
Complex VEs on All-In-One VR Headsets
Through Continuous From-Segment Visibility Computation

Voicu Popescu*

Purdue University
Elisha Sacks†

Purdue University
Zirui Zhang‡

Purdue University
Jorge Vazquez§

Purdue University

Figure 1: The Medieval virtual environment (a) with 2.3 million triangles (Mtris) is reduced to 0.2 Mtris (b) visible from the central
street (white rectangle), using our algorithm. A frame (d) rendered from the visible set has a low pixel error ε of 0.02% and
is virtually indistinguishable from the ground truth frame (c) rendered from the original virtual environment. The Grass virtual
environment with 55 Mtris is reduced to a visible set of 4.2 Mtris that yields a frame (f ) with a low ε of 0.10% over ground truth (e).

ABSTRACT

All-in-one VR headsets have limited rendering power which limits
the complexity of the virtual environments (VEs) that can be used
in VR applications. This paper describes a novel visibility algo-
rithm for making complex VEs tractable on all-in-one VR headsets.
Given a view segment, the algorithm finds the set of triangles vis-
ible as a camera translates on the view segment. When run on the
perimeter of a user view region, the algorithm provides a quality
approximation of the visible set from inside the view region. The
visibility algorithm supports static and dynamic VEs, and it solves
visibility with either triangle, particle, or object granularity. The
visible sets yield output frames that are virtually indistinguishable
from ground truth frames rendered from the original VEs.

Index Terms: VE complexity reduction, all-in-one virtual reality
headsets, visibility computation.

*e-mail: popescu@purdue.edu
†e-mail: eps@purdue.edu
‡e-mail: zhan4192@purdue.edu
§e-mail: vazque81@purdue.edu

1 INTRODUCTION

Recent hardware and software advances have brought all-in-one
virtual reality (VR) headsets with on-board inside-looking-out
tracking, rendering, and power, which provide a completely unteth-
ered VR experience, free of limited tracked area, video cable, and
power cord constraints. This freedom comes at the cost of graph-
ics processing units (GPUs) that can only render a fraction of the
triangles that their power-hungry desktop counterparts can. In turn,
the reduced rendering power limits the complexity of virtual envi-
ronments (VEs) that such thin VR clients can render. The prob-
lem of reducing the complexity of 3D datasets without reducing the
richness of the visual experience is as old as interactive computer
graphics, owing to the limited rendering capability of early graphics
systems. The problem has received renewed interest in the context
of VR headsets, not just because their GPUs are less powerful, but
also because this is unlikely to change in the near future. Indeed,
it is unlikely that GPU energy efficiency, battery energy density, or
heat dissipation strategies will quickly improve sufficiently to allow
all-in-one headsets to incorporate desktop-class GPUs.

There are three complementary fundamental approaches for
making complex VEs tractable on all-in-one VR headsets. One
approach is to replace the original VE with a VE of lesser ge-
ometric complexity but that yields frames indistinguishable from
those rendered from the original VE. This problem of geometric
simplification remains open, with challenges that include maintain-
ing visual quality while meeting a prescribed rendering budget, and



achieving a gradual change in level of detail as the user’s viewpoint
changes. Developers of VR applications often resort to a drastic
simplification of the VE. A second approach is for the VR headset
to get help from a server. If the server is to perform all rendering,
the network has to be traversed twice for each frame, once for the
headset to inform the server of the desired view, and once for the
server to send the rendered frame to the headset. This results in a
latency unacceptable in the context of VR, where it causes cyber-
sickness. Therefore, one has to partition the rendering load between
the server and the headset, in a way that shields the headset from
the full complexity of the VE, while hiding the network latency.

A third approach is visibility computation, which determines the
parts of the VE that the user can see from a given region. For many
complex VEs, the resulting visible set is a small fraction of the orig-
inal VE, so it can be handled by the VR headset. However, visibility
computation is also an open problem, as there are no practical al-
gorithms that can find the set of all VE parts visible from the given
view region. Visibility algorithms are categorized based on how
they analyze the space of visibility rays emanating from the view
region. Sample-based visibility algorithms probe the VE with a
discrete set of visibility rays. Such algorithms are fast, but the vis-
ibility rays considered are selected heuristically, which could miss
visible parts of the environment. A second category of visibility al-
gorithms analyze the space of visibility rays continuously, by con-
sidering a continuum–and not just a discrete set–of visibility rays.
The goal is an accurate visible set, but, due to the complexity of
such algorithms, this goal has only been reached for the simplest of
view regions, i.e., a single viewpoint.

In this paper we propose to reduce the complexity of VEs to
make them tractable on all-in-one VR headsets with limited render-
ing capabilities. To do so we introduce a novel continuous visibil-
ity computation algorithm that finds all VE triangles that are visible
along a linear camera path. In other words, the algorithm finds all
and only the triangles that are visible at pixel centers as the cam-
era translates. Figure 1 shows that our approach achieves an 11.5×
complexity reduction for the Medieval VE (from a to b), and of
13× for Grass (e-f ). An all-in-one VR headset (i.e., a Quest 3 [1])
renders the original Medieval VE at 23 fps, and our visible set at 71
fps, a speedup of 3×, approaching the Quest 3 display frame rate of
72 fps. The Quest 3 cannot render the original Grass VE, and can
render our visible set at 39 fps. Our approach reduces complexity
while maintaining frame quality. For Medieval, compared to the
ground truth frame c rendered from the original VE, our frame d
has a pixel error ε of 0.02%, a peak signal to noise ratio [19] PSNR
of 50.9 dB, and a structural similarity index measure [46] SSIM
of 0.999999. For Grass, comparing our frame e to ground truth f
yields an ε of 0.10%, a PSNR of 35.5 dB, and an SSIM of 0.999994
(see Fig. 6 for a magnified comparison).

Our algorithm generalizes the conventional z-buffer from a sin-
gle value per pixel to a list of triangles visible at the pixel center
as the camera translates. The visible triangles and their visibility
intervals are computed based on visibility events, i.e., the moments
along the linear camera path when a pixel’s center switches sid-
edness with respect to a projected triangle edge. Our algorithm
also handles dynamic VEs, with per-vertex piecewise linear trans-
lation vectors. For Swaying Grass, an animated version of Grass
with 10 key frames, our approach reduces complexity by a fac-
tor of 9.9×, and achieves high quality frames with ε = 0.12%,
PSNR = 75.8, and SSIM = 0.999996. Our approach makes Sway-
ing Grass tractable on the Quest 3, achieving a frame rate of 28 fps.
Our algorithm can solve visibility not just with triangle granularity,
but also with coarser, object granularity. We have also extended our
algorithm to handle spherical particles directly, without having to
convert them first to triangle meshes. Even for a coarse particle tes-
sellation with 10 triangles, working directly with particles reduces
the visibility computational load by an order of magnitude.

We have evaluated our approach on multiple virtual environ-
ments, where it has consistently achieved a significant complexity
reduction, high frame rates, and high frame quality as confirmed in
comparisons to ground truth. We have also compared our approach
to the prior art approach of accumulating visible triangles from in-
termediate positions along the camera segment; results show that
our approach is more efficient, finding more complete visible sets
faster. Our approach enables deploying on all-in-one VR headsets
virtual environments that were previously reserved to VR systems
tethered to a rendering workstation. We also refer the reader to the
accompanying video.

2 PRIOR WORK

Our goal is to reduce the complexity of virtual environments to
make them tractable on thin VR clients. We review prior art ap-
proaches for VE complexity reduction, with a more detailed dis-
cussion of the visibility approach.

2.1 Level-of-Detail (LoD) Adaptation

The goal is to replace detailed objects that have a small screen foot-
print with simpler versions that produce similar images at a lower
cost. The challenges are computing simplified alternative represen-
tations for complex geometries, avoiding image quality loss, and
transitioning continuously from one LoD to the next as the foot-
print of the simplified object increases making it warrant a more
detailed representation [29]. The simplest, oldest, and still very fre-
quently used LoD scheme in interactive visualization, including in
VR, is environment mapping [5]: partition the VE into a near and
far region, keep the original geometry in the near region, and ren-
der the far region to a cubemap that provides a low cost and visually
rich backdrop [38]. Complexity reduction of up to 2× was achieved
by rendering distant geometry only once, instead of once for each
eye [13], or by rendering the entire VE only once, from the mid-
dle of the interpupillary segment, and then reconstructing the left
and right eye images by warping [42]. We rely on visibility com-
putation, which is an orthogonal approach to LoD adaption. The
approaches can be used in conjunction when the visible set is too
large to be rendered on the client and has to be simplified first.

2.2 Distributed VR Systems

The goal is to provide help to thin VR clients from remote servers.
Rendering each frame on the server implies a network round-trip
per frame. Even if one makes abstraction of the time needed for
the server to render the frame, the approach incurs too much la-
tency [51]. Future cellular network standards do incorporate the
requirement for ultra-low latency [34], but the approach is not yet
feasible. Network latency can be hidden if rendering is partitioned
between the server, which renders distant objects with higher la-
tency, and the client, which renders near objects with low latency
(e.g, CloudVR [21]). Latency can also be diffused if the frame re-
ceived from the server is used by the client to create intermediate
frames [23]. The server can also help with the shading compu-
tational load of expensive, global illumination effects [44]. The
CloVR system uses a near-far partitioning scheme and provides
continuous progressive refinement at startup and after teleportation
by growing the near region in concentric rings [53].

Distributed VR systems are also being investigated by the net-
work community, wishing to extrapolate the success of video
servers to interactive visualization applications [28, 22, 12]. One
early focus were 360◦ videos, which are only partially seen by a
VR user hence the opportunity for saving bandwidth [41, 16]. A
subsequent focus were 3D videos with per-pixel depth (a.k.a., vol-
umetric or free-viewpoint videos), which, unlike triangle meshes,
provide easier LoD control and occlusion culling due to their reg-
ular structure [40, 14, 27, 49]. Handling triangle meshes has been



attempted by converting the meshes to an intermediate uniform rep-
resentation, e.g., a collection of environment maps [26, 45, 37], or
of compressed animated light fields [25], but the intermediate repre-
sentations come at the cost of higher bandwidth requirements and of
lower quality output frames. The low latency and specialized com-
puting requirements of distributed VR has led researchers to dif-
ferentiate between high latency cloud servers and responsive edge
servers, investigating optimal resource allocation [32, 52]. Our vis-
ibility computation approach is compatible with both edge servers,
whose graphics computation capabilities, i.e., GPUs, allow com-
puting the visible sets in real time, and with cloud servers, which
store visibility solutions precomputed over a spatial subdivision of
the total user view region.

2.3 Visibility Computation

For VEs where only a fraction of the VE is visible from a given
view region, visibility computation can be a powerful approach for
making complex VEs tractable on thin VR clients. There are no
modifications to the VR application, the headset just renders a sub-
set of the original VE, and, if all visible triangles are found, the
output frames are identical to those obtained from the original VE.

One classification of visibility algorithms is based on which tri-
angles are included in the visible set. If some triangles are in fact
never visible from the view region, the algorithm is called conser-
vative. The advantage is a high quality output, and the disadvantage
is that the visible set isn’t as small as it could be [7, 9]. If the visible
set contains only but not all visible triangles, the algorithm is called
aggressive. The advantage is that the application doesn’t render
any unnecessary triangles, and the disadvantage is that the output
image quality suffers when the viewpoint reveals a triangle omitted
from the visible set [36, 48]. If the visible set contains all visible
triangles, and it does not erroneously include a hidden triangle, the
algorithm is called exact. The advantage is that there is no error
in the output image with the smallest possible visible set, and the
disadvantage is algorithm complexity.

Another classification of visibility algorithms is based on how
the space of visibility rays originating from the give view region is
investigated. Sample-based visibility algorithms consider a discrete
set of visibility rays, producing an aggressive visible set since a ray
never returns a hidden triangle, but also since some triangles could
be missed. Their advantage is simplicity and efficiency, their dis-
advantage is output image error. Continuous visibility algorithms
consider a continuum of rays. Their advantage is an exact visible
set over the ray continuum, and their disadvantage is complexity.

Conservative visibility algorithms replace occluders with sim-
pler shapes whose occlusion shadow is easier to compute [11, 8],
which simplifies occlusion culling, i.e., the process of discarding
multiple hidden triangles at once [4, 2]. Since the approximate oc-
cluder underestimates the original occluder, some hidden triangles
are incorrectly labeled as visible. Overestimating occluder geome-
try leads to an aggressive visibility solution [50].

Aggressive Visibility algorithms probe for visible triangles with
individual [48, 3, 24] or bundles [31, 30, 43] of rays. Individual
rays bring the advantage of flexibility to cast only the rays deemed
necessary, ray bundles bring the advantage of amortizing the cost
of a ray leveraging the coherence of the rays within the bundle.
The challenge is to decide which rays to use to probe for visible
triangles, decision that is based on heuristics [24]. Furthermore,
such a sample-based algorithm can only confirm that a triangle is
visible, and it can never confirm that a triangle is hidden, as this
would require an infinite number of rays to confirm that the triangle
is not visible at any of its points.

Exact Visibility algorithms analyze the space of visibility rays
continuously. For the simplest view region, i.e., a single view-
point, the space of visibility rays is 2D. One approach for com-
puting from-point visibility is to build a polygonal subdivision of

this 2D space into regions where a single triangle is visible [39].
The approach analyzes the 2D space of visibility rays continuously,
finding all triangles visible from the given viewpoint, regardless of
the view direction. Computing from-point visibility repeatedly was
shown [39] to approximate from-region visibility more efficiently
than state of the art sample-based visibility [24]. By contrast, our
approach computes visibility for a view segment, which yields a
3D space of visibility rays, which it analyzes continuously along
the translation degree of freedom and discretely along the two ro-
tation degrees of freedom. As shown in the results section, our
from-segment visibility computation algorithm allows finding more
visible triangles faster than from-point visibility. Another approach
for exact from point visibility is based on beam tracing [17], which
has the advantage of being differentiable, as needed for example in
inverse graphics [54].

For a general, 3D view region the space of visibility rays
is 5D, which was explored by theoretical computational geome-
try [10, 15, 33, 6], but no practical implementations exist for com-
plex VEs. For example, one approach is to represent the visibility
rays between two polygons in a 5D Euclidian space derived from
Pluecker space [35]. The approach was demonstrated for VEs of
one million triangles, for a small view cell, with a large compu-
tational overhead, and without support for dynamic scenes. Al-
though the general visibility problem for a 3D view region has been
well understood for a long time, visibility computation research has
focused on computationally tractable approximate solutions. The
camera offset space approach to visibility [18] analyzes the camera
translations, i.e., ”offsets”, under which a triangle covers a given
image plane point, i.e., a pixel center. The 3D space of offsets, and
the 2D space of image plane points amount to the same 5D com-
plexity as the space of visibility rays of a 3D view region. To make
the implementation practical, the intersection of the offset spaces of
two triangles is approximated conservatively, which avoids missing
visible triangles, but includes triangles that are not visible, making
the algorithm conservative, and not exact.

Our algorithm computes visibility for a 1D view region, i.e.,
a view segment, finding all and only the triangles visible as the
camera translates along the view segment. Our algorithm analyzes
visibility continuously at each pixel center in the 1D space of the
camera translation, and it takes a sample-based approach in the 2D
space of the rays at a viewpoint along the view segment. Our algo-
rithm can be used as an efficient visibility computation primitive to
approximate visibility for higher dimensional view regions.

3 CONTINUOUS FROM-SEGMENT VISIBILITY

Given a virtual environment modeled with triangle meshes, a user
view modeled with a camera, and a camera translation segment, we
have developed an algorithm that finds all and only VE triangles
that are visible at the camera’s pixel centers as the camera moves
along the translation segment. We first describe the algorithm for a
static VE (Sec. 3.1), then we describe its extension to dynamic VEs
(Sec. 3.2), and finally we describe its extension to using spherical
particles as first-order visibility computation primitives (Sec. 3.3).

3.1 Static Virtual Environments
Given a static VE, a view segment v0v1, and a camera c, we want
to find all triangles τ in VE for which there exists a viewpoint v
in v0v1 and a pixel p in c such that τ is visible from v at p. A
triangle τ is visible from v at p if the line segment vp does not in-
tersect any other triangle. What is needed is an algorithm that finds
all triangles visible at each pixel center as the camera translates.
Visibility changes at a pixel center when the pixel center changes
sidedness with respect to the projection of a triangle edge, as the
camera translates as shown in Fig. 2, left. Our algorithm computes
all such visibility events for each pixel and builds a list of visibility
intervals where a single triangle is visible (Fig. 2, right).



Figure 2: Left: Image footprint of a triangle as the camera translates;
the triangle projection moves from a0b0c0 to a1b1c1, and it covers pixel
center from when bici crosses p to when a jc j crosses p. Right: illus-
tration of the list of visibility intervals at a pixel center, with camera
translation parameter t on the x axis, and the distance d from the
camera eye to the triangle on the y axis; triangle 1 is visible when
t ∈ [tk, tl ], 2 when t ∈ [ti, t j], and 3 when t ∈ [t j, tm].

Our algorithm is akin to rendering the VE, but from a view seg-
ment as opposed to a view point. The pixels touched by a triangle
as the camera translates on the view segment are computed as the
2D convex hull of the projections of the vertices from the segment
endpoints. For each pixel, the translation interval when the pixel
center is covered by the current triangle is computed using visibil-
ity event equations that find the time when the pixel center changes
sidedness with respect to a triangle edge. The interval is depth com-
posited with the current list of visibility intervals at the pixel. Once
all triangles are processed, the visible set is collected from the final
visibility interval lists at the pixels. A pseudocode description of
our algorithm is given in Alg. 1. The algorithm initializes the pixel
visibility interval lists to empty (lines 1-2), then it computes the
visibility of each triangle (lines 3-9), to finally collect the visible
triangles from the pixel visibility interval lists (lines 10-13).

(lines 3-9) The visibility of a triangle is computed in two steps:
(1) compute the pixels whose centers are covered by the triangle
projection (lines 4-6), and (2) update the visibility interval list of
each covered pixel (lines 7-9).

(lines 4-6) The pixels covered by a triangle as the camera trans-
lates are found by projecting the triangle from both ends of the view
segment (lines 4 and 5), and by computing the 2D convex hull of
the two triangle projections (line 6). In Fig. 2, left, the convex hull
corresponds to the inside of pentagon a0a1b1c1c0 (gray). The con-
vex hull is a conservative estimate of the image area touched by the
triangle as the camera translates. We prove this statement leverag-
ing epipolar geometry. When the camera translates from v0 to v1,
each projected vertex moves on a straight line, i.e., on its epipolar
line. Since a convex hull contains any segment defined by two of its

Algorithm 1 Continuous from-segment visibility for static VEs
Input: VE set of triangles S, camera C, view segment v0v1
Output: Visible set Sv (triangles from S seen by C from v0v1)

1: for each pixel p ∈C do
2: p.L = /0
3: for each triangle Ti ∈ S with 3D vertices abc do
4: a0b0c0 = Project(abc, C, v0)
5: a1b1c1 = Project(abc, C, v1)
6: H = ConvexHull(a0, b0, c0, a1, b1, c1)
7: for each pixel center p ∈ H do
8: [(ts,ds),(t f ,d f )] = CoverageInterval(p, abc, v0, v1)
9: p.L = DepthComposite(p.L, [(ts,ds),(t f ,d f )], i)

10: Sv = /0
11: for each pixel p ∈C do
12: for each visibility interval q ∈ p.L do
13: Sv = Sv ∪q.triID
14: return Sv

points, the convex hull will contain the projected vertex trajectories,
i.e., segments a0a1, b0b1, and c0c1 in Fig. 2, left. This means that
for any intermediate viewpoint v the convex hull will contain the
three projected vertices, and therefore the entire triangle projection.

(lines 7-9) The algorithm iterates over the pixels inside the con-
vex hull. We denote the viewpoint translation between v0 and v1
using a parameter t, i.e., v = v0 +(v1 − v0)t, with t ∈ [0,1]. For
each pixel center p, the coverage interval is computed as the trans-
lation interval [ts, t f ]⊆ [0,1] when triangle abc covers p (line 8).

(line 8) The coverage interval is computed by investigating any
visibility event generated by the three triangle edges. An edge gen-
erates a visibility event if its projection passes over the pixel center.
Given a triangle edge ab, where a and b are 3D vertices, given a
view segment v0v1, and given a pixel center p, the moment te when
p is on ab’s projection from v is found as shown in Eqs. 1.

(p−v)n = 0
n = (b−a)× (v−a)
v = v0 +(v1 −v0)te
p = p0 +(v1 −v0)te

(1)

The first two equations place p on the plane vab defined by the
edge and the viewpoint. The third equation defines the viewpoint
position v on the view segment when the visibility event occurs,
i.e., at te. The fourth equation defines the pixel center position at
te, which has translated from p0 as much as v has translated from
v0. Solving for te results in a linear equation in te, as shown in
Eq. 2. If te /∈ [0,1], edge ab does not generate a visibility event, and
p is either on the correct or on the wrong side of ab for the entire
translation interval [0,1]. The correct side of an edge is that given
by the third vertex of the triangle, i.e., c for edge ab. If te ∈ [0,1],
edge ab does generate a visibility event, and p is on the correct side
of the edge either for [0, te] or for [te,1].

(p0 −v0)((b−a)× (v0 +(v1 −v0)te −a)) = 0 (2)

The visibility event analysis for edge ab produces a transla-
tion sub-interval [ts, t f ]

ab ⊆ [0,1], possibly the empty interval, in
which pixel center p is on the correct side of ab. The cover-
age interval [ts, t f ] for triangle abc is computed by intersecting the
translation sub-intervals of the triangle’s three edges, i.e., [ts, t f ] =

[ts, t f ]
ab ⋂

[ts, t f ]
bc ⋂

[ts, t f ]
ca. In addition to needing to know

the interval [ts, t f ] when a triangle covers a pixel center, the visibil-
ity algorithm also needs to know the distance [ds,d f ] to that triangle
over the interval in order to enforce correct visibility when multiple
triangles cover the pixel center at the same time, much like in con-
ventional z-buffering. Given a value of the translation parameter
t, computing the distance d from viewpoint v = v0 +(v1 − v0)t to
triangle abc along the ray defined by pixel center p is trivial, and
the complete coverage interval [(ts,ds),(t f ,d f )] is ready to be depth
composited with the previously found visibility intervals at p.

(line 9) The newly found coverage interval has to be depth com-
posited with the existing visibility intervals, using conventional in-
terval arithmetic. Consider Fig. 2, right, and let’s assume that trian-
gles are processed in the order 1, 2, and then 3. At first, the list of
visibility intervals is empty and the entire coverage interval [tk, tl ]
of triangle 1 is kept. The coverage interval [ti, t j] of triangle 2 does
not overlap with any of the existing visibility intervals, i.e., with
[tk, tl ], so [ti, t j] is kept in its entirety as well. The coverage interval
of triangle 3 overlaps with that of triangle 2, but 3 is at greater depth
than 2, so only the interval [t j, tm] is kept. Surfaces modeled with
connected triangles yield connected visibility intervals. A coverage
interval will not intersect a visibility interval as long as VE triangles
do not intersect. If they do, our depth compositing algorithm will
correctly detect this second type of visibility event and will create
split visibility intervals at the intersection hinge.



Each visibility interval also stores the ID of the triangle that is
visible at that interval, i.e., i for Ti, which allows recovering the
visible set (line 13). If a coarser granularity visibility solution is
desired, the set of visible triangles can be converted to a set of vis-
ible objects straightforwardly: an object is visible iff at least one
of its triangles is visible. Object-based visibility has the advantage
of applying the visibility solution quickly and non-intrusively by
simply enabling the visible objects (or disabling the ones that are
not visible). The disadvantage is that the total number of triangles
rendered by the headset is higher than it should be, as the head-
set has to render the hidden triangles of partially visible objects.
Triangle-based visibility has the advantage of a smaller rendering
load, and the disadvantage of having to modify objects to keep only
their visible triangles.

3.2 Dynamic Virtual Environments
Many virtual environments of interest to applications are dynamic,
with a few or all objects moving. We have extended our continuous
visibility computation algorithm to handle dynamic VEs. For each
pixel, our algorithm keeps track of which triangle is visible when.
For dynamic VEs, computing visibility events becomes more chal-
lenging as complex triangle trajectories can result in complex vis-
ibility event equations. To make event equation complexity man-
ageable, we decompose the non-linear vertex motion into linear
segments. This is already done by numerical simulation codes that
save node positions for every one of multiple states. This is also the
approach taken to save complex animation with a set of key frames
connected smoothly by interpolation. Individual per-vertex piece-
wise linear translation can indeed approximate any motion, with the
error controlled by the number of states. Given a dynamic VE mod-
eled with triangles whose vertices move linearly but independently
in a time interval [0,1], we find the triangles seen by a camera as it
translates along a view segment with the following modifications to
our algorithm from Sec. 3.1.

The visibility event equations for the static VE from Eqs. 1 are
extended with the two additional equations shown in Eqs. 3, which
model the motions a0a1 and b0b1 of vertices a and b.

a = a0 +(a1 −a0)te
b = b0 +(b1 −b0)te

(3)

Solving for te now becomes a quadratic equation, as shown in
Eq. 4, where te now appears in both operands of the cross product.

(p0 − v0)((b0 +(b1 −b0)te −a0 +(a1 −a0)te))×
(v0 +(v1 − v0)te −a0 +(a1 −a0)te)) = 0

(4)

The quadratic visibility event equation can result in 0, 1, or 2
coverage intervals per edge, which can translate to up to four cov-
erage intervals per triangle. This implies that the coverage interval
computation in line 8 of Alg. 1 returns an array of coverage inter-
vals, which are then depth composited with the pixel’s list of vis-
ibility intervals one at the time, in line 9. Depth does not change
linearly anymore over a coverage interval, i.e., segments 1, 2, and
3 in Fig. 2, right, are now parabola arcs, which makes depth com-
positing slightly more expensive. Finding the pixels affected by a
triangle (lines 3-6 in Alg. 1) does not change.

3.3 Visibility Computation on Spherical Particles
Complex dynamic VEs might include parts modeled with parti-
cles. Since our algorithm handles triangles, it also handles parti-
cles through tessellation. However, converting particles to triangle
meshes leads to a one order of magnitude increase in complexity
even for a coarse tessellation that approximates a particle with 10

Figure 3: Top view of dataset with 10,000 bouncing spheres and 25
states (a), visible set of 1,611 spheres computed directly on spheres,
without tessellation, for a view region at the center of the dataset
(b), ground truth frame rendered from original dataset (c), and nearly
perfect frame rendered from visible set (d).

triangles. For this, we have extended our visibility algorithm to han-
dle spherical particles as a first-order visibility computation prim-
itive. Given a VE modeled with spherical particles, each with its
own radius, center, and translation vector, the goal is to find all par-
ticles visible as the camera translates on a view segment (Fig. 3).

The first modification of our visibility algorithm (Alg. 1 in
Sec. 3.1) is to compute the set of pixels touched by a particle as
it translates. We approximate this set conservatively with an axis-
aligned bounding box of the extremal projections of the particle.
The second concern is to derive the visibility event equation for a
spherical particle, as shown in Eqs. 5. o is the center of the sphere
as it translates from o0 to o1. q is a point on the ray vp, with v and p
being defined like before (Eqs. 1). The third equation provides the
condition that the ray be perpendicular to the sphere ray through q.
The fourth equation places q r away from o, i.e., on the sphere.

o = o0 +(o1 −o0)te
q = v+(p− v)u

(p− v)(q−o) = 0

(q−o)(q−o) = r2

(5)

Plugging the o and q from the first two equations of Eqs. 5, and
p and v from the third and fourth equations of Eqs. 1, into the third
equation of Eqs. 5 results in Eqs. 6, which shows that u is linear in
te, with k1, k2, and k3 being scalar constants. Plugging in u from
Eqs. 6 into the fourth equation of Eqs. 5 results in a quadratic equa-
tion in te. Two solutions in [0,1] occur when the ray reaches and
leaves the sphere as the viewpoint translates on the view segment.
Like for dynamic VEs, depth varies non-linearly along a coverage
interval. However, since particles do not intersect, depth composit-
ing of coverage intervals only requires the evaluation of the non-
linear depth functions, and not intersecting them.

u = te(k1/k0)+(k2/k0)

k0 = (p0 − v0)(p0 − v0)

k1 = (p0 − v0)(v0 − v1 +o1 −o0)

k2 = (p0 − v0)(o0 − v0)

(6)



Table 1: VEs used in our experiments. The last column shows the
Quest 3 frame rate obtained when rendering the original VE as-is,
without our complexity reduction. Grass cannot be loaded or ren-
dered. *Bouncing Spheres cannot be loaded at its full complexity,
and the frame rate provided is for 20 of the 25 states.

4 RESULTS AND DISCUSSION

We have tested our from-segment continuous visibility algorithm
on several static and dynamic virtual environments of varying com-
plexity. Our algorithm reduced the VEs to visible sets that can
be handled by the headset and that produce high quality frames as
compared to ground truth. We provide an overview of our imple-
mentation (Sec. 4.1), we describe the VEs used in our experiments
(Sec. 4.2), we describe the metrics used to quantify the performance
of our algorithm (Sec. 4.3), we provide and discuss the results of our
algorithm with respect to ground truth (Sec. 4.4), and we compare
our algorithm to the prior art approach of aggregating visibility over
multiple viewpoints and timepoints (Sec. 4.5).

4.1 Implementation
Given a rectangular user view region abcd, we run our continuous
visibility algorithm on segments ab, bc, cd, and da, and then union
the four visible sets. For each view segment, we find the visible
triangles in all view directions, using a cubemap camera, and by
running Alg. 1 six times, once for each face of the cubemap. We
use a cubemap face resolution of 800× 800. The resolution of the
cubemap has to be commensurate to the average image footprint of
a VE triangle. For datasets with small triangles we run the visibility
algorithm multiple times per segment, jittering the orientation of the
cubemap. If the first run uses a cubemap aligned to the world coor-
dinate system, each subsequent run will rotate the cubemap around
an arbitrary direction. The result is a random sampling of the 2D
space of directions, with a resolution controlled by the number of
runs. The final visible set is the union of the visible sets found by
individual runs.

We have developed a GPU implementation of our visibility al-
gorithm using CUDA [47]. We ran it on a workstation with Intel
Xeon E5-2698 v4 2.20GHz 20-core processors, with 512 GB of
RAM, and with NVIDIA Tesla V100 SXM2 32GB GPU cards (a
single CPU and GPU card were used). The CUDA program pro-
ceeds in three phases. Phase 1 counts the number of triangle/pixel
pairs (T, p), where the projection of T covers p at least at some
point along the segment. This is done with one thread per trian-
gle in thread blocks of size 256. Each thread executes lines 4-7 of
Alg. 1 to compute the pixels covered by its triangle. The number
of triangle/pixel pairs is used by phase 2 to allocate memory and to
store the pairs. Phase 3 computes the list of visibility intervals at
each pixel, using one thread per pixel, in thread blocks of size 256.
The thread for pixel p executes lines 8 and 9 of Alg. 1. We han-
dle spherical particles (Sec. 3.3) in a CUDA program with a similar
structure to the one working with triangles.

4.2 Virtual Environments
The VEs used in our experiments are described in Tab. 1. The VEs
are illustrated in the figures listed in column 2, and also in the video

accompanying our paper. The first three VEs are static (a single
state) and the last two are dynamic (multiple states). Manhattan is
an actual model of the New York City borough. Medieval is a fan-
tasy medieval town. Grass is an outdoor VE with grass blades and
flowers covering a terrain mesh. Swaying Grass has the same geom-
etry as Grass, but it is now animated to simulate the grass moving
due to wind. Bouncing spheres is a simulation of 10,000 spheres
that bounce on the ground plane from random heights, around the
user, losing energy, and coming to a stop after 25 simulation states.
The sphere radii are 4 m and the dataset covers a 100 m × 100 m
ground plane squares. A Quest 3 all-in-one VR headset [1] can-
not load or render Grass, and cannot load the 25 states of Bouncing
Spheres. The headset struggles to render Medieval, achieving an av-
erage frame rate of a third of the 72 fps Quest 3 display frame rate.
Although Manhattan is a low density VE that can be handled by a
Quest 3, it is still important to avoid rendering unnecessary triangles
to save battery and to make room for adding complex geometries in
the proximity of the user, with the city model as a backdrop.

4.3 Performance Metrics

Our visibility algorithm is called upon to reduce the complexity of
a given VE for a given user region such that the headset can render
quality frames at interactive rates.

Frame quality. Our algorithm finds all triangles visible at pixel
centers as the camera translates along a view segment. This means
that rendering the visible set with the camera at an intermediate
viewpoint on the view segment always results in the correct frame,
i.e., the frame that would be obtained by rendering the original VE.
However, we run our visibility algorithm on the perimeter of a
rectangular user view region, and then use the visible set to ren-
der frames from viewpoints inside the view rectangle. Our from-
perimeter visible set is an approximation, i.e., a subset of the com-
plete from-rectangle visible set. Given a frame F∗ rendered from
our approximate visible set V S∗, if the triangle visible at pixel P
is missing from V S∗, P will be rendered incorrectly. We compare
our frame F∗ to the ground truth frame F obtained by rendering the
original VE from the same view.

We quantify frame quality with the following three standard
image comparison metrics: (1) image error ε , peak signal to
noise ratio PSNR [19], and (3) structural similarity index measure
SSIM [46]. ε is defined as the percentage of pixels in F∗ that are
different from their counterpart in F . A pixel P∗ in F∗ is differ-
ent from its counterpart P in F if the final depth at P∗ is different
(farther) from the final depth at P. The different depth indicates
that the visible triangle at P was missed by the approximate set.
This definition of image error is more discerning than one based on
color that is VE dependent and discounts errors in regions of the VE
with uniform color. PSNR is defined as the mean squared error over
the three color channels, it is measured on the logarithmic decibel
scale, and lossy image processing results are considered good in the
30 to 50 dB range [20]. SSIM measures the similarity between two
images, and, when one is ground truth, to quantify the perceived
quality of the other image, with good values above 0.97 [20].

Frame rate. The visible set has to be sufficiently compact for
the headset to render it with a high frame rate. The display frame
rate for the Quest 3 is 72 fps. We report the average and minimum
frame rates over sequences of thousands of frames.

Visibility computation time. Visibility computation is not in
the ”inner loop” of the VR application–our algorithm is run on a
workstation and the visible set is communicated to the headset. One
option is to precompute visible sets for a tiling of the VE and to
serve the precomputed visible sets to the application at startup and
as the user navigates the viewpoint through the VE. Another option,
which is tractable when visibility computation times are reasonable,
is to compute the desired visible set on the fly, at VR session startup,
and as the user teleports from one VE region to another.



Table 2: VE complexity reduction with our visibility algorithm, and frame quality and frame rate achieved.

4.4 Results. Comparison to Ground Truth.

Tab. 2 gives our results. Each row describes an experiment where a
visible set was computed from a view rectangle (”visibility compu-
tation” group of columns), the visible set was used to render frames
along a path captured with the headset (”Headset trace”), the frames
were compared to ground truth frames (”Frame quality”), and the
visible set was used to render frames freely, on the headset, in stand-
alone mode, from within the view rectangle, measuring the frame
rate. The Manhattan view rectangle follows Fifth Avenue for al-
most 500 m (Fig. 4 a-b). The Medieval view rectangles map to a
street (A) (Fig. 1 a-b) and to a plaza (B). The Grass view rectangles
are in the center (A) and at the edge (B) of the VE. The Bouncing
Spheres view rectangle in the center of the dataset (Fig. 3, a, b).

Visibility computation running time. The asymptotic com-
plexity of Alg. 1 is O(nmklogk), where n is the number of trian-
gles in the VE over which the algorithm iterates (line 3), m is the
average number of pixels of the convex hull of the two extremal
projections of a triangle over which the algorithm iterates (line 7),
and k is the average number of visibility intervals per pixel (line
9). m depends on the length of the view segment–the longer the
segment, the more the triangle moves in the image between the two

Figure 4: The Manhattan VE (a) is reduced to the 0.9% of its triangles
(b) visible from a 489 m stretch of 5th Av. (white rectangle). The
visible set produces nearly perfect frames (c vs. d).

viewpoints, and the bigger the convex hull. The list of intervals is
updated using a balanced binary tree, hence the klogk time of the
depth compositing step (line 9). All other steps of the algorithm are
constant time, including the computation of the convex hull of six
2D points (line 6), and of the triangle coverage interval (line 8).

The longer the view rectangle, the larger m, as a triangle’s trace
extends over a bigger portion of the image, and the larger k, as
more triangles pass over a pixel as the viewpoint translates. Con-
sequently, Medieval A takes 107 s versus the 5.6 s for Grass, even
though Grass has over twenty times more triangles than Medieval
(Tab. 1). Fig. 5 shows that for Manhattan visibility computation
time grows linearly as the view rectangle is scaled up to the 489 m
size; for Medieval A however, the dependence is super-linear and
visibility could be computed more efficiently by splitting the view
rectangle into smaller pieces. For Swaying Grass visibility is com-
puted for each of the 10 states, with a running time linear in the
number of states. Computing visibility for Bouncing Spheres takes
1.7 s total, over all 25 states. Scaling up the simulation from 100 ×
100 to 1,000 × 1,000 increases the computation time to just 3.2 s,
finding 137,763 visible spheres.

Complexity reduction and frame rate. Our visibility algorithm
brings a substantial reduction in VE complexity. The visible set of
Manhattan has only 34,000 triangles, which is 0.9% of the original
VE. Solving visibility with triangle granularity yields more com-
pact visible sets than doing so with object granularity, e.g., 8.9% vs
35% for Medieval A. In all cases the frame rate is close to the 72
fps display frame rate of the Quest 3, except for Grass A where the
visible set has over 4 Mtris. Our approach makes Swaying Grass, a
54 Mtris animated VE tractable on an all-in-one VR headset, a VE
that is unusable at its original complexity. For Bouncing Spheres,
the 1,611 visible spheres are easily handled by the headset. For
visualization, we tessellate a sphere with 15 parallels and 15 merid-
ians, resulting in 450 triangles per sphere, or 725 Ktris for the 1,611

Figure 5: Visibility computation time vs. view rectangle size.



Figure 6: Magnified fragment of frames e-f from Fig. 1 that shows
the grass is slightly less dense at a distance for our approach.

spheres in the visible set, per state. This shows that computing visi-
bility directly on particles is essential, bringing a two orders of mag-
nitude reduction in problem scope. For the scaled-up version of the
simulation with 106 spheres, the visible spheres yield 62 Mtris per
state, and making rendering tractable requires geometric simplifi-
cation or direct sphere rasterization in a custom fragment shader.

Frame quality. The visible sets produce frames that are hard
to distinguish from ground truth frames rendered from the origi-
nal VEs (see Tab. 2, Figs. 1, 3, and 4, and accompanying video).
Over all experiments, the average image error ε is at most 0.19%,
the average PSNR is at least 38.9, and the average SSIM is at least
0.99998. The largest ε is 2.26%, the smallest PSNR is 26.1, and
the smallest SSIM is 0.9996. The largest errors are encountered in
Medieval when the user viewpoint is above the view rectangle, re-
vealing triangles not part of the visible set (e.g., left side of tree bed
in Fig. 1 d), and in Grass, where some of the distant grass blades
are missing (Fig. 6). As expected, quality is higher for object gran-
ularity than for triangle granularity, and is flawless for Medieval
A. Quality is higher for Swaying Grass than for Grass, as the near
grass blades move out of the way to reveal grass blades that would
otherwise be missed in the static VE.

For many of our experiments the quality of the frames might be
unnecessarily high. For example for Swaying Grass the average
PSNR is 75.8 dB and 81.9 dB, and the application might choose to
reduce the visible set to save resources while still achieving great
frame quality. A simple way to do so is to tune the resolution of
the cubemap used in the visibility computation to achieve a desired
PSNR (e.g., 40 dB), which will result in a smaller visible set, much
the same way a video application might choose the most aggressive
compression setting that achieves a desired quality level.

4.5 Comparison to From-Point Sample-Based Visibility

We compute visibility continuously along a view segment, without
having to guess where along the segment new triangles become vis-
ible. Instead, our algorithm computes these visibility events analyt-
ically. The traditional approach to visibility is to sample the given
user view region with multiple viewpoints, to compute visibility at
each view point, and to aggregate the from-point visible sets to ap-
proximate the from-region visible set. Such sample-based visibility
is inefficient because visibility events are hard to predict, and be-
cause the visible sets of neighboring points are highly redundant.
We have conducted two experiments, one that compares multiple
runs of from-point visibility to a single run of our from-segment
algorithm (Sec. 4.5.1), and one to multiple runs (Sec. 4.5.2).

4.5.1 Single from-segment vs. multiple from-point

We compare our from-segment algorithm to multiple runs of from-
point visibility that sample the view segment uniformly. The results
are shown in Fig. 7, where Medieval was used. From-point visibil-
ity converges slowly. Sampling the view segment with 10,000 view
points still only finds about 27,000 of the 29,000 visible triangles.

Figure 7: Comparison of a single run of our from-segment algorithm
to multiple runs of conventional from-point visibility, in terms of visible
triangles found. Close to one 100,000 from-point runs are needed to
complete the visible set, which from-segment finds in a single run.

Whereas our from-segment algorithm finds the 29,000 visible trian-
gles in a single pass, close to 100,000 from-point runs are needed to
complete the visible set. We note that the number of visible trian-
gles found does not strictly increase with the number of even steps
along the view segment, i.e., with the number of runs in the graph in
Fig. 7. A finer subdivision of the view segment changes the view-
points along the view segment, and, although more numerous, the
new viewpoints might find fewer triangles, which is another testa-
ment to the chaotic nature of visibility.

A from-point visibility run entails a conventional rendering pass
over the VE with a trivial fragment shader that outputs the triangle
ID, followed by a collection of the visible triangles with a sim-
ple pass over the output image. As such, a from-point visibility
run implies a smaller computational cost than a run of our from-
segment algorithm. We have compared the running time of our
from-segment visibility algorithm to multiple runs of from-point
visibility. As expected, the total from-point visibility time is linear
in the number of runs. An equal-quality comparison reveals that
from-point needs substantially longer than from-segment to com-
plete the visible set, i.e., 30 min vs. 3.84 s. Furthermore, 200 runs
of from-point take 4.1 s, so an equal-time comparison reveals that
from-point finds only 24,000/29,000 = 83% of the visible triangles
in the 3.84 s from-segment needs to find all visible triangles.

4.5.2 Multiple from-segment vs. multiple from-point
A single run of our from-segment continuous visibility computation
algorithm is not always sufficient. For a highly detailed VE, visible
triangles with a small footprint can land in between the centers of
the pixels of the cubemap. Furthermore, we are approximating the
triangles visible from inside the view rectangle by computing the
triangles visible from the view rectangle perimeter. The user of a
VR application is of course free to assume any view direction on
the view rectangle perimeter, as well as any viewpoint inside in-
side the view rectangle, and even slightly above or below it, as the
user’s head also translates up and down as they walk. This means
that from the point of view of a VR application, our from-segment
visibility algorithm produces an approximation of the visible set
needed for a user path. As shown in Sec. 4.4, it is a high quality
approximation. In this section we show that the quality of the ap-
proximate visible set can be conveniently controlled by running our
algorithm multiple times, each time with a different random orien-
tation of the cubemap along the view rectangle perimeter.

Fig. 8 shows the number of visible triangles found by multiple
from-segment and multiple from-point runs, for the view rectangle
B of Grass (see Fig. 2). We computed visibility with our algorithm
1,000 times on the perimeter of the view rectangle, which corre-
sponds to 4,000 runs of the from-segment algorithm. We computed
visibility with the conventional from-point algorithm from random
viewpoints inside the view rectangle, with a cubemap per viewpoint
to cover all directions, and with random cubemap orientations. Our
algorithm finds consistently many more visible triangles than from-



Figure 8: Comparison between our from-segment algorithm and con-
ventional from-point visibility, in terms of visible triangles found as
a function of the number of runs. From-segment consistently finds
more triangles than from-point for the same number of runs.

point for the same number of runs. For example, after 500 runs, we
find 3 Mtris while from-point only 1.6 Mtris; after 4,000 runs, we
find 3.5 million and from-point only 2.23 million.

The heuristic of using the view rectangle sides for the multiple
runs of our algorithm is based on the fact that the perimeter provides
the extremal positions of the viewpoint. We have investigated this
heuristic by computing visibility along segments connecting oppo-
site sides of the view rectangle. Although each segment is longer
than the sides of the rectangle, these random segments crisscrossing
the rectangle found fewer triangles for the same number of 4,000
runs, i.e., 3.3 Mtris vs. the 3.5 Mtris found from the perimeter.

The running time of the from-segment and of the from-point ap-
proaches is linear with the number of runs, as expected. A run of
from-segment takes 1.05 s (per segment, per cubemap face). A run
of from-point takes 0.101 s. Fig. 9 shows the number of triangles
found by each of the two methods as a function of time. The faster
running time is not sufficient for from-point to find more triangles in
the same amount of time. We conclude that, although from-segment
does not find all triangles visible from a given view rectangle in a
single run, from-segment is a more powerful visibility computation
primitive than from-point, i.e., multiple from-segment runs find vis-
ible triangles more efficiently than multiple from-point.

5 CONCLUSIONS. LIMITATIONS. FUTURE WORK

We have described a visibility algorithm for computing the set of
triangles visible at the pixels of a camera that translates along a view
segment. We have used this algorithm to reduce the complexity
of VEs, making them tractable on an all-in-one VR headset such
as the Quest 3. The algorithm supports computing visibility with
triangle, sphere, or object granularity, and it supports dynamic VEs,
where potentially every vertex moves every frame. The visible sets
provide high quality frames and high frame rates.

We use visibility to reduce the complexity of a VE. Therefore,
like all visibility based approaches, we rely on the assumption that
the visible set constitutes a manageable fraction of the original VE,
which can be handled by the headset. Another limitation of visi-
bility that we inherit is that the output frame can be affected not
only by parts of the VE to which the user has line of sight, but also
by parts not visible from the current user position. For example,
such hidden geometry can cast shadows or be reflected in the out-
put frame, so it should be included in the visible set. Future work
could investigate the solution of computing the shadow or reflection
environment map from the entire geometry, on a workstation, and
then to use it for correct shadows and reflections when rendering
the visible set on the headset.

Given a 3D view region, there is no exact visibility computa-
tion algorithm with a practical implementation. Our algorithm al-
lows sampling the 3D view region with view segments, which we
have shown is more efficient than sampling it using view points.
Repeated runs of our from-segment visibility algorithm provide a

Figure 9: Comparison between our from-segment algorithm and con-
ventional from-point visibility, in terms of visible triangles found as a
function of time. From-segment consistently finds more triangles than
from-point for the same amount of time.

good and controllable approximation of the from 3D region visi-
ble set. This makes complex VEs tractable on all-in-one headsets,
at the cost of small visual artifacts. The alternative is to resort to
drastic simplifications of the VE, such as replacing grass geometry
with grass texture, or replacing tree canopy geometry with blobs.
Furthermore, even if exact from 3D region visibility were possible,
the visible set might contain too many triangles, and the applica-
tion will not just accept but actually demand a way of reducing the
visible set. Multiple runs of our algorithm find visible triangles in
decreasing order of importance, as triangles visible for longer over
larger image regions are likely to be found sooner, which allows the
application to best spend its rendering budget.

VEs with animated geometry are challenging for visibility com-
putation. For many VEs, the dynamic geometry constitutes a small
fraction of the total VE geometry, and the conventional approach is
to compute visibility without the dynamic geometry, adding it to the
resulting visible set. For example, a door the user has the option to
open in an indoor VE, or any other object with which the user can
interact, is excluded from visibility computation and then added to
the visible set. The approach is, of course, compatible with our
work. Furthermore, our work makes the contribution of enabling
visibility computation in a fully dynamic environment, where every
vertex moves at every frame, as demonstrated for Swaying Grass
and for Bouncing Spheres. VEs with dynamic lights require includ-
ing in the visible set not only the triangles visible to the user, but
also the triangles visible to the lights, as needed to compute accu-
rate shadow maps. When the dynamic light trajectory is contained
in the user view region, such is the case, for example, for a flash-
light handheld by the user or the headlights of a car moving on the
street where the user is located, the visible set computed for the user
subsumes the light visible set, and no additional work is required.
When the lights move in a region disjoint from that of the user, such
as the headlights of a car moving on a side street, our visibility al-
gorithm has to be run for the light trajectories to enhance the visible
set with triangles not visible to the user.

Our approach is ready to be integrated in distributed VR sys-
tems, with a server providing visible sets to individual or clusters
of thin VR clients. Our approach allows for large user view cells,
which supports the coarse transfer granularity needed to smooth
over network performance fluctuations and to prefetch the visible
sets of neighboring cells before the user enters them. Our work is
inscribed in the longer term effort of standing up online libraries
of VR applications that employ full complexity VEs, which users
with thin VR clients can browse and run without lengthy download
times and without trivializing the VE, as needed for applications be-
yond entertainment, such as applications in education, healthcare,
science, and engineering.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grants No. 2212200 and 2219842.



REFERENCES

[1] Quest 3. Meta Platforms, Inc. https://www.meta.com/quest/quest-3/.
2, 6

[2] J. Bittner, V. Havran, and P. Slavik. Hierarchical visibility culling with
occlusion trees. In Computer Graphics International, 1998. Proceed-
ings, pp. 207–219. IEEE, 1998. 3

[3] J. Bittner, O. Mattausch, P. Wonka, V. Havran, and M. Wimmer.
Adaptive global visibility sampling. ACM Transactions on Graphics
(TOG), 28(3):94, 2009. 3

[4] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer. Coherent
hierarchical culling: Hardware occlusion queries made useful. Com-
puter Graphics Forum, 23(3):615–624, 2004. 3

[5] J. F. Blinn and M. E. Newell. Texture and reflection in computer gen-
erated images. Commun. ACM, 19(10):542–547, oct 1976. doi: 10.
1145/360349.360353 2

[6] S. Charneau, L. Aveneau, and L. Fuchs. Exact, robust and efficient
full visibility computation in plücker space. The Visual Computer,
23(9-11):773–782, 2007. 3

[7] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand. A survey
of visibility for walkthrough applications. Visualization and Computer
Graphics, IEEE Transactions on, 9(3):412–431, 2003. 3

[8] X. Décoret, G. Debunne, and F. Sillion. Erosion based visibility pre-
processing. In Proceedings of the 14th Eurographics workshop on
Rendering, pp. 281–288. Eurographics Association, 2003. 3

[9] F. Durand. 3D Visibility: analytical study and applications. PhD
thesis, Université Joseph Fourier, 2010. 3

[10] F. Durand, G. Drettakis, and C. Puech. The 3d visibility complex.
ACM Transactions on Graphics (TOG), 21(2):176–206, 2002. 3

[11] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative visi-
bility preprocessing using extended projections. In Proceedings of the
27th annual conference on Computer graphics and interactive tech-
niques, pp. 239–248. ACM Press/Addison-Wesley Publishing Co.,
2000. 3

[12] T. Feng, H. Sun, Q. Qi, J. Wang, and J. Liao. Vabis: Video adaptation
bitrate system for time-critical live streaming. IEEE Transactions on
Multimedia, 22(11):2963–2976, 2019. 2

[13] L. Fink, N. Hensel, D. Markov-Vetter, C. Weber, O. Staadt, and
M. Stamminger. Hybrid mono-stereo rendering in virtual reality. In
2019 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pp. 88–96, 2019. doi: 10.1109/VR.2019.8798283 2

[14] B. Han, Y. Liu, and F. Qian. Vivo: Visibility-aware mobile volumet-
ric video streaming. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, MobiCom ’20.
Association for Computing Machinery, New York, NY, USA, 2020.
doi: 10.1145/3372224.3380888 2

[15] D. Haumont, O. Mäkinen, and S. Nirenstein. A low dimensional
framework for exact polygon-to-polygon occlusion queries. In Pro-
ceedings of the Sixteenth Eurographics conference on Rendering Tech-
niques, pp. 211–222. Eurographics Association, 2005. 3

[16] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical
360-degree streaming for smartphones. In Proceedings of MobiSys,
2018. 2

[17] P. S. Heckbert and P. Hanrahan. Beam tracing polygonal objects. ACM
SIGGRAPH Computer Graphics, 18(3):119–127, 1984. 3

[18] J. Hladky, H.-P. Seidel, and M. Steinberger. The camera offset space:
Real-time potentially visible set computations for streaming render-
ing. ACM Transactions on Graphics (TOG), 38(6):1–14, 2019. 3

[19] A. Hore and D. Ziou. Image quality metrics: Psnr vs. ssim. In 2010
20th international conference on pattern recognition, pp. 2366–2369.
IEEE, 2010. 2, 6

[20] A. Hore and D. Ziou. Image quality metrics: Psnr vs. ssim. In 2010
20th international conference on pattern recognition, pp. 2366–2369.
IEEE, 2010. 6

[21] T. Kämäräinen, M. Siekkinen, J. Eerikäinen, and A. Ylä-Jääski.
Cloudvr: Cloud accelerated interactive mobile virtual reality. In Pro-
ceedings of the 26th ACM international conference on Multimedia,
pp. 1181–1189, 2018. 2

[22] V. Kelkkanen, M. Fiedler, and D. Lindero. Synchronous remote ren-
dering for vr. International Journal of Computer Games Technology,

2021:1–16, 2021. 2
[23] J. Kim, P. Knowles, J. Spjut, B. Boudaoud, and M. Mcguire. Post-

render warp with late input sampling improves aiming under high la-
tency conditions. Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 3(2):1–18, 2020. 2

[24] T. Koch and M. Wimmer. Guided visibility sampling++. Proc. ACM
Comput. Graph. Interact. Tech., 4(1), apr 2021. doi: 10.1145/3451266
3

[25] B. Koniaris, M. Kosek, D. Sinclair, and K. Mitchell. Real-time render-
ing with compressed animated light fields. In Proceedings of Graph-
ics Interface 2017, GI 2017, pp. 33 – 40. Canadian Human-Computer
Communications Society / Société canadienne du dialogue humain-
machine, 2017. doi: 10.20380/GI2017.05 3

[26] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices. In
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, MobiCom ’17, p. 409–421. Association
for Computing Machinery, New York, NY, USA, 2017. doi: 10.1145/
3117811.3117815 3

[27] K. Lee, J. Yi, Y. Lee, S. Choi, and Y. Kim. GROOT: A Real-time
Streaming System of High-Fidelity Volumetric Videos. In Proc. ACM
MobiCom, Sept. 2020. 2

[28] T. Liu, S. He, S. Huang, D. Tsang, L. Tang, J. Mars, and W. Wang. A
benchmarking framework for interactive 3d applications in the cloud.
In 2020 53rd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pp. 881–894. IEEE, 2020. 2

[29] D. Luebke, B. Watson, J. D. Cohen, M. Reddy, and A. Varshney. Level
of Detail for 3D Graphics. Elsevier Science Inc., USA, 2002. 2

[30] N. Max and K. Ohsaki. Rendering trees from precomputed z-buffer
views. In Rendering Techniques’ 95, pp. 74–81. Springer, 1995. 3

[31] L. McMillan and G. Bishop. Plenoptic modeling: An image-based
rendering system. In Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques, pp. 39–46. ACM,
1995. 3

[32] A. Mehrabi, M. Siekkinen, T. Kämäräinen, and A. yl̈ J¨s̈lki. Multi-tier
cloudvr: Leveraging edge computing in remote rendered virtual real-
ity. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), 17(2):1–24, 2021. 3

[33] F. Mora and L. Aveneau. Fast and exact direct illumination. In Com-
puter Graphics International 2005, pp. 191–197. IEEE, 2005. 3

[34] Z. Nadir, T. Taleb, H. Flinck, O. Bouachir, and M. Bagaa. Immer-
sive services over 5g and beyond mobile systems. IEEE Network,
35(6):299–306, 2021. 2

[35] S. Nirenstein, E. Blake, and J. Gain. Exact from-region visibility
culling. In Proceedings of the 13th Eurographics Workshop on Ren-
dering, EGRW ’02, p. 191–202. Eurographics Association, Goslar,
DEU, 2002. 3

[36] S. Nirenstein and E. H. Blake. Hardware accelerated visibility prepro-
cessing using adaptive sampling. Rendering Techniques, 2004:15th,
2004. 3

[37] J. Park, I.-B. Jeon, S.-E. Yoon, and W. Woo. Instant panoramic tex-
ture mapping with semantic object matching for large-scale urban
scene reproduction. IEEE Transactions on Visualization and Com-
puter Graphics, 27(5):2746–2756, 2021. doi: 10.1109/TVCG.2021.
3067768 3

[38] V. Popescu, S. H. Lee, A. S. Choi, and S. Fahmy. Complex virtual en-
vironments on thin vr systems through continuous near-far partition-
ing. In 2022 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pp. 35–43. IEEE, 2022. 2

[39] V. Popescu, E. Sacks, J. Cui, and R. Ashok. Efficient and robust
from-point visibility. IEEE Transactions on Visualization and Com-
puter Graphics, 30(8):5313–5327, 2024. doi: 10.1109/TVCG.2023.
3291138 3

[40] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward practical
volumetric video streaming on commodity smartphones. In Proc. of
ACM HotMobile, 2019. 2

[41] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices. In
Proceedings of MOBICOM, 2018. 2

[42] A. Schollmeyer, S. Schneegans, S. Beck, A. Steed, and B. Froehlich.



Efficient hybrid image warping for high frame-rate stereoscopic ren-
dering. IEEE Transactions on Visualization and Computer Graphics,
23(4):1332–1341, 2017. doi: 10.1109/TVCG.2017.2657078 2

[43] J. Shade, S. Gortler, L.-w. He, and R. Szeliski. Layered depth images.
In Proceedings of the 25th annual conference on Computer graphics
and interactive techniques, pp. 231–242. ACM, 1998. 3

[44] M. Stengel, Z. Majercik, B. Boudaoud, and M. McGuire. A dis-
tributed, decoupled system for losslessly streaming dynamic light
probes to thin clients. In Proceedings of the 12th ACM Multimedia
Systems Conference, pp. 159–172, 2021. 2

[45] P. Stotko, S. Krumpen, M. B. Hullin, M. Weinmann, and R. Klein.
Slamcast: Large-scale, real-time 3d reconstruction and streaming for
immersive multi-client live telepresence. CoRR, abs/1805.03709,
2018. 3

[46] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004. 2, 6

[47] N. Wilt. The cuda handbook: A comprehensive guide to gpu program-
ming. Pearson Education, 2013. 6

[48] P. Wonka, M. Wimmer, K. Zhou, S. Maierhofer, G. Hesina, and
A. Reshetov. Guided visibility sampling. ACM Transactions on
Graphics (TOG), 25(3):494–502, 2006. 3

[49] A. Zhang, C. Wang, B. Han, and F. Qian. YuZu: Neural-Enhanced
volumetric video streaming. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22), pp. 137–154.
USENIX Association, Renton, WA, Apr. 2022. 2

[50] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III. Visibility
culling using hierarchical occlusion maps. In Proceedings of the 24th
annual conference on Computer graphics and interactive techniques,
pp. 77–88. ACM Press/Addison-Wesley Publishing Co., 1997. 3

[51] S. Zhao, H. Abou-zeid, R. Atawia, Y. S. K. Manjunath, A. B. Sediq,
and X.-P. Zhang. Virtual reality gaming on the cloud: A reality check.
In 2021 IEEE Global Communications Conference (GLOBECOM),
pp. 1–6. IEEE, 2021. 2

[52] P. Zhou, Y. Xie, B. Niu, L. Pu, Z. Xu, H. Jiang, and H. Huang. Qoe-
aware 3d video streaming via deep reinforcement learning in software
defined networking enabled mobile edge computing. IEEE Transac-
tions on Network Science and Engineering, 8(1):419–433, 2020. 3

[53] Y. Zhou and V. Popescu. Clovr: Fast-startup low-latency cloud
vr. IEEE Transactions on Visualization and Computer Graphics,
30(5):2337–2346, 2024. doi: 10.1109/TVCG.2024.3372059 2

[54] Y. Zhou, L. Wu, R. Ramamoorthi, and L.-Q. Yan. Vectorization for
fast, analytic, and differentiable visibility. ACM Trans. Graph., 40(3),
jul 2021. doi: 10.1145/3452097 3


