Q. Yan. Vectorization for fast,
analytic, and differentiable visibility. ACM Trans. Graph., 40(3), jul 2021.
doi: 10.1145/3452097 2

https://doi.org/10.1145/3451266
https://doi.org/10.1145/3117811.3117815
https://doi.org/10.1109/VR.2003.1191132
https://doi.org/10.1109/TVCG.2021.3067768
https://doi.org/10.1109/TVCG.2017.2657078
https://doi.org/10.1109/VR.2019.8798284
https://doi.org/10.1109/VR.2019.8798284
https://doi.org/10.1145/3452097

	Introduction
	Related Work
	CloVR Approach to Cloud VR
	Fast Progressive Startup with Visual Continuity

	Evaluation
	Analytical Evaluation
	Empirical Evaluation: User Study
	Experiment 1: CloVR support for a single user
	Experiment 2: CloVR support for a multiple users


	Conclusions, Limitations, and Future Work

